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PART V
LONG MEMORY MODELLING

The Hurst phenomenon created one of the most interesting, controversial and long-lasting
scientific debates ever to arise in the field of hydrology. The genesis of the Hurst phenomenon
took place over forty years ago in Egypt. Just after World War 11, a British scientist by the name
of Harold Edwin Hurst became deeply involved in studying how the Nile River could be
optimally controlled and utilized for the benefit of both Egypt and Sudan. As Director-General
of the Physical Department in the Ministry of Public Works in Cairo, Egypt, Hurst was particu-
larly interested in the long-term storage requirements of the Nile River. In addition to annual
riverflow series, Hurst analyzed a wide variety of other yearly geophysical time series in order to
examine the statistical properties of some specific statistics that are closely related to long term
storage. These statistical studies led Hurst to develop an empirical law upon which the defini-
tion of the Hurst phenomenon is based.

The fact that the Hurst phenomenon arose from scientific work carried out in Egypt pro-
vided the controversy with an aura of mystery and intrigue. Was the Hurst phenomenon more
difficult to solve than the riddle of the Sphinx? Indeed, a range of explanations has been put for-
ward for solving the Hurst phenomenon. Furthermore, in the process of studying the Hurst
phenomenon, many original contributions have been made to the fields of hydrology and statis-
tics.

In Chapter 10, the Hurst phenomenon is defined and both theoretical and empirical work
related to this phenomenon are described. One spinoff from research connected to Hurst’s work
is the development of a stochastic model called fractional Gaussian noise (FGN). This model
possesses long memory (see Section 2.5.3) and was designed for furnishing an explanation to
the Hurst phenomenon. As demonstrated in Chapter 10, this long memory model fails to solve
the Hurst riddle. Nevertheless, the introduction of FGN into the field of hydrology initiated
major theoretical and practical developments in long memory modelling by not only hydrolo-
gists but also by statisticians and economists. Probably the most flexible and comprehensive
type of long memory model is the fractional autoregressive-moving average or FARMA
model presented in Chapter 11. In fact, the FARMA family of models is a direct extension of
the ARMA class of models defined in Chapter 3.

If FGN modelling cannot provide a reasonable solution to the Hurst phenomenon, then
wherein lies the answer? The solution to Hurst’s riddle is put forward in Section 10.6 of the next
chapter. Simulation experiments demonstrate that when the most appropriate ARMA models are
fitted to a wide variety of annual natural time series, a statistic called the Hurst coefficient is
‘‘statistically preserved’’ by the calibrated ARMA models. Therefore, although the Hurst
coefficient and other related statistics are not directly incorporated as model parameters in the
design of an ARMA model, these statistics can still be indirectly accounted for or modelled by
ARMA models.
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CHAPTER 10
THE HURST PHENOMENON
AND
FRACTIONAL GAUSSIAN NOISE

10.1 INTRODUCTION

Since the original empirical studies of Hurst (1951), the Hurst phenomenon has caused
extensive research with accompanying academic controversies right up to the present time. The
objectives of this chapter are to review and appraise research related to Hurst’s work and demon-
strate how the Hurst phenomenon can be explained. The views presented in this chapter, as well
as research by Hipel (1975), McLeod and Hipel (1978a) and Hipel and McLeod (1978a, 1978b),
constitute a fresh approach to the study of the Hurst phenomenon and the related problem of the
preservation of historical statistics by stochastic models.

In Section 10.2, some statistics related to long term storage requirements of a reservoir are
defined using the idea of a cumulated range. Subsequently, the various types of Hurst coeffi-
cients that have been developed for use in formulae involving the rescaled adjusted range (RAR)
are given and compared in Section 10.3.1. Because of the flexible statistical properties of the
RAR, it is suggested that this is the Hurst statistic of primary concem in water resource applica-
tions related to storage.

The roles of both identically independently distributed (IID) variables and correlated ran-
dom variables for explaining problems related to the Hurst phenomenon are thoroughly investi-
gated in Sections 10.3.2 and 10.3.3, respectively. Simulation studies are used to demonstrate
that the RAR is nearly independent of the type of underlying distribution of the random variables
and is also a function of the sample size. Of particular importance for correlated processes are
stochastic models that can be easily fitted to natural time series and at the same time retain
relevant historical statistical characteristics of the data such as the RAR and other related statis-
tics. The ARMA models of Chapter 3 constitute one family of stochastic or time series models
which possess the potential for continued extensive utilization in hydrology. The fractional
Gaussian noise (FGN) model of Section 10.4 is a process that was developed mainly within the
hydrological literature (Mandelbrot and Wallis, 1968, 1969a to ¢) as a means for possibly
accounting for the Hurst phenomenon. Although some of the inherent drawbacks of this model
are discussed, significant contributions are formulated toward the further statistical maturity of
the FGN model in Section 10.4.

As explained in Part ITI, when any type of time series model is being fitted to a given time
series, it is recommended to follow the identification, estimation and diagnostic check stages of
model construction. Within Section 10.4, useful model building techniques are presented for
allowing FGN models to be applied properly to data sets. More specifically, in Section 10.4.3 an
efficient maximum likelihood estimation (MLE) procedure is derived for use at the estimation
stage. Simulation studies reveal that the MLE approach is superior to a previous estimation
method. A technique for calculating the model residuals is given in Section 10.4.4, so that the
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statistical properties of the residuals can be tested by specified diagnostic checks. If, for exam-
ple, the residuals fail to pass the whiteness criterion, another type of model should be chosen in
order to satisfy this important modelling assumption. Next, a procedure is presented in Section
10.4.5 for calculating minimum mean square error (MMSE) forecasts for a FGN model. Follow-
ing this, an exact simulation procedure is given in Section 10.4.6 for simulating FGN. This new
simulation method eliminates the need for approximating FGN by other types of stochastic
processes.

The FGN model is an example of what is called a long memory process defined in Section
2.5.3. On the other hand, the ARMA models of Chapter 3 possess short memory. For discrim-
inating between the long memory FGN models and the short memory ARMA models, the
Akaike information criterion (AIC) defined in Section 6.3.2 can be employed. For the six annual
riverflow time series considered in Section 10.4.7, the AIC sclects the ARMA model in prefer-
ence to the FGN model in each case.

To investigate statistical properties of the RAR and the Hurst coefficient K, simulation
experiments are carried out in Section 10.5. Within Section 10.5.2, simulation studies are exe-
cuted using white noise while in Section 10.5.3 the simulation studies involve synthetic data
generated from both long and short memory models.

A major challenge in stochastic hydrology is to determine time series models that preserve
important historical statistics such as the RAR, or equivalently, the Hurst coefficient K. By fol-
lowing the identification, estimation, and diagnostic check stages of model development, ARMA
models are determined for 23 geophysical time series in Section 10.6. Simulation studies are
then performed to determine the small sample empirical cumulative distribution function
(ECDF) of the RAR or K for various ARMA models. The ECDF for these statistics is shown to
be a function of the time series length N and the parameter values of the specific ARMA model
being considered. Furthermore, it is possible to determine as accurately as desired the distribu-
tion of the RAR or K. A theorem is given to obtain confidence intervals for the ECDF in order
to guarantee a prescribed precision. Then it is shown by utilizing simulation results and a given
statistical test that ARMA models do preserve the observed RAR or K of the 23 geophysical
time series. Consequently, ARMA models provide an explanation for the Hurst phenomenon.
Finally, various estimates for the Hurst coefficient are estimated and compared in Section 10.7
for the 23 given time series.

The FGN model defined in this chapter is one example of a long memory model. Another
example is the mixed Gamma ARMA(1,1) model proposed by Sim (1987). A flexible class of
long memory models based on sound theoretical foundations is the fractional autoregressive-
moving average or FARMA family of models. In reality, FARMA models constitute direct exten-
sions of ARMA and ARIMA models. Within Chapter 11, FARMA models are defined and
model construction techniques are presented.

10.2 DEFINITIONS

The definitions presented in this section reflect long term storage requirements of reser-
voirs and are needed for explaining the Hurst phenomenon in Section 10.3.1.

Consider a time series z,,25, . . ., zy. Define the kth general partial sum as
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k
Sy =S4+ @ -0iy) =Yz -okiy, k=12,...,N [10.2.1]

i=1
- _ 1Y
where 5 equals 0, Zy = -I-V—Zz,- is the mean of the first N terms of the series, and « is a constant

i=1

satisfying 0 S a < 1. The general (cumulative) range R’y is defined as
R,N =M'N -m'N [1022]

where M’y =max(0,5,,5", . . ., 8’) is the general surplus, and m’y = min(0,5";,5",, ..., S) is
the general deficit. Thus, R’y is the range of cumulative departures of the random variables
Z},2, . - - » 2y, from aZy. When random variables such as z;,2,, . . . , zy, are employed in summa-
tion operations, they are often referred to as summands. The rescaled general range R’y is given
as

R’y =R'yID'y [10.2.3]

172

N
where D’y =N"12 Y- azy)?| is the general standard deviation.

i=1

The constant & can be thought of as an adjustment factor, or in storage theory, it can be
interpreted as the degree of development of reservoir design. Two special cases for  are of par-
ticular importance in water resources. For a =0 (no adjustment) the kth general partial sum ',

is replaced by the crude partial sum S, which is defined by
k
Sk =Sk—l + = 22,- , k= 12,...,N [1024]
i=1
where So =0. The crude range Ry, is defined analogous to R’y as
Ry=My -my [10.2.5]

where My =max(0,5,,S5, . ..,Sy) is the crude surplus, and my =min(0,5,,S5, ..., Sy) is the
crude deficit. Similarly, the rescaled crude range is

Ry =Ry/D, (10.2.6]

N 2
where Dy =N"Y2 13221 is the crude deviation.
i=1

When a =1 (maximum adjustment or development), the kth adjusted partial sum S*, is
given by

k
S* =S% 1+ -2)=Yz-kiy, k=12,...,N [10.2.7)

i=1

where $*¢ =0 and S*y = 0. The adjusted range R*y, is defined as
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R*y = M*y —m*y [10.2.8]

where M*y = max(0,5%,5%,, ...,5*y) is the adjusted surplus, and
m*y = min(0,5%;,5%,, . . . ,$*y) is the adjusted deficit. Finally, the rescaled adjusted range is

R*y = R*\/D*y [10.2.9]
N 1”2
where D*y =N~ 12 [z @z - E’N)2 is the sample standard deviation. Figure 10.2.1 graphically

i=1

illustrates the concepts of S*;, M*y, m*y, and R*y,.

.
>

Figure 10.2.1. Adjusted range.

The statistics described in this section are extremely useful in reservoir design. If the z, are

k
average annual volumes of riverflow, then Y’ z; is the inflow into a reservoir in k years, and akzy
i=1
is the outflow at a level of development a. The §'; in [10.2.1] represents the storage after k
years. Also, R’y is the minimum reservoir capacity required to satisfy a constant draft of azy
without experiencing shortages or spills over the period spanned by the inflow sequence
21,2, . . ., Zy. When a = 1, the water in the river would be used to its full potential.
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The time series z;,25, . . ., 2y is said to be covariance stationary (see Section 2.4.2) if the
mean

p=E(z] [10.2.10]

and the theoretical autocovariance function (ACF)
Ye = E[z = W)z = W] [10.2.11]

both exist and do not depend on ¢. The statistical properties of any covariance stationary Gaus-
sian time series are completely determined by its mean J, variance Y, and theoretical autocorre-

lation function (ACF),
P =Y%Yo [10.2.12]

The physical interpretations of the stationary assumptions are discussed in Section 2.4 and also
by Klemes (1974).

Often it seems reasonable to assume that recent values of a time series contain more infor-
mation about the present and future than those in the remote past. Accordingly, it is assumed
that the theoretical ACVF is summable as defined by (Brillinger, 1975)

M= 3 lyl<e [10.2.13]

k=—ee

As is also mentioned in Section 2.5.3, a covariance stationary time series model is said to have a
short or a long memory according to whether the theoretical ACVF (or equivalently the theoreti-
cal ACF) is summable. Thus, the FGN model has a long memory (for the model parameter H in
the range 0.5 < H < 1), whereas the ARMA models have a short memory. For a specified range
of a model parameter d, the FARMA models of Chapter 11 also possess long memory.

10.3 HISTORICAL RESEARCH

10.3.1 The Hurst Phenomenon and Hurst Coefficients

Hurst (1951, 1956) stimulated interest in the RAR statistic by his studies of long-term
storage requirements for the Nile River. On the basis of a study of 690 annual time series
comprising streamflow, river and lake levels, precipitation, temperature, pressure, tree ring, mud
varve, sunspot and wheat price records, Hurst implied that R*y varies with N as

R*ye<N* (10.3.1]
where h is the generalized Hurst coefficient. The above equation can be written in the general
form

R*y =aN* (10.3.2]
where a is a coefficient that is not a function of N. It should be noted that Hurst did not expli-
citly state the generalized Hurst law of [10.3.2] in his research papers. However, by choosing

the coefficient a to have a value of (1/2)*, Hurst in effect estimated by the Hurst coefficient K
in the empirical equation
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R*y =W)X [10.3.3]
By taking logarithms of [10.3.3], an explicit relationship for K is then
K= logE*N logR*N - logD*N
" logN -log2  logN -log2

Employing series that varied in length from 30 to 2000 years, Hurst found K to range from 0.46
to 0.96 with a mean of 0.73 and a standard deviation of 0.09.

Assuming a normally independently distributed (NID) process, Hurst (1951) utilized some
coin-tossing experiments to develop the theoretical asymptotic relationship for the expected
value of the adjusted range as

E[R*y] = (=NYy/2)!?

[10.3.4]

or

E[R*\)/(Y9"? = 1.2533N 1?2 [10.3.5]

Using the theory of Brownian motion, Feller (1951) rigorously established the above asymptotic
formula for any sequence of IID random variables possessing finite variance. It follows from a
standard convergence theorem in probability theory (Rao, 1973, p. 122) that for large N,

E(R*y) = 1.2533N12 (10.3.6)

Even though Hurst studied the RAR for small N and not for the adjusted range, the form of
[10.3.5] prompted him to use K in [10.3.4] as an estimate of 4 and also to assume K to be con-
stant over time. However, for 690 geophysical time series, Hurst found K to have an average of
0.73, while the asymptotic, or limiting, value of X given by [10.3.6] is 0.5. This discrepancy is
referred to as the Hurst phenomenon. The search for a reasonable explanation of the Hurst
phenomenon and the need for methods whereby the statistics related to Hurst’s work can be
incorporated into mathematical models have intrigued researchers for decades.

In addition to K, other estimates of the generalized Hurst coefficient A in [10.3.2] have
been formulated. Based upon the structure of [10.3.6], Gomide (1975, 1978) suggested estimat-
ing h by the YH that is given in the following equation:

R*\y =1.2533N"H [10.3.7]

The average value of YH for the 690 series considered by Hurst is 0.57 rather than 0.73.

