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CHAPTER 14
PERIODIC MODELS

14.1 INTRODUCTION

As emphasized by authors such as Moss and Bryson (1974), seasonal hydrological and
other types of time series exhibit an autocorrelation structure which depends on not only the time
lag between observations but also the season of the year. Furthermore, within a given season,
usually second order stationarity is preserved by natural time series. For example, at a location
in the northern hemisphere the monthly temperature for January across the years may fluctuate
with constant variance around an overall mean of -5° C. In addition, the manner in which the
January temperature is correlated with December and November as well as the previous January
may tend to remain the same over the years. As another illustration of seasonally or periodically
varying correlation, consider the case of runoff from snowmelt in late winter or early spring in a
northern region. If the snowmelt is an important factor in runoff which might occur in either
March or April, the correlation between observed riverflows for these months may be negative
whereas at other times of the year it is usually positive. To model appropriately the foregoing
and similar types of time series, periodic models can be employed. These models are ideal, for
instance, for describing the average monthly flows of the Saugeen River at Walkerton, Ontario,
Canada, plotted in Figure VI.1.

Two popular periodic models are the PAR (periodic autoregressive) and PARMA (periodic
ARMA) models. When fitting a PAR model to a single seasonal series, a separate AR model is
designed for each season of the year. In a similar manner, a PARMA model consists of having a
separate ARMA model for each season of the year. Within hydrology, PAR modelling dates
back to the research of Thomas and Fiering (1962) who proposed a specialized type of PAR
model whereby the order of the AR operator for each season is fixed at unity.

Since the early 1960’s a considerable amount of research has been executed in the area of
periodic modelling. This research includes contributions by authors such as Gladyshev (1961,
1963), Jones and Brelsford (1967), Tao and Delleur (1976), Croley and Rao (1977), McLeod and
Hipel (1978), Pagano (1978), Troutman (1979), Dunsmuir (1981), Tiao and Gruppe (1980),
Sakai (1982), Salas et al. (1985), Cipra (1985a,b), Vecchia (1985a,b), Thompstone et al. (1985a),
Cipra and Tlusty (1987), Jimenez et al. (1989) and McLeod (1993), as well as the books on sto-
chastic hydrology referred to in Section 1.6.3.

As is explained in Section 14.3, a comprehensive range of model construction tools are
available for conveniently fitting PAR models to seasonal time series. Because the theory and
application of the PAR family of models are well-developed, this class of flexible models is
stressed in this chapter. Nonetheless, some interesting developments in building PARMA
models are pointed out in Section 14.7.

Subsequent to presenting model construction tools for use with PAR models in Section
14.3, a PAR model is developed for describing the average monthly flows of the Saugeen River
plotted in Figure VIL.1. A potential drawback of using a periodic model in an application is that
the model often requires the use of a substantial number of parameters. Salas et al. (1980)
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propose a Fourier series approach to reduce the number of model parameters in PAR and
PARMA models. Thompstone et al. (1985a) suggest a procedure for combining individual AR
models for various adjacent seasons, to obtain a single model for all of the seasons in the group.
After joining appropriate seasons into groups, the overall periodic model that is fitted to the
resulting data is called the parsimonious periodic autoregressive (PPAR) model. Subsequent to
defining the PPAR model and presenting model construction methods in Section 14.5, PPAR
models as well as other periodic models are fitted to seasonal hydrological time series in Section
14.6. Finally, in Section 14.8, simulation experiments are carried out to demonstrate that PAR
and PPAR models statistically preserve critical period statistics which are used in reservoir
design.

14.2 DEFINITIONS OF PERIODIC MODELS

14.2.1 Introduction

The definitions of PAR and PARMA models can be made from two different points of
view. Firstly, PAR and PARMA models can be thought of as the periodic extensions of the non-
scasonal AR and ARMA models, respectively, defined in Chapter 3. In other words, a PAR
model consists of having a separate AR model for each season of the year whereas a PARMA
model contains an ARMA model for each season. For both theoretical and practical reasons, the
PAR and PARMA families of models are defined in these fashions in this chapter. For example,
comprehensive model building procedures are now available for use with PAR models (Section
14.3) while significant progress has been made in developing model construction methods for
employment with PARMA models (Section 14.7).

The second approach for defining PAR and PARMA models is to consider them to be spe-
cial types of the multivariatt ARMA models defined in Section 20.2. However, this approach is
not recommended for various reasons. From an intuitive viewpoint, when one is trying to cap-
ture the physical characteristics of a natural phenomenon as portrayed in its time series of obser-
vations, it is more instructive and sensible to think of a periodic model as an extension of its
nonseasonal counterpart. Hence, one can separately build models for each season of the year and
then join them together to create the overall periodic model. Also, one can demonstrate theoreti-
cally that PAR and PARMA models can be written as equivalent multivariate AR and ARMA
models, respectively, defined in Section 20.2. Conversely, multivariatc AR and ARMA models
can be represented as PAR and PARMA models, respectively.

The PAR family of models and some associated theoretical properties are presented in the
next section. Following this, PARMA models are defined in Section 14.2.3.

14.2.2 PAR Models

Definition
For convenience, an observation in a time series is written in the same way as it is in Sec-

tion 13.2.2 for deseasonalized models. When one is considering a time series having s seasons
per year (s = 12 for monthly data) over a period of n years, let z, ,, represent a time series obser-
vation in the rth year and mth season wherer =1,2,...,n,and m =12, ...,s. If required, the
given data may be transformed by the Box-Cox transformation in [13.2.1] to form the
transformed series denoted by z,(},z. The purpose of the Box-Cox transformation is to correct
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problems such as heteroscedasticity and/or non-normality in the residuals of the PAR or
PARMA model fitted to the time series.

In essence, a PAR model is formed by defining an AR model for each season of the year.
The PAR model of order (p, p,, . . ., p;) is defined for season m as

P-
zr.anz “Hm = 24’.'('")(4(}2-; = um—i) + ar,m [14'2‘11
i=1
where p,, is the mean of the series z,o‘) for the mth season, ¢/™ is the AR coefficient for season
m and ith lag, and g, ,, is the innovation or white noise disturbance. The innovation series g, ,
wherer =1.2,...,n,is assumed to have an expected value of zero and a covariance defined by

2 .
Om » i=0,

€0V (@y iy m-i) = {0, i#0 fori=12,...,s [14.2.2)

Hence, the a, ,, disturbances are distributed as IID(0, 62) By utilizing the backshift operator B,
where B¥2®) = ;M) the model in [14.2.1] can be more succinctly written as

o™BYN -u)=a,,,, m=12,...,s [14.2.3]
where
0B =1-0{"B - ¢{"B* - - -- ~ o{B"

is the AR operator of order p,, for season m in which ¢,-("') is the ith AR parameter. For sta-

tionarity in season m, the roots of the seasonal characteristic equation ¢™)(B) =0 must lie out-
side the unit circle. A necessary and sufficient condition for stationarity for a PAR model is
given in [14.2.26).

Some authors recommend deseasonalizing the data using [13.2.3] before fitting a PAR or
PARMA model to the time series [see, for example, Tao and Delleur (1976) and Croley and Rao
(1977)]. However, when using the PAR model in [14.2.1] or [14.2.3], this step can easily be
shown to be unnecessary, thereby reducing the number of model parameters. For example, sup-
pose for the mth season that only one AR parameter were required and hence p,, =1. From

[14.2.1] or [14.2.3], this model is written as
2® -1, = 0P, — )+, 0 [14.2.4]

which can be equivalently given as

)
Zrm— Ko (,,,') r,m—l = Hpm_ a
L L [14.2.5]
Y0 V 3’"
where
76'")= var(zr(a‘,%) , form=12,...,s;
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In Chapter 20, the general multivariatt ARMA model is defined. As explained by authors
such as Rose (1977), Newton (1982), Vecchia (1985a,b), Obeysekera and Salas (1986), Haltiner
and Salas (1988), Bartolini et al. (1988) and Ula (1990), a PAR model can be equivalently writ-
ten as a special case of the multivariate ARMA model. Because the stationarity conditions for a
multivariate ARMA are known, they are also available for a PAR model. Consider, for example,
the case of a PAR model in [14.2.4] for which there is one AR parameter for each of the s sea-
sons. The stationarity requirement for this model is (Obeysekera and Salas, 1986)

s
nl¢f'"> <1 [14.2.6]
m=

Periodic Autocorrelation Function

The theoretical ACF for the PAR model in [14.2.1] or [14.2.3] for season m can be found
by following a similar procedure to that used for obtaining the theoretical ACF for the nonsea-
sonal AR model in Section 3.2.2. First, however, it is necessary to formulate some definitions.
For season m, the theoretical periodic autocovariance function at lag k is defined for 2,0,2 as

'Yk(m) = E[(zr(,}n) - um)(zr(}rz—k - u’m—k)] (14.27]

form=1.2,...,s, where i, and 4,,_; are the theoretical means for seasons m and m—k, respec-
tively. When k =0, the periodic autocovariance is simply the variance, yé"'), of the random vari-
able representing the observations in season m.

A standardized variable that is more convenient to deal with than y{™, is the theoretical
periodic ACF which is defined for season m at lag k as

o™ = W [14.2.8]
:JYZ"';VK'"‘”

Due to the form of [14.2.8], the theoretical periodic ACF is dimensionless and, hence, indepen-
dent of the scale of measurement. Furthermore, the possible values of p,f"‘) range from -1 to 1,

where p{™ has a magnitude of unity at lag zero.
Given the above definitions of periodic linear dependence, one can find the theoretical

periodic ACF for the PAR model in [14.2.1] or [14.2.3]). For season m, multiply {14.2.1] by
z,(},}_* - U, and take expected values to obtain
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B = 0T + oD+ -+ 0T+ ELG D~ ), m] [1429]

fork20andm=12,...,s. The last term on the right hand side of [14.2.9] is zero for k >0
because z,(},z_,, is only a function of the disturbances a, ,, up to time m—k and a, ,, is independent

of these shocks. Hence, for k > 0[14.2.9] becomes
‘YIEM) = ¢ m 14 ¢§m)y(m =2) 4 -+ ¢(m).y("' ~Pm) [14.2.10]

By using the periodic AR operator given in [14.2.3], one can rewrite [14.2.10] for season m as
o™BY™ =0 fork >0 [14.2.11]

where B operates on the subscript k£ and the superscript (m) in ("') The relationship in

{14.2.11] is valid for each season m=1,2,...,s. Because of the form of [14.2.10] and
[14.2.11], the theoretical autocovariance function attenuates for a PAR process in season m when
Pm > 0.

