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Summary 

Environmental systems are complicated. They include very intricate spatio-temporal processes, inter- 
acting on a wide variety of scales. There is increasingly vast amounts of data for such processes from 
geographical information systems, remote sensing platforms, monitoring networks, and computer models. 
In addition, often there is a great variety of scientific knowledge available for such systems, from partial 
differential equations based on first principles to panel surveys. It is argued that it is not generally ade- 
quate to consider such processes from a joint perspective. Instead, the processes often must be considered 
as a coherently linked system of conditional models. This paper provides a brief overview of hierarchical 
approaches applied to environmental processes. The key elements of such models can be considered in 
three general stages, the data stage, process stage, and parameter stage. In each stage, complicated depen- 
dence structure is mitigated by conditioning. For example, the data stage can incorporate measurement 
errors as well as multiple datasets with varying supports. The process and parameter stages can allow 
spatial and spatio-temporal processes as well as the direct inclusion of scientific knowledge. The paper 
concludes with a discussion of some outstanding problems in hierarchical modelling of environmental 
systems, including the need for new collaboration approaches. 

Key words: Bayesian; CAR; Change of support; Climate; Co-kriging; Conditional; Convolution; Dynamic; 
Markov random field; MCMC; Ozone; PDE; Spatial; Spatio-temporal; Spectral. 

1 Introduction 

Global warming, El Nifio, the "ozone hole", genetically modified crops, inadvertent introduction 
of harmful species, the decline of amphibians, emerging diseases--these are but a few of the "hot 
button" issues in the environmental/ecological sciences. How do we begin to make sense of these 
issues? Can we afford to consider them individually, or must we consider them collectively? How 
do we combine the "known" scientific first principles with uncertain empirically-based parameteri- 
zations? Finally, how can we do all of these things given the massive amounts of data available from 
remote sensing platforms? Although no single methodology can hope to provide the answer to all of 
these questions at once, it can be argued that a hierarchical framework holds the most promise. 

Environmental processes are complicated. What does the word "complicated" mean to a statis- 
tician? It is hard to imagine an environmental process that is not ultimately some manifestation 
of an underlying spatio-temporal process. For example, spatial processes such as the distribution 
of a radioactive contaminant in a given area, can be considered as manifestations of underlying 
spatio-temporal processes integrated over time. Similarly, temporal trends in global temperature can 
result from a very complicated multivariate spatio-temporal process (i.e., the earth/ocean/atmosphere 
system) integrated over space and the other relevant variables. These spatio-temporal processes often 
encompass a very large range of spatial and temporal scales of variability, and include nonlinear 
interactions across domains, variables, and systems. Furthermore, a key aspect of environmental 
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science (by definition) is that there are multiple "factors", biological and physical, that can affect 
organisms or communities. Thus, environmental processes arise from interactions of various pro- 
cesses. These interactions are often occurring at various scales in space and time. Although it is often 
convenient to simplify such systems either by ignoring the multivariate interaction, or by assuming 
spatial/temporal stationarity, linearity, and Gaussianity, it is increasingly the case that the scientific 
questions of interest are becoming sufficiently complex that one can no longer justify such assump- 
tions. 

The later years of the 20th century saw the exponential increase in the amount of data related to 
environmental processes. Most of this increase was/is due to rapid technological development, specif- 
ically in terms of remote sensing systems, and computational technology required to pre-process 
and store the vast quantities of available information. In addition to remote sensing, there have 
been numerous projects to provide vast in situ monitoring networks (e.g., the ocean buoy network 
in the tropical Pacific; ecological monitoring systems such as the Long Term Ecological Research 
(LTER) network, e.g., Kaiser, 2001). Correspondingly, along with computational technology and 
the increased monitoring efforts, scientists in some disciplines have been able to develop ever more 
sophisticated deterministic computer models of environmental systems which have a tremendous 
amount of potentially useful output (e.g., General Circulation Models (GCMs) of the atmosphere and 
ocean, coupled to models of biota to study potential climate change, Blackmon et al., 2001). Thus, 
environmental statisticians have a sometimes bewildering array of data to consider when modeling 
environmental systems. In addition to the sheer volume of data, these data are often of differing 
spatial and temporal support, orientation, and alignment, relative to the process of interest. 

Folded into the issues surrounding process and data complexity is the consideration of the rel- 
evant scientific information that is available. That is, there is often a great deal of knowledge that 
has been developed concerning environmental processes, ranging from physical laws (such as the 
dynamic and thermodynamic partial differential equations governing the atmosphere and ocean), 
"established" empirical relationships, as well as purely subjective considerations such as "expert 
opinion" developed from panel surveys. Of course, depending on the problem of interest, one may 
have various levels of confidence in such understanding. The question is then how can this informa- 
tion be utilized, or should it be? Very seldom do we see "designed" experiments in environmental 
studies as they are typically "observational" in nature. In that case, to evaluate scientific hypotheses, 
one must build the relevant information into the model, and evaluate the associated parameters or 
processes after consideration of the data. In the case of prediction, one may very well use all the 
information available, whether it be subjective or not, in an attempt to obtain the best prediction 
possible. 