Siddiqui (1976) proposed a method of evaluating h if the underlying process is assumed to
be an ARMA process. The estimate of Siddiqui is the result of a comparison between an asymp-
totic result for calculating E (E*N) for ARMA processes and the form of [10.3.2). Siddiqui’s
estimate of A and the statistic YH of Gomide (1975, 1978) are calculated in Section 10.7 for the
23 geophysical time series considered in Section 10.6. Appropriate conclusions are drawn
regarding the behaviour of these statistics in relationship to X and whether they exhibit the Hurst
phenomenon. For the case of a white noise process, Siddiqui’s estimate of h is identical with
Gomide’s statistic YH in [10.3.7].
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For NID random variables, Anis and Lloyd (1976) have suggested a specific estimate of A
that is a function of the sample size. By taking logarithms of [10.3.2] for the expected value of
the RAR, the following equation is obtained.

logE[R*y] = loga + hlogN [10.3.8]
Anis and Lloyd (1976) defined the local Hurst exponent A(N) as the derivative
h(N) = 9(logE [R*y])/d(logN) [10.3.9]

The exponent A(N) can be tabulated approximately from the equation

_ logE[R*y,,] - 10gE[R*y_;]
hy= log(N+1) - log(N - 1) (10.3.10]

where E (E*N) is calculated exactly by using the formula of Anis and Lloyd (1976) that is also

given in [10.3.15]. It should be noted that previously Salas-La Cruz and Boes (1974) had
defined an exponent similar to A(V) for the general range where0 <a < 1.

Because the entries for the expected value of the RAR on the right-hand side of [10.3.10]
are calculated directly from a theoretical formula, A(N) is not a function of the data and is, there-
fore, not a statistic. Nevertheless, it would perhaps be possible to fit some type of stochastic
model to a given time series and then to derive the RAR terms in [10.3.10] by using simulation.
Most likely, this type of procedure may not be a worthwhile venture, and hence A(N) probably
will have limited use in practical hydrological problems.

Anis and Lloyd (1976, p. 115, Table 1) list values of A(N) for N ranging from 5 to 108.
Although the magnitude of h(NV) asymptotically approaches 0.5 for increasing N, at lower values
of N, the h(N) is significantly larger than 0.5. For instance, when N possesses values of 5, 40,
100, 200, and 500, then A(N) has magnitudes of 0.6762, 0.5672, 0.5429, 0.5315, and 0.5202,
respectively.

In the development of an estimate for the parameter H in FGN models, Mandelbrot and
Wallis (1969d) assumed a form of the Hurst law that is identical with [10.3.2]. For a given time
series z),2,,...,2y, let R*,(t,r) denote the RAR of the subseries z,.z,,,,...,2,, and let
¥ =r—t+1. When examining scatter plots (or *‘pox diagrams’’) of logR*, (t,r) versus logr’
for a number of selected values of ¢ and r, Mandelbrot and Wallis (1969d) were using for each
subseries a Hurst law given by

R*,(tr)=a() [10.3.11]

Wallis and Matalas (1970) have suggested the G Hurst estimator for estimating the parameter H
in FGN models and also & in [10.3.11). This procedure estimates h by calculating the slope of
the regression of the averaged values of logR*,(¢,r) on logr’ for specified values of t and r.

When Hurst originally formulated [10.3.3] there is no doubt that he was attempting to
derive an empirical law that would be valid for a wide range of geophysical phenomena. In par-
ticular, an equation such as [10.3.3] would be extremely useful for reservoir design if the
phenomenon being modelled were average annual riverflows. However, the distribution of K
plus the other types of Hurst exponents summarized in this section are a function of the sample
size N. For example, the empirical cumulative distribution functions of K for various values of



334 Chapter 10

N for certain types of ARMA processes are given in Section 10.5.3. In addition, as shown in
Section 10.6, when K is estimated for 23 given geophysical time series, K seldom has exactly
the same value for any given pair of data sets. Because of the aforementioned facts, the empiri-
cal law of Hurst in [10.3.3] loses much of its simplicity and also its potential for being a univer-
sal law. This inherent lack of universality of Hurst’s law may be due to the fact that the general
form of [10.3.3] resembles the asymptotic formula given in [10.3.6], whereas in practice it is
necessary to deal with small and moderate sample sizes.

Because the RAR possesses many attractive statistical features, Hurst perhaps should have
concentrated his efforts on studying the properties of R*y, rather than those of K. The RAR
statistic is independent of the magnitude of the mean level and standard deviation of a time
series. If the data are modelled by an ARMA process, R*y is only a function of the sample size

N and the autoregressive (AR) and moving average (MA) parameters and is independent of the
variance of the innovations (Hipel, 1975, Appendix B). From [10.3.4] it can be seen that K is
simply a transformation of R*y and, therefore, also possesses the aforementioned properties of
the RAR. Nevertheless, the formulation of K in [10.3.4] as a function of E*N only introduces an
unnecessary transformation and does not give K any additional advantageous statistical proper-
ties that are not already possessed by the RAR. It is therefore recommended that future research
should concentrate on the RAR rather than on the various types of Hurst exponents discussed in
this section.

Since the concept of the Hurst coefficient is so entrenched in the literature, it is widely
quoted in the remainder of this chapter. However, the reader should be aware that the statistic of
primary concern is the RAR. Even the use of the G Hurst statistic (Wallis and Matalas, 1970),
which was primarily developed as an estimate for the parameter H in FGN models, is question-
able. It is demonstrated later in this chapter that a MLE of H is a more efficient procedure to
employ.

10.3.2 The Hurst Phenomenon and Independent Summands

Besides the results of Feller (1951), Hurst’s work influenced other researchers to develop
theoretical derivations for statistics related to the cumulative range. Because of the mathemati-
cal complexity in deriving theoretical formulae for the moments of statistics connected with the
range, a large portion of the research was devoted to the special case of independent summands.
Anis and Lloyd (1953) developed a formula for the expected value of the crude range for stan-
dard NID variates. Anis (1955) derived the variance of My and subsequently a method for

obtaining all the moments of My (Anis, 1956).

Solari and Anis (1957) determined the mean and variance of the adjusted range for a finite
number of NID summands. Feller (1951) had noted that the sampling properties of the adjusted
range were superior to those of the crude range. The results of Solari and Anis (1957) for the
variance of M*y substantiated the conclusion of Feller when this variance was compared to that

of My (Anis, 1956).

Moran (1964) initiated a new line of development when he observed that the expected
value of cumulative ranges could easily be derived from a combinatorial result known as
Spitzer’s lemma. He showed that for moderate N, distributions with very large second moments
about the mean could cause the E(My) to increase more quickly than N2, This, in turn, implied
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that the crude range would do likewise.

For independently, stably distributed summands with the characteristic exponent v, Boes
and Salas-La Cruz (1973) showed that asymptotically

ER*y) < NWV [10.3.12]

where 1 < v<2. The general stable distribution with characteristic exponent v is defined for
1 < v <2 in terms of its characteristic function

o(u) = E(e™*) [10.3.13]
by

logox(u) = ipu + c>lul” {l + iB(u/lu)tan[(/2)v] } [10.3.14]

where i = (-1)!?, U is the location parameter for the random variable z,; © is the scale parameter
for the random variable z,; and P is the measure of skewness. For B =0 and v =2, the normal

distribution is obtained. Stable distributions with characteristic exponent 1 < v < 2 generate
more extreme observations than the normal distribution. Granger and Orr (1972) have suggested
that economic time series are best modelled by a stable distribution with characteristic exponent
1.5 <v<2. From [10.3.12] it could be suggested that a stable distribution with v=1.37
(approximately) for geophysical time series could explain Hurst’s findings. However, because
for the case of stable distributions with 1 < v < 2 the sample variance is not a consistent estima-
tor of the scale parameter G, it does not follow that [10.3.12] will hold for the RAR. In fact,
simulation experiments reported later in this chapter show that the expected value of the RAR
for independently stably distributed summands with characteristic exponent v = 1.3 very nearly
equals the expected value of the RAR for NID summands.

All of the aforesaid research was influenced by the original work of Hurst. However,
mathematicians have for a long time been investigating the crude range of independent sum-
mands independently of Hurst’s empirical research. Anis and Lloyd (1976) give a brief survey
of mathematical studies of the crude range. Further references can also be found in a paper by
Berman (1964).

Unfortunately, none of the foregoing theoretical investigations discussed in this section
have dealt with the RAR. However, for a NID process, Anis and Lloyd (1976) have successfully
proved the following exact equation to be the expected value of the RAR:

1
MO -Dlyyp_,

®"2r(GN)

ER*y) = [10.3.15]

r
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10.3.3 The Hurst Phenomenon and Correlated Summands

Introduction

When Hurst (1951) theoretically derived [10.3.5] for the adjusted range, he assumed nor-
mality of the process, he developed that equation as an asymptotic relationship relationship, and
he assumed independence of the time series. As was pointed out by Wallis and Matalas (1970),
these three facts respectively caused the following three possible explanations of the Hurst
phenomenon: (1) nonnormality of the probability distribution underlying the time series, (2)
transience (i.e., N is not large enough for the Hurst coefficient to attain its limiting value of 0.5),
and (3) autocorrelation due to nonindependence.

For independent summands, nonnormality of the underlying process has largely been
discounted as a possible explanation of the Hurst phenomenon. If a very large sample is being
considered, the asymptotic expression in [10.3.6] has been shown to be valid for IID random
variables. For samples of small and moderate lengths, simulation studies later in this chapter
(see Table 10.5.1) reveal that the RAR is very nearly independent of the distribution of the ran-
dom variables. Because the Hurst coefficient K is definitely a function of N for independent
summands (see, for example, Table 10.5.2 for the NID case), then transience constitutes a plausi-
ble explanation to Hurst’s dilemma (also see Salas et al. (1979)).

For the autocorrelated case, Wallis and O’Connell (1973) correctly concluded that transi-
ence is obviously connected with the autocorrelation structure of the generating process, and,
therefore, these two effects must be considered simultaneously when attempting to account for
the Hurst phenomenon. As is illustrated by simulation studies in Sections 10.5 and 10.6 for
ARMA models, both transience and autocorrelation form an explanation of the Hurst
phenomenon. In this section, the roles of both short memory and long memory processes for
explaining and modelling the Hurst phenomenon are examined.

Hurst (1951) actually conjectured that X had a value of 0.73 and not 0.5 because of per-
sistence. This is the tendency for high values to be followed by high values and low values by
low values which are referred to by Mandelbrot and Wallis (1968) as the Noah and Joseph
effects, respectively. Persistence is caused by the dependence of naturally occurring time series
as exhibited in their serial correlation structure. For reservoir design this means that for a given
value of N the size of a reservoir that releases the mean flow each year would need to be larger
than the capacity corresponding to an uncorrelated series of inflows.

Short Memory Models
Barnard (1956) and Moran (1959) observed that for the standard short memory time series
models the following asymptotic formula is valid:
ER*y) =aN"? [10.3.16]

where a is a coefficient that does not depend on N. Mandelbrot and Van Ness (1968) proved
that for large N, [10.3.16] holds for any short memory time series model. Siddiqui (1976)
demonstrated that for any model with a summable theoretical ACVF,
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2‘, L/ (10.3.17]

27‘

It has been argued by some authors that because short memory models, such as the ARMA
processes, imply a limiting value of K equal to 0.5 and since the observed X in annual geophysi-
cal time series is about 0.7, short memory models are not appropriate models for synthetic
streamflow generation. It should therefore be emphasized that asymptotic results are only
relevant in that they provide an approximation to the exact results for the true (finite) series

length.

Anis and Lloyd (1976) showed that [10.3.15] also holds exactly for symmetrically corre-
lated normal summands. But such a time series has a long memory, since its theoretical ACVF
is not summable. Because [10.3.15] is also valid for short memory NID random variables, this
fact provides a counterexample to the claim of some researchers that long memory models are a
necessary explanation of the Hurst phenomenon. Conversely, Klemes (1974) has shown that
zero memory nonstationary models could produce the Hurst phenomenon. By simulation experi-
ments with white noise, he varied the mean level in different manners and showed how K
increased in value due to this type of nonstationarity. Klemes also demonstrated by simulation
that random walks with one absorbing barrier, which often arise in natural storage systems, could
cause the RAR to have certain properties related to the Hurst phenomenon.

Hurst (1957) was the first scientist to suggest that a nonstationary model in which the mean
of the series was subject to random changes could account for higher values of the Hurst coeffi-
cient K and hence the Hurst phenomenon. Similar models have been studied by Klemes (1974)
and Potter (1976). As generalizations of the models of Hurst (1957), Klemes (1974) and Potter
(1976), the shifting level processes were developed by Boes and Salas (1978). Further research
in shifting level processes is provided by Salas and Boes (1980), Ballerini and Boe (1985), and
Smith (1988). The basic idea underlying a shifting level process is that the level of the process
randomly shifts to different levels which last for random time periods as the process evolves
over time.

In a four page commentary, D’ Astous et al. (1979) demonstrated that the annual precipita-
tion data employed by Potter (1976) may not justify the concept of a shifting level time series.
Using simulation and the segmentation scheme suggested by Potter (1976) for isolating shifting
levels, they showed that an ARMA(1,1) process can mimic this type of changing level. If the
mean level of a time series changes due to known natural or human intervention, then the inter-
vention model of Chapter 19 can be used to model the data.

Matalas and Huzzen (1967) performed statistical experiments to determine whether X is
preserved by Markov models. For values of the lag 1 autocorrelation coefficient p, ranging from
0 to 0.9, they calculated the E(K) based upon 10* simulations for particular values of N and p,.
For values of N and p,, compatible with what occurs in annual riverflows if those flows are
assumed Markov, they found K to have an average of about 0.7. Because a mean of approxi-
mately 0.7 for K occurs in natural time series, they implied that perhaps the small sample pro-
perties of K are preserved by a Markov model. Nevertheless, a later simulation study of Wallis
and Matalas (1970) suggested that the observed sample lag 1 autocorrelations for flows in the
Potomac River basin were too low for a first order AR process adequately to preserve the Hurst
K. However, a Markov model may not necessarily be the best short memory model to fit to a
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given time series. Rather, it is recommended to select the proper ARMA model by adhering to
the identification, estimation, and diagnostic check stages of model construction, as explained in
Part III of this book. In some cases, the appropriate model may indeed be a Markov model. In
Section 10.6, it is demonstrated that, for 23 geophysical time series ranging in length from
N =96 to N = 1164, properly fitted ARMA models do adequately preserve K.

Several other authors have also suggested that short memory models may preserve K.
Gomide (1975) has completed further simulation studies of the RAR for Markov models.
O’Connell (1974a,b) advocated employing an ARMA(1,1) model to appreximate the long
memory FGN model and thereby perhaps to preserve K. To accomplish this, the AR parameter
must have a value close to unity, so that the ACF of the process will attenuate slowly and hence
approximate the theoretical ACF of the FGN process. In practice, this approach may not be
viable. The proper ARMA model that is fit to the data may not be ARMA(1,1), and even if it is
ARMA(1,1), an efficient MLE of the parameters may not produce an estimate of the AR parame-
ter that is close to 1. This parameter estimation problem is acknowledged by O’Connell (1976).
In addition, it is no longer necessary to approximate FGN by a short memory model such as an
ARMA(1,1) model because as is shown in Section 10.4.6 it is now possible to simulate FGN
exactly.