Periodic Yule-Walker Equations

Following the approach used for a nonseasonal AR model in Section 3.2.2, one can find the
theoretical Yule-Walker equations for a PAR model. Specifically, by settingk =1,2,...,p,,, in

[14.2.10], one obtains the periodic Yule-Walker equations for season m as:

A = oD 4 oD 4 gy
B = SR ¢ D e o

[14.2.12]
v‘"" = oy o+ ¢§"'>v<'"-2> +ok gl e

By writing the periodic Yule-Walker equations in [14.2.12] in matrix form, the relationship for
expressing the AR parameters for season m is

-1
o™ = [55:»)] N [14.2.13]
where
-¢ {"')' y 1‘")’ ) Y2 .. Y,ff_f”)
m) m) (m-1) m=2) ... nmPpw)
0§ v i / Tou-2
I = | —
B S B
¢(:.) (m) ,Y(m—l) ,Y(m—2) ng-p.)
b o J

By setting k = 0 in [14.2.9], the expression for the variance wm is
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'Y(Sm) = ¢1(m)'Y1(m_l) + ¢§M)‘Y§m-2) + oo 4+ ¢(:0Y;:'-P.) + 0.3' [14.2.14]

where E [(z,(}z - Ky)a, )l = 03, since z,(},f is only correlated with a, ,, due to the most recent
shock a4, ,,. As is explained in Section 14.3.3, the periodic Yule-Walker equations in [14.2.12]

or [14.2.13] provide a means of obtaining efficient moment estimates for the parameters of the
PAR model in [14.2.1] or [14.2.3].

Periodic Partial Autocorrelation Function

Since the periodic autocorrelation function of a PAR model in season m for which p,, >0

attenuates and does not truncate at a specified lag, it would be useful for identification purposes
to define a function which cuts off. To accomplish this one can define the periodic PACF for a
PAR model in a manner similar to that done in Section 3.2.2 for a nonseasonal AR model.

For season m, the periodic PACF is defined as the last AR parameter of an AR model of
order p,. Therefore, in the Yule-Walker equations in [14.2.12], 4)’5?) is by definition the

periodic PACF at lag p,,. By setting p,, to values of 1,2, ..., in [14.2.12], one can define the

periodic PACF in season m for lags 1,2,..., respectively. Because of the definition of the
theoretical periodic PACF, it must be equal to zero after lag p,, in season m when the order of

the AR model in this season is p,,. Furthermore, the possible values of the theoretical PACF fall
between -1 and +1.

Markov Model
For a Markov model in season m the order is p,, =1. A Markov model for season m is

written in [14.2.4]. When the PAR is Markov for each of the s seasons, the stationarity condi-
tion for the overall Markov PAR model is the one given in {14.2.6].

The periodic Yule-Walker equations for a PAR model are written in [14.2.12]. By setting
o™ to ¢,§’") equal to zero, this equation becomes

1) = o
W = gD
W = gfrfr?

In general,

WM = o NV
Hence, the theoretical periodic autocovariance function attenuates for increasing lag k. How-
ever, by definition the theoretical periodic PACF cuts off and is exactly equal to zero after lag
one for a Markov model.
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14.2.3 PARMA Models
Definition

As is also the case for the PAR model in Section 14.2.2, let z,(},? be an observation in the
rth year and mth season forr=12,...,n,and m=1,2, ..., s, where the exponent A indicates

that the observation may be transformed using the Box-Cox transformation in [13.2.1]. A
PARMA model is created by defining a separate ARMA model for each season of the year. The
PARMA model of order (p,4,:P2.92; * * * ;Ps+4,) is defined for season m as

BN - ) =0™Ba,,,, m=12,...,s [14.2.15])
where J, is the mean for  series z,(},f for the mth  season,
0™B)=1-¢"B - ¢{B*- --- - ¢,S:')B” =, is the AR operator of order p,, for season m in
which ¢ is the ith AR parameter, and 8™(8) =1-0{™B - 0§™B2~ - .- — 9B is the
MA operator of order g, for season m in which 8™ is the ith MA parameter. The innovation
series a, ,, where r = 1,2, .. ., n, for each m is assumed to be distributed as IID(O,c,f,) which is

the same as that for the PAR model in [14.2.1].

Using the AR and MA operators to define the PARMA model in [14.2.15] provides an
economical and convenient format for writing this model. Also, the operator format in [14.2.15]
can be easily manipulated for mathematical purposes. Nonetheless, one could also write the
PARMA model for season m without the operator notation as

o) S Lgm
Zem ~Hm =20 Crpi —Mm-i) ¥ Ay = 300, ;. m=12,... .5 [14.2.16]

i=1 i=1

Stationarity and Invertibility

The PARMA model given in [14.2.15] can be equivalently written as a particular case of
the general multivariatt ARMA model presented in Chapter 20. Since the stationarity and inver-
tibility conditions for the general multivariate ARMA model are available, they are, of course,
also known for the PARMA model (Rose, 1977; Vecchia, 1985a,b; Obeysekera and Salas, 1986;
Bartolini et al., 1988; Ula, 1990). As an example of how these conditions are written for a
specific PARMA model, consider a PARMA model from [14.2.15] for which there is one AR
and one MA parameter for each of the m seasons. The stationarity restriction for this model is
given in [14.2.6] while the invertibility requirement is
s

nem™
1

<1 [14.2.17]

Periodic Autocorrelation Function

In Section 3.4.2, it is explained how the theoretical autocovariance function or,
equivalently, the theoretical ACF can be determined for a nonseasonal ARMA(p,q) model. A
similar approach can be followed to derive the system of equations for solving for the periodic
autocovariance function in [14.2.7] for a PARMA model.
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The steps required for accomplishing this are now described. For a given season m, multi-
ply both sides of [14.2.15] by z®)_, —p,,_, and take the expected values to obtain

B = oD - oD - - - gy T P
=70 - 8™k - 1) - - -+ - QYT Ik —g,,) [14.2.18]

where y{™ is the theoretical periodic autocovariance function in [14.2.7] and

YEU) = E[(2 %) = Ut )y m]) [14.2.19]

is the cross covariance function between z,(},}_,‘ = Hm-t and g, ,,. Since z,(}z_,‘ is only dependent
upon shocks which have occurred up to time (r,m—k), it follows that

Y™K&)=0, k>0

(M)(k) #0, k<0 [14.2.20]

Because of the 'y("')(k) terms in [14.2.18], one must derive other relationships before one can

solve for the periodic autocovariances. This can be carried out by multiplying [14.2.15] by
a, ,— and taking expectations to obtain

YOk = oYk + 1) = o TRk +2) = -+ = ¢ NE Bk +p,,)
= - [0{c2 [14.2.21]
where

0, k=12,...,q,
0™1=1-1, k=0
0, otherwise
and Ela, ,,a, »;] is as defined in [14.2.2].

Equations [14.2.18] and [14.2.21] can be employed to solve for the theoretical periodic
autocovariance function for a PARMA model for each season. For k > g,,, equation [14.2.18]

reduces to
Y™ = oD - oD — - - gfmiy TP <
or
¢BY™ =0 [14.2.22]

where the differencing operator B operates on both the subscript and superscript in y; m, 1
k > max(p,,.q,), then [14.2.22] can be used to calculate the ‘y,g"" directly from previous values.
For k=0,1,2, ..., max(p,,.4,), equation [14.2.21] can be employed for solving for the periodic
cross covariance function ‘y(”')(k) which can be substituted into [14.2.18] in order to solve for the
periodic autocovariance function for the z,(},z. By employing [14.2.8], one can easily calculate
the theoretical periodic ACF after determining the theoretical periodic autocovariance function.
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Recall that for a nonseasonal ARMA model in Section 3.4.2, the theoretical autocovariance
function or theoretical ACF attenuates for increasing values of lag k. In a similar fashion, one
can see from the form of [14.2.20] that the theoretical periodic autocovariance function dies off
for a PARMA model in which p,,, #0 in season m.

Pgriodic Partial Autocorrelation Function
For season m, the PARMA model in [14.2.15] can be written as an infinite AR model by
writing it as
a, , =0™B) 6™ B)z % - u,,) [14.2.23]

where ()("‘)(B)'l is an infinite series in B for g,, 2 1. Because the definition of the theoretical

periodic PACF is based upon an AR process, the periodic PACF is infinite in extent for a
PARMA model and dies off with increasing lag. At higher lags, the behaviour of the periodic
PACF depends upon the MA parameters and is dominated by a combination of damped
exponentials and/or damped sine waves.

Three Formulations of a PARMA Model

In Section 3.4.3, it is explained how a nonseasonal ARMA model can be expressed in three
equivalent forms. These same three formats can also be used with a PARMA model in season
m. One formulation is to use the difference equation given in [14.2.15]. A second technique is
to write the model as a pure MA model, which is also called the random shock form. Finally, by
formulating the model as a pure AR model one obtains the inverted form for the model.

In random shock form, the PARMA model for season m is written as
25~ = 6"B) 0B, ,
=0, + VY0 + W g+
=a,, +y™Ba, ,, +y{" B, + -
=(1+y{™B +y§"B%+ --)a,,,
=y™(B)a, [14.2.24]

where Y™ B)=1+y{™B +y§™B%+ - - -, is the random shock or infinite MA operator for
season m and y™ is the ith parameter, coefficient or weight of v™(B). There are a variety of

reasons for expressing a model in random shock form. For example, when forecasting in season
m the \v,-(’”) weights are needed to calculate the variance of the forecasts (see [8.2.13] for the case
of an ARMA model). When simulating in season m using a PARMA model, one way to simu-
late data is to write the model in random shock form and then to use this structure for producing
the synthetic sequences (see Section 9.3 for the case of an ARMA model). Finally, by writing
PARMA models in random shock form, the magnitude and sign of the y™ parameters can be

compared across models.
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Following the arguments given in Section 3.4.3 to develop [3.4.21] for an ARMA model,
one can obtain the y{™ weights from the ¢{™ and 8™ parameters for a PARMA model in sea-

son m by utilizing the expression
"By = 6™ [14.2.25]

where B operates on k, y§™ =1, y{™ =0 for k <0 and 6{™ =0 if k > q. Rules for deciding
upon how many random shock parameters to calculate and examples for determining these
parameters are given in Section 3.4.3.

Because a PAR model is a special case of a PARMA model, one can, of course, write a
PAR for season m in the random shock form given in [14.2.4]. As shown by Troutman (1979), a
necessary and sufficient condition for periodic stationarity for a PAR model is

TV <o, m=12,....s [14.2.26]
i=0
To express the PARMA model in season m in inverted form, equation [14.2.15] is rewritten
as
a4, =8B MBYCT) - 1)
=G50 =) =TSy =) =TGR - i) - -
= (2 = U) ~T{™BES) ~ 1) - THB2 ) - ) - -
=(1-TN{B -Tf"B% - -- )M -,
=N™B)z M - u,,) [14.2.27]
where T™)(B) = 1 —TI{™B ~T1{™B2 - - - - is the inverted or infinite AR operator for season

m and TI{™ is the ith parameter, coefficient or weight of I1™)(B). By comparing [14.2.26] and
(14.2.24], one can see that
v™(B)! =™ B) [14.2.28]

Given the seasonal AR and MA parameters, one may wish to determine the inverted param-
eters. To achieve this, one can use the expression

0™BYIT™ = p{™ (14.2.29]

where B operates on k, TI{™ = -1, [I{™ =0 for k < 0, and 0™ =0 if k > p. Except for nota-

tional differences, [14.2.28] is the same as [3.4.27] which is used for obtaining the inverted
weights for a nonseasonal ARMA model. Representative examples for calculating the inverted
weights are presented in Section 3.4.3.

