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CHAPTER 4
NONSTATIONARY NONSEASONAL MODELS

4.1 INTRODUCTION

When considering annual hydrological and other natural time series of moderate lengths
(perhaps a few hundred years), it is often reasonable to assume that a stationary model can ade-
quately model the data. For example, in Section 10.6.2, stationary ARMA models are fitted to
23 time series which are measured from six different types of natural phenomena that vary in
length from 96 to 1164 years. The ability to detect statistical characteristics of a time series
which change significantly over time may only become possible when the yearly records cover a
sufficiently long time horizon. For example, if past climatic records were available or could be
constructed for a given location in North America, the results would probably support the
hypothesis of climatic nonstationarity over a long time span. Certainly, as the ice sheets
advanced and retreated over the North American continent during the past one hundred thousand
years, average annual temperatures and other climatic factors changed significantly over time.

Some types of annual time series which are studied in water resources engineering, could
be nonstationary even over a short time interval. For instance, the average annual cost of
hydroelectric power and the annual consumption of water of an expanding metropolis constitute
two time series which increase in magnitude over time. In general, time series that reflect the
socio - economic aspects of water resources planning may be nonstationary over any time inter-
val being considered.

When modelling nonstationary data, a common procedure is to first remove the nonsta-
tionarity by using a suitable technique. Following this, a stationary model can be fit to the
resulting stationary time series. This general approach is used in this chapter for nonseasonal
models and also in Chapter 12 for a certain class of seasonal models.

4.2 EXPLOSIVE NONSTATIONARITY

If an ARMA(p,q) process is stationary, all of the roots of the characteristic equation
¢(B) =0 must lie outside the unit circle (see Section 3.2.2). Consequently, when a process is
nonstationary at least one of the roots of ¢(B) = 0 must lie on or within the unit circle. If at least
one root is inside the unit circle, the process is said to possess explosive nonstationarity. When
none of the roots are within the unit circle but at least one of the roots lies on the unit circle, this
is referred to as homogeneous nonstationarity.

For the case of an ARMA(1,1) process in [3.4.1], it is necessary that the root ¢; !of
(1-¢,B) =0 possess an absolute magnitude which is greater than unity or, equivalently,
1¢;! < 1 in order to have stationarity. On the other hand, when a process with one AR and one
MA parameter is nonstationary, the root ¢1'1 must lie either on or inside the unit circle and hence

1¢;| 2 1. Suppose, for example, a model is given as
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2y = 6121 =6, = 0.70a,_,
or, equivalently,
(1-¢,B8)z,=(1-0.70B)aq, [4.2.1]

where g, is normally independently distributed with a mean of zero and a variance of one [ie,
NID(0,1)]. If ¢; = 1.1, the root of 1 - 1.1B =0 is 1/1.1 and hence the process possesses explo-
sive nonstationarity. When z, is assigned a value of, say, 100, z, can be simulated using

= l.lzx =ay- 0.7001 [4.2.2]

where the g,’s are randomly generated on a computer (see Section 9.2). By substituting
t=34,...,20, into [4.2.1], a sequence of 20 synthetic data points can be obtained where
2;=100. A plot of 20 simulated values for z, is shown in Figure 4.2.1. Notice how the series
increases greatly over time due to the fact that the root of the characteristic equation lies just
inside the unit circle. If ¢, is given a value of 1.5, a simulated series can be even more explosive
than that presented in Figure 4.2.1. The simulated sequence of 20 values in Figure 4.2.2 was
obtained using [4.2.1] with ¢; = 1.5 and a starting value of 2 =100. In that figure, the series

increases exponentially with time and the last synthetic data point has a magnitude which is
close to 24,000.

4.3 HOMOGENEOUS NONSTATIONARITY

The ARIMA (autoregressive integrated moving average) model is defined in the next sub-
section for modelling an annual time series possessing homogeneous nonstationarity. As
explained in Section 4.3.2, the theoretical ACF for an ARIMA model containing nonstationarity
dies off slowly. Consequently, if the sample ACF of a given annual time series attenuates, this
may indicate the presence of nonstationarity and the need to fit an ARIMA model to the series.
Three kinds of time series are employed in Section 4.3.3 to demonstrate how the sample ACF
dies off slowly for a nonstationary series and how to fit an ARIMA model to each series.
Finally, Section 4.3.4 describes three equivalent formulations of the ARIMA model.