Long Memory Models

A long memory model known as FGN was introduced into the hydrological literature by
Mandelbrot and Wallis (1968, 1969a to ) to explain the Hurst phenomenon. In Section 10.4, the
FGN model is defined and new developments in FGN modelling are presented. Other research
on stochastic processes related to FGN is given by authors such as Tagqu (1979) and Cox
(1984). In Chapter 11, the theory and practice of the long memory FARMA class of models is
presented.

10.4 FRACTIONAL GAUSSIAN NOISE

10.4.1 Introduction

The connection between FGN and Hurst’s law is the parameter H in FGN that is often
estimated using the Hurst coefficient K in [10.3.4]. The FGN model was first proposed by Man-
delbrot (1965), and a mathematical derivation was given by Mandelbrot and Van Ness (1968)
and Mandelbrot and Wallis (1969c). The literature concemning the FGN model has been sum-
marized by authors such as Wallis and O’Connell (1973), O’Connell (1974b, Ch. 2), Hipel
(1975), Lawrance and Kottegoda (1977) and McLeod and Hipel (1978a). Consequently, only the
main historical points of practical interest are discussed in Section 10.4.2. Following a brief his-
torical description and definition of FGN in the next section, new advancements are presented.
These include efficient parameter estimation, model diagnostic checking, forecasting, and exact
simulation. In an application section, FGN models are compared to ARMA models when both
types of models are fitted to six average annual riverflow series.
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10.4.2 Definition of FGN

In the development of FGN processes, Mandelbrot (1965) considered a continuous time
process By (r) that satisfies the self-similarity property such that for all T and &> 0,

By (t + 1) — By(¢) has exactly the same distribution as [By(t +e) -B,,(t)lle" . It can be shown
that the sequential range of B (¢) will increase proportionally to N, where the sequential range
is defined by

sequential range = max By(r) - min By(r) [10.4.1]
t<r<t+N t<r<t+N

where ¢ is continuous time and H is the model parameter. When the process By (¢t) is Gaussian,
it is called fractional Brownian motion. Discrete time fractional Gaussian noise (FGN) is
defined for discrete time ¢ by the increments

2, =Byt + 1) - By (r) [10.4.2]

FGN is what Mandelbrot and Wallis (1969c¢) consider to be a model of Hurst’s geophysical time
series.

Mandelbrot and Van Ness (1968) and Mandelbrot and Wallis (1969a,b,c) have derived a
number of properties of FGN. First, the parameter H must satisfy 0 < H < 1. The sample mean
and variance of FGN are consistent estimators of the true mean and variance, and FGN is covari-
ance stationary. The expected values of the crude and adjusted ranges for FGN are the asymp-
totic relationships

ERy)=ayN¥, 0<H<1 [10.4.3]
and
ER*)=byN!', 0<H<1 [10.4.4]

where ay and by are coefficients that do not depend on N. It can also be shown that for large N
(Rao, 1973, p. 122),

E(R*y) =aN¥ [10.4.5]

Although the above asymptotic formulae are correct mathematically, they may possess limita-
tions with respect to modelling Hurst’s findings. Of foremost importance is the fact that Hurst
examined R*y for small N and not the asymptotic expected values of Ry, R*y, and R*y.
Behaviour of any of the range statistics for large N does not necessarily infer the structure of
R*y for small and moderate N. Even though [10.4.3] to [10.4.5] are asymptotically valid, in
reality the Hurst cocfficient is a function of N and is not a constant as is the parameter H in
FGN. For example, as is shown by simulation experiments for NID random variables in Table
10.5.2, the expected value of the Hurst coefficient X is significantly larger than 0.5 for small N.

A sequence of NID random variables is equivalent to a FGN process with H = %

The theoretical ACF at lag k of FGN is given by
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p,,=-;-[(k+l)2”—2kz”+(k—l)2”], O<H<1and k21 [10.4.6]

For large lags, [10.4.6] may be approximated by

pr = H(2H - 1)kH1-2 [10.4.7]
The NxN correlation matrix for FGN is given as

Cyv(H) =1[py;_j] (10.4.8]

where po =1 and p, is calculated from [10.4.6] for k 2 1. The Cholesky decomposition (Healy,
1968) of Cy(H) is determined such that

Cy(H) = MMT (10.4.9]

where M is the NxN lower triangular matrix having m;; as a typical element. The matrix M is
used for carrying out diagnostic checks, and simulating with FGN in Sections 10.4.4 and 10.4.6,
respectively.

An examination of [10.4.6] and [10.4.7] reveals that p, — 0 as k — oo, but p, is not summ-

able if 1 < H < 1. Therefore, for L < H <1, the FGN process has long memory. When

2 2
O<H< %, FGN constitutes a short memory process.

For many geophysical phenomena, the estimates for H are greater than —;— but less than 1.

Because the FGN model is not summable for H in this range, the statistical effect of past events
on present behaviour attenuates very slowly. Therefore, long term persistence, as described by

the theoretical ACF, is synonymous with % < H < 1. Some hydrologists claim that the form of

the theoretical ACF for —;— < H < 1 is explained by the physical existence of an extremely long

memory in hydrologic and other processes. But, as was pointed out by Klemes (1974), making
inferences about physical features of a process based on operational models can be not only inac-
curate but also misleading. Klemes correctly states that ‘“... it must be remembered that the
mathematical definition of FGN did not arise as a result of the physical or dynamic properties of
geophysical and other processes but from a desire to describe an observed geometric pattern of
historic time series mathematically... Thus FGN is an operational, not a physically founded
model.”” Klemes demonstrates that the Hurst phenomenon could be due to zero memory nonsta-
tionary models and also specific types of storage systems. However, although physical interpre-
tations that use operational models should be formulated and interpreted with caution, one cri-
terion that is essential is that the statistical properties of any historical time series be incor-
porated properly into the stochastic model.

The appropriateness of long memory processes for modelling annual riverflow and other
types of natural time series has been questioned previously by various hydrologists
(Scheidegger, 1970; Klemes, 1974). Moreover, later in Section 10.4.7, it is shown that the FGN
model can fail to provide an adequate statistical fit to historical annual riverflows.
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The FGN model for a time series z,, ¢ = 1,2,...,N, can be specified in terms of the three
parameters W, Yo, and H, where E[2,] = |, Var[z,] =¥, and the theoretical ACF of z, is given by
{10.4.6). From these specifications, improved estimation and simulation procedures can be

developed. Complete Fortran computer algorithms for these methods are given by Hipel and
McLeod (1978b).

As explained in Part III in the book, when determining a long memory or a short memory
model or in general any type of stochastic process for modelling a given data set, it is recom-
mended to adhere to the three stages of model development. The first step consists of identify-
ing, or choosing, the type of model to fit to the time series. If circumstances warrant the employ-
ment of a FGN process, then at the estimation stage, efficient MLE’s of the model parameters
can be procured by using the technique developed in Section 10.4.3. It is also shown in Section
10.4.4 how the model residuals of FGN can be calculated after the model parameters have been
estimated. If diagnostic checks of the residuals reveal that modelling assumptions such as resi-
dual whiteness, normality, and homoscedasticity (i.e., constant variance) are not satisfied, then
appropriate action can be taken. For example, a Box-Cox transformation (see Section 3.4.5) of
the data prior to fitting a FGN process may rectify certain anomalies in the residuals. In some
cases, a short memory model such as an ARMA process may provide a better statistical fit while
at the same time preserve important historical statistics such as the RAR. The AIC (see Section
6.3) is recommended as a means of selecting the best model from a set of tentative models that
may consist of both short memory and long memory processes.

10.4.3 Maximum Likelihood Estimation

In addition to the mean and variance, an estimate of the parameter H forms the only link
that a FGN model has with the real world as represented by the historical data. Previously, vari-
ous estimates for H have been formulated. Some researchers employ K in [10.3.4] as an esti-
mate of H. Wallis and Matalas (1970) recommend the G Hurst statistics as an estimate of H.
Unfortunately, little is known about the theoretical distribution of this estimate, and the G Hurst
statistic in effect constitutes only an ad hoc method of calculating H. Young and Jettmar (1976,
p. 830, equation 4) suggest a moment estimate for H based on an estimate of the historical ACF
at lag 1 and [10.4.6). They also develop a least squares estimate for H that is formulated by
using the sample ACF and [10.4.6] (Young and Jettmar, 1976, p. 831, equation 6). However,
McLeod and Hipel (1978b) question the theoretical basis and efficiency of Young and Jettmar’s
least squares estimate for H.

An alternative approach to estimating the parameters of a FGN model is to employ max-
imum likelihood estimation. The method of maximum likelihood procedure is widely used for
the estimation of parametric models, since it often yields the most efficient estimates (see Sec-
tion 6.2). Dunsmuir and Hannan (1976) show that the MLE’s of the parameters of time series
models often yield optimal estimates under very general conditions, which include the FGN
model as a special case.

Given a historical time series z,,2,, . . . , zy, the log likelihood of W, ¥, and H in the FGN
model is
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logL* (Yo, H) = ——;—logICN(H)I - ¥ 'SH) - (N/2)logy, [10.4.10]

where Cy (H) is the correlation matrix given by [10.4.8]. The function S(u,H) in [10.4.10] is
determined by

SGLH) =@ - u)T [CyDI @ - pul) [10.4.11]

where zT=(zl,22, ...,2zy) is a 1xN vector and 17 =(1,1,...,1) is a 1XN vector. For fixed H,
the MLE of it and 7y are

k= {2 [Cy DT T [ICy DY [10.4.12]
and

%0=N"1SQLH) [10.4.13]
Thus, the maximized log likelihood function of H is

logLpu(H) = —%loglCN (H)| = N/21og[S (1,H))/N (10.4.14]

The inverse quadratic interpolation search method can then be used to maximize
logL,nax(H) to determine H, the MLE of H. The variance of H, given by Var(H), is approxi-

mately
. PlogL.,(H)
Var(H) = - 10.4.15
arh ll oH? = 104131

The variance in [10.4.14] can be evaluated by numerical differentiation. If the computer algo-
rithms given by Hipel and McLeod (1978b) are utilized, the computer time required for these
calculations is not excessive provided that N is not too large (not larger than about 200). The
standard error (SE) of the MLE of H is simply the square root of Var (l‘? )in [10.4.15].

In order to compare the statistical efficiency of the maximum likelihood and G Hurst esti-
mation procedures, a simulation study is performed. For H =0.5, 0.6, 0.7, 0.8, and 0.9 and for
N =350 and 100, 500 simulated series for each FGN model are generated by using the exact
simulation technique given in Section 10.4.6. For each synthetic trace, the MLE H and the G
Hurst estimate obtained by using GH(10) as defined by Wallis and Matalas (1970) are deter-
mined. Because GH(10) and H are functionally independent of the mean and variance, it is sim-
plest to set the mean equal to zero and to assign the variance a value of unity when generating
the synthetic data by using the method of Section 10.4.6. The mean square errors (MSE) of the
maximum likelihood and GH (10) estimators for a particular value of N are

MSE;y g (H.N) = —5(1)—6?(;?,. - HY? [10.4.16]

i=1

and
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500

MSEgy(H.N)= ——¥ (GH, - HY? [10.4.17]

where ﬁ; is the MLE of H for the ith simulated series of length N having a particular true value

of H and GH; is the magnitude of GH(10) for the ith simulated series of length N with a speci-
fied true value of H.

The MSE criterion constitutes a practical overall measure for assessing the accuracy of an

estimate. The MSE is equal to the square of the bias of the estimate plus the variance of the esti-

mate. Because a biased estimator may in certain cases have smaller overall MSE, the

“‘unbiasedness’” of an estimate alone is not necessarily the most important requirement of an
estimate. The relative efficiency (RE) of the GH(10) estimate in comparison with the MLE H is

RE(H N) = [MSE £ (HN)V/MSE gy (HN)] [10.4.18]

The entries in Table 10.4.1 confirm that the MLE procedure is significantly more accurate than
the G Hurst method.

Table 10.4.1. Percentage relative efficiency of GH(10) versus H.

N
H | 50 100
05 ] 48 38
06 |55 4
07 15 47
08 | 57 43
09 (50 34

As explained in Section 6.3, the AIC is useful for discriminating among competing
parametric models (Akaike, 1974). For the FGN model, the AIC is given by

AIC =-2logL,,.,(H)+ 4 [10.4.19]

When comparing models, the one with the smallest AIC provides the best statistical fit with the
minimum number of model parameters.

10.4.4 Testing Model Adequacy

After fitting a statistical model to data, it is advisable to examine the chosen model for pos-
sible inadequacies which could seriously invalidate the model. The residuals of the FGN model
with parameters L, Yo, and H can be defined by

e=M"1@z-pul) [10.4.20]

where ¢ = (e1,€2 . . ., ey) is the vector of model residuals. If the chosen model provides an

adequate fit, the clements of e should be white noise that is NID(0,1). Accordingly, for any pro-
posed FGN a suggested diagnostic check is to test the residuals for whiteness by employing suit-
able tests for whiteness (see Sections 7.3 and 2.6). For instance, the cumulative periodogram test
of Section 2.6 could be utilized to check for residual whiteness. Other appropriate tests could be
invoked to test whether the less important assumptions of normality (see Section 7.4) and
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homoscedasticity (see Section 7.5) of the residuals are also satisfied.

10.4.5 Forecasting with FGN

In Section 8.2, minimum mean square error (MMSE) forecasts are defined for use with
ARMA models. One can, of course, also determine MMSE forecasts for FGN models. More
specifically, Noakes et al. (1988) develop a formula for calculating one step ahead forecasts for a
FGN model by employing the standard regression function (Anderson, 1958). First, to obtain
the covariance matrix, I'y, one can substitute the MLE for H from Section 10.4.3 into [10.4.6]

and then divide [10.4.8] by the estimated variance from [10.4.13]. The one step ahead forecast is
then given by

E(Zy,\Zy)} = u+ YT Zy —ul) [10.4.21]
where Z'y = (2,25, . . ., zy), and ¥y = (Yy»¥-1 - - - » Y1) Rather than inverting Ty, let
TwXy =@y - ul) [10.4.22]

and solve for Xy. The solution of this system of equations is obtained using a Cholesky decom-
position (Healy, 1968) of I'y such that

MM'X, = (Zy - ul) [10.4.23]
where M is a NxN lower triangular matrix. The one step ahead forecast of Z,, is thus
E{ZN+1 IZN} =+ YNXN [10.4.24]

Successive one step ahead forecasts can be obtained using the following procedure. Given
M, the covariance matrix for Zy,, may be written as

i j
v w

rN+l= .YAT; Y
L J

Mo][m &
ar a||0 «
= M*M*' [10.4.25)

where M* is a (N+1)x(N+1) lower triangular matrix. The Cholesky decomposition of Iy, is
calculated by noting that

Ma =17y [10.4.26]

a= \]'yo - a’ a. [10.4.27]

Thus, the forecast of Zy,, is given by
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E(Zn,)\Zyy) = B+ v X [10.4.28]
where Xy, is obtained from

M*M*’XN_H = (ZNH - ﬂl) [10.4.29]
10.4.6 Simulation of FGN

Historically, rescarchers have not developed an exact technique for simulating FGN.
Instead, short memory approximations of FGN models have been utilized to generate synthetic
traces. The methods used for obtaining approximate realizations of FGN include (1) type 1
(Mandelbrot and Wallis, 1969c), (2) type 2 (Mandelbrot and Wallis, 1969c), (3) fast FGN (Man-
delbrot, 1971), (4) filtered FGN (Matalas and Wallis, 1971), (5) ARMA(1,1) (O’Connell,
1974a,b), (6) broken line (Rodriguez-Iturbe et al., 1972; Mejia et al., 1972; Garcia et al., 1972;
Mandelbrot, 1972), and (7) ARMA-Markov (Lettenmaier and Burges, 1977) models.