Example of a PARMA Model
¥ p,, =qm =1 for season m, a PARMA model for that season is written following [14.2.15]
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(1= 6{™B)(2, m = ) = (1 - 8{™B)a, ,, [14.2.30]

To obtain the theoretical autocovariance function, one must solve [14.2.18] and [14.2.21]
after setting all AR and MA parameters equal to zero except for ¢f"') and 6{"'). The reader can
refer to Section 3.4.3 for examples of how to calculate the random shock and inverted parameters
for a nonseasonal ARMA(1,1) model. The same approaches can be used for a PARMA model
with p,, =gq,, = 1 by replacing ¢;, 8;, y;, and IT; by 6™, 8/™, y™ and IT in Section 3.4.3.

14.3 CONSTRUCTING PAR MODELS

14.3.1 Introduction

As noted in Section 14.1, model construction techniques for PAR models are highly
developed. Indeed, as demonstrated by research referenced in Section 14.1, PAR models can be
conveniently used in practical applications and produce useful results. Consequently, this sec-
tion concentrates upon how to construct PAR models by following the three stages of model
construction. Applications for clearly illustrating how the construction techniques for PAR
modelling are implemented in practice are presented in Sections 14.5 and 14.6 as well as Chapter
15. Finally, model construction methods for PPAR and PARMA models are given in Sections
14.5.3 and 14.7, respectively.

14.3.2 Identifying PAR Models

Introduction

Thomas and Fiering (1962) originally suggested that one could fit PAR models of order
one for each season to monthly hydrological time series. More recently, authors such as Salas et
al. (1980) and Thompstone et al. (1985a,b) have suggested that the order of the AR operator for
each season be properly identified. Based upon the results of an extensive forecasting study,
Noakes et al. (1985) recommend that the best way to identify a PAR model is to employ the
periodic ACF and PACF. Consequently, this approach to designing a PAR model is explained in
this section. Another identification method which uses the AIC in conjunction with subset
autoregression and the algorithm of Morgan and Tatar (1972) is outlined in Section 14.3.3.
Moreover, two procedures for efficiently estimating the parameters of PAR models are described
in Section 14.3.3 while diagnostic checks are discussed in Section 14.3.4. Finally, the results of
the forecasting study of Noakes et al. (1985) are presented in Section 15.3 to demonstrate that
PAR models identified using the periodic ACF and PACF forecast better than PAR models
designed using other approaches as well as the deseasonalized and SARIMA models of Chapters
13 and 12, respectively.

Sample Periodic ACF: The theoretical periodic autocovariance function and ACF at lag k for
the series z,‘},} are defined in [14.2.7] and [14.2.8], respectively. In a practical application, the
theoretical variables used in these equations are estimated using the sample time series z, ,,

where the years r = 1,2, ... ,n, and the seasons m = 1,2, ...,s. To rectify problems with non-
normality and/or heteroscedasticity in the residuals of the fitted PAR model, often the original
series, 2,,, is transformed using the Box-Cox transformation in [13.2.1] to obtain the

transformed series z,(},}. The theoretical variables in [14.2.7] and [14.2.8] are then estimated for
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the z,(},z series. More specifically, for the mth season, the mean, p,,, is estimated using
- 12z
o ==X 2,50 [14.3.1]
R,

where m=1,2,...,5. To estimate the theoretical periodic autocovariance function, y{™, in
{14.2.7] for lag k and season m, the following formula is utilized:

12 -
Ck(m) = ; 2 (zr(ﬁ - um)(zr(}z—k - p’m—k) [14.3.2]
r=1
form=1,2,...,5. When the lag k is zero, one obtains the estimate of the variance of the obser-
vations in season m, which is given as:
n )
(m=lye®_i2, m=12.. s [14.33]
r=1
The sample or estimated theoretical periodic ACF at lag k is determined for p{™ using

ck(”')

Co'Cs

[14.34]

wherem=12,...,s.

Because the periodic ACF is symmetric about lag zero, it is only necessary to plot the sam-
ple ACF for season m from lag one to a maximum lag of about n/4. A separate sample ACF
graph is made for each season of the year. To ascertain which values of the estimated ACF for
period or season m are significantly different from zero, the approximate 95% confidence inter-

val can be plotted. The sample ACF is asymptotically distributed as NID(O,%) at any lag. Con-

sequently, the approximate 95% confidence interval is +1.96Vn.

As explained in Section 14.2.2, the theoretical ACF for a PAR model in season m, attenu-
ates if AR parameters are in the model. Consequently, if the sample periodic ACF dies off for
season m, this indicates that one or more AR parameters are needed in this season for the PAR
model which is fitted to the series. If no values of the sample periodic ACF are significantly dif-
ferent from zero, this means that one can model this season using white noise by setting p,, =0

in the PAR model in [14.2.3].

Sample Periodic PACF: For a given seasonal time series, the periodic PACF can be deter-
mined for each season of the year. The definition for the periodic PACF is derived from the
definition of the PAR model. In particular, assuming that the AR model for season m is of order
P, the PACF for that season is ¢{". Be setting p,, =1,2,..., the PACF is defined for lags

1,2,...

For the case of a nonseasonal time series, one uses the Yule-Walker equations in [3.2.12] or
[3.2.17] to estimate the PACF. Likewise, for the situation of a periodic or seasonal time series
one can utilize the periodic Yule-Walker equations in [14.2.12] or [14.2.13] to estimate the
periodic PACF.
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To obtain Yule-Walker estimates for the AR parameters for season m in the PAR model in
[14.2.1] or [14.2.3], simply replace each Y™ in [14.2.12] or [14.2.13] by its estimate c™ from
[14.3.2]. This can be carried out for each of the s seasons by estimating the ¢,'("') for
i=12,...,p, ,foreachseasonm =1,2,...,s. The resulting estimated PAR model is periodic
stationary (Troutman, 1979) and the estimates are asymptotically efficient (Pagano, 1978).
Furthermore, the estimates corresponding to different seasons are asymptotically independent.
Sakai (1982) presents a practical computational algorithm for estimating the periodic AR param-
eters and, hence, also the periodic PACF from the periodic Yule-Walker equations in [14.2.12]
or [14.2.13]).

For period or season m, the correct order for a PAR model is given as p,, in [14.2.1]. Sakai

(1982) shows that the sample PACF for a given season is asymptotically distributed as
NID(O,%) at any lag greater than p,,. Therefore, the 95% confidence interval is +1.96Vn. The

sample PACF and approximate 95% confidence interval can be plotted for each season up to a
maximum lag of about %

By definition the theoretical PACF in season m cuts off after lag p,, to a value of exactly
zero. Consequently, if the sample periodic PACF is not significantly different from zero after
lag p,, , this indicates that the order of the AR model fitted to the series in season m should be
Pm- 1f none of the values of the sample periodic PACF in season are significantly different from

zero, the model for season m within the overall PAR model should be white noise. In this case,
Dm is set equal to zero.

Periodic IACF and IPACF

In Section 5.3, the sample IACF and IPACF are recommended as additional identification
tools for determining the orders of the AR and MA operators in a nonseasonal ARMA model.
One can define the periodic versions of these functions for use in identifying the order of the AR
model for each season of a PAR model.

For season m, the theoretical periodic IACF of a PARMA model is defined to be the ACF
of a PARMA model having the AR and MA components of orders g, and p,,,, respectively (i.e.
the AR and MA operators are exchanged with one another). The PACF of this process for sea-
son m is defined to be the theoretical periodic IPACF.

For a PAR model having an AR operator of order p,, in season m, the IACF truncates after
lag p,,. Thus, the behaviour of the periodic IACF is similar to that of the periodic PACF. Like-
wise, the periodic IPACF mimics the behaviour of the periodic ACF. For both of these latter
functions, their values die off for increasing lags in season m when p,, # 0.

Further research is required for obtaining efficient estimates for the sample periodic IACF
and IPACF. One could, for example, adopt estimation procedures similar to those developed for
the nonseasonal versions of these functions in Chapter 5.
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Tests for Periodic Correlation

The sample periodic ACF and PACF provide a means for detecting periodic correlation in
seasonal time series and also information for designing a PAR model to fit to the series. Other
approaches for finding periodic correlation in a data set include the statistical tests described by
Hurd and Gerr (1991) and Vecchia and Ballerini (1991). When periodic correlation is present,
one, should, of course, fit a periodic model such as a PAR or PARMA model to the time series
under consideration. Tiao and Gruppe (1980) discuss the negative consequences of not using an
appropriate periodic model when the data possesses periodic correlation.

14.3.3 Calibrating PAR Models

Introduction

A major advantage of using PAR models in practical applications is that two good algo-
rithms are available for estimating the parameters of PAR models. In particular, the two estima-
tion methods described in the next two subsections are the Yule-Walker estimator and multiple
linear regression. These two estimator techniques are efficient both from statistical and compu-
tational viewpoints.

For deciding upon the order of the AR operator in each season, one can use plots of the
sample periodic ACF and PACEF, as explained in Section 14.3.2. Additionally, one can employ
the AIC which is derived for the case of PAR models in this section. Finally, it is explained how
the algorithm of Morgan and Tatar (1972) can be used in conjunction with the AIC to select the
order of each AR operator in a PAR model.

Periodic Yule-Walker Estimator

The technique for obtaining Yule-Walker estimates for the parameters of a PAR model is
explained in Section 14.3.2 under the subsection entitled Sample Periodic PACF. Even though
this method is in fact a moment estimator, it is still efficient statistically for use with PAR
model.

As discussed in Section 14.3.2, the periodic Yule-Walker equation in [14.2.12] or [14.2.13]
can be used to obtain the estimates of the parameters for each season. Each theoretical ACF is
replaced by its sample estimate from [14.3.2] and then the algorithm of Sakai (1982) is used to
estimate the AR parameters for each season m using the periodic Yule-Walker equations. The
parameters for each season can be estimated separately and the parameter estimates are asymp-
totically efficient (Pagano, 1978). Furthermore, the calibrated PAR model is periodic stationary
(Troutman, 1979).

Multiple Linear Regression

Although A could be estimated, assume that it is fixed at some value such as A =0.5 or
A =0 for a square root or natural logarithmic transformation, respectively. For season m, the
mean parameter W, is estimated by



Periodic Models 497

ho=13:® m=12,....s [14.3.5]
=
For season or period (m), let 8, = 6{™¢™, .. ., }:'), denote the vector of AR parameters
for the PAR model and B,, = ${¢{™, ..., A,f:’), stand for the vector of estimated parameters.
An efficient conditional maximum likelihood estimate ﬁ,,, of ﬁ,,, is are obtained directly from
the multiple linear regression of z,‘},} on z,(ﬁ_l ,z,(},z_z, cees z,‘},)_p_.