4.3.1 Autoregressive Integrated Moving Average Model

When at least one of the roots of the characteristic equation lies on the unit circle but none
of the roots are inside the unit circle, this produces a milder type of nonstationarity than the
explosive case. This is referred to as homogeneous nonstationarity because, except for a local
level and slope, often portions of a simulated series will be similar to other sections. For exam-
ple, when ¢, is set equal to unity in [4.2.1] the model becomes

Z, - z‘_l = a’ - 0.70(1,_1

or equivalently
(1-B)z; =(1-0.70B)a, [4.3.1]

where g, is NID(0,1). Notice that the single root of (1 —B) =0 is of course unity and hence the
model possesses homogeneous nonstationarity. By choosing a starting value of z, = 100 and
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Figure 4.2.1. Simulated data for the model in [4.2.1] with
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Figure 4.2.2. Simulated data for the model in [4.2.1] with
¢1 =1.5and = 100.
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having the computer generate the g,’s, a sequence of 20 simulated values can be obtained as

shown in Figure 4.3.1. It can be seen that this realization behaves in a much more restrained
fashion than those shown in Figures 4.2.1 and 4.2.2. This kind of behaviour is typical of many
types of socio - economic series which are encountered in practical applications and therefore the
modelling of homogeneous nonstationarity has received widespread attention (Box and Jenkins,
1976).

102]
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Figure 4.3.1. Simulated data for the model in [4.3.1] that
possesses homogeneous nonstationarity.

The operator V = (1 — B) in [4.3.1] is referred to as the differencing operator because the
root of (1 — B) = 0 lies on the unit circle. When V operates on (z, — p) the level p disappears due

to the nonstationarity as is shown by
(A-B)z W) =(g -1 -Gy ~W =2 -2_,=(1-B) [4.32]

When a time series of length N is differenced using [4.3.2], adjacent time series values are sub-
tracted from each other to obtain a sequence of length N — 1. This differencing procedure can be
repeated just enough times to produce a stationary series labelled w,. In general, a time series

may be differenced d times to produce a stationary series of length n =N —d given by
w, =(1 - B)?z, =V4z,
If the original z, time series is transformed by a Box-Cox transformation as explained in Section

3.4.5, the stationary w, series is formed by differencing the transformed series and is calculated
using
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w,=(1-B)%z® [4.3.3]

When homogeneous nonstationarity is present, it is reasonable to assume that the w, series
in [4.3.3] can be modelled by the stationary ARMA(p,q) model in [3.4.3] such that

¢(B)w, = 6(B)a, (4.3.4]

where the roots of ¢(B) =0 lie outside the unit circle for stationarity of the w, sequence, the d
roots of (1 - B)? are on the unit circle due to the homogeneous nonstationarity of the z,m series
in [4.3.3], and the roots of 8(B) =0 lie outside the unit circle for invertibility. The process
defined by [4.3.3] and [4.3.4] is referred to as an awtoregressive integrated moving average

(ARIMA) process. The reason for the term "integrated” can be found by rewriting [4.3.3] for
d=1las

zP=(1-B)y'w,=(1+B+B%+ -+ )w, = f;w,_j [4.3.5]
Jj=0

It can be seen that the z,m series can be obtained by summing or "integrating” the stationary w,
process. When the order of differencing is d then z,m is calculated by "integrating” the w, pro-
cess d times. To obtain the original z, series from the z,m sequence, the inverse of the Box-Cox
transformation in [3.4.30] is taken.

The ARIMA (p,d,q) notation is used to indicate the orders of the AR, differencing and MA
operators, respectively, which are contained in the ARIMA process given by [4.3.3] and [4.3.4].
When there is no differencing (i.e., d = 0), the set of ARIMA(p,0,q) processes is the same as the
family of stationary ARMA(p,q) processes defined in Section 3.4. However, when dealing with
stationary processes it has become common practice to use the term ARMA(p,q), whereas
ARIMA(p,d,q) is employed whenever there is a differencing operator (i.e., d > 0).

To demonstrate the effects of the differencing operator consider the set of ARIMA(0,d,0)
models given by

(1-B)%(@z, - 100) =g, [4.3.6]

where 100 is the mean level of the series for d =0 and this level disappears due to differencing
when d > 0. When d =0, the model is white noise. In Chapter 9, general procedures are
described for simulating with white noise, ARMA, and ARIMA models. Figure 4.3.2 is a plot of
100 simulated terms from the model where the g,’s are randomly generated on a computer as
being NID(0,1). It can be seen that the entries in the series appear to be uncorrelated and fluctu-
ate about an overall mean level of 100. The same 100 g, terms that are used for generating the
sequence in Figure 4.3.2 are also employed to simulate series of length 100 ford =1,2and 3. In
Figure 4.3.3, a simulated sequence is shown for an ARIMA(0,1,0) model where a starting value
of z; = 100 is utilized. Notice how the series does not fluctuate about any overall mean level and
generally tends to increase in value over time. Using initial values of z; = 100 and z, =102, a

synthetic series for an ARIMA(0,2,0) model is generated in Figure 4.3.4. In that figure, the local
fluctuations have largely disappeared and the sequence increases dramatically in value with
increasing time. Figure 4.3.5 is a simulated trace from an ARIMA(0,3,0) model where starting
values of z; =100, z, =102, and 23=104 are employed. The simulated data increases
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exponentially over time and the right hand portion of the graph seems to mimic a missile trajec-
tory.