Various papers have been written that include surveys and appraisals of one or more of the
short memory approximations to FGN (see Lawrance and Kottegoda, 1977; Lettenmaier and
Burges, 1977; O’Connell, 1974b; and Wallis and O’Connell, 1973). Although the underlying
drawback of all these approximate processes is that the simulated data does not lie outside the
Brownian domain (see Mandelbrot and Wallis (1968) for a definition of Brownian domain),
additional handicaps of some of the models have also been cited in the literature. For instance,
Lawrance and Kottegoda (1977) mention that the lack of a suitable estimation procedure for the
parameters of a broken line process is the greatest deterrent to the utilization of that model by
hydrologists.

When generating synthetic traces from a short memory approximation to FGN or any other
type of stochastic model, proper simulation procedures should be adhered to. If more than one
simulated time series from a certain model is needed, then it would be improper to first simulate
one long synthetic time series and then to subdivide this longer trace into the required number of
shorter time series. Rather, it would be more efficient to generate the shorter series indepen-
dently so that the resulting estimates from each of the shorter series would be statistically
independent. Furthermore, the standard errors of the particular parameters being estimated by
the simulation study can be calculated if the estimates are statistically independent, but if they
are correlated, the standard errors are not easily estimated. These and other guidelines for use in
simulation are discussed in detail in Chapter 9.

Instead of the employment of short memory approximations for simulating FGN, it is pos-
sible to generate exact realizations of FGN. This procedure is analogous to the WASIM2
approach for simulating using ARMA models given in Section 9.4 and is based upon a
knowledge of the theoretical ACF. Suppose that a FGN series zy,2,, . . ., zy, with parameters L,

Yo» and H is to be simulated. Firstly, by utilizing an appropriate standard method, generate a
Gaussian white noise sequence ¢,,e,, . . ., ey, that is NID(0,1) [see Section 9.2.3]. Next, calcu-
late the NxN correlation matrix Cy(H), using [10.4.8]. Then, the Cholesky decomposition of
Cy(H) is carried out to obtain the lower triangular matrix M in [10.4.9]. Exact realizations of
FGN are calculated from
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Z=p+ ému'ei ](‘Yo)"2 [10.4.30]
i=1

fort=12,...,N,and for 0 < H < 1, where z, is the FGN time scries value that is N(,Y,), and
my; is from the matrix M in [10.4.9]. If the model parameter H is in the range 0.5 < H < 1, then
the synthesized data will lie outside the Brownian domain.

The computer algorithm for exactly simulating FGN i 1s listed in standard Fortran by Hipel
and McLeod (1978b). This algorithm requires only about —N (N + 2) storage locations to simu-

late a FGN series of length N. Thus, a modest reqmrement of about S000 words is required to
handle a series of length 100.

10.4.7 Applications to Annual Riverflows

Information concerning six of the longest annual riverflow time series given by Yevjevich
(1963) is listed in Table 10.4.2. For each of these time series, the MLE of H in the FGN model
and its SE are calculated. Table 10.4.3 lists the MLE and SE’s (in parentheses) of H (see Sec-
tion 10.4.3) and also the Hurst X (see [10.3.4]) and GH(10) (Wallis and Matalas, 1970) esti-
mates for each of the time series.

In Table 10.4.3, notice the dxffcrcncc between the three estimates of the FGN parameter H
for each of the data sets. For instance, H for the Gota River has a magnitude of 0.839 with a
corresponding SE of 0.073. Both the GH(10) and K estimates for the Gota River are more than
two times the SE less than the MLE of H.

The parameter estimates for the proper ARMA models that are fitted to the time series in
Table 10.4.2 are given later in Table 10.6.3. Both the Danube River and the Rhine River time
series are simply white noise. If a time series is NID, the theoretical value of H for a FGN
model is 0.5. For both the Danube River and the Rhine River, Table 10.4.3 reveals that the MLE
of H is closer to 0.5 than cither the GH(10) or the K estimate. In addition, for each of the two
data sets, H is easily within one SE of 0.5.

In order to determine whether a short memory or a long memory model should be selected
for each of the six time series, the AIC can be utilized (see Section 6.3). Table 10.4.4 lists the
values of the AIC for the FGN models by using H and the best fiting ARMA model. For each
of the six cases, the AIC for the ARMA model has a magnitude less than that for the FGN
model. Therefore, on the basis of a combination of best statistical fit and model parsimony, the
ARMA model should be chosen in preference to the FGN process for the time series considered.

The Gota River is instructive for portraying possible problems that may arise when using
FGN models in practice, since it appears that no FGN model can give an adequate fit to this time
series. After a FGN model has been fit to a given data set, it is recommended to implement
appropriate diagnostic checks for testing model adequacy. It is of utmost importance that the
residuals of FGN given by [10.4.20] be white noise. Accordingly, plots of the cumulative
periodogram from Section 2.6 for the residuals of the FGN models for the Gota River obtained
by using H, GH(10), and X are displayed in Figures 10.4.1 to 10.4.3, respectively. The 1%, 5%,
10% and 25% significance levels are indicated on the plots. As is shown in the figures, the
cumulative periodogram test is significant in all three cases at the 1% level, although the depar-
ture from whiteness is not as great for the FGN model when using H as it is for the other two
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Table 10.4.2. Average annual riverflow time series.

Code Name River Location Period N

Mstouis Mississippi St. Louis, Missouri 1861-1957 96
Neumunas Neumunas Smalinikai, U.S.S.R. 1811-1943 132
Danube Danube Orshava, Romania 1837-1957 120
Rhine Rhine Basle, Switzerland 1807-1957 150
Ogden St. Lawrence  Ogdensburg, New York 1860-1957 97
Gota Gota Sjotorp-Vanersburg, Sweden  1807-1957 150

Table 10.4.3. Estimated statistics for the annual riverflows.

Data Set H GH(10) K

Mstouis 0.674 0.580 0.648
(0.082)

Neumunas 0.591 0.520 0.660
(0.067)

Danube 0.548 0.560 0.633
(0.063)

Rhine 0.510 0.592 0.614
(0.058)

Ogden 0.949 0.868 0.894
0.047)

Gota 0.839 0.523 0.689
(0.073)

*The parenthetical values are SE’s.

Table 10.4.4. AIC values for the fitted FGN and ARMA models.

Data Set FGN Models ARMA Models
Mstouis 1400.0 1395.8
Neumunas 1207.5 1198.2
Danube 1666.7 1389.0
Rhine 1531.8 1529.8
Ogden 1176.9 1172.1
Gota 1350.6 1331.0
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cases. Therefore, the whiteness diagnostic checks indicate that because of the dependence of the
model residuals the FGN processes provide a poor statistical fit to the given data. Hence, it
would be advisable to consider another type of process to model the annual riverflows of the
Gota River.

When selecting a process to describe a given time series, it is highly desirable that impor-
tant historical statistics such as the ACF at various lags (especially at low lags for nonseasonal
models) be preserved. The inability of the three FGN models for the Gota River to pass the
diagnostic check for residual whiteness precludes the preservation of historical statistics by these
models. The sample ACF of the Gota River is shown in Figure 10.4.4, while the theoretical
ACF of FGN, obtained by using H and K, are displayed in Figures 10.4.5 and 10.4.6, respec-
tively. To calculate the theoretical ACF for FGN in Figures 10.4.5 and 10.4.6, the values of H
and K for the Gota River in Table 10.4.3 are substituted into [10.4.6]. Because the theoretical
ACF of FGN obtained by using the GH(10) estimate is not significantly different from 0.5, the
plot of this theoretical ACF would be very close to white noise and is, therefore, not given.
Nevertheless, comparisons of Figure 10.4.4 with Figures 10.4.5 and 10.4.6 reveal visually that
the historical sample ACF is not preserved by the FGN models.

In contrast to the inability of a FGN process to model the Gota riverflows, an ARMA
model does provide an adequate fit to the data. By following the identification, estimation, and
diagnostic check stages of model construction presented in Part ITI, the best type of ARMA
model to describe the Gota riverflows is an ARMA process with two AR parameters (denoted by
ARMA(2,0)). The ARMA(2,0) process provides a slightly better fit than an ARMA model with
one MA parameter (denoted as ARMA(0,1)). The AIC also selects the ARMA(2,0) model in
preference to the ARMA(0,1) model. In addition, the ARMA(2,0) model passes rigorous diag-
nostic checks for whiteness, homoscedasticity, and normality of the model residuals.

By knowing the parameter estimates of an ARMA model, it is possible to calculate the
theoretical ACF by employing a technique described in Appendix A3.2. Figure 10.4.7 is a plot
of the theoretical ACF for the ARMA(2,0) model for the Gota River data. A comparison of Fig-
ures 10.4.7 and 10.4.4 demonstrates that the ARMA model preserves the historical ACF espe-
cially at the important lower lags. Notice that the value of the ACF for lags 1 to 4 are almost
identical for these two plots.

In addition to the use of graphical aids to determine whether historical statistics are
preserved, a more rigorous procedure can be followed. In Section 10.6 a statistical test is used in
conjunction with Monte Carlo techniques in order to determine the ability of a class of models to
preserve specified historical statistics. It is demonstrated that ARMA processes preserve the
RAR or equivalently X. This procedure could also be adopted for statistics such as various lags
of the ACF to show quantitatively whether or not these statistics are preserved by the calibrated
models.

The inability of a FGN process to preserve the ACF and perhaps other historical statistics
in some practical applications could be due to the inherent mathematical structure and underly-
ing properties that were discussed previously. Another obvious drawback of FGN is the depen-
dence of the model on only a few parameters. In addition to the mean and variance, an estimate
of the parameter H forms the only actual link between the theoretical model and the real world
as presented by the data. This renders FGN processes highly inflexible. On the other hand, in
ARMA modelling the form of the model is tailored specifically to fit a given set of data. At the
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Figure 10.4.1. Gota River residual cumulative periodogram for the FGN model using H.
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identification stage, the general structure of the data is determined by observing the shape of the
ACF and other graphs described in Section 5.3. An appropriate number of AR and MA parame-
ters are sclected in order that the selected ARMA model fits the data as closely as possible using
a minimum number of parameters. Rigorous checks are performed to insure that the white noise
component of the model is not correlated. If all the modelling assumptions are satisfied, this
guarantees that important historical statistics such as the ACF, the RAR, and K will be preserved
reasonably well by the model.

10.5 SIMULATION STUDIES

10.5.1 Introduction

When studying statistics such as the RAR and K, information is required regarding first,
second, and perhaps higher order moments of the statistics. In general, it would be most advan-
tageous to know the exact distribution of the statistic under study. Three approaches are avail-
able to obtain knowledge regarding the mathematical properties of a specified statistic. One
method is to derive an exact analytical expression for the moments and perhaps the distribution
of the statistic. Except for special cases of the lower order moments of a statistic, this precise
procedure is often analytically intractable. Only after extensive research, Anis and Lloyd (1976)
were able to derive in [10.3.15] the exact expression for the expected value of the RAR for NID
summands.

A second approach is to develop asymptotic formulae for the distributional properties of a
given statistic. This approximate procedure may yield results that are useful in certain situations,
while in other circumstances the output may suffer from lack of accuracy, especially for small N.
Feller (1951), for example, proved an asymptotic relationship that is valid for the expected value
of the adjusted range and also the RAR of IID random variables (see [10.3.5] and [10.3.6],
respectively). Siddiqui (1976) derived asymptotic expressions for calculating the expected value
of the RAR for any short memory process.

In the third approach, simulation is used to determine as accurately as desired the distribu-
tional attributes of a given statistic. In Section 10.6, Monte Carlo procedures are utilized to
obtain the empirical distribution of the RAR and K. Although some researchers may argue that
simulation may be relatively costly with respect to computer usage, the fact of the matter is that
answers are needed now to help solve present day engineering problems. In addition, because of
the vast mathematical complexity that is often required to prove exact analytical solutions, simu-
lation results may help to economize academic endeavours by delineating the more promising
avenues of research that could also be scrutinized analytically. Finally, it should be borne in
mind that in comparison with an exact analytical solution, simulation provides a straightforward
but equally correct resolution to the problem of the distributional characteristics of a particular
statistic. The theory and practice of simulating with ARMA models are discussed in detail in
Chapter 9 while an exact simulation method for use with FGN is given in this chapter in Section
10.4.6.

The simulation investigations of this section deal primarily with the estimated mean and
variance of a certain statistic. Suppose that N independent simulations of a time series
21,2y, . - - » 2y, are obtained and that a statistic T = T'(z;,2,, . . . , zy) is calculated in each simulated

series. The empirical mean of T is then given by
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T= T; [10.5.1]

% Mz,

1
NS

where T; is the value of T in the ith simulation. If éach successive realization of the sequence
23,2y, . . ., 2y, is independent of previous realizations so that the T; are statistically independent,
then the variance of T can bc estimated by

.= T)? [10.5.2]

-llzl

By the central limit theorem, T will be distributed very nearly normally with mean equal to E )
and with variance approximately equal to VT/N Thus, the standard deviation and confidence

intervals of the expected value being estimated are readily obtained.

If N white noise series of length N are being simulated, then it is correct to simulate a sin-
gle time series of length NN and then subdivide it into N series with N values in each series.
However, if a correlated series is being simulated, the aforementioned procedure should not be
followed. For instance, if N V_FGN series with 0.5 < H < 1 are being formulated by first generat-
ing a long series of length NN and then subdividing this into N subsequences of length N, then
the resulting T; will in general be correlated. Therefore, the resulting estimate for E(T) in
[10.5.1] will be less precise (i.e., have larger variance), and the estimate of the variance of T in
[10.5.2] will be underestimated, so that correct standard deviations and confidence intervals for
E(T) will not be available.

10.5.2 Simulation of Independent Summands

The Rescaled Adjusted Range

Mandelbrot and Wallis (1969¢) reported simulation experiments which indicated that the
expected value of the RAR for IID summands is virtually independent of the underlying distribu-
tion. However, as was pointed out by Taqqu (1970), the simulation study of Mandelbrot and
Wallis (1969¢) contained a serious programming error in the calculation of the RAR. Accord-
ingly, another study of the robustness of the expected value of the RAR with respect to the
underlying distribution is required.