The estimated innovations or residuals denoted as d, », are calculated from [14.2.3] by set-
ting initial values to zero and the residual variance, 03, is then estimated by

N n
3,=%zd,2,,,, m=12,...,s [14.3.6]

Other Estimation Results
Pagano (1978) shows that Nn (ﬁ - B) is asymptotically normally distributed with mean zero
and covariance matrix -l-I,;,'l, where
n
1

i
2

In practice, an estimate, f,,, of 1, is obtained by replacing each 'y,E"') in [14.2.7] by its estimate
cf™in [14.3.2].

Pagano (1978) also demonstrates that the estimates for different periods are asymptotically
uncorrelated. In other words, the joint information matrix of B,,8,,...,PB, is block diagonal.

Consequently, the parameters for the mth season, can be estimated entirely independently of the
parameters of any other season. Thus, for purposes of identification, estimation, and diagnostic
checking, each season can be modelled independently of the other seasons.

When estimating the parameters in a PAR model, the orders of the AR operators can be dif-
ferent across the seasons. Furthermore, subset autoregression (McClave, 1975) can be used for
constraining AR parameters to zero. For example, in season m for a monthly time series, one
may wish to estimate only the AR parameters ${™, $§™ and ¢{3". The parameters from ¢{™ to

{7, are omitted from the model and subset autoregression is used to estimate the remaining
parameters.

Model Selection using the AIC
From Section 6.3, the general formula for the AIC is defined as
AIC ==2In(ML) + 2k

where ML stands for the maximized value of the likelihood function and & is the number of free
parameters. When using the MAICE procedure, one selects the model which gives the minimum
value of the AIC.
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Assuming normality, the maximized log likelihood of the AR model for season m is
derived as (McLeod and Hipel, 1978)

" n
logL,, =-nln(6,) + A -1)X 2, », [14.3.7)
r=1
The summation term on the right hand side of [14.3.7] takes into account the Jacobian of the

Box-Cox transformation. An explanation of how this is done is given in Section 13.3.3 for the
deseasonalized model.

The AIC formula for the mth season is
AIC,, =-2logL, +2p, +4 [14.3.8]

where p,, is the number of AR parameters in season m. Because the mean, ,,, and the variance

of the innovations are estimated, the last term on the right hand side of [14.3.8] is included in the
seasonal AIC formula.

For each combination of AR parameters, the AIC,, can be calculated using [14.3.7] and
[14.3.8]. The model which yields the minimum value of the AIC,, is selected for season m. This

procedure is executed for choosing the models for all of the remaining seasons. Subsequently,
the AIC for the overall PAR model is

5
AIC= Y AIC, +2 [14.3.9]

m=1

where the constant 2 allows for the Box-Cox parameter A. The calculations of AIC may be
repeated for several values of A such as A =1,0.75,0.5, . . ., -1, and the transformation yielding
the minimum value of the AIC is selected.

Exhaustive Enumeration for PAR Model Selection

As mentioned earlier in Section 14.3.2, the recommended procedure for identifying the
most appropriate PAR model or set of models to fit to a seasonal series is to employ the sample
periodic ACF and PACF. If there is more than one promising model, the MAICE procedure can
then be used to select the best one.

Another approach for determining the best AR model for each season where the maximum
value of p,, is specified, would be to examine all possible regressions for that season. An
appropriate criterion, such as the AIC, could be invoked for choosing the most desirable model
from the exhaustive set of models. This procedure could be carried out for each season and this
would result in selecting the most suitable PAR model over all of the seasons. If, for the case of
a monthly series, the maximum value of p,, were restricted to be 12 for each month, the AR

model for the month of March, for example, may only have AR parameters, at lags 1, 2, 3 and 12
while the other parameters would be constrained to be zero.

A possible difficulty with the aforesaid procedure is the amount of computer time required
for estimating the parameters for all possible regressions for each season. For a monthly model,

for example, there are 4096 possible regression models for each month and 24 possible orders
of monthly AR models with p,, 12, m=1,2,...,12. Fortunately, Morgan and Tatar (1972)

have devised an efficient procedure for calculating the residual sum of squares for each
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regression. This method drastically reduces the computational effort involved when considering
an exhaustive regression study.

Because the residual sum of squares can be calculated efficiently for each regression (Mor-
gan and Tatar, 1972), the AIC can be employed for model discrimination. In particular the resi-
dual sum of squares is used in [14.3.6] to estimate 0',3 and then the value of the AIC in [14.3.8]
can be calculated without having to estimate the AR parameters. By selecting the model with
the minimum value of the AIC, this insures that the number of model parameters are kept to a
minimum and also the PAR model provides a good statistical fit to the data. Using these tech-
niques, the best fitting PAR model for monthly data can usually be selected in less than one
minute of computer time.

Subsequent, to identifying the most desirable model for season m according to the exhaus-
tive enumeration approach, the AR parameter for this model can be estimated using subset
autoregression. This procedure is repeated for each of the seasons. The value of the AIC for the
overall PAR model can then be determined using [14.3.9].

A possible drawback of this exhaustive enumeration approach is that models may be identi-
fied that cannot be justified from a physical viewpoint. For instance, is it reasonable in the
month of July for an average monthly riverflow series to have AR parameters for lags 2, 5 and 8?
On the other hand if there were AR parameters identified for lags 1, 2 and 12, this could be jus-
tifiable from a hydrological understanding of the physical phenomenon. Applications of the
exhaustive enumeration approach to average monthly riverflow time series are presented by
McLeod and Hipel (1978).

14.3.4 Checking PAR Models

The adequacy of a fitted model can be ascertained by examining the properties of the resi-
duals for each season. In particular, the residuals should be uncorrelated, normally distributed
and homoscedastic.

To ascertain if the residuals are white, one must estimate the periodic RACF (residual auto-
correlation function). For season m, the RACF at lag k is estimated using

1 ’l A A

;Ear,mar.m—k

", ) = —= =12, 43.10

re (G, ) = Tz » k=12, [14.3.10]
mm—k

Note that is necessary to divide by G,,G,,_, rather than 6‘,2, since in general G, #G,,_;. Use of
the incorrect divisor, G2 , could result in correlation values greater than 1.

For each season, one can plot r{™)(d, ) up to about lag :’;— Because r{™)(d, ,,) is asymp-

totically distributed as NID(0, -’17), one can also draw the 95% confidence interval for each sea-

son. If the seasonal residuals are white, they should fall within the 95% confidence limits.
Nonwhiteness indicate that additional AR parameters are needed in season m or perhaps another
class of models should be considered.
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As a single statistic for an overall test for whiteness of the residuals, one can use the Port-
manteau statistic for season m given by

Q',S""=n§:(r,$"")2<d,,,.) (14.3.11]
k=1

This statistic is %2 distributed with L - p,, degrees of freedom (Box and Jenkins, 1976; Box and
Pierce, 1970). A significantly large value of Q,f"') indicates inadequacy of the model for season

m. Hence, one can reject the null hypothesis that the data in season m are white if the calculated
value of Of™ in [14.3.11] is larger than the tabulated % value at a specified significance level.

One can choose L to be large enough to cover lags at which correlation could be expected to
occur. For example, for monthly data, one may wish to set L = 12 if sufficient data are available.

As shown by McLeod (1993), a modified Portmanteau test statistic improves the small
sample properties. In particular, the following exact result holds for the periodic correlations fo
white noise

n-X
Var(r{™a, ) = ng if k =0 mods
[k -m+s
Ll
= > , otherwise [14.3.12]
n

where [-] denotes the integer part and rk("')(a, m) is defined in [14.3.10] by replacing the residual,
d, m by the theoretical innovation, g, ,,. The modified Portmanteau statistic is then defined as
(M”22
Ql:'(m) - i (I' ) (ar,m)
i=t \Var(r{™a, m))
which is x2 distributed with L —p,, degrees of freedom. The modified statistic in [14.3.13]

reduces to that proposed for a nonseasonal ARMA model in [7.3.5] by Davies et al. (1977) and
Ljung and Box (1978). One can demonstrate that

[14.3.13]

E{Q,™}=L -p,, [14.3.14]
and
) L
E{Q;"™} =nY Var(r{™(a, n)) = Pm [14.3.15]
k=1

Across seasons the Portmanteau test statistics are asymptotically independent for
m=1.2,...,s. Consequently, for the case of the Portmanteau test statistic in [14.3.13] an
overall check to test if the residuals across all the seasons are white is given by

o/ =3 o™ [14.3.16]

m=1

” § .
where Q; is x? distributed on Y. (L - p,,) degrees of freedom. The lag L used in [14.3.13]

m=1
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could be chosen to be different across the seasons but in most applications it i’sI reasonable to use
the same value of L for all seasons. One can also employ Q’f™ in place of Q; ™ in [14.3.16] to

obtain Q’; .

One can use the tests for normality and homoscedasticity presented in Sections 7.4 and 7.5,
respectively, to check that these assumptions are satisfied for the residuals in each season. These
tests could also be used to ensure the assumptions hold across all of the seasons. Heteroscedasti-
city and/or non-normality, can often be corrected using the Box-Cox transformation in [13.2.1].

14.4 PAR MODELLING APPLICATION

The model construction techniques of Section 14.3 are employed for determining the most
appropriate PAR model to fit to the average monthly flows of the Saugeen River at Walkerton,
Ontario, Canada, which are available from Environment Canada (1977) from January, 1916 to
December, 1976. From the sinusoidal structure contained in the graph of the last ten years of the
average monthly Saugeen riverflows shown in Figure VL1, one can see that the observations are
highly seasonal. As emphasized in Section 14.3.2 and Chapter 15, the recommended approach
for identifying the AR parameters required in each season for the PAR model is to use the sam-
ple periodic ACF and PACF. Because it is known a priori that most average monthly riverflow
series require a natural logarithmic transformation to avoid problems with the residuals of the fit-
ted model, the logarithmic Saugeen flows are used right at the start of the identification stage.

Figure 14.4.1, displays the graph of the periodic ACF against lag k for the logarithmic
monthly Saugeen riverflows. Notice that each period or month possesses an ACF which is plot-
ted vertically. The two lines above a given period show the 95% confidence interval. To keep
the graph simple, the zero line, which falls midway between the confidence interval, is not given.
Opposite a particular lag, the estimated value of the ACF for a given period is plotted horizon-
tally. If the line cuts the left or right line for the confidence interval, the value of the sample
ACF is significantly different from zero. Notice in Figure 14.4.1 that the estimated periodic
ACF at lag 1 is significantly different from zero for all periods or months except for March
(period 3) where the value just touches the 95% confidence limits. Because flows in one month
are usually correlated with flows in the previous month, this behaviour would be expected. In
addition, for some of the months such as January, October, November and December, which are
indicated by periods 1, 10, 11, and 12, respectively, it appears that the ACF may be attenuating.