4.3.2 Autocorrelation Function

As explained in [3.4.13] in Section 3.4.2, the theoretical ACF for an ARMA(p.q) process
satisfies the difference equation

0B, =0, k>gq (4.3.7)

where p; is the theoretical ACF at lag k, and ¢(B) is the AR operator of order p. Assuming dis-
tinct roots, the general solution for this difference equation is

pr=AGE+A,G5 + -+ +A,G} [4.3.8]

where G{1,G5", ..., G; ", are the roots of the characteristic equation ¢(B) =0 and the 4;’s are
constants. Due to stationarity conditions, |G 1 > 1 for a real root G;!. Therefore, for increas-
ing lag k, the term A;GF damps out because IG;| < 1. When all of the roots lie outside the unit

circle, the theoretical ACF in [4.3.8] attenuates quickly for moderate and large lags. However,
suppose that homogeneous nonstationarity is approached and at least one of the roots G,-’l

approaches the unit circle. This, in turn, will cause IG;l to go towards unity, A;G¥ will not die
out quickly for larger lags and, hence, p, in [4.3.8] will not damp out fast for moderate and large
lags.

The behaviour of the theoretical ACF for a process which is approaching homogeneous
nonstationarity has some important practical implications. When the sample ACF in [2.5.9] for
a given data set does not die out quickly for larger lags, this may indicate that the data should be
differenced to remove homogeneous nonstationarity. For example, the sample ACF along with
the 95% confidence limits is displayed in Figure 4.3.6 for the 100 simulated data points in Figure
4.3.3 which were generated by an ARIMA(0,1,0) model. Because the sample ACF attenuates
slowly, this indicates the need for differencing. When the simulated sequence from Figure 4.3.3
is differenced to remove nonstationarity, the resulting sample ACF and 95% confidence limits
for the differenced data are as shown in Figure 4.3.7. As expected, after differencing only white
noise residuals remain. This confirms that the data were originally generated by an
ARIMA(0,1,0) model.

In Figure 4.3.6, the sample ACF possesses large values at lower lags that slowly attenuate
for increasing lag. However, as noted by Wichern (1973) and Roy (1977), it is not necessary
that the sample ACF at the first few lags be rather large if nonstationarity is present. In certain
situations, the sample ACF at low lags may in fact be relatively quite small. However, no matter
how large the sample ACF values are at the first few lags, when a given data set possesses homo-
geneous nonstationarity the sample ACF must slowly attenuate for increasing lags.

When it is suspected that a given data set is nonstationary, the time series should be differ-
enced just enough times to cause the sample ACF to attenuate fast for the differenced series.
Following this an ARMA(p,q) model can be fitted to the differenced series which is assumed to
be stationary. In practice, usually d =0, 1, or 2 for ARIMA models that are fitted to many types
of measured series that arise in the natural and social sciences. Furthermore, if the original data
set is transformed by a Box-Cox transformation this does not eliminate the need for differencing.
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Figure 4.3.2. Simulated sequence for a white noise model.
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Figure 4.3.3. Simulated sequence for an ARIMA(0,1,0) model.
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Figure 4.3.4. Simulated sequence for an ARIMA(0,2,0) model.
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Figure 4.3.5. Simulated sequence for an ARIMA(0,3,0) model.
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Figure 4.3.6. Sample ACF and 95% confidence limits for
simulated data from an ARIMA(0,1,0) model.
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Figure 4.3.7. Sample ACF and 95% confidence limits for the differenced data

generated from an ARIMA(0,1,0) model.
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Rather, the transformed time series should be differenced as many times as are required to cause
the sample ACF of the differenced transformed series to damp out quickly for moderate and
large lags.

In certain situations, it may be difficult to ascertain whether or not a given series is nonsta-
tionary. This is because there is often no sharp distinction between stationarity and nonstationar-
ity when the nonstationary boundary is nearby. As one or more of the roots of the characteristic
equation approaches the unit circle, an ARMA process gradually changes to a nonstationary pro-
cess and at the same time the corresponding theoretical ACF attenuates less quickly for increas-
ing lags. Consequently, when examining the sample ACF for a specified data set, it is not
always obvious whether or not differencing is required. If the fitted model is to be used for
simulation, it may be advantageous to choose a model that does not require differencing so that
the simulated data will fluctuate around an overall mean level. On the other hand, a model with
a differencing operator may perform better than a stationary model when the model is used for
forecasting. If employed judiciously, the Akaike information criterion (AIC) (Akaike, 1974)
may be used as a guide to determine if differencing is required (see Sections 1.3.3 and 6.3).