A simulation study is performed for various types of white noise series varying in length
from N =5 to N = 200. For each value of N, the number of series of length N that are generated
is N =10,000. The expected values of the RAR are determined by using [10.5.1] for the follow-
ing independent summands: (1) normal, (2) gamma with shape parameter 0.1, (3) symmetric
stable with characteristic exponent a = 1.3, and (4) Cauchy. The simulation results for E (E*N) at
specific values of N for the aforementioned summands are listed in Table 10.5.1. The standard
deviations of the estimated values of E (E*N) are determined by using the square root of [10.5.2]

and are given in parentheses below the estimates in Table 10.5.1. The exact values of E (I?*N)

for NID random variables are calculated by using the formula of Anis and Lloyd (1976) that is
written in [10.3.15]. Comparisons of columns 2 and 4 to 7 reveal that the expected value of the
RAR is indeed rather insensitive to the underlying distribution for the values of N that are con-
sidered. Even for Cauchy summands, the expected value and variance of the RAR are quite
similar to the NID case. The asymptotic results of Feller (1951) for E (R*N) of IID summands
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are determined by using [10.3.6] and are tabulated in Table 10.5.1. A perusal of the asymptotic
and other entries in the table discloses that the approximation given by Feller’s results improves
with increasing N. )

Anis and Lloyd (1975) developed analytical formulae for the expected value of the crude
and adjusted ranges of independent gamma random variables. For highly skewed independent
gamma summands, the local Hurst coefficient for the crude and adjusted ranges possessed values
greater than 0.5 for N less than 1000. However, the results of Table 10.5.1 indicate that the
expected values of the RAR for IID summands are approximately independent of the underlying
distribution even if that distribution is gamma. Therefore, as was confirmed by O’Connell
(1976), Anis and Lloyd’s (1975) results do not hold for the RAR. In addition, Hurst studied X
for the RAR and not the Anis and Lloyd local Hurst coefficient for the crude and adjusted
ranges.

The Hurst CoefTicient

As was mentioned previously, the Hurst statistic of primary import is the RAR. Neverthe-
less, because the Hurst coefficient K has been extensively investigated during the past quarter of
a century, this fact may insure the survival of K as an important hydrological statistic for some
time to come. Therefore, some statistical properties of K and other exponents are investigated.

First, it should be noted that because of the research results of Anis and Lloyd (1976) in
[10.3.15], K can be evaluated analytically for NID summands. Let X’ be the Hurst coefficient
calculated by using

K’ =10gE (R*y)/(logN - l0g2) [10.5.3]

where E(E*N) is determined exactly by using [10.3.15]. It follows from Jensen’s inequality
(Rao, 1973, p. 57) that for finite N,

EK)<K’ [10.5.4]

In Table 10.5.2, the magnitudes of K’ from [10.5.3] are listed for the length of series N ranging
from 5 to 200. When 10,000 series are generated for NID random variables for each N, then the
expected value of K can be estimated by utilizing [10.5.1], while the standard deviation of E(K)
can be calculated by using the square root of [10.5.2). In Table 10.5.2, the estimated values of
E(K) for various time series lengths are catalogued. The standard deviation of each estimate is
contained in the parentheses below the estimate. A comparison of columns 2 and 3 in Table
10.5.2 demonstrates that the inequality in [10.5.4] is valid. However, the difference between
E(K) and K’ is negligible. Therefore, [10.5.3] provides a viable means for estimating the
expected value of K for NID summands. In addition, the Hurst coefficient K is obviously a
function of the sample size, and for increasing N the coefficient X attenuates toward its asymp-
totic value of 0.5. However, for small and moderate values of N, the statistic K is significantly
larger than 0.5.

The coefficient K constitutes one method of estimating the generalized Hurst coefficient A
in [10.3.2]. Another approach is to evaluate h by using the estimate YH of Gomide (1975) that
is given in [10.3.7]. By taking logarithms of [10.3.7], an explicit expression for YH is
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Table 10.5.1. Expected values of the RAR for some IID summands.

N Analytical Results ~ Simulation Results*
Anis and Lloyd | Feller Normal Gamma Stable Cauchy
(1976) (1951)

5 1.9274 2.8025 1.9273 1.9851 1.9264 1.9506
(0.0027) | (0.0018) | (0.0022) | (0.0026)

10 3.0233 3.9633 3.0302 3.0330 2.9699 3.0556
(0.0060) | (0.0039) | (0.0047) | (0.0056)

15 3.8812 4.8541 3.8826 3.8356 3.7571 3.8987
(0.0084) | (0.0056) | (0.0064) | (0.0079)

20 46111 5.6050 | 4.6047 4.5141 4.4408 46214
(0.0100) | (0.0071) | (0.0075) | (0.0098)

25 5.2576 6.2666 | 5.2540 5.1213 5.0044 5.2889
(0.0116) | (0.0085) | (0.0088) | (0.0115)

30 5.8443 6.8647 | 5.8770 5.6709 5.5681 5.8767
(0.0131) | (0.0097) | (0.0098) | (0.0130)

35 6.3851 7.4147 | 6.4214 6.1707 6.0090 6.3974
(0.0145) | (0.0109) | (0.0106) | (0.0143)

40 6.8895 7.9267 | 6.8920 6.6605 6.5037 6.9075
(0.0158) | (0.0121) | (0.0118) | (0.0155)

45 7.3640 8.4075 | 7.3595 7.0938 6.9010 7.3934
(0.0169) | (0.0132) | (0.0125) | (0.0166)

50 7.8133 8.8623 | 7.7785 7.5012 7.3184 7.8540
(0.0180) | (0.0141) | (0.0132) | (0.0178)

60 8.6502 9.7081 8.6246 8.3061 8.0670 8.6263
(0.0198) | (0.0159) | (0.0148) | (0.0195)

70 9.4210 10.4860 | 9.4453 9.0632 8.7242 9.4454
(0.0215) | (0.0178) | (0.0158) | (0.0211)

80 10.1392 11.2100 | 10.1349 9.7327 9.3732 | 10.1336
(0.0233) | (0.0194) | (0.0172) | (0.0232)

90 10.8143 11.8900 | 10.8208 | 10.4068 9.9544 | 10.8857
(0.0248) | (0.0209) | (0.0183) | (0.0248)

100 11.4533 12.5331 | 11.4775 | 109769 | 10.5593 | 11.4546
(0.0262) | (0.0224) | (0.0196) | (0.0258)

125 12.9243 14.0125 | 12,9617 | 12.4280 | 11.8353 | 12.9619
(0.0299) | (0.0255) | (0.0220) | (0.0292)

150 14.2556 15.3499 | 14.1956 | 13.6864 | 13.0622 | 14.2636
(0.0323) | (0.0285) | (0.0240) | (0.0323)

175 15.4806 16.5798 | 15.4198 | 14.8752 | 14.1069 | 15.4971
(0.0349) | (0.0315) | (0.0261) | (0.0354)

200 16.6214 17.7245 | 16.5938 | 159992 | 15.1381 16.6259
(0.0376) | (0.0337) | (0.0281) | (0.0376)

*The parenthetical values are standard deviations
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Table 10.5.2. Hurst coefficients for NID summands.

N K EK)* YH'
5| 07161 | 0.7032 | 0.3375
(0.0016)
10 | 0.6874 | 0.6750 | 0.4315
(0.0013)
15 | 0.6731 | 0.6629 | 0.4591
(0.0011)
20 | 0.6638 | 0.6540 | 0.4725
(0.0010)
25 | 0.6571 | 0.6469 | 0.4805
(0.0009)
30 | 0.6519 | 0.6420 | 0.4859
(0.0008)
35 | 0.6477 | 0.6385 | 0.4897
(0.0008)
40 | 0.6442 | 0.6365 | 0.4926
(0.0007)
45 | 0.6413 | 0.6335 | 0.4948
(0.0007)
50 | 0.6387 | 0.6305 | 0.4967
(0.0007)
60 | 0.6344 | 0.6270 | 0.4994
(0.0007)
70 | 0.6309 | 0.6235 | 0.5014
(0.0006)
80 | 0.6279 | 0.6213 | 0.5029
(0.0006)
90 | 0.6254 | 0.6186 | 0.5040
(0.0006)
100 | 0.6233 | 0.5156 | 0.5049
(0.0006)
125 | 0.6189 | 0.6129 | 0.5066
(0.0005)
150 | 0.6154 | 0.6100 | 0.5078
(0.0005)
175 | 0.6127 | 0.6070 | 0.5086
(0.0005)
200 | 0.6103 | 0.6051 | 0.5092
(0.0005)

*The parenthetical values are standard deviations.

Chapter 10
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YH = (logR*y - log1.2533)/1ogN [10.5.5]

Although the expected value of YH could be determined from simulation experiments, an alter-
native analytical procedure is to substitute E(R*y) from [10.3.15] for R*y in [10.5.5] and then to
estimate YH by YH’ by using [10.5.5]. In Table 10.5.2, the values of YH’ are tabulated for dif-
ferent time series lengths. It is obvious that YH’ is a function of the sample size and that YH’
provides a closer approximation to the limiting value of 0.5 than does X.

10.5.3 Simulation of Correlated Summands

Long Memory Models

By utilizing [10.4.30], it is possible to simulate exactly synthetic traces of FGN. Because
only short memory approximations to FGN processes were previously available for simulation
purposes, the exact method should prove useful for checking former FGN simulation studies and
also for exploring new avenues of research for long memory models. Of particular importance
are Monte Carlo studies to investigate the statistical properties of FGN processes. Consider, for
example, the behaviour of the RAR for FGN models. For time series varying in length from
N=5 to N=200 a total of 10,000 simulated sequences are generated for each value of N.
Because the RAR statistic is not a function of the mean and variance of a FGN process, it is con-
venient to assign the mean a value of zero and the variance a magnitude of 1 when performing
the simulations using [10.4.30]. By utilizing [10.5.1] and [10.5.2], the expected values of the
RAR and variances, respectively, are calculated. Table 10.5.3 records the estimates of E (I?*N)

and the corresponding standard deviations in brackets for FGN models with H =0.7 and 0.9.
From an inspection of the entries in Table 10.5.3, it is obvious that E(R*y) increases in magni-

tude for larger N. Furthermore, at a given value of N the expected value of the RAR is greater
for a FGN model with H = 0.9 than it is a for a FGN process with H =0.7.

Short Memory Models

In Chapter 9, improved procedures are given for generating synthetic traces using ARMA
models. In particular, the WASIM1 (see Section 9.3) and WASIM2 (Section 9.4) procedures are
recommended for use with ARMA models. When either WASIM1 or WASIM2 is employed,
random realizations of the process under consideration are used as starting values. Since fixed
initial values are not utilized, systematic bias is avoided in the generated data.

As a typical example of a short memory process, consider the Markov model of Section
3.2.1 given by

2‘ = ¢12,_1 + a‘ [10.5.6]

where ¢ equals 1,2, ... ,N, ¢, is the AR parameter, and g, is the white noise that is NID(O,G}).
By using WASIM2, a total of 10,000 synthetic sequences are generated for specific values of N
for Markov processes with ¢; =0.3, 0.5 and 0.7. Because the RAR is independent of the vari-
ance of the innovations, a value such as unity may be used for o‘,z in the simulation study. In

Tables 10.5.4 to 10.5.6, the expected values of the RAR and corresponding standard deviations
in parentheses are given for the three Markov models. Comparisons of the third columns in
these tables reveal that the expected value of the RAR increases for increasing N and ¢,.
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Table 10.5.3. Expected values of the RAR for FGN models.

N FGN Models*
H=0.7 H=0.9
5 1.9682 2.0100
(0.0026) | (0.0025)
10 | 3.2716 3.5031
(0.0062) | (0.0061)
15 | 4.3946 4.8751
(0.0091) | (0.0094)
20 | 5.3972 6.1579
0.0116) | (0.0125)
25 | 6.3351 7.4051
(0.0141) | (0.0155)
30 | 7.2066 8.6032
(0.0165) | (0.0187)
35 8.0515 9.7839
(0.0188) | (0.0216)
40 | 8.8767 | 10.9431
(0.0205) | (0.0241)
45 9.6650 | 12.0926
0.0227) | (0.0271)
50 | 10.4007 | 13.2284
0.0247) | (0.0298)
60 | 11.8233 | 15.3575
(0.0280) | (0.0352)
70 | 13.2003 | 17.4965
(0.0322) | (0.0413)
80 | 14.5205 | 19.5945
(0.0356) | (0.0461)
90 | 157709 | 21.6075
(0.0389) | (0.0518)
100 | 16.9241 | 23.5818
(0.0420) | (0.0573)
125 | 19.8877 | 28.5197
(0.0494) | (0.0700)
150 | 22.6178 | 33.2646
0.0571) | (0.0831)
175 | 25.2291 | 38.0410
(0.0638) | (0.0964)
200 | 27.7601 | 42.6710
(0.0701) | (0.1080)

*The parenthetical values are standard deviations.

Chapter 10
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Table 10.5.4. Expected values of the RAR for a Markov model

with ¢, =0.3.
N E®R*)
Asymptotic  Simulated*

5 3.8192 1.9875
(0.0026)

10 5.4011 3.3410
(0.0062)

15 6.6150 4.4633
(0.0089)

20 7.6383 5.4261
(0.0119)

25 8.5390 6.2853
(0.0135)

30 9.3550 7.0666
(0.0156)

35 10.1045 7.7976
(0.0175)

40 10.8022 8.5022
(0.0188)

45 11.4575 9.1493
(0.0205)

50 12.0772 9.7347
(0.0221)

60 13.2299 10.8709
(0.0242)

70 14.2900 11.9207
(0.0273)

80 15.2766 129177
(0.0296)

90 16.2033 13.8181
0.0317)

100 17.0798 14.6243
(0.0335)

125 19.0958 16.6970
(0.0380)

150 20.9184 18.5288
(0.04249)

175 22.5944 20.1758
(0.0459)

200 24.1545 21.7339
(0.0491)

*The parenthetical values are standard deviations.
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Table 10.5.5. Expected values of the RAR for a Markov model

with ¢, =0.5.
N ER*y)
Asymptotic  Simulated*

5 4.8541 2.0194
(0.0025)

10 6.8647 3.5438
(0.0061)

15 8.4075 4.8738
(0.0092)

20 9.7081 6.0432
(0.0120)

25 10.8540 7.1131
(0.0147)

30 11.8900 8.0779
(0.0171)

35 12.8426 8.9858
(0.0194)

40 13.7294 9.8655
(0.0212)

45 14.5622 10.6837
(0.0233)

50 15.3499 11.4170
(0.0252)

60 16.8150 12.8455
(0.0283)

70 18.1622 14.1721
(0.0320)

80 19.4163 15.4320
(0.0350)

90 20.5941 16.5726
(0.0376)

100 21.7080 17.5991
(0.0400)

125 24.2703 20.2124
(0.0459)

150 26.5868 22.5342
(0.0515)

175 28.7170 24.6356
(0.0562)

200 30.6998 26.6039
(0.0603)

*The parenthetical values are standard deviations.