Faced with very complex processes, multiple sources of data from various platforms, and various 
degrees of scientific knowledge, the scientist is often overwhelmed. Modeling, whether it be deter- 
ministic or stochastic, can approach such complex problems from a "total process" or "connected 
subprocess" perspective. Or, in the language of statistics, from either a joint or conditional viewpoint. 
Although it may be intuitive to consider processes from a joint perspective, it can present serious 
challenges to statistical modeling. It is very difficult to specify joint multivariate spatio-temporal 
covariance structures for complicated environmental processes. It may be much easier to factor such 
joint distributions into a series of conditional models. For example, in forest landscape modeling, 
it is common to view the relevant spatio-temporal processes from a conditional frame of reference 
(e.g., tree structure is conditional on climate, land use, management, fire, etc.). In this case, it is then 
natural to link conditional models together in a hierarchical framework, one that is probabilistically 
valid. On the other hand, it is common in the atmospheric sciences to think of the atmosphere as an 
enormous multivariate spatial state process that evolves over time (nonlinearly). In this case, scien- 
tists may not be used to thinking conditionally, yet many of their formulations can still be viewed 
that way (e.g., geostrophic wind conditioned on the gradient of pressure). In either case, it is often 
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possible to simplify modeling specifications, account for uncertainties, and use first principles in a 
series of conditional models, coherently linked together by simple probability rules, i.e., hierarchical 
models. 

Thus, it is not surprising that practitioners are increasingly finding that the way to proceed given 
these circumstances is through the use of hierarchical models. Such models can be considered from 
either a classical or Bayesian perspective. However, as the level of complexity increases (or "subjec- 
tive" prior information is included) the Bayesian paradigm is usually necessary. Indeed, the increased 
use of such approaches has coincided with the revolution in Bayesian computation exemplified by the 
adoption and further development of Markov chain Monte Carlo (MCMC) simulation approaches. 
However, there is still very much of a role for data-based or "empirical Bayesian" analysis, particu- 
larly in the early stages of an investigation when there may be little knowledge about the parameter 
distributions (e.g., Carlin & Louis, 2000; Smith, 1999). 

The remainder of this paper will consider hierarchical models in the environmental sciences. 
Clearly, the exposition will be somewhat biased by my own experiences and beliefs as to what is 
important. The discussion is not intended to be a comprehensive review of the entire literature on 
hierarchical models in environmental science. Rather, it is intended to provide an introduction and 
glimpse of how hierarchical models have been and can be used to facilitate modeling of environ- 
mental processes. The basic principles of hierarchical modeling are well-established and the cited 
references can provide additional perspective as well as increased technical detail. Section 2 will 
describe the hierarchical approach from a simple schematic perspective. This will be followed by a 
more detailed description of data models in the hierarchical framework, including a discussion of 
the change of support problem. Section 3 will emphasize the process modeling stages in hierarchi- 
cal models. As is common in the literature, the discussion will be somewhat artificially separated 
into spatial and spatio-temporal processes. Finally, Section 4 will give a discussion of some of the 

outstanding challenges for the future of hierarchical modeling in the environmental sciences. 

2 Basic Hierarchical Approach 

The formal ideas of hierarchical modeling arise from simple probability rules. Consequently, some 
early modeling efforts in the mid 20th century that are clearly hierarchical in nature, are not referred 
to as such (see the Bibliographic note in Gelman et al. (1995, pp. 154-155) for a nice summary). 
Although the concept is not inherently Bayesian, over time most of the literature has been developed 
in that context, and the best pedagogical descriptions are most often found in the Bayesian literature 
(e.g., Gelman et al., 1995). Our purpose here is not to reproduce such general descriptions, but rather 
to describe hierarchical models in the context of a framework for environmental modeling. These 
ideas follow those in Berliner (1996) and Wikle, Berliner & Cressie (1998) and Wikle et al. (2001). 

Hierarchical modeling is, in essence, based on the simple fact from probability that the joint 
distribution of a collection of random variables can be decomposed into a series of conditional 
models. That is, if X, Y, Z are random variables, then we can write the joint distribution in terms 
of a factorizations such as [X, Y, Z] = [ZIY, X][YIX][X]. [Note, throughout the paper we make 
use of the bracket notation for probability distribution in which [Y] refers to the distribution of Y 
and [YIX] refers to the conditional distribution of Y given X (Gelfand & Smith, 1990)]. This simple 
formula is the crux of hierarchical thinking. For example, for a spatio-temporal process, the joint 
distribution describes the stochastic behavior of the process at all spatial locations and all times, 
including all possible interactions. This can be extremely difficult (if not impossible) to specify for 
many environmental processes. However, it is often much easier to specify the distribution of the 
relevant conditional models (e.g., conditioning the process at the present time given the past). In this 
case, the product of a series of relatively simple conditional models leads to a joint distribution that 
can be quite involved. 
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For complicated processes in the presence of data, the idea is to approach the problem by breaking 
it into three primary stages (e.g., Berliner 1996): 

Stage 1. Data Model: [data I process, parameters] 

Stage 2. Process Model: [process parameters] 

Stage 3. Parameter Model: [parameters]. 
The first stage is concerned with the observational process or "data model", which specifies the 
distribution of the data given the process of interest and parameters that describe the data model. 
The second stage then describes the process, conditional on other parameters. Finally, the last 

stage accounts for the uncertainty in the parameters. In applications, each of these stages may have 

multiple sub-stages. For example, if the process is spatio-temporal, it might be modeled as a product 
of several physically-motivated conditional distributions suggested by a state-space formulation. 
Similar decompositions are possible in the parameter stage. 