4.3.3 Examples of Nonstationary Time Series
Annual Water Use for New York City

The annual water use for New York City is available from 1898 to 1968 in litres per capita
per day (Salas and Yevjevich, 1972) and a graph of the series is portrayed in Figure 4.3.8.
Because water use has tended to increase over time, the series is obviously nonstationary. The
general patterns in Figure 4.3.8 are quite similar to those in Figure 4.3.3 for data that were simu-
lated from an ARIMA(0,1,0) model. The inherent nonstationarity is also confirmed by the graph
in Figure 4.3.9 of the sample ACF and 95% confidence limits of the New York water use data.
The estimated ACF in Figure 4.3.9 dies off rather slowly and closely mimics the sample ACF in
Figure 4.3.6 for the data that were generated from an ARIMA(0,1,0) model. When the water use
data are differenced, the resulting series is white noise since all of the values of the sample ACF
for the differenced data fall within the 95% confidence limits. Consequently, the annual New
York water use series can be modelled by an ARIMA(0,1,0) model.

Electricity Consumption

The total annual electricity consumption for the U.S. is available from 1920 to 1970 in mil-
lions of kiloWatt - hours (United States Bureau of the Census, 1976) and a plot of the series is
given in Figure 4.3.10. Due to the increase in electricity demand over time, the series is nonsta-
tionary. The behaviour of the electricity consumption series in Figure 4.3.10 closely resembles
that in Figure 4.3.4 for data that were simulated from an ARIMA(0,2,0) model. As shown in
Figures 4.3.11 and 4.3.12, the sample ACF’s attenuate slowly for the given electricity consump-
tion series and also the differenced series, respectively. When the series is differenced twice the
nonstationarity is removed as demonstrated by the sample ACF in Figure 4.3.13. The large
value at lag one indicates the need for a MA parameter in the model. At lag 9, the sample ACF
just crosses the 95% confidence limits and this behaviour may be due to chance alone or could
indicate the need for another parameter in the model. The sample PACF in Figure 4.3.14 for the
electricity consumption data may be interpreted as attenuating quickly at the first few lags due to
the need for a MA component. Based upon this identification information, the most appropriate
model to the electricity consumption data is an ARIMA(0,2,1) model. Moreover, when one
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Figure 4.3.8. Annual water use for New York City.
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obtains a maximum likelihood estimate (see Section 6.2) of the Box-Cox parameter A in
[3.4.30], the estimated value is A = 0.533, which is essentially a square root transformation (i.e.
A =0.5). The need for a data transformation can be visually detected by examining the graphs of
a smoothing procedure which divides the original graph of the electricity demand series into
smooth and rough plots (see Section 22.3).

Beveridge Wheat Price Index

The annual Beveridge wheat price index series which is available from 1500 to 1869
(Beveridge, 1921) is shown in Figure 4.3.15. This series could be closely related to climatic
conditions and, therefore, may be of interest to hydrologists and climatologists. For example,
during years when the weather is not suitable for abundant grain production, the price of wheat
may greatly escalate. If a model can be developed that relates a given hydrologic time series to
the Beveridge wheat price indices, this model could be employed to extend the hydrologic record
if it were shorter than the other data set (see Sections 17.5.4, 18.5.2 and 19.3.2).

From a plot of the Beveridge wheat price indices in Figure 4.3.15 for the period from 1500
to 1869, it can be seen that the series is nonstationary. Both the level and variance of the time
series are increasing over time. A change in variance over time of the original data would even-
tually be mirrored by variance that is not constant in the residuals of the model fitted to the data.
To rectify the situation from the start, natural logarithms are taken of the series so that the vari-
ance changes are not as drastic as those shown in Figure 4.3.15. The sample ACF is given for
the logarithmic series from 1500 to 1869 in Figure 4.3.16. Because the sample ACF attenuates
very slowly for increasing lag, the logarithmic data set should be differenced to remove the
inherent nonstationarity. Figure 4.3.17 is a plot of the sample ACF for the differenced loga-
rithmic data along with the 95% confidence limits where it is assumed that the estimated ACF is
not significantly different from zero after lag 3. In addition to the large values at low lags, the
sample ACF just touches the 95% confidence limits at lag 8. The graph of the sample PACF and
95% confidence limits for the differenced logarithmic series is presented in Figure 4.3.18. A
rather large value of the estimated PACF exists at lag 2 while there is a value that crosses the
95% confidence limits at lag 8. Therefore, an AR operator that includes parameters at low lags
and also lag 8, may be required in a model that is fitted to the data. After considering a number
of possible models, it is found that the most appropriate model to fit to the logarithmic series is a
constrained ARIMA(8,1,1) model where ¢; to ¢, are not included in the AR operator.