Chapter 10
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Table 10.5.6. Expected values of the RAR for a Markov model

With ¢1 = 0.7.
N ER*y)
Asymptotic  Simulated*

5 6.6713 2.0435
(0.0025)

10 9.4346 3.7235
(0.0059)

15 11.5550 5.2915
(0.0091)

20 13.3425 6.7304
(0.0123)

25 149174 8.0874
(0.0154)

30 16.3412 9.3309
(0.0184)

35 17.6505 10.5117
(0.0212)

40 18.8692 11.6603
(0.0235)

45 20.0138 12.7462
(0.0262)

50 21.0964 13.7239
(0.0286)

60 23.1100 15.6339
(0.0331)

70 249616 17.4191
(0.0378)

80 26.6851 19.1225
(0.0419)

90 28.3038 20.6666
(0.0454)

100 29.8348 22.0685
(0.0490)

125 33.3564 25.6001
(0.0570)

150 36.5401 28.7578
(0.0648)

175 39.4678 31.6509
(0.0716)

200 42.1928 34.3412
(0.0772)

*The parenthetical values are standard deviations.
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It is also possible to compare the estimated expected value of the RAR for a Markov model
to an analytical large-sample approximation that is given by Siddiqui (1976) as

ER*y) = ((xN/2)[(1 - $)/(1 - ¢’ 12 [10.5.7]

In Tables 10.5.4 to 10.5.6, the output from [10.5.7] for the three Markov models are catalogued.
A perusal of these tables demonstrates that Siddiqui’s approximation for E(R*y) is not too accu-

rate for the cases considered, and the precision decreases for increasing ¢;.

10.6 PRESERVATION OF THE RESCALED ADJUSTED RANGE

10.6.1 Introduction

A major challenge in stochastic hydrology is to determine models that preserve important
historical statistics such as the rescaled adjusted range (RAR), or equivalently the Hurst coeffi-
cient K. The major finding of this section is that ARMA models do statistically preserve the his-
torical RAR statistics or equivalently the Hurst coefficients denoted using K’s. This interesting
scientific result is what solves the riddle of the Hurst Phenomenon.

After fitting ARMA models to 23 annual geophysical time series, simulation studies are
carried out to determine the small sample empirical cumulative distribution function (ECDF) of
the RAR or K for various ARMA models. The ECDF for each of these statistics is shown to be
a function of the time series length N and the parameter values of the specific ARMA process
being considered. Furthermore, it is possible to determine as accurately as desired the distribu-
tion of the RAR or K. A theorem is given to obtain confidence intervals for the ECDF in order
to guarantee a prescribed precision. Then it is shown by utilizing simulation results and a given
statistical test that ARMA models do preserve the observed RAR or K of the 23 geophysical
time series.

10.6.2 ARMA Modelling of Geophysical Phenomena

In this section, ARMA models are determined for 23 yearly geophysical time series. Table
10.6.1 lists the average annual riverflows and miscellaneous geophysical phenomena that are
modelled. The riverflows are the longer records that are available in a paper by Yevjevich
(1963). Although the flows were converted to cubic meters per second, it is irrelevant which
units of measurement are used, since the AR and MA parameter estimates for the ARMA models
fitted to the data are independent of the measuring system used. The mud varve, temperature,
rainfall, sunspot numbers, and minimum flows of the Nile River are obtained from articles by De
Geer (1940), Manley (1953, pp. 255-260), Kendall and Stuart (1963, p. 343), Waldmeier (1961),
and Toussoun (1925), respectively.

Table 10.6.2 lists 12 sets of tree ring indices comprising six different species of trees from
western North America. The indices labelled Snake are from a book by Schulman’s (1956, p.
77), and the rest were selected from a report by Stokes et al. (1973).

By employing the three stages of model construction presented in detail in Part III, the
most appropriate ARMA model from [3.4.32] is fitted to each of the 23 time series. Table 10.6.3
catalogues the type of ARMA model, Box-Cox transformation from [3.4.30], parameter esti-
mates and standard errors (SE’s) for each data set. The SE’s are given in parentheses. For all
the Box-Cox transformations, the constant is set equal to zero. When A =1 there is no
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Table 10.6.1. Annual riverflows and miscellaneous geophysical data.

363

Code Name Type Location Period Length N
Mstouis Mississippi River St. Louis, Missouri 1861-1957 96
Neumunas  Neumunas River Smalininkai, USSR 1811-1943 132
Danube Danube River Orshava, Romania 1837-1957 120
Rhine Rhine River Basle, Switzerland 1807-1957 150
Ogden St. Lawrence River  Ogdensburg, New York 1860-1957 97
Gota Gota River Sjotorp-Vanersburg, Sweden 1807-1957 150
Espanola mud varves Espanola, Ontario 471 to -820 350
Temp temperaturedata  English Midlands (Swedish time)
Precip precipitation London, England 1698-1952 255
Sunyr yearly sunspots sun 1813-1912 100
Minimum minimum flowsof  Rhoda, Egypt 1798-1970 163
Nile River 622-1469 848
Table 10.6.2. Tree ring indicies data.
Code Name Type of Tree Location Period Length N
Snake Douglas fir Snake River Basin 1282-1950 669
Exshaw Douglas fir Exshaw, Alberta, Canada 1460-1965 506
Naramata Ponderosa pine ~ Naramata, B.C., Canada 1451-1965 515
Dell Limber pine Dell, Montana 1311-1965 655
Lakeview Ponderosa pine Lakeview, Oregon 1421-1964 544
Ninemile Douglas fir Nine Mile Canyon, Utah 1194-1964 771
Eaglecol Douglas fir Eagle, Colorado 1107-1964 858
Navajo Douglas fir Navajo National Monument  1263-1962 700
(Belatakin), Arizona
Bryce Ponderosa pine  Bryce Water Canyon, Utah 1340-1964 625
Tioga Jeffrey pine Tioga Pass, California 1304-1964 661
Bigcone Big cone spruce  Southemn California 1458-1966 509
Whitemtn Bristlecone pine  White Mountains, California  800-1963 1164

transformation, while A =0 means that natural logarithms are taken of the data. Whenever a
MLE of A is calculated, the SE is included in parentheses.

10.6.3 Distribution of the RAR or X

Suppose the determination of the exact distribution of the RAR (i.e., E*N) or K is required.
The expected value of E*N is now known theoretically for both an independent and a symmetri-
cally correlated Gaussian process (Anis and Lloyd, 1976). At present, the cumulative
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Table 10.6.3. ARMA models fitted to the geophysical data.
CodeName Model A*  Parameter Value®* Parameter Value* Parameler  Value*
Mstouis ©1 10 0, 0.309
(0.094)
Neumunas  (0,1) 00 0, 0.22
(0.086)
Danube ©00 10
Rhine ©00 10
Ogden 3O 10 ¢ 0.626 ¢ 0.0 ¢ 0.184
(0.083) (0.086)
Gota 20 10 ¢ 0.591 ¢ 0274
0.079) (0.086)
Espanola 1Ly oo ¢ 0.963 0, 0.537
(0.016) (0.051)
Temp ©02 10 0, 0.115 6, 0.202
(0.063) (0.057)
Precip 00 00
Sunyr 90 10 o 1.219 6, -0.508 9 0.232
(0.060) (0.056) (0.029)
Minimum @21 0778 o 1.254 0, 0279 6, 0.842
(0.316) (0.060) 0.051) (0.049)
Snake 30 10 o 0.352 ¢, 0.093 05 0.100
(0.039) (0.041) (0.039)
Exshaw Ly 10 ¢ 0.725 0, 0.395
(0.067) (0.090)
Naramata 20 10 ¢ 0.196 o2 0.131
(0.044) (0.044)
Dell 20 10 ¢ 0.367 ¢, 0.185
(0.039) (0.039)
Lakeview 30 0717 ¢ 0.525 ¢, 0.0 63 0.143
(0.130) (0.038) (0.039)
Ninemile 21 0684 ¢, 1.225 ¢, 0.274 0, 0.850
(0.060) (0.063) (0.047) (0.049)
Eaglecol 21 0624 o 1.156 6, 0237 6, 0.693
(0.054) (0.114) (0.082) (0.103)
Navajo a.y 10 o 0.683 8, 0.424
(0.082) (0.103)
Bryce 1,00 1366 o 0.598
0.107) (0.033)
Tioga (1,00 1458 ¢ 0.556
(0.098) (0.033)
Bigcone 20 10 ¢ 0.375 ¢, 0.159
(0.044) (0.044)
Whitemtn 1) 1414 (N 0.641 0, 0.408
(0.061) (0.086) (0.104)

*The parenthetical values are standard errors (SE’s).
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distribution function (CDF) of E“N for a white noise process and in general any ARMA model is

analytically intractable. However, by simulation it is possible to determine as accurately as is
desired for practical purposes the CDF for R*y. Because both R*y and K are functions of N,

their CDF’s are defined for a particular length of series N. The CDF for R*y, is
F=F(r;N,0,0)=Pr(R*y sr) (10.6.1]

where N is the length of each individual time series, ¢ is the set of known AR parameters, 0 is
the set of known MA parameters, and r is any possible value of R*y.

When simulating a time series of length N, it is recommended to employ the improved
simulation techniques of Chapter 9. In this section, WASIM1 from Section 9.3 is utilized for the
ARMA (0,9) models, while WASIM2 from Section 9.4 is used with the ARMA(p,0) and
ARMA(p,q) processes. Because the RAR or X is independent of the variance of the innova-
tions, any value of 62 may be used. Consequently, it is simplest to set 0'3 =1 and hence to

assume that the residuals are NID(0,1).

_ Suppose that I\Z simulations of length N are generated for a 1 specific ARMA model and the
N RAR'’s given by R*y | .R*y,, . .. +R* 5, are calculated for the N simulated series, respectively.

If the sample of RAR is reordered such that E*N(l) s E*N(Z) S < E*N(IV)' it is known that the
MLE of F is given by the ECDF (Gnedenko, 1968, pp. 444-451):

Fy=Fg(r:N.0.8)=0, r<R*,,
Fg=FgriNOB)=kIN, R*yy <rSR*g., (10.6.2)
Fg=FgrN9O)=1, r>R% g

The Kolmogorov theorem (Gnedenko, 1968, p. 450) can be used to obtain confidence inter-

vals for F and to indicate the number of samples N necessary to guarantee a prescribed accu-

racy. This theorem states that if N is moderately large (it has been shown that N > 100 is ade-
quate), then

Pr(max|Fg-F| < e/N'?) =K (e) [10.6.3]
r

where
KE)=0, <0

K©= 3 e, e50
k=—eo

For example, when €= 1.63, then K(e) =0.99. If N = 10* simulations are done for a series of
length N, then by Kolmogorov's theorem, all the values of F are accurate to at least within
0.0163 with a probability of 0.99.

In actual simulation studies, it is useful to examine the convergence of F & by printing out a

summary of the ECDF for increasing values of N (such as N = 100,200,500,1000,2000, - - -)
until sufficient accuracy has been obtained. To curtail the computer time required in
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simulations, there are efficient algorithms available called ‘quicksorts’’ (Knuth, 1973) for order-
ing the sample values for the RAR.
If simulation studies are done for R*y, the ECDF for K can be obtained from the transfor-
mation
K =logR*y/log(N/2) [10.6.4]

Alternatively, when the ECDF for X is known, the ECDF for E*N can be calculated by substitut-
ing each value of X into

R*y = (N2)X [10.6.5]

Representative ECDF’s are given in Appendix A10.1 for the simulations carried out in this
section. In Table A10.1.1, the ECDF of K is shown for various values of N for white noise that
is NID(O,G}). For each value of N (i.c., each row) in that table, an ECDF is determined using
N=10* samples of length N. By substituting all values for K in this table into [10.6.5] the
ECDF for the RAR can be found for each value of N.

When a particular time series is modelled by an ARMA model other than white noise, the
ECDF for either R*y or K can be calculated by simulation for each desired value of N. Table
A10.1.2 lists the ECDF of K for different values of N for a Markov process in [3.2.1] with
¢, =0.4. By utilizing the transformation in [10.6.5] for each entry in this table, the ECDF’s for
R*y for the Markov model can be found and are shown in Table A10.1.3. Because of the
transformation in [10.6.5], it is sufficient to simply have a table for either K or E*N.

The tables of various ECDF’s for different types of ARMA models are listed in the appen-
dix of the microfiche version of the paper by Hipel and McLeod (1978a). In particular, results
are given for white noise as well as Markov models with ¢; =0.1,0.2,...,0.9. In all of the

tables, for a particular value of N the number of samples N simulated is 10%.

For a particular ARMA model, the ECDF can be used to make inferences about R*y or
equivalently K. For instance, the 95% confidence interval for R*, with N = 100 for a Markov or
AR(1) model with ¢, =0.4 can be determined by utilizing Table A10.1.3. Opposite N = 100,
select the values of R*y below the 0.025 and 0.975 quantiles. The 95% confidence interval for
the RAR is then 9.85 - 24.02. By substituting these interval limits into [10.6.4), the 95% confi-
dence interval for K is 0.585 - 0.813. This confidence interval for K is also confirmed by refer-
ring to the appropriate entries of Table A10.1.2 opposite N = 100.

The ECDF tables illustrate certain properties of the RAR or K. For example, an examina-
tion of the median for X for white noise below the 0.500 quantile in Table A10.1.1, definitely
shows that X slowly decreases asymptotically toward 0.5 with increasing N and is consequently
a function of N. Because of this, a separate ECDF must be developed for each value of N for a
specified process. Note that the median values for K in Table A10.1.1 are almost identical with
the values of K tabulated in Table 10.5.2. These latter values of K are calculated by using
[10.6.4] when the exact theoretical expected values of R*y are found from a formula given by
Anis and Lloyd (1976) and also by employing simulation techniques to estimate E(K). As can
be seen from a perusal of Table 10.5.2, the expected value of K is obviously a function of N and
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decreases in magnitude with increasing N.

It can be proven theoretically that for any ARMA process the RAR or X is a function of the
time series length N and the AR and MA parameters (Hipel, 1975, Appendix B). This fact is
confirmed by the ECDF for the RAR for the Markov process with ¢, = 0.4 in Tables A10.1.2 and
A10.1.3. It can be seen that the median and all other values of the RAR at any quantile for all of
the Markov models increase in value for increasing N. When one compares the results with
other Markov models given by Hipel and McLeod (1978a, microfiche appendix), the distribution
of R*y or X is also a function of the value of the AR parameter ¢,.

10.6.4 Preservation of the RAR and K by ARMA Models

By employing the ECDF of the RAR or X in conjunction with a specified statistical test it
is now shown that ARMA models do preserve the historically observed Hurst statistics. Because
the Hurst coefficient K is widely cited in the literature, the research results for this statistic are
described. However, K and E*N are connected by the simple transformation given in [10.6.5],
and, therefore, preservation of either statistic automatically implies retention of the other by an
ARMA model.