To identify more clearly the order of the AR model in each season, one must examine the
sample periodic PACF plotted in Figure 14.4.2. Notice that the sample PACF for each period or
season m =12, ...,12, is plotted vertically along with the 95% confidence interval. There are
significantly large values of the sample PACF at lag 1 across all 12 of the months, although in
period 3 or March, the sample PACF is only just touching the 95% confidence interval. Further-
more, for all the months the sample PACF truncates and is not significantly different from zero
after lag 1. Therefore, the identification plots indicate that for all months except possibly March,
one should use an AR model of order 1 or a Markov model.

The parameters in the PAR(1,1,0,1,1,1,1,1,1,1,1,1) model are estimated using the periodic
Yule-Walker equations in [4.2.12] for each season. The fitted model satisfies the tests for white-
ness, heteroscedasticity and normality described in Section 14.3.4. For example, when the sam-
ple periodic RACF is plotted, the assumption of whiteness for the values of the RACF for each
of the months is reasonably well satisfied. In particular, Figure 14.4.3 shows a graph of the
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periodic RACF calculated using [14.3.10] for the calibrated PAR model fitted to the logarithmic
average monthly Saugeen riverflows. Notice that for all of the months, or periods, at most one
value falls outside the 95% confidence limits which are calculated assuming that the RACF

values are asymptotically NID,(O,%). Moreover, at the crucial first few lags as well as lag 12,

none of the RACF values are significantly different from zero for any of the seasons.

For both the periodic ACF and PACF graphs shown in Figures 14.4.1 and 14.4.2, respec-
tively, at the fourth month or period there is a significantly large negative correlation at lag one.
One way to interpret this behaviour from a physical viewpoint is that when spring flows in
March cause large March flows due to the snowmelt runoff, the April flows tend to be substan-
tially smaller.

Table 14.4.1 provides the parameter estimate and SE (standard error) for the AR parameter
at lag one for each of the twelve seasons or periods for the PAR model fitted to the logarithmic
average monthly Saugeen flows. One can see that the estimates reflect what is found in the
periodic ACF and PACEF plots in Figures 14.4.1 and 14.4.2, respectively. In particular, the AR
parameter estimate for April is negative, as is also the case for the values of both the sample
periodic ACF and PACEF at lag one in period four.

Table 14.4.1. Parameter estimates and SE’s for the PAR model having
one AR parameter in each season, except for March, that is fitted to the
logarithmic average monthly Saugeen riverflows.

Seasons AR Parameter SE’s
or Periods Estimates

0.6472 0.1037
0.4977 0.0886
0 0
-0.3124 0.0916
0.5300 0.1057
0.6091 0.0943
0.7087 0.1169

0.4228 0.0730
0.7039 0.1150
1.0598 0.1238
0.7699 0.0828
0.5901 0.1015

MLV NANAWN -

An advantage of employing the PAR model is that it can capture the type of varying sea-
sonal correlation structure just described. Because of this, one would expect that the PAR model
would more accurately and realistically describe the behaviour of the monthly Saugeen river-
flows than competing types of seasonal models. This fact is confirmed by comparing the calcu-
lated value of the AIC in [14.3.9] for the Saugeen PAR model to those computed for the best
SARIMA and deseasonalized models fitted to the average monthly Saugeen riverflow series in
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Sections 12.4.4 and 13.4.2, respectively. The AIC value of 3357.82 for the PAR model is sub-
stantially less than those calculated for the other two models. Consequently, the PAR model is
recommended over the SARIMA and deseasonalized models for fitting to the monthly Saugeen
riverflows. Likewise, the forecasting experiments in Chapter 15, demonstrate that PAR models
forecast average monthly riverflow series more accurately than its competitors and, therefore, is
a better model to use with this type of seasonal data.

14.5 PARSIMONIOUS PERIODIC AUTOREGRESSIVE (PPAR) MODELS

14.5.1 Introduction

The PAR models described in the previous sections of this chapter attempt to preserve the
seasonally-varying autocorrelation structure of a time series by fitting a separate AR model to
each season of the year. However, one could reasonably question the necessity of going to the
extreme of having a different model for each and every season. To decrease the number of
model parameters required in a PAR model, one could combine individual AR models for vari-
ous seasons in order to obtain a single model for all seasons in a given group. After grouping,
the parameters of the more parsimonious PAR or PPAR models are estimated and diagnostically
checked, and the PAR and PPAR models compared.

The approach for developing a PPAR model described in this section was originally
presented by Thompstone et al. (1985a) and also Thompstone (1983). As an altemnative pro-
cedure for reducing the number of parameters in PAR or PARMA models, Salas et al. (1980)
propose a Fourier series approach. Recall that a Fourier series procedure is presented in Section
13.3.3 for reducing the number of deseasonalization parameters needed in the deseasonalized
models of Chapter 13.

In the next subsection, the PPAR model is formally defined. Following this, flexible model
construction techniques are given. In Section 14.6, all of the seasonal models of Part VI are
compared by fitting them to six hydrological time series.

14.5.2 Definition of PPAR Models
As is also the case for the PAR model in [14.2.3], let the number of years and seasons be n
and s, respectively, and let a transformed observation be given by z,(j;f, r=12,...,n, and

m=12,...,s. Assuming the s seasons are grouped into G groups of one or more seasons with
similar AR characteristics, the parsimonious periodic autoregressive model (PPAR) written as
(192 - . . ,Pg) may be defined in a manner analogous to the PAR model in [14.2.3] as

00BN -n,)=a,,, [14.5.1]

where ¢&)B)=1-¢%B - ¢$'B2 - --- - ¢,ff)8”', is the AR operator of order p, for group g,
M., is the mean for season m, and a, ,,=NID (0'032)' Notice from equation [14.5.1] that within a
given group each seasonal mean is preserved by the parameter pu,,. However, for the observa-

tions in the seasons contained in the gth group, the AR parameters and the variance of the residu-
als are assumed to be the same.
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Figure 14.4.1. Sample periodic ACF for the logarithmic average monthly
flows of the Saugeen River from January, 1916, until December, 1976, at

Walkerton, Ontario, Canada.
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Figure 14.4.3. Periodic RACF for the PAR model having one AR parameter
for each season, except for March, fitted to the average monthly riverflows
of the Saugeen River from January, 1916, until December, 1976,
at Walkerton, Ontario, Canada.

14.5.3 Constructing PPAR Models

In order to identify an appropriate grouping of seasons, the approach examined herein
involves first fitting PAR models to the time series in question as described in Section 14.3. One
then attempts to find seasons for which the AR models are ‘‘compatible’’. The equation of sea-
son m, is said to be compatible with that of season m, if the residuals obtained when the equa-

tion fit to season m, is applied to season m; are not significantly different from the residuals
obtained from the equation fit to season m;. In order to test formally for compatibility, define
ar(my,m,) to be the residuals obtained when the model fit to season m, is applied to season m;
using [14.2.3] with initial values set to zero. These residuals can be used to estimate ol(ml,mz),
the residual variance when the model for season m; is applied to season m;.

Consider the null hypothesis
Ho :Ol(ml ,m2) = Gz(ml,m l)

Assuming that (ag 3 (m;,m,),ap 5(m;,m;)) are jointly normally distributed with mean zero and
are independent for successive values, a test developed by Pitman (1939) can be used to test this
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null hypothesis. For a review of how to carry out a hypothesis test, the reader can refer to Sec-
tion 23.2. Let

Srm = ag y(mymy) + ag p(my my) [14.5.2]

DR,M = aRM(m,mz) - aRM(ml,ml) [14.5.3]

Pitman’s test is then equivalent to testing if the correlation, p, between Sy s and Dy 4 is signifi-
cantly different from zero. Thus, provided n > 25, H, would be accepted at the 5% level of sig-
nificance if Ipl < 1.96/Vn.

In practice, the residuals may not satisfy exactly the assumptions of a joint normal distribu-
tion with mean zero and independence for successive values of the residuals. However, these
assumptions are probably a sensible first approximation. The assumption of independence
seems reasonable because, with annual periodicity, the residuals are chronologically one year
apart. Furthermore, the mean of zero is assured for the case of ag 5 (m;,m,) due to the method of
fitting the model. Pitman’s test has often been used for testing the equality of variances of
paired samples (Snedecor and Chochran, 1980, p. 190). It was pointed out in Lehmann (1959,
p. 208, problem 33) that in this situation the test is unbiased and uniformly most powerful.

The above definition of equation compatibility can be extended to mutual compatibility. In
particular, equations for seasons m; and m, are mutually compatible, if, at a given level of signi-

ficance, one would accept the following two hypotheses:
ol(mz,ml) = oz(ml,ml)
cz(ml,mz) = cz(mz,mz)

Thus, the criteria adopted herein for identifying seasons in the same group is that each pair of
seasons in the group must be mutually compatible at a given level of significance and have the
same order of AR model. In addition, seasons are not grouped together unless they are chrono-
logically adjacent. Once the groups have been identified, the parameters are estimated using
maximum likelihood estimation. Specifically, multiple linear regression can be used to estimate
the AR parameters for each group of seasons, where the seasonal means are estimated using
[14.3.5] and the estimated variance of the residuals for each season is calculated using the
estimated residuals contained in the group of seasons. Diagnostic checking involves first calcu-
lating the residuals from [14.5.1] by setting initial values to zero, and then examining the sea-
sonal RACF and related Portmanteau test statistics plus tests for normality and homoscedasti-

city.
For secason m in a PAR model, the maximized log likelihood is presented in [14.3.7].
When considering a PPAR model, the maximized log likelihood for the gth group is

logL, =-n,InG)+A-1) ¥ z. [14.5.4]
Z, € group g

where n, is the product of the number of seasons in group g and the number of years of data, n.

Notice that the summation term on the right hand side of [14.5.4] is for all data points contained
in the seasons in the gth group. The value of the maximized log likelihood can be obtained by
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summing {14.5.4] across all the seasons to obtain

G
Lppap = ¥ logL, [14.5.5]
8=l
Likewise, for a PAR model the value of the maximized log likelihood across all s seasons is
$
Lpsg = Y logL,, [14.5.6]
m=1

where logL,, is defined in [14.3.7].

As was done for the PAR model, one can derive the AIC for a PPAR model for each group
of seasons and also the overall model. In particular, for the gth group of seasons the AIC for-
mula is

AIC, =-2logL, +2p, + 2 +2 (number of means) (145.7]

where p, is the number of AR parameters in the gth group seasons. The other parameters are the

variance of the residuals and the number of means in the gth group of seasons. The AIC for the
overall PPAR model is determined as

G
AlCg= Y AIC, +2 [14.5.8]
g=1
where the constant 2 allows for the Box-Cox parameter A. The overall AIC formula for the PAR
model is presented in [14.3.9].