4.3.4 Three Formulations of the ARIMA Process

In Section 3.4.3, it is shown how the difference equation for the ARMA(p,q) process in
[3.4.4] can also be written in the random shock form as an infinite MA process in [3.4.18] or else
in the inverted form as an infinite AR process in [3.4.25]. The results in Section 3.4.3 also hold
for the stationary w, process in [4.3.4] which is made stationary by differencing the nonstation-

ary z,‘” process in [4.3.3]. By using similar procedures, the ARIMA difference equation for the
nonstationary z,(") process can also be conveniently expressed in either the random shock or
inverted forms.

Treating ¢(B), 6(B), and (1 —B)d as algebraic operators, the random shock form of the
ARIMA process is
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Figure 4.3.10. Total annual electricity consumption in the U.S.A.
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Figure 4.3.13. Sample ACF and 95% confidence limits for the annual American

electricity consumption series that is differenced twice.
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Figure 4.3.18. Sample PACF and 95% confidence limits for the differenced
logarithmic Beveridge wheat price index series.

z® =[9(B)(1 - B)*1'0(B)a,
=a,+VY19, VYt 0
=(1+y;B +y,B%+ -+ ),
=y(B)a, [4.3.9]

where y(B) is the random shock or infinite MA operator and v; is the ith parameter or weight of

y(B). To develop a relationship for ascertaining the y parameters, first multiply [4.3.9] by
o(B)(1 — B)? to obtain

o(B)(1 - B)?z® = ¢(B)(1 - B)*y(B)a,

From [4.3.3] and [4.3.4], 8(B)a, can be exchanged for ¢(B)(1 - B)?z® in the previous equation
to get

8(B) = ¢(B)(1 - B)*y(B) [4.3.10]
The y weights can be readily determined by expressing [4.3.10] as
o(B)(1 - B) vy, =6, (4.3.11]

where B operates on k, yo=1, Yy, =0 fork <0 and 6, =0if k > q. Asis done for the examples

in Section 3.4.3, the y weights can be recursively calculated by solving [4.3.11] for
k=12,...,q°, where q’ is the number of y parameters that are required.
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In order to write the inverted form of the process, the ARIMA process is reformulated as
a,=6(8)"'¢(8)(1 - B)*2M
=zM gz N -2 - -
=(1-mB -mB2- )z
=n(B)z,™ [4.3.12)

where n(B) is the inverted or infinite AR operator and x; is the ith parameter or weight of n(B).

To determine a relationship for calculating the ® parameters, multiply [4.3.12] by 6(B) to get
0(B)a, = 6(B)n(B)z,M

By employing [4.3.3] and [4.3.4], 6(B)(1 - B)°z,® can be substituted for 8(B)a, in the above

equation to obtain

¢(B)(1 - B)? =6(B)n(B) (4.3.13]
The = coefficients can be easily ascertained by expressing the above equation as
o(B)m, = (1 - B)¢, [4.3.14]

where 1ty = -1 and ¢4 = ~1 when using [4.3.14] to calculate &, for k > 0, t; =0 for k < 0, and
¢, =0if k >p or k <0. By solving [4.3.14] for k =1,2,...,p’, where p’ is the number of &

parameters that are needed, the T weights can be recursively calculated in the same fashion as the
examples in Section 3.4.3.

An interesting property of the ® weights is when d 2 1 the parameters in the inverted opera-
tor sum to unity. This fact can be proven by substituting B =1 into [4.3.13]. In that equation,
¢(1) and 0(1) are not zero since the roots of the characteristic equations for the AR and MA
operators lie outside the unit circle. However, (1 -B)? =0 for B=1 and therefore [4.3.13]
reduces to

x(1)=0
or

Tx=1 [4.3.15]

b= .

Consequently, for d 2 1 equation [4.3.12] can be written as

1P =T 12N+, [4.3.16]
j=1

where the summation term on the right hand side constitutes a weighted average of the previous
values of the process.
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4.4 INTEGRATED MOVING AVERAGE PROCESSES

In Section 4.3.3, it was found that the most appropriate model to fit to the total annual elec-
tricity consumption in the U.S.A. is an ARIMA(0,2,1) model. When modelling time series from
economics and other fields of study, it often turns out that ARIMA models are needed where
p=0 and both d and ¢ arc greater than zero. Because no AR operator is present, an
ARIMA(0,d,q) process is often referred to as an integrated moving average (IMA) process and is
denoted by IMA(0,d,q). For a detailed description of IMA processes, the reader may wish to
refer to the book of Box and Jenkins (1976, Ch. 4, pp. 103-114).