The ARMA models fitted to 23 geophysical time series ranging in length from N =96 to
N =1164 are listed in Table 10.6.3. For exactly the same time series length N as the historical
data, 10* simulations are done for each model to determine the ECDF of K, or equivalently E*N.
The probability p; of having K for the ith model greater than the X calculated for the ith histori-

cal series is determined from the ith ECDF as
Pr(K > K™ Imodel) = p, [10.6.6]

where K,-°"‘ is the K value calculated for the ith observed historical time series. If the chosen
ARMA model is correct, then, by definition, p; would be uniformly distributed on (0,1). For k
time series it can be shown (Fisher, 1970, p. 99) that

k
—2YInp; ~ 13 [10.6.7]
i=1
Significance testing can be done by using [10.6.7] to determine whether the observed Hurst
coefficient or the RAR is preserved by ARMA models. The test could fail if the incorrect model
were fitted to the data (for example, if the Ogden data were incorrectly modelled by an AR(1)
process with ¢; = 0.4) or if ARMA models do not retain the Hurst K. Careful model selection

was done, thereby largely eliminating the former reason for test failure. If it is thought (as was
suggested by Mandelbrot and Wallis (1968)) that the observed X is larger than that implied by
an appropriate Brownian domain model, then a one tailed rather than a two tailed test may be
performed.

The results of the 2 test in [10.6.7] for the 23 geophysical phenomena confirm that there is
no evidence that the observed K’s, or equivalently the RAR’s, are not adequately preserved by
the fitted ARMA models. Table 10.6.4 summarizes the information used in the test. The
observed Hurst coefficient, E(K) from the simulations and the p; value are listed for each of the

time series. In Table 10.6.5, it can be scen that the calculated x2 value from [10.6.7] is not signi-
ficant at the 5% level of significance for the 23 time series for either a one sided or a two sided
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test. Therefore, on the basis of the given information, ARMA models do statistically preserve K
or the RAR when considering all the time series. Furthermore, when the set of annual river-
flows, miscellancous data, and tree ring indicies are inspected individually, it can be seen from
Table 10.6.5 that ARMA models preserve the historical Hurst statistics for all three cases.

Table 10.6.4. Geophysical time series calculations.

Code Names N’s  ObservedK’s ARMA Model EK)’s  p;’s

Mstouis 96 0.648 0.667 0.624
Neumunas 132 0.660 0.649 0.420
Danube 120 0.633 0.613 0.534
Rhine 150 0.614 0.609 0.468
Ogden 97 0.894 0.832 0.149
Gota 150 0.689 0.659 0.283
Espanola 350 0.855 0.877 0.674
Temperature 255 0.694 0.646 0.157
Precip 100 0.618 0.610 0.434
Sunspot numbers 163 0.723 0.768 0.728
Minimum 848 0.815 0.786 0.264
Snake 669 0.687 0.693 0.559
Exshaw 506 0.637 0.702 0.938
Naramata 515 0.595 0.649 0.905
Dell 655 0.687 0.694 0.569
Lakeview 544 0.706 0.729 0.709
Ninemile 771 0.740 0.726 0.378
Eaglecol 858 0.645 0.747 0.995
Navajo 700 0.653 0.670 0.660
Bruce 625 0.732 0.698 0.203
Tioga 661 0.701 0.687 0.362
Bigcone 509 0.611 0.695 0.981
Whitemtn 1164 0.695 0.648 0.095

Table 10.6.5. Results of the xz test for the geophysical time series.

Data Sets Degreesof -2InYp;
Freedom

Riverflows 12 11.78

Miscellaneous 10 9.46

Tree rings 24 16.08

Total 46 37.32
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In Table 10.6.4, the average of the observed K’s is calculated to be 0.693 with a standard
deviation of 0.076. The E(K) from the simulations has an average of 0.698 with a standard devi-
ation of 0.068. The average of the observed X is, therefore, slightly less than that for the simu-
lated case, but this difference is not statistically different.

If the results of the RAR had been given rather than X » only columns 3 and 4 of Table
10.6.4 would be different, due to the transformation in [10.6.7). The p; values and the results of

the x? test in Table 10.6.5 would be identical. Therefore, preservation of either K or R*y infers
retention of the other statistic by ARMA models.

10.7 ESTIMATES OF THE HURST COEFFICIENT

Different estimators are available for estimating the Hurst coefficient. The purpose of this
section is to compare these estimates for the 23 annual geophysical time series given in Tables
10.6.1 and 10.6.2.

From empirical studies of approximately 690 geophysical time series, Hurst (1951, 1956)
found the RAR to vary as

R*y o< N* [10.7.1]

where h is a constant often referred to as the generalized Hurst coefficient. The above equation
can be written in the general form

R*y =aN* [10.7.2)
where a is a coefficient. Hurst assumed the coefficient a to have a value of (1/2)" and then
estimated & by X in [10.6.4).

Siddiqui (1976) has employed the functional central limit theorem and the theory of
Brownian motion to derive many statistical formulae that may be of interest to hydrologists. Of
particular importance is the asymptotic result for calculating E(R*) for ARMA processes. This
formula is given as

ER*)=a’'N"? [10.7.3]
where
’ 172 q / p
a= 1.253370 1- ZO, 1- z¢‘
i=] i=1
and 7, is the theoretical autocovariance function at lag O that is evaluated by using the algorithm
in Appendix A3.2 with 62 =1, 6; is the ith MA parameter and ¢ is the ith AR parameter. If the

random variables are IID, a special case of | 10.7.3] that was previously derived by Feller (1951)
is

E(R*y) = 1.2533N12 [10.7.4]

By comparing [10.7.3] and [10.7.2], a possible alternative method of evaluating A may be
to employ the equation
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R*y =a’'NH [10.7.5]

where SH is Siddiqui’s estimate of the generalized Hurst coefficient . When logarithms are
taken of [10.7.5], Siddiqui’s estimate for A is (Siddiqui, 1976)

SH = (logR*y, - loga’)(logN)~! [10.7.6]

It should be noted that due to the way Hurst (1951, 1956) and Siddiqui (1976) calculate the
coefficient g in [10.7.2], the Hurst coefficient K and the Siddiqui coefficient SH are in fact two.
different statistics. Nevertheless, as was suggested by Siddiqui (1976), it may be of interest to
determine whether A exhibits the Hurst phenomenon if the estimate SH is employed. Accord-
ingly, for the 23 geophysical time series given in Tables 10.6.1 and 10.6.2 the K and SH statis-
tics are compared.

Table 10.6.3 lists the ARMA models fitted to the 23 time series. If a Box-Cox transforma-
tion is included in a model, then K and SH are calculated for the transformed series to which the
model is fit. This is because the formula for calculating SH in [10.7.6] does not have the capa-
bility of incorporating a Box-Cox transformation in order to get an estimate of SH for the
untransformed data. Table 10.7.1 displays the values of K and SH that are calculated for each
time series by using [10.6.4] and [10.7.6], respectively. Notice that the entries for K in Table
10.7.1 differ from the K values in Table 10.6.4 wherever the data used in Table 10.7.1 have been
transformed by a Box-Cox transformation.

An examination of Table 10.7.1 reveals that in all cases except three, the value of SH is less
than X for the corresponding time series. The K statistic has an arithmetic mean of 0.701 with a
standard deviation of 0.084. However, the mean of the SH statistic is 0.660 and possesses a
standard deviation of 0.131. The mean value of SH is, therefore, well within 2 standard devia-
tions of 0.500.

Another technique to estimate & can be found by comparing [10.7.4] and [10.7.2). Accord-
ingly, Gomide (1975) suggests the following equation to evaluate h:

R*y =1.2533N"H (10.7.7]

where YH is Gomide’s estimate of the generalized Hurst coefficient 4. By taking logarithms of
[10.7.7], Gomide’s estimate of 4 is

YH = (logR*y - log1.2533)(logN)! (10.7.8]

When [10.7.8] is utilized to estimate the Hurst coefficient, Gomide (1975) obtains an aver-
age value for YH of 0.57 for the 690 series considered by Hurst (1951, 1956). On the other hand,
Hurst (1951, 1956) calculated K to have an average of 0.73 for the 690 series. Therefore, lower
values are obtained for the Hurst coefficient k if YH is employed rather than K.

Table 10.7.1 lists the values of YH for the same 23 geophysical time series that are con-
sidered for SH. Therefore, if a Box-Cox transformation is included with an ARMA model in
Table 10.6.3, then YH is determined for the transformed series to which the model is fit. Obvi-
ously, because YH, as calculated in [10.7.8], is not a function of the ARMA model parameters, it
is not, in general, necessary to consider the transformed series. However, the aforementioned
procedure is adopted so that appropriate comparisons can be formulated for the three estimates
given in Table 10.7.1.
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Table 10.7.1. Estimates of the Hurst coefficient.
Code Names K’s SH’s YH’s

Mstouis 0.648 0.451 0.500
Neumunas 0.677 0499 0.535
Danube 0.633 0495 0.495
Rhine 0.614 0484 0484
Ogden 0.894 0436 0.709
Gota 0.689 0.504 0.549
Espanola 0928 0455 0.779
Temp 0.694 0.521 0.567
Precip 0.615 0473 0473
Sunyr 0.723 0.570 0.580
Minimum 0.817 0462 0.699
Snake 0.687 0475 0.579
Exshaw 0.637 0.420 0.530
Naramata 0.595 0435 0.492
Dell 0.687 0.475 0.579

Lakeview 0.703 0499 0.590
Ninemile 0.727 0.466 0.617

Eaglecol 0.761 0.485 0.650
Navajo 0.653 0.468 0.550
Bryce 0.734 0.513 0.620
Tioga 0.704 0498 0.594
Bigcone 0.611 0.404 0.507

Whitment 0.695 0.530 0.595

A perusal of Table 10.7.1 shows that for each time series the values of both SH and YH is
consistently less than the magnitude of K. For the series to which white noise models are fit in
Table 10.6.3 (i.c., Danube, Rhine and Precip), the values of YH and SH in Table 10.7.1 are
equivalent. However, for all the other data sets the magnitudes of SH are less than YH. The
mean of the 23 YH values is 0.577 with a standard deviation of 0.078. The YH statistic is within
one standard deviation of 0.500. Therefore, it can perhaps be argued that for the data considered,
the Hurst phenomenon is not significant for the YH statistic. A similar argument can be made
for the SH estimate of A.

10.8 CONCLUSIONS

The pursuit of possible explanations to solve the riddle of the Hurst phenomenon has
stimulated decades of valuable research by both hydrologists and statisticians. The Hurst
researchers are analogous to the inquisitive archaelogists of the 19th and early 20th centuries
who sought to find the treasures of the ancient Egyptians in long forgotten temples, pyramids
and tombs. Like the archaelogists, during their search the Hurst scientists have unearthed many
valuable treasures that have attracted the world-wide attention of their colleagues. However, the
main treasure find is the one described in Section 10.6. In that section, ARMA models are
shown to preserve statistically the observed RAR and K when fitted to a variety of geophysical
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time series. In other words, the fitted ARMA models indirectly account for the measured Hurst
statistics, which are usually significantly larger than 0.5 (see Table 10.6.4). Because important
stochastic characteristics of hydrologic time series are retained by ARMA models, this should
give engineers confidence in water resource projects that are designed with the aid of simulation
techniques. In particular, the RAR statistic is directly related to storage problems, and this
makes ARMA models desirable for reservoir design, operation, and evaluation.

Besides the main solution to the Hurst riddle given in Section 10.6, many other interesting
discoveries have been made. In addition to the Hurst coefficient K defined in [10.3.4], other
coefficients have been suggested to model the generalized Hurst coefficient A given in [10.3.2].
For example, Gomide (1975), Siddiqui (1976), Anis and Lloyd (1976) and Wallis and Matalas
(1970) proposed alternative procedures to model A. One of the major reasons for developing
alternative exponents to K was to produce a coefficient that would reach its limiting value of 0.5
more quickly than K would. Nevertheless, it must be borne in mind that the definition of the
Hurst phenomenon is based on a comparison of the value of K in small and moderate sample
sizes to its large sample value of 0.5. If the empirical, or theoretical, value of another estimate of
h is compared for finite time series length to its asymptotic magnitude of 0.5, the Hurst
phenomenon should probably be redefined in terms of that statistic. However, because of the
inherent statistical properties of the RAR, it is recommended that future research primarily be
devoted to the study of this statistic and that less emphasis be put on the various definitions of
the Hurst coefficient. Some interesting insights into problems related to the Hurst phenomenon
are provided by Klemes and Klemes (1988). Further research into the Hurst phenomenon and
long-range dependence is provided by Bhattacharya et al. (1983) and Poveda and Mesa (1988)
while Beran (1992) carries out a partial survey of long-range dependence research. Kunsch
(1986) provides an approach for discriminating between monotonic trends and long-range depen-
dence. Finally, Cox (1991) links non-linearity and time irreversibility with long-range depen-
dence.

Feller (1951) proved that the asymptotic formula for the expected value of the adjusted
range in [10.3.5] is valid for IID random variables. As is shown in [10.3.6] for large samples,
Feller’s equation is also correct for the expected value of the RAR for IID summands. The exact
analytical expression for the expected value of the RAR for NID summands was derived by Anis
and Lloyd (1976) and is written in [10.3.15]. For finite samples, the simulation and analytical
results of Table 10.5.1 indicate that the expected values of the RAR and hence K are functions of
the sample size but are virtually independent of the underlying distribution for IID summands.
Accordingly, it has been suggested that the Hurst phenomenon could be explained by a combina-
tion of transcience and autocorrelation (Wallis and O’Connell, 1973). This implies that perhaps
cither a short memory or a long memory model that takes into account the autocorrelation struc-
ture of a time series may explain the Hurst phenomenon. Perhaps a better way to phrase this is
that if a given stochastic model, that is fit to a given data set, preserves the important historical
statistics such as the RAR and K, then that model may indirectly account for the Hurst
phenomenon. Therefore, it can be argued that a resolution to the controversies related to the
Hurst phenomenon boils down to determining stochastic models that preserve the RAR, as well
as other relevant historical statistics.

If a stochastic model is to retain the historical statistical characteristics of a time series,
then the model must provide a good statistical fit to the data. This can be accomplished in prac-
tice by following the identification, estimation, and diagnostic check stages of model
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construction described in Part III of the book. For long memory FGN processes the authors have
developed an efficient estimation procedure using the method of maximum likelihood (Section
10.4.3), and a technique for calculating the model residuals so that they can be tested by
appropriate diagnostic checks (Section 10.4.4). Moreover, in Section 10.4.5 a method is given
for calculating one step ahcad MMSE forecasts for a FGN model. Finally, in Section 10.4.6 a
technique is presented for exactly simulating FGN such that the synthetic traces will lie outside
the Brownian domain for the parameter H in therange 0.5 <H < 1.

Short memory models provide an alternative approach to FGN processes for modelling
hydrological time series. In particular, the ARMA family of short memory models possesses
great potential for widespread applications to water resource as well as other geophysical and
environmental problems. Klemes et al. (1981) maintain that given the socio-economic and
hydrologic data usually available for reservoir planning and design, the replacement of short
memory models with long memory ones in reservoir analyses, cannot be objectively justified.