When both PAR and PPAR models are fitted to a given series, the log-likelihood ratio
(Rao, 1973, p. 448) can be used to test the null hypothesis that there is no significant difference
in the residuals of the two models. It may be expressed as

R ==2[Lppag — Lpag] [14.5.9]

and, assuming the null hypothesis is true, R follows a chi-squared distribution with the number
of degrees of freedom equal to the difference in the number of free parameters in the PAR and
PPAR models, respectively (i.c., the difference in the number of AR parameters and residual
variances).

14.6 APPLICATIONS OF SEASONAL MODELS

All of the seasonal models presented in Part VI are fitted to three average monthly river-
flow series and three average quarter-monthly riverflow time series and the resulting models are
compared using the AIC. More specifically, the seasonal models fitted to the series are the SAR-
IMA, descasonalized, PAR and PPAR models defined in Sections 12.2, 13.2, 14.2.2 and 14.5.2,
respectively. Grouping of seasons within the PPAR models is performed using three levels of
significance in the Pitman test presented in Section 14.5.3, namely 50%, 20% and 5%. In gen-
eral, as the level of significance decreases, fewer seasons are considered to have ‘‘incompatible’’
models and thus there is more grouping, or in other words, a smaller number of groups. A Box-
Cox transformation with A =0 is used in all cases and, hence, the data are transformed by taking
their natural logarithms. The above mentioned models are labelled as SARIMA, DES, PAR,
PPAR/50, PPAR/20 and PPAR/OS, respectively, in the upcoming tables. The results of this
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study were originally presented by Thompstone (1983, Section 3.5).
The six example hydrological time series consist of:

(1) inflows to reservoirs of the hydroelectric system operated by Alcan Smelters and Chemi-
cals Ltd. in the Province of Quebec, Canada (Thompstone et al., 1980);

(2) flows of the Saugeen River measured at Walkerton, Ontario, Canada (Environment Canada,
1977);

(3) flows of the Rio Grande measured at Furnas, Minas Gerais, Brazil (supplied by Mr. Paulo
Roberto de Holanda Sales at Eletrobras, (national electrical company of Brazil)).

The monthly series are comprised of Alcan system inflows from 1943 to 1979, Saugeen River
flows, 1919-76, and Rio Grande flows, 1931-75; the quarter-monthly flows consist of Alcan sys-
tem inflows, 1943-79, Saugeen riverflows, 1915-76, and Rio Grande flows, 1931-72. Note that
the quarter-monthly data consists of flows in m*/s averaged from the 1st to the 7th, from the 8th
to the 15th, from the 16th to the 22nd, and from the 23rd to the end of the month, which consti-
tute periods of approximately one week each.

For all six series, the order of the AR operator in a PAR or PPAR model for a season or
group of seasons, respectively, is usually one while the highest order is three. Very few of the
AR models for an individual season or group of seasons are white noise.

Table 14.6.1 summarizes the orders of the AR models contained within the PAR models
fitted to the six series. Because there are 48 and 12 seasons for the quarter-monthly and monthly
data, respectively, the number of AR models used in each quarter-monthly PAR model must
equal 48 whereas the total for each PAR model is 12. For the case of the PAR model for the
average monthly Saugeen riverflows, the order of the AR operator is one for 11 of the 12
months. As explained in Section 14.4, the month of March is white noise. Finally, the only
other series which has white noise components in the PAR model is the Alcan system for
monthly riverflows that contains four such months.

In order to illustrate the degree of grouping associated with various Pitman test significance
levels, Table 14.6.2 shows the number of groups associated with the PAR, PPAR/50, PPAR/20
and PPAR/OS models for each series. For the case of quarter-monthly series, the highest degree
of grouping is with the PPAR/05 model of Rio Grande flows: the 48 seasons are divided into 16
groups. The highest degree of grouping of monthly series is with the PPAR/05 model of the
Saugeen riverflows: the 12 months are divided into 5 groups. Note that, in the case of the Alcan
system monthly inflow series, no grouping is identified, even when using the 50% significance
level.

Table 14.6.3 shows how all six of the seasonal models are ranked according to the AIC for
each of the series. The model having the lowest AIC value is ranked first whereas the one with
the highest value is ranked as 6. When fitting the deseasonalized model, the logarithmic series is
fully deseasonalized using [13.2.3]. Although it isn’t done in this study, one could reduce the
number of deseasonalization parameters by implementing the Fourier series approach described
in Section 13.3.3.

As shown in Table 14.6.3, the AIC always selects a PPAR model as the most desirable
model. The only exception is the PAR model for the Alcan system for which no PPAR model is
identified. As would be expected from the basic design of the SARIMA model, in all six cases
the SARIMA model is the least desirable model, according to the AIC. This is because the
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Table 14.6.1. Number of periods having a given order of an
AR model for the PAR models fitted to six series.

Order of Quarter-monthly Series Monthly Series
AR Model [ Alcan System | Rio Grande | Saugeen [ Alcan System | Rio Grande | Saugeen

0 0 0 0 4 0 1

1 36 42 43 6 9 11

2 10 6 5 2 2 0

3 2 0 0 0 1 0

Table 14.6.2. Number of groups in the PAR and PPAR models.
Model Quarter-monthly Series Monthly Series
Alcan System | Rio Grande | Saugeen | Alcan System | Rio Grande | Saugeen
PAR 48 48 48 12 12 12
PPAR/50 40 38 40 12 10 8
PPAR/20 29 27 23 12 8 7
PPAR/0S 24 16 18 12 6 5
Table 14.6.3 Ranking of the seasonal models fitted to the
six series according to the AIC.
Model Quarter-monthly Series Monthly Series
Alcan System | Rio Grande | Saugeen || Alcan System | Rio Grande | Saugeen

SARIMA 6 6 6 3 6 6
DES 5 5 5 2 5 5
PAR 4 3 3 1 4 4
PPAR/50 3 1 2 - 2 3
PPAR/20 1 2 1 - 1 1
PPAR/O5 2 4 4 - 3 2

SARIMA model is not designed for describing stationarity within each season as well as a sea-
sonally varying correlation structure. Because the deseasonalized model of Chapter 13 can
account for a separate seasonal mean and variance within each season, the AIC results of Table
14.6.3 indicate that the deseasonalized model always performs better than the SARIMA in all six
applications. Moreover, due to the fact that a periodic model can handle seasonally varying
correlation, periodic models always do better than both deseasonalized and SARIMA models.
Finally, forecasting experiments are carried out in Section 15.4.4 to compare the forecasting
capabilities of the models listed in Table 14.6.3.

The log-likelihood ratio test in [14.5.9] can be used to ascertain if the residuals of the fitted
PPAR and PAR models differ significantly from each other. In the five cases for which PPAR
models are identified (see Tables 14.6.2 or 14.6.3), residuals of none of the PPAR models are
significantly different from those of the PAR model at the 5% level of significance. This rein-
forces the conclusion that even though PPAR models have fewer parameters and, hence, also the
seasonal models, they still describe the data as well as the regular PAR model.
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As noted in Section 14.5.1, another approach for reducing the number of AR parameters
required in a PAR model is to use a Fourier series approach (Salas et al., 1980). However, this
procedure assumes that a smooth sinusoidal type of curve is fitted to the AR parameters across
the seasons or periods and, hence, also the sample periodic ACF. The question arises as to
whether this assumption is reasonable. To investigate this, consider Figure 14.6.1, which shows
a graph of the periodic ACF at lag one of the natural logarithms of the quarter-monthly flows of
the Saugeen River. As can be seen, it would be impossible to fit a smooth cyclic curve through
this plot. Notice, for example, the manner in which the first order correlation drops significantly
downwards in the spring season (i.e., about the end of March in the 12th quarter-monthly
period). Fortunately, both the PPAR and the PAR models are designed for modelling the type of
behaviour exhibited in Figure 14.6.1. The approach to fitting PAR and PPAR models is suffi-
ciently general to be applicable to series with or without a cyclic pattern in the seasonal correla-
tions and AR parameters. In a similar fashion, one can see that it would be difficult to fit a
Fourier series curve through the AR parameter estimates in Table 14.4.1 calculated for the PAR
model fitted to the logarithmic average monthly Saugeen riverflows.

14.7 CONSTRUCTING PARMA MODELS

PARMA models can be fitted to seasonal series by following the identification, estimation
and diagnostic check stages of model construction. Because model building procedures are
highly developed for use with PAR models, this class of periodic models is focussed upon in this
chapter. Nonetheless, there are now some good construction techniques available for fitting
PARMA models to seasonal data sets. As is also the case for the PAR model, the ARMA model
for each season of the year can be identified separately. The main area where further research is
required for PARMA model building is the development of a maximum likelihood estimation
technique which is computationally efficient. To obtain efficient estimates for a PARMA model,
all parameters must be estimated simultaneously, including the innovation variances, and, more-
over, it is necessary to use a nonlinear optimization technique since the likelihood function is
nonlinear. Each evaluation of the likelihood function involves very lengthy computations when
s212.

The sample periodic ACF and PACF described in Section 14.3.2 can be employed for iden-
tifying the orders of the AR and MA operators for the PARMA model in [14.2.15] to fit to each
of the scasons in a given seasonal time series. If a pure MA model of order g, is required, the
sample periodic ACF for season m will not be significantly different from zero after lag g,, and
the sample periodic PACF will die off. When a pure AR model of order p,, is needed to model

secason m, the sample periodic ACF attenuates while the sample periodic PACF is not signifi-
cantly different from zero after lag p,,. When both AR and MA parameters should be included

in the ARMA model to fit to the mth season, both the sample periodic ACF and PACF attenuate.

Assuming normality, Vecchia (1985a,b) developed a technique for obtaining MLE’s of the
parameters in a PARMA model. The approach that Vecchia (1985a,b) uses to write the likeli-
hood function is the same as the one of Newbold (1974) for the univariate case and Hillmer and
Tiao (1979) for the multivariate ARMA models presented in Chapter 20. Additionally, he
proved that PARMA models and multivariatt ARMA models are equivalent. From a computa-
tional point of view, his algorithm seems to be feasible for use in practical applications when the
number of seasons is small (i.e., less than about 4 seasons per year). To overcome computational
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Figure 14.6.1. Periodic ACF at lag one of the logarithmic quarter-monthly
riverflows of the Saugeen River at Walkerton, Ontario, Canada, from 1915 to 1976.

difficulties, Jimenez et al. (1989) propose a maximum likelihood parameter estimation technique
which is implemented within a Kalman filtering framework. Finally, Li and Hui (1988) provide
an algorithm for the exact likelihood of PARMA models.