A special case of the IMA(0,d,q) family of processes is the IMA(0,1,1) process given by
(1-B)zMV =(1-6,B)q,
or
Zto') = 7-:(-}? +a,-0,a,,
Keeping in mind that the data, z,, may require a Box-Cox transformation, the above equation can
be more conveniently written by dropping the A superscript and writing it as
z,=2z_1+a,—-0,a_, [4.4.1]

The minimum mean square error forecasts (see Section 8.2) obtained from an IMA(0,1,1) pro-
cess, are the same forecasts that are produced when using single exponential smoothing [see, for
example, Gilchrist (1976, p. 108)]. Because exponential smoothing has been used extensively
for forecasting economic time series [see, for instance, Makridakis and Wheelwright ( 1978) and
Gilchrist (1976)], the IMA(0,1,1) process has received widespread attention. Important original
research regarding the optimal properties of exponentially weighted forecasts is given by Muth
(1960).

To appreciate the inherent structure of the IMA(0,1,1) process in [4.4.1], the random shock
form of the process in [4.3.9] is useful. The y coefficients can be obtained by employing
[4.3.11] for positive values of k. Fork =1

(1-B)y;=-8;0ory; - yo=-6,
But yo =1 and, therefore, y; =1-06;.
Whenk =2

(1-B)y,=00ry, -y, =0
Therefore, Y, = y; = (1 - 6)).
Fork=3

(1-B)y3=00ry3-y,=0
Therefore, y3 =y, = (1 - 6,).
In general,
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(1-B)yy=0o0ry;, -y, ;=0
Therefore, W, =y, = - =y, =(1-8)).
By substituting for the y parameters into [4.3.9], the random shock form of the model is
z=(1- OI)Za,_j +a, (4.4.2]
j=1 _

From [4.4.2] it can be seen that the present value of the process depends upon the current random
shock, a;, plus the summation of an equal weighting of all previous disturbances. Consequently,

part of the random shock in any period has a permanent effect due to the weight, (1 -0,), while
the rest affects the system only in the current time period.

The inverted form of the process can be employed for understanding the properties of an
IMA(0,1,1) process. By examining {4.3.14] for positive values of k, the &t coefficient can be
ascertained. Fork =1

(1-6,B)x; =(1-B); or &, -0, =¢; - ¢
But x5 = ¢g =—1 when determining the & weights and ¢, = 0 since p = 0. Therefore, x=1-6;.
Whenk =2
(1-8,B)m,=(1-B),ormy~ 0,1, = ¢, - 9,
Because no AR parameters are present in the IMA(0,1,1) process, 9; =9, =0 and, therefore,
X, =0;n;=0,(1-6,). Fork=3
(1-6B)r3=(1-BMs0rm3—0;m,=¢3- ¢, =0
Hence, 13 = 0,7, = 0%(1 - 6,).
In general, the x coefficient at lag & is determined by
(1-8,B)m, = (1-B)p, or ;- 8;m,_; =6 (1 -6,
By substituting for the & parameters into [4.3.16), the inverted form of the process is
z=(1-8)) f;l o'z, +a, [4.4.3]
j=
The summation term on the right hand side of [4.4.3] constitutes an exponentially weighted mov-
ing average (EWMA) of the previous values of the process and is denoted as
£100 = (-0 T0f "z [4.4.4]
j=

The weights in [4.4.4] are formed by the sequence of & parameters given by
(1-6,),(1-6,8,,(1 —91)912,(1 - 61)613,... . When 6, has a value of zero, the IMA(0,1,1) pro-
cess in [4.4.2] reduces to an IMA(0,1,0) process where ; = 1 and &, =0 for k>1. As the value
of 0, approaches unity, the & weights attenuate more slowly and the EWMA in [4.4.4] stretches
further into the past of the process. When 0, is equal to one, the MA and differencing operators
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cancel in [4.4.1] and the process is a white noise IMA(0,0,0) process.
From its definition in [4.4.4), the recursion formula for the EWMA can be written as

7)) = (1 -0))z, +0,7,(6) [4.4.5]

This expression is what is employed for obtaining forecasts using single exponential smoothing
[see, for example, Makridakis and Wheelwright (1978, Ch. 5)]. Although the IMA(0,1,1) pro-
cess possesses no mean due to the fact that it is nonstationary, the EWMA in [4.4.4] can be
regarded as being the location or level of the process. From [4.4.5] it can be seen that each new
level is calculated by interpolating between the new observation and the previous level. When
0, is equal to zero, the process is actually an IMA(0,1,0) process and the current level in [4.4.5]

would be solely due to the present observation. If 8, were close to unity, the current level,
7,(6,), in [4.4.5] would depend heavily upon the previous level, Z,_;(8,), while the current obser-
vation, z,, would be given a small weight of (1 - 6,).