A statistical approach for discriminating between short and long memory models is to use
the AIC of Section 6.3. The AIC provides a means of model discrimination based on the princi-
ples of good statistical fit and parsimony of the model parameters. For the six annual riverflow
time series considered in Section 10.4.7 the results of Table 10.4.4 show that in all six cases the
AIC chooses the best fitting ARMA model in preference to the FGN process. Although there
may be certain situations where the FGN model is appropriate to use, the inherent inflexibility of
a FGN process may limit the use of this model in many types of practical applications. Rather
than allowing for a choice of the required number of model parameters to use in a given situation
as is done in ARMA modelling, the FGN model is always restricted to just three parameters (i.c.,
the mean, the variance, and H).

By adhering to the model construction stages of Part III, it is a straightforward procedure to
develop an appropriatt ARMA to describe a particular time series. If the phenomenon being
modelled has been influenced significantly by external interventions, these effects can be incor-
porated into the model using the intervention model of Chapter 19. By employing Monte Carlo
techniques, the ECDF’s of statistics such as the RAR or K can be developed to any desired accu-
racy, as shown in Section 10.6.3. The ECDF’s are used in conjunction with a specified statistical
test to check for the preservation of historical statistics in Section 10.6.4. This testing procedure
can be used to check for the retention of any observed statistics by ARMA or by other types of
stochastic models. Tsay (1992), for example, employs a similar approach for investigating the
reproducibility of historical statistics by fitted models.

Besides considering Hurst’s estimate K of the coefficient A, it is possible to entertain other
types of estimates as explained in Section 10.7. For the 23 natural time series listed in Tables
10.6.1 and 10.6.2, the Siddiqui coefficient SH (Siddiqui, 1976) and Gomide’s statistic YH
(Gomide, 1975) possess a mean value less than K. By examining the standard deviations of the
YH and SH statistics the Hurst phenomenon is seen to be less pronounced for these estimates
than it is for K.

If one wishes to consider fitting a long memory model to a specified time series, one may
wish to entertain the fractional ARMA or FARMA model as an alternative to FGN. This model
is more flexible to use than the long memory FGN model because the number of model parame-
ters is not fixed. In fact, as shown in the next chapter, the FARMA model is a direct extension
of ARMA and ARIMA models.
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APPENDIX A10.1
REPRESENTATIVE
EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS
(ECDF’s)
FOR HURST STATISTICS
The three tables presented in this appendix contain ECDF’s for simulation studies

explained in Section 10.6.3. More specifically, for a range of lengths N of simulated sequences
the following three sets of ECDF’s are given:

Table A10.1.1. ECDF’s of K for a NID(O,oaz) process.
Table A10.1.2. ECDF’s of K for a Markov process with ¢; = 0.4.
Table A10.1.3. ECDF’s of R*y for a Markov process ¢, = 0.4.
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Table A10.1.1. ECDF’s of K for a NID(0,62) process.*

Value
of N | 0005 0010 0.025 0.050 0.100 0.200 0.300 0.400
510260 0294 0354 0417 0485 0474 0634 0.677
10 | 0.355 0380 0422 0450 0.506 0.566 0.611 0.648
15 1 0390 0414 0445 0478 0518 0570 0.605 0.637
20 | 0406 0426 0459 0486 0.520 0.565 0.600 0.628
25 | 0414 0436 0466 0497 0.527 0.569 0.509 0.626
30 | 0429 0445 0473 0501 0.531 0.570 0.598 0.622
35 1 0436 0453 0482 0505 0.534 0569 059 0.619
40 | 0446 0463 0488 0511 0.537 0570 059 0.617
45 | 0.447 0464 0487 0519 0537 0570 0.594 0.615
50 | 0453 0468 0489 0.519 0.537 0570 0.593 0.613
60 | 0.461 0473 0494 0515 0538 0569 0.591 0.610
70 | 0460 0474 0498 0515 0.538 0.568 0.589 0.607
80 | 0.461 0475 0499 0518 0450 0.568 0.588 0.606
90 | 0.464 0483 0501 0519 0540 0569 0.588 0.604
100 | 0466 0480 0499 0.520 0.541 0.566 0.585 0.601
125 | 0.474 0.489 0.507 0.523 0542 0565 0.583 0.598
150 | 0.477 0489 0506 0.523 0.542 0.564 0.581 0.596
175 | 0476 0488 0.508 0.523 0.540 0.563 0.579 0.594
200 | 0.484 0494 0509 0525 0542 0564 0479 0.593
500 | 0.491 0497 0.512 0524 0538 0.556 0.559 0.580
1000 | 0.494 0.502 0.514 0.525 0.537 0552 0594 0.573

*Table continues on opposite page.
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(Table A10.1.1 continued.)

Quantile
0.500 0600 0700 0.800 0900 0950 0975 0.990 0.995

0.714 0.748 0.801 0854 0904 0932 0948 0961 0.967
0.685 0.720 0.755 0791 0836 0.872 0895 0917 0.932
0.668 0.696 0.724 0.757 0800 0.832 0855 0.882 0.897
0.655 0.681 0708 0.738 0775 0.804 0.827 0.852 0.870
0.651 0.674 0.698 0726 0762 0.790 0813 0.836 0.849
0.644 0.666 0.689 0.716 0750 0.777 0799 0.822 0.835
0.640 0.661 0.683 0709 0743 0.768 0.790 0.809 0.823
0.637 0.656 0.679 0702 0734 0.759 0.780 0.801 0.815
0.634 0.654 0675 0699 0730 0753 0774 0.791 0.806
0.632 0.650 0.669 0.692 0722 0748 0.766 0.786 0.801
0.627 0.645 0664 0.684 0714 0735 0751 0.772 0.786
0.623 0.641 0658 0.678 0706 0.728 0.746 0.765 0.777
0.622 0.638 0655 0675 0702 0723 0740 0.757 0.769
0.619 0.635 0.652 0.671 069 0716 0723 0.754 0.758
0.616 0.632 0648 0.666 0.691 0711 0728 0.746 0.761
0.613 0.627 0.642 0.660 0684 0703 0718 0.732 0.744
0.609 0.624 0.638 0.555 0.678 0697 0713 0.730 0.740
0.607 0.620 0634 0650 0672 0.689 0704 0.720 0.729
0.606 0.619 0632 0647 0668 0.685 0698 0.713 0.721
0.591 0.602 0.613 0626 0643 0.657 0669 0.683 0.693
0.583 0592 0.602 0614 0630 0642 0653 0.664 0.671
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Table A10.1.2. ECDF’s of K for a Markov process with ¢, = 0.4.*

Value

of N 0.005 0010 0.025 0.050 0.100 0200 0300 0.400
5 0.236 0325 0407 0476 0.551 0.635 0.636 0.724
10 0401 0442 0494 0537 0.590 0.660 0.703 0.746
15 0470 0494 0536 0.503 0612 0.666 0.705 0.738
20 0435 0507 0.545 0.580 0.618 0.665 0.700 0.730
25 0495 0512 0555 0.586 0.622 0.667 0700 0.726
30 0.514 0530 0566 0594 0.628 0.667 0.697 0.721
35 0523 0544 0573 0593 0.627 0.664 0.693 0.716
40 0.530 0550 0577 0603 0.631 0.666 0.591 0.714
45 0.536 0551 0578 0.603 0.631 0.664 0.69 0.711
50 0540 0555 0532 0692 0629 0662 0688 0.707
60 0542 0559 0582 0.602 0628 0661 0.683 0.703
70 0546 0553 0583 0.603 0.626 0658 0679 0.698
80 0542 0559 0.583 0605 0.628 0655 0.677 0.695
90 0549 0562 0585 0604 0.626 0656 0.676 0.692
100 | 0.550 0.563 0.585 0.605 0.625 0.651 0671 0.688
125 0.558 0.568 0.588 0605 0.624 0.649 0.667 0.683
150 0.555 0564 0534 0602 0622 0646 0663 0.673
175 0.552 0567 0.586 0601 0.619 0642 0660 0.674
200 | 0559 0570 0586 0602 0.620 0642 0.658 0.672

*Table continues on opposite page.
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(Table A10.1.2 continued.)

Quantile
0.500 0600 0700 0.800 0900 0950 0975 0990 0.995

0.763 0.810 0.851 0.835 0922 0943 0958 0.967 0.971
0.777 0806 0.833 0863 0894 0916 0932 0.948 0.958
0.766 0.792 0819 0.845 0.877 0901 0918 0931 0941
0.756 0778 0804 0.830 0.862 0.884 0900 0916 0927
0.750 0773 0795 0.820 0.851 0.872 0889 0906 0914
0.744 0765 0.787 0.811 0841 0.863 0.880 0.898 0.905
0.737 0759 0.780 0.803 0833 0.854 0.872 0.887 0.898
0.734 0754 0774 0.796 0826 0.847 0.864 0.830 0.893
0.731 0749 0.770 0.793 0821 0.841 0.857 0.873 0.885
0.726 0744 0763 0.785 0813 0.836 0.852 0.870 0.879
0.720 0738 0.756 0.776 0.803 0.823 0.838 0.855 0.866
0.715 0731 0.749 0.769 0.795 0.815 0.831 0.849 0.859
0.712 0728 0.745 0.765 0790 0.809 0.826 0.841 0.851
0.703 0724 0740 0.759 0784 0.803 0.818 0.836 0.847
0.704 0719 0735 0.753 0.778 0.797 0813 0.829 0.840
0.697 0712 0727 0.745 0.763 0.786 0801 0.816 0.825
0.692 0706 0721 0738 0761 0780 0.795 0.810 0.813
0.688 0.701 0715 0.732 0.752 0.771 0.785 0.799 0.809
0.685 0.698 0712 0.727 0.748 0.764 0.777 0.792 0.801
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Table A10.1.3. ECDF’s of R*, for a Markov process with ¢, = 0.4.*

Value
of N | 0.005 0.010 0.025 0050 0.100 0200 0300 0.400
5| 130 1.35 1.45 1.55 1.66 1.79 1.88 1.94
10 | 191 2.04 221 2.37 2.59 2.89 3.13 3.32
15 | 2.58 271 295 3.14 3.43 3.82 4.14 4.42
20 | 3.05 322 351 3.80 4.15 4.62 5.01 537
25 | 3.49 3.73 4.06 4.39 482 5.39 5.86 6.26
30 | 4.02 4.20 4.63 4.99 5.48 6.03 6.60 7.05
35 | 447 4.75 5.15 5.54 6.01 6.69 727 7.76
40 | 489 5.19 5.63 6.09 6.63 7.35 7.93 8.50
45 | 5.30 5.55 6.06 6.53 7.13 7.91 8.57 9.15
50 | 5.68 597 6.51 6.94 7.58 8.41 9.15 9.75
60 | 6.33 6.70 7.23 7.75 8.47 946 1021 1092
70 | 6.96 7.26 7.95 8.54 927 1038 11.17 1194
80 | 7.38 7.85 8.60 930 10.13 1120 12.16 1298
90 | 8.08 8.49 9.26 998 10.86 12.13 13.00 1391
100 | 8.59 9.06 985 10.68 11.52 1278 13.83 1474
125 | 10.06 1048 11.38 1221 1323 1465 1574 1685
150 | 1099 1143 1247 1347 1465 1628 1752 18.71
175 | 11.81 1260 13.72 1466 1591 17.65 19.09 20.39
200 | 13.15 1377 1484 1599 17.39 1921 2071 22.10

*Table continues on opposite page.
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(Table A10.1.3 continued.)

Quantile
0.500 0600 0700 0.800 0900 0950 0975 099 0.995

201 2.10 2.18 225 2.33 2.37 2.40 243 243

3.49 3.66 382 401 422 4.37 4.48 4.60 4.67

4.68 494 5.20 5.49 5.85 6.14 6.36 6.53 6.65

5.70 6.00 6.37 6.77 7.28 7.65 7.95 8.24 8.45

6.64 7.04 7.46 792 8.57 9.05 9.45 9.35 10.05
7.49 7.95 8.4 8.98 975 1034 1085 11383 11.64
8.25 8.79 9.32 996 10.84 11.54 1214 12.68 13.08
9.02 956 10.15 10.86 11.87 1265 1329 1398 14.53
9.72 1031 1999 11.80 1287 1373 1443 1517 1572
10.34 1095 11.65 1252 1371 1473 15.54 1645 16.95
11.57 1230 13.07 1403 1536 1643 1731 1832 19.04
12.70 13.47 1432 1541 1690 18.16 1922 2044 2123
13.82 1465 1562 1680 1844 19.81 21.02 22.28 23.05
14.80 1571 1672 1797 19.76 21.27 2254 24.09 25.18
15.68 16.65 17.76 19.01 2097 22.64 2402 2564 2672
17.88 1897 2021 21.79 2397 2577 2742 2926 30.27
19.86 21.12 2253 2424 2672 2898 3092 33.05 3425
21.71 2300 2450 2642 2891 3144 3351 3562 37.22
2342 2489 2654 2846 3133 3369 3581 3840 39.95
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10.2

10.3

104

10.5

10.6

10.7

10.8

10.9

10.10
10.11

10.12

PROBLEMS

Read Hurst’s (1951, 1956) original papers about his work in long term storage.
Summarize what he did and comment upon his abilities as an engineer and a statisti-
cian.

In Sections 10.2 and 10.3.1, statistics are defined for studying long term storage
problems. Suggest some statistics for examining short term storage problems in
reservoir design.

What do you think is the most reasonable explanation for the Hurst phenomenon?
Base your answer upon references given in this chapter and elsewhere.

Using equations, explain the basic mathematical design and main purposes of the
shifting level models referred to in Section 10.3.3.

Mention three types of yearly time series which could be appropriately modelled by
FGN models. Provide both physical and statistical justifications for your sugges-
tions.

In Section 10.4.5, a procedure is given for claculating a one step ahead MMSE
(minimum mean square error) forecast for a FGN model. Develop a formula for
determining / step ahead MMSE forecasts for a FGN model where / 2 1.

In Section 10.4.6, seven methods are presented for approximately simulating FGN.
Select any two of these techniques and explain using equations why these methods
do not exactly simulate FGN.

In Table 10.4.4, the AIC is employed to decide upon whether or not FGN or ARMA
models should be used for modelling six annual riverflow time series. Carry out a
similar type of study for six annual time series that are not average yearly river-
flows. Comment upon the results.

Within your field of study, select a statistic which is of direct interest to you. For
example, you may be a hydrologist who is interested in floods or droughts. Explain
how you would carry out simulation experiments to determine whether or not time
series models fitted to your data sets preserve the historical statistics that are impor-
tant to you.

Carry out the simulation study that you designed in the previous question.

Summarize Tsay’s (1992) approach for ascertaining whether a fitted model
preserves important historical statistics. Compare Tsay’s procedure to the one
presented in Section 10.6.

Explain how the research of Klemes and Klemes (1988) sheds light on the Hurst
phenomenon.
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