As explained in Section 14.3.3, the Yule-Walker equations can be used as a moment esti-
mation approach for obtaining efficient parameter estimates for the parameters of a PAR model.
However, one should be cautious when using moment estimators with PARMA models, since
the parameters estimates may not be efficient. Nonetheless, some research on moment estima-
tion of PARMA model parameters has been completed. For example, Salas et al. (1982) derived
Yule-Walker equations for PARMA models and showed how moment estimates can be calcu-
lated for PARMA models in which p,, 20 and g,, =1 in season m. Besides discussing moment

estimation, Salas and Obeysekera (1992) described model identification and testing of model
adequacy of PARMA models. Moreover, these authors proved a physical basis for PARMA
models. In particular, based upon a conceptual-physical representation of a natural watershed, in
which all inputs, storages, outputs and parameters are assumed to be periodic and the system is a
linear reservoir, they demonstrated that the periodic groundwater storage and streamflow
processes belong to the class of PARMA processes. Section 3.6 describes this kind of physical
relationships for the case of nonseasonal ARMA models. Further results on how PARMA
models can be used in physically-based modelling are provided by Claps et al. (1993).

When testing the adequacy of a calibrated PARMA model, one can use similar procedures
to those suggested for PAR models in Section 14.3.4. The sample periodic RACF and related
Portmanteau statistics can be employed to ascertain if the residuals are white. Other tests related
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to those presented in Chapter 7 for nonseasonal ARMA models can be used for testing if the nor-
mality and homoscedasticity assumptions are valid. Non-normality and/or heteroscedasticity
can often be rectified by incorporating an appropriate Box-Cox transformation from [13.2.1].

In related research to PARMA modelling, Vecchia et al. (1983) investigated what happens
when one aggregates across the seasons. Specifically, the aggregated time series resulting from
summing over the seasons of a scasonal time series, which is assumed to be either AR(1) or
ARMAC(1,1) in each season, is shown to follow an ARMA(1,1) model at the annual level. More-
over, when the seasonal data and the model for each season are used rather thar the annual data
and the associated annual model, significant gain in parameter efficiency can be achieved. This,
of course, further justifies the use of PAR and PARMA modelling in water resources and indi-
cates that aggregation is preferable to disaggregation. A discussion of disaggregation and the
controversy surrounding it is given in Section 20.5.2.

For most of the PARMA model construction techniques discussed thus far, it is assumed
that the data or, equivalently, the model residuals are normally distributed. Femandez and Salas
(1986) studied PAR models having a Gamma marginal distribution. This Gamma or other kinds
of distributional assumption could also be used with PARMA models. However, a substantial
amount of theoretical research and development of flexible model building techniques are
needed before these and other related models can be used in practice. Lewis (1985) and authors
referenced therein, discuss non-Gaussian distributed innovations for use in nonseasonal and mul-
tivariate modelling. In Section 20.5.3, the employment of non-Gaussian marginal distributions
in multivariate modelling is outlined.

14.8 SIMULATING AND FORECASTING WITH PERIODIC MODELS

14.8.1 Introduction

Subsequent to fitting a PAR or PARMA model to a seasonal time series, the calibrated
model can be used for applications such as forecasting and simulation. In the next chapter, it is
explained how minimum mean squared error forecasts from periodic models, as well as other
kinds of seasonal models, can be calculated. Moreover, forecasting experiments with average
monthly riverflow series demonstrate that PAR models forecast better than deseasonalized
(Chapter 13) and SARIMA (Chapter 12) models.

In Chapter 9, two simulation procedures are presented for generating synthetic data from
nonseasonal AR and ARMA models. The simulation techniques are designed so that random
realizations of the underlying stochastic process are employed as starting values. Because fixed
beginning values are not utilized, unwanted systematic bias is not introduced into the synthetic
traces.

Because a PAR or PARMA model consists of having a separate AR or ARMA for each
season of the year, simulation techniques similar to those presented in Chapter 9 for use with
nonseasonal models can be employed with seasonal models. The technique labelled WASIM2,
for example, in Section 9.4 exactly simulates an AR or ARMA process if the residuals are
assumed to be normally distributed. Suppose, for example, one wishes to simulate using a PAR
model. Let k =max(p;,p; = 1p3=2,...,ps = (s — 1)) where 5 is the number of seasons. By

utilizing the covariance matrix of (z; 1,22, - . ., 1) to generate randomly the initial values, a
technique very similar to WASIM2 can be used for producing synthetic traces from a PAR
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model. If deemed appropriate, parameter uncertainty can also be brought into a simulation study
by following the WASIM3 procedure of Section 9.7. Salas and Abdelmohsen (1993) describe
initialization techniques when simulation with single-site and multisite low-order PAR and
PARMA models.

As explained in Chapter 9, simulation can be used for design purposes and investigating the
theoretical properties of models. In the next subsection, it is shown using simulation that PAR
models can preserve statistically the critical drought statistics defined by Hall et al. (1969).

Stedinger and Taylor (1982a,b) describe the steps involved in the development and use of a
stochastic streamflow model. After properly fitting a time series model to a given nonseasonal
or seasonal riverflow data set, these authors stress the importance of model verification and
model validation. In model verification, one should demonstrate that a model has been imple-
mented correctly and passes diagnostic checks. With respect to model validation, one should
show that simulated sequences from the calibrated model produce reservoir system performance
that is consistent with or statistically indistinguishable from that obtained utilizing the historical
riverflows. Accordingly, the simulation experiments carried out in Section 14.8.2 as well as
Section 10.6 can be considered to be model validations.

14.8.2 Preservation of Critical Period Statistics

Introduction

Hall et al. (1969) discuss problems related to the design and operation of a reservoir when
water shortages must be considered. They define the critical period as the period of time for
which a given inflow series is most critical with respect to meeting water demands. Various
statistics, which are closely related to the critical period, are defined and, by using simulation,
Hall et al. (1969) conclude that the stochastic model they are investigating does not adequately
preserve the historical critical period statistics. In a more exhaustive study, Askew et al. (1971)
find that a large variety of stochastic models are not capable of retaining the critical period statis-
tics. The purpose of the present section is to demonstrate that, for certain sample series, when
the PAR and PPAR models are identified and fitted using the procedures described in this
chapter, they adequately preserve the historical critical period statistics.

Critical Periodic Statistics for Water Supply

Hall et al. (1969) express the active reservoir storage as a ratio of the total volume of active
storage in the reservoir to the volume of water due to the average annual inflow. The reservoir is
operated to allow a seasonal extraction of X. It is assumed that the reservoir is full at the start
and a value of X is determined which causes the reservoir storage to research zero at one point in
time. The length of the critical period is denoted by L and is calculated as the time span from
the zero storage point backward in time to the point when the reservoir was last full. The per-
centage deficiency, D, for the critical period is defined as

T(V - V,)100
CcP

p=S 14.8.1
VL a4

where V is the average scasonal inflow volume, V, is the seasonal inflow volume for period ¢,
and the summation extends over the entire critical period, CP. As pointed out by Hall et al.
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(1969), the aforesaid critical period statistics can be readily generalized to the case where the
extraction is a function of time, the reservoir is at any level at the start of the calculations, and

. evaporation and other losses are considered. Note also that the critical period statistics are obvi-
ously a function of the length of the series for which they are defined. As illustrated by
McMahon and Mein (1978, pp. 19-20), there may, in rare cases, be more than one critical period
for a given inflow series.

Design of Simulation Experiments

In Section 14.6, PAR and PPAR models are fitted to three quarter-monthly and three-
monthly time series. These same series are used in this section in split sample simulation experi-
ments used to show that PAR and PPAR models preserve statistically the critical period statis-
tics. These results were originally presented by Thompstone et al. (1987) and Thompstone
(1983). McLeod and Hipel (1978) used simulation experiments to demonstrate that critical
period statistics are preserved by PAR models but they did not use the split sample approach
described herein. Recall that in Sections 9.8 and 10.6, simulation experiments are used to
demonstrate that ARMA models preserve statistically the rescaled adjusted range and other
statistics related to the Hurst phenomenon.

For each of the 6 seasonal series, PAR and PPAR models are identified and fit following
the procedures of Sections 14.3 and 14.5.3, respectively. In each case, all but the last 20 years of
available data are used to identify and fit the models. The PPAR model having the minimum
value of the AIC is selected from three candidates, namely those with 50%, 20% and 5% levels
of significance for the Pitman test grouping criterion described in Section 14.5.3.

As explained in Section 9.2, in order to generate synthetic sequences, it is first necessary to
produce independent, normally distributed random numbers with a mean of zero and a variance
of one. In the experiments described herein, an efficient and portable pseudo-random number
generator, developed by Wickmann and Hill (1982), is used to produce numbers rectangularly
distributed between zero and one, and these are then used in the algorithm of Box and Muller
(1958) to produce the required random normal deviates. These innovations are then fed into the
appropriately estimated PAR model in [14.2.3] or the PPAR model in [14.5.1] for a given series.

As pointed out in Chapter 9, an important consideration in the generation of synthetic
hydrological sequences is the choice of initial values. Random realizations of the underlying
stochastic process must be used to avoid introducing systematic bias into the simulation study.
The approach to obtaining random realizations adopted in the original study by Thompstone et
al. (1987) and Thompstone (1983) is to, in a preliminary study, set the required initial values to
their expected values and then generate a full 40 years of synthetic data. The last few values of
these 40 years of synthetic data provide the required initial values for the main simulation study.

For a given sample time series, the simulation experiment is conducted as follows. First,
the remaining 20 years of the historical sample not used in model construction are used to calcu-
late what are referred to as the historical critical period statistics. These are denoted as X(his),
L(his) and D(his) for the historical extraction rate, historical length of the critical period, and his-
torical deficiency, respectively. An active reservoir storage equal to the average volume of
annual inflow is used. Next, 1,000 synthetic seasonal sequences of 40 years each are generated,
and the first 20 years of each sample are dropped to provide 1,000 effectively independent
sequences equal in length to the series used to calculate the historical critical period statistics.
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It is important to note that almost all previous research concerning the preservation of
statistics in synthetic hydrological sequence generation has not used the split-sample approach
employed herein. In previous research, the same sample series was employed both to construct
the model(s) being evaluated and to estimate the statistic(s) whose preservation is being studied.
One would generally expect the split-sample design of the current research to be a more rigorous
validation of the models under investigation.

In order to test if a given model preserves the critical period statistics, the P-values defined
below are estimated:

Py = Prob{X(syn) < X(his)} [14.8.2]
Py =Prob{L(syn) > L(his)} [14.8.3]
Pp =Prob{D(syn) > D(his)} [14.8.4]

where Prob denotes probability, X(syn) is the extraction rate in the synthetic series, L(syn) is the
length of the critical period in the synthetic series, D(syn) is the percentage deficiency in the
synthetic series, and other terms are as defined earlier.