Muth (1960) suggests an intuitive approach for interpreting the generation of the single

exponential smoothing procedure or equivalently the IMA(0,1,1) process. From [4.4.3] and
[4.4.4]

7, =21(0)) + g,
By substituting [4.4.3] into [4.4.5] it turns out that
2',(91) = 5,_1(91) + (1 - el)a, [4.4.6]

The first of the previous two equations demonstrates how the current value z, is produced by the

level of the system at time r—1 plus a random shock added at time ¢t. However, [4.4.6] shows
that only a proportion, (1 - 8,), of the innovation has a lasting influence by being absorbed into

the current level of the process.

4.5 DIFFERENCING ANALOGIES

When dealing with discrete data, the differencing operator V¢ = (1 — B)? can be employed
to remove homogeneous nonstationarity. It turns out that the differencing operator is analogous
to differentiation when continuous functions are being studied. Consider, for example, a discrete
process which is defined by

a, fort<T
7= [4.5.1]
c+a, fort2T

where c is a constant which reflects a local level for t 2 T. When g, is assumed to be IID(O,G}),
the mean level of the z, process before time T is zero while the mean of the process is ¢ for

t 2T. The effect of differencing the data once is to remove the local level due to the constant ¢
in [4.5.1]. For ¢t>T the differenced series is calculated as
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Vi =(1-B)y =7 -z =(c+8)= (€ +a.1)
=4a, - a;.]

The above operation is analogous to taking the first derivative of a continuous function of time
which is given as

0 fort<T

y=
¢ fort2T

The derivative % is of course zero for ¢>T and the local level drops out due to differentiation.

Next, consider the analogous effects of differencing operators of order two for the discrete
case and second order derivatives for a continuous function. Suppose that a discrete process is
given as

z;=c+bt+a [4.5.2]

where b and ¢ are constants. The term, (c + bt), forms a linear deterministic trend while the
white noise, a,, constitutes the probabilistic component of the process, z,. By using a differenc-

ing operator of order one, the constant ¢ in [4.5.2] can be removed as is shown by
Vz,=(1-B)z, =2z, — 2
=(c+bt+a)-(c+bit-1)+a,,)
=b+a —-a,

By employing a differencing operator of order two, the entire deterministic trend can be elim-
inated.

sz, =V(Vz)
=(b+ag,-a_)-b+a_,—a_y
=aq,—-2a, +0a,,
For the continuous case, a function of ¢ may be given as
y=c+bt
The value of the first derivative is % =b while %:‘;'— =0. Hence, the first order derivative

removes the intercept, ¢, while the second order derivative completely eliminates the linear func-
tion.
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4.6 DETERMINISTIC AND STOCHASTIC TRENDS

The component ¢ + bt in [4.5.2] is an example of a deterministic linear trend component.
In general, the deterministic trend component could be any function f(¢) and after the trend com-
ponent is removed from the time series being studied, the residual could be modelled by an
appropriate stochastic model. For example, suppose that the series is transformed by a Box-Cox
transformation and following this a trend component f(¢) and perhaps also an overall mean level
W are subtracted from the transformed series. If the resulting series were modelled by an
ARMA(p,q) model, the model would be written as

oB)z™® - f(1) - W) = 6(B)a, [4.6.1]

This type of procedure is similar to what is used with the deseasonalized models in Chapter 13.
Due to the annual rotation of the earth around the sun, there is a physical justification for includ-
ing a sinusoidal deterministic component when modelling certain kinds of natural seasonal time
series. Consequently, the data are deseasonalized by removing a deterministic sinusoidal com-
ponent and following this the resulting nonseasonal series is modelled using an ARMA(p,q)
model.

The model in [4.6.1] possesses a deterministic trend component. In certain types of series
with linear trends, the trends may not be restricted to occur at a specified time nor have approxi-
mately the same slope or duration. Rather, the trends may occur stochastically and there may be
no physical basis for justifying the use of a deterministic trend. As was demonstrated in the pre-
vious section, a differencing operator of order two could account for linear trends if they were
known or expected to be present. Consequently, to allow for stochastic linear trends, the series
which may have first been changed by a Box-Cox transformation could be differenced twice
before an ARMA(p,q) model is fitted. In general, stochastic trends of order d — 1 are automati-
cally incorporated into the ARIMA(p,d,q) model

0(B)V?zM = 0(B)a, [4.6.2]