The P-values are estimated separately for each series with the active reservoir storage equal
to the volume of the average annual inflow for the 20-year historical sample not used to calibrate
the models. This is done by counting the number of times the inequalities in [14.8.2] to [14.8.4]
hold in each simulation run and dividing by 1,000. The P-values, as defined above, represent the
probability of a critical period statistic in the synthetic sequence being more extreme than in the
historical sequence. Thus a P-value of 0.05 indicates that there is only a 5% chance that the syn-
thetic series will have a critical period statistic more extreme than the historical. Of course, this
would happen 5% of the time even if the historical sequence were in fact generated by the
corresponding fitted stochastic model. Nevertheless, P-values less than 5% do suggest possible
model inadequacy, and hence, P-values can be used for diagnostic checking.

In Section 10.6.4, a % test is employed to ascertain, in an overall sense, if the Hurst statis-
tics are preserved statistically by ARMA models fitted to 23 annual geophysical time series. In
particular, when considering k time series for a given statistic, it can be shown (Fisher, 1970, p.
99

-th(P;) = x4 (14.8.5]

i=1
where P; can be the probability as defined in Equations [14.8.2] to [14.8.4] for the ith time
series.

The Results of the Simulation Experiments

The results of the simulation experiments are summarized first for the PAR models, and
then for the PPAR models. Table 14.8.1 shows the P-values for PAR models for the three criti-
cal period statistics and for the six example series, while Table 14.8.2 contains the chi-squared
values calculated using [14.8.5] for the three critical period statistics with the series grouped
according to their seasonal lengths. For a one-sided significance test, the chi-squared values
with six degrees of freedom at the 5% and 1% significance levels are 12.592 and 16.812, respec-
tively. For the monthly series, the critical statistics are preserved in each case at the 5% level, as
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can be seen in Table 14.8.1, and on an overall basis, also at the 5% level, as shown in Table
14.8.2.

For the quarter-monthly series, evidence of preservation of the critical period statistics by
PAR models is not quite as strong. The extraction rate for the Saugeen series and the length of
the critical period for the Alcan system inflows are preserved at the 1% level, but not at the 5%
level. In all other cases, the statistics are preserved at the 5% level. According to the overall
chi-squared test, the length of the critical period and deficiency percentage are preserved at the
5% level, but the extraction rate is preserved at only the 1% level.

Table 14.8.1. P-values for the PAR models.

Riverflow Series Statistics
Extraction | Length of CP | Deficiency
Quarter- | Alcan System 0.233 0.040 0.730
Monthly
Rio Grande 0.350 0.267 0.654
Saugeen 0.017 0.267 0.257
Monthly | Alcan System 0.423 0.118 0.774
Rio Grande 0.521 0.090 0.825
Saugeen 0.083 0.370 0.292

Table 14.8.2. Chi-squared values for the PAR models.

Seasonal Lengths Statistics
Extraction | Length of CP | Deficiency
Quarter-Monthly 13.162 11.720 4.196
Monthly 8.003 11.079 3.359

Table 14.8.3 shows the P-values for PPAR models for the three critical period statistics and
for the six example series, while Table 14.8.4 contains the chi-squared values for the three criti-
cal period statistics with the series grouped according to their seasonal length. For the case of
the monthly series, there are two P-values which suggest that the critical period statistics are
preserved at the 1% level, but not at the 5% level. These relate to the extraction rate and defi-
ciency percentage for the Saugeen Series. All other cases indicate preservation at the 5% level.
The overall chi-squared test indicates the length of the critical period and deficiency percentages
are preserved at the 5% level, while the extraction is preserved at the 1% level.

For the quarter-monthly series, evidence of preservation of the critical period statistics by
PPAR models is not quite as strong as for the monthly series. Again, the extraction rate and
deficiency for the Saugeen series are preserved at the 1% level, but not at the 5% level. The
length of the critical period is not preserved at the 1% level for the Alcan system inflow series.
All other statistics are preserved at the 5% level. Nevertheless, the overall chi-squared statistics
indicate that the deficiency and the length of the critical period are preserved at the 5% level,
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while the extraction rate is preserved at the 1% level (and very close to being preserved at the
5% level).

Table 14.8.3. P-values for the PPAR models.

Riverflow Series Statistics
Extraction | Length of CP | Deficiency
Quarter- | Alcan System 0.395 0.007 0.886
Monthly
Rio Grande 0414 0.684 0.307
Saugeen 0.011 0.767 0.035
Monthly | Alcan System 0.673 0.293 0.800
Rio Grande 0.175 0.373 0.400
Saugeen 0.012 0.799 0.034

Table 14.8.4. Chi-squared values for the PPAR models.

Seasonal Lengths Statistics
Extraction | Length of CP | Deficiency
Quarter-Monthly 12.641 11.214 9.309
Monthly 13.124 4.876 9.042

It should be noted that in the majority of these simulation experiments (22 out of 36 combi-
nations of models, series and critical period statistics), the coefficient of skewness of the empiri-
cal distribution of the critical period statistics is different from zero at the 5% level. In fact, for
the length of critical period statistic, the skewness coefficient is always significantly different
from zero at the 0.1% level. In view of the significant skewness encountered in this study, the
types of statistical tests used by Hall et al. (1969) and Askew et al. (1971) are not appropriate.
Their tests are based on the assumption of normality, and this assumption is not valid for skewed
statistics. : .

A further point that should be stressed is that the split sample approach to testing the
preservation of critical period statistics is more exact than the approach in which an entire series
is used for both model fitting and the calculation of the statistics to be preserved. This latter
approach was used in the earlier studies of Hall et al. (1969), and Askew et al. (1971), as well as
in Section 10.6.4 for the Hurst statistics.

14.9 CONCLUSIONS

Because the basic mathematical design of the periodic models described in this chapter
closely reflects the statistical characteristics of many kinds of seasonal time series, especially
those arising in the environmental sciences, periodic models are ideally suited for use in practical
applications. Of particular import is the family of PAR models for which comprehensive model
construction techniques have been developed. If the number of model parameters has to be
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reduced, one can employ the economical PPAR class of models. Although more research is
required to devise estimation algorithms for PARMA models that are computationally efficient,
good progress has been made in the practical development of this promising class of models.

As just noted, periodic models are well designed for use with natural time series. When
dealing with seasonal socio-economic time series in which the mean level and possibly other
statistics may change within each season over the years, onc may wish to experiment with the
following modelling approach. Firstly, one can model the seasonal series, such as monthly water
demand, using a SARIMA model (Chapter 12). Secondly, one can model the residuals of the fit-
ted SARIMA model using a PAR or other type of periodic model. In this way, one may be able
to model a seasonally varying correlation structure which is not captured by the SARIMA
model. .

The simulation experiments of Section 14.8.2, demonstrate that properly fitted PAR and
PPAR models can preserve statistically important historical statistics. In the next chapter, it is
shown using forecasting experiments that these periodic models forecast seasonal riverflow
series better than both deseasonalized (Chapter 13) and SARIMA (Chapter 12) models.

PROBLEMS

14.1 Complete the following:

(a) Assuming that there are four seasons per year, and the order of the AR model
in each season is two, write down the complete set of equations.
(b) Develop the theoretical periodic autocovariance function for the PAR model in
part (a).
(c) Determine the periodic Yule-Walker equations for this model.
14.2 The stationarity requirement for the PAR model in [14.2.4] having one AR parame-
ter in each season is given in [14.2.6]. By referring to appropriate references, deter-

mine the stationarity condition for a general PAR model that is not restricted to
being Markov.

14.3 Complete the following:

(a) Using the notation in [14.2.15], write down the complete set of equations for a
PARMA model having four seasons where p,, =¢,, =1 in the first two sea-

sons, and p,, =2 and g,,, = 1 for the second two seasons.

(b) Derive the theoretical periodic autocovariance function for the PARMA model
in part (a).
(c) Ascertain the periodic Yule-Walker equations for the model.
14.4 The stationarity and invertibility conditions for a PARMA model having one AR
and one MA parameter in each season are given in [14.2.6] and [14.2.17], respec-

tively. Present and explain the conditions for stationarity and invertibility for the
general PARMA model in [14.2.15] for which the number of AR and MA
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14.5

14.6

14.7

14.8

14.9

14.10

parameters for a specific season are not restricted in number.
Suppose that a PARMA model for season m is given as

(1-0.11B +0.308%)z, ,, = (1 - 0.4B)a, ,
where the mean of z, ,, is zero.

(@) Obtain the random shock coefficients for at least eight terms and then write
this model in random shock form as in [14.2.24].

(b) Also write the model in inverted form as in [14.2.26).

Carry out the instructions in problem 14.5 for the PARMA model in season m which
is given as

(1-0.10B +0.24B%;, ,, = (1 - 0.4B)a, ,,

where the mean of z, ,, is assumed to be zero.

Select an average monthly riverflow series and then fit a PAR model to this series
adhering to the following steps in model construction:

(a) Examine appropriate exploratory data analysis graphs as well as the sample
periodic ACF and PACF plots to design the most appropriate set of PAR
models.

(b) Estimate the model parameters for each model selected in part (a) and then use
the MAICE procedure to find the best one. For the most appropriate model
compare the estimates for the model parameters employing both multiple
linear regression and the periodic Yule-Walker equations. Comment upon the
results.

(c) Carry out diagnostic checks to ensure that the best PAR model from (b) satis-
fies the whiteness, normality, and constant variance assumptions. If there are
any problems make suitable modifications based upon the diagnostic results
and repeat steps (b) and (c). Whatever the case, be sure to employ the periodic
RACEF test for whiteness given in [14.3.10].

Develop PAR models for describing average monthly riverflows from three dis-
tinctly different geographical locations in the world. Using identification results
such as the sample periodic ACF and the sample periodic PACF graphs as well as
the structures of the calibrated PAR models, make comparisons among the fitted
models. Wherever appropriate, provide physical explanations as to why certain
modelling results vary across the regions.

Develop the most appropriate PAR and PPAR models to describe an average
monthly hydrological time series. Explain why any groupings of months within the
PPAR model make sense or else do not seem reasonable from both statistical and
physical viewpoints.

Follow the instructions in problem 14.9 for an average weekly hydrological time
series.
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14.11 Select a hydrological data set for which you have both average weekly and average
monthly observations. Carry out the studies put forward in the previous two ques-
tions for the monthly and weekly time series. Subsequently, compare the monthly
and weekly modelling results for the PAR and PPAR models. Did you find, for
instance, that there were more groupings of seasons for the fitted weekly PPAR
model than with the monthly version?

14.12 In Section 14.7, model building procedures are discussed for PARMA models.
Summarize and compare according to both advantages and disadvantages the
PARMA estimation techniques given by Vecchia (1985a,b) and Jimenez et al.
(1989).

14.13 After fitting a PAR model to an average monthly riverflow time series, execute a
proper simulation study to ascertain whether or not the historical critical period
statistics given in [14.8.1] are preserved.

14.14 Fit a PAR model to a seasonal hydrological time series of your choice. Then carry
out simulation experiments to determine if the sample periodic ACF in [14.3.4] at
lag one for each season is preserved statistically by the calibrated model.
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