In certain instances, it may not be clear as to whether or not one should include a deter-
ministic trend component in the model. Recall that the w, sequence in [4.3.3] is assumed to have

a mean of W, = 0 after the z™ series is differenced d times. However, if the estimated mean of
u,, were significantly different from zero this may indicate that differencing cannot remove all

of the nonstationarity in the data and perhaps a deterministic trend is present. When estimating
the parameters of an ARIMA model which is fit to a given data set, the MLE (maximum likeli-
hood estimate) w of i, can be obtained (see Chapter 6). Because a MLE possesses a limiting

normal distribution, by using the estimated SE (standard error) and subjectively choosing a level
of significance, significance testing can be done for the estimated model parameter. For
instance, if the absolute value of W is less than twice its SE, it can be argued that W is not signifi-
cantly different from zero and should be omitted from the model. Likewise, when estimating the
sample ACF, the mean of the differenced series can be set equal to zero when it is thought that a
deterministic trend component is not present. For the sample ACF’s of differenced series that
are examined in this chapter (see, for instance, Figure 4.3.13), it is assumed that the mean of the
differenced series is zero. On the other hand, when a deterministic trend is contained in the data,
the mean of the differenced series should be removed when estimating the sample ACF. This
will preclude the masking of information in the plot of the sample ACF that can assist in
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identifying the AR and MA parameters that are required in a model which is fitted to the series.

4.7 CONCLUSIONS

As demonstrated by the interesting applications of Section 4.3.3, the ARIMA(p,d,q) model
in [4.3.4] is capable of modelling a variety of time series containing stochastic trends. The first
step in modelling a given time series is to ascertain if the data are nonstationary. If, for example,
the sample ACF attenuates slowly, this may indicate the presence of nonstationarity and the need
for differencing to remove it. Subsequent to obtaining a stationary series, an ARMA(p,q) model
can be fitted to the differenced data. If the model residuals are not homoscedastic (i.e., have
constant variance) and/or normally distributed, the original time series can be transformed using
the Box-Cox transformation in [3.4.30] in order to rectify the situation. Following this, an
ARIMA(p,d,q) model can be fitted to the transformed time series by using the procedure just
described for the untransformed one.

For the ARIMA(p,d,q) model in [4.3.4], it is assumed that d can only have values that are
non-negative integers. A generalization of the ARIMA model is to allow d to be a real number.
For a specified range of the parameter d, the resulting process will possess long memory (see
Section 2.5.3 for a definition of long and short memory processes) and, consequently, this pro-
cess is discussed in more detail with other long memory processes in Part V. As explained in
Chapter 11 in Part V, when d is allowed to take on real values, the resulting model is referred to
as a fractional ARMA or FARMA process. However, before presenting some long memory
processes in Part V, the identification estimation, and diagnostic check stages of model construc-
tion are described in Part III for use with the stationary and nonstationary linear time series
models of Part II. Many of the model building tools of part III are modified and extended for
employment with the FARMA models of Chapter 11 as well as the many other types of models
presented in the book and listed in Table 1.6.2.

PROBLEMS

4.1 List the names of five types of yearly time series which you expect would be nonstationary.
Give reasons for your suspicions. Refer to a journal such as Water Resources Bulletin, Sto-
chastic Hydrology and Hydraulics, Journal of Hydrology, Environmetrics or Water
Resources Research and find three examples of yearly nonstationary series. How did the
authors of the paper, in which a given series appeared, model the nonstationarity?

4.2 In Section 4.3.1, it is pointed out that a time series should be differenced just enough times
to remove homogeneous nonstationarity. What happens if you do not difference the series
enough times before fitting an ARMA model to it? What problems can arise if the series is
differenced too many times?

4.3 By referring to the paper of Roy (1977), explain why the values of the sample ACF at the
first few lags do not have to be large if nonstationarity is present.



Nonstationary Nonseasonal Models 169

44

4.5

4.6

4.7

4.8

4.9

An ARIMA(1,2,1) model is written as
(1-B)X(1-0.8B)z,=(1-0.5B)a, -

Write this model in the random shock and inverted forms. Determine at least seven ran-
dom shock and inverted parameters.

For the model in question 4.4, simulate a sequence of 20 values assuming that the innova-
tions are NID(0,1). Simulate another sequence of 20 values using innovations that are
NID(0,25). Plot the two simulated sequences and compare the results. To obtain each syn-
thetic data set, you can use a computer programming package such as the McLeod-Hipel
Time Serics package referred to in Section 1.7. Moreover, you may wish to examine syn-
thetic data generated from other types of ARIMA models.

Write down the definition of a single exponential smoothing model. Show why the fore-
casts from this model are the same as the minimum mean square error forecasts obtained
from an IMA(0,1,1) model.

Give the definition of a random walk process. What is the relationship between a random
walk process and an IMA(0,1,1) process?

For each of the series found in question 4.1, explain what type of trend do you think is con-
tained in the data? How would you model each series?

Outline the approaches that Pandit and Wu (1983) suggest for modelling stochastic and
deterministic trends in Chapters 9 and 10, respectively, in their book. Compare these to the
procedures described in Section 4.6 and elsewhere in this book.

4.10 Describe the procedure of Abraham and Wu (1978) for detecting the need for a determinis-

tic component when modelling a given time series. Discuss the advantages and drawbacks
of their approach.
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