Ultimately, we are interested in the distribution of the process and parameters updated by the data. 
We obtain this so-called "posterior" distribution via Bayes' rule: 

[process, parameters data] o [data I process, parameters][process I parameters] [parameters]. 

This formula serves as the basis for Bayesian hierarchical analysis. However, there are several critical 
points to consider. These will be addressed in more detail in the following subsections. 

2.1 Data Models 

Datasets commonly considered for environmental processes are complicated and usually exhibit 
substantial spatial, temporal, or spatio-temporal dependence. The major advantage of modeling the 
conditional distribution of the data given the true process is that substantial simplifications in model 
form are possible. For example, let Da be data observed for some process Y, and let 0a be parameters. 
The data model is written, [Da I Y, a]. Usually, this conditional distribution is much simpler than 
the unconditional distribution of [Da] as most of the complicated structure comes from the process 
Y. Often, this model simply represents measurement error. Note that in this general framework the 
measurement error need not be additive. Furthermore, as will be shown, this framework can also 
accommodate data that is at a different support than the process. 

This framework also provides a natural way to combine data sets. For example, assume that Da 
and Dc represent data from two different sources. Again, let Y be the process of interest and 0 a, 0c 
be parameters. In this case, the data model is often written 

[Da, D I Y, Oa, 0] = [Da Y, Oa][DcI Y, O1]. (1) 

In words, conditioned on the true process, the data are assumed to be independent. Of course, this 
does not suggest that the two datasets are unconditionally independent, they surely are not. Rather, 
the majority of the dependence among the datasets is due to the process, Y. This assumption of 
independence is exactly that, an assumption. Although often very reasonable, it must be assessed 
critically for each problem. 

The conditional partitioning of the datasets in (1) is often similarly applied to multivariate models. 
That is, say our processes of interest are denoted Ya and 

Yc, 
with associated observations Da and Dc. 

One might write 

[Da, Dc Ya, Y, Oa, Oc] = [ Da Ya, Oa][D0 Yc, Oc]. (2) 

Again, this represents the assumption that given the true processes of interest, the datasets are 
independent. Such an assumption must be evaluated and is not required in hierarchical analysis, but 
it is often very reasonable and can lead to dramatic simplifications in the computations. 
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2.2 Process Models 

It is usually the case that developing the process distribution is the most critical step in constructing 
the hierarchical model. This distribution is often further factored hierarchically into a series of 
submodels. For example, assume the process of interest is composed of two subprocesses, Ya and 
Y,. Perhaps Ya represents hospital admission rates for a geographical region and Y, might represent 
atmospheric particulate concentrations over the same region. Furthermore, define parameters 0 y = 

{Oyr, 
Oy, } that describe these two processes. One might consider the decomposition, 

[Ya, YIOy] = [YI Y~, Oy][YIOy]. (3) 

This is just a fact of probability theory and can always be written. However, it may be the case that one 
can assume the parameters are conditionally independent in which case the right hand side of (3) can 
be written as [Ya I Yc, y ][Y, c y, ]. The challenge is the specification of these component distributions. 
Indeed, most of the effort in the development of hierarchical models is related to constructing these 
distributions. It is often the case, however, that there is very good scientific insight that can suggest 
appropriate conditioning order and possible models for the component distributions. For example, 
in a model with ozone and temperature, it is natural to condition ozone on temperature due to the 
chemistry of ozone production (Royle & Berliner, 1999). Similarly, Y, might represent the process 
of interest at time t and Yc the same process at the previous time, t - 1. Natural deterministic models 
for process evolution could suggest the form of such models (e.g., Wikle et al., 2001). 

2.3 Parameter Models 

The parameter distributions may require significant modeling effort. As is the case with the data 
and process models, the distribution of parameters is often partitioned into a series of distributions. 
For example, consider the data model (2) and process model (3). One must specify the parameter 
distribution [0a, Oc, O,, O 

y,]. 
Often, one can make reasonable independence assumptions regarding 

this distribution, e.g., [Oa, 0 , O ,, Oy,] = 
a[Olla[][OGy][OyJ,]. 

Of course, this assumption must be 
justified. There are usually appropriate submodels for parameters as well, leading to other levels of 
the model hierarchy. In many cases, for complicated processes, there is substantial scientific insight 
that can go into developing the parameter models (e.g., Wikle et al., 2001). In other cases, one does 
not know much about the parameter distribution, suggesting "vague priors" or data-based estimates 
be used. That is, it is often useful to think empirically at first and perform exploratory data analysis 
in order to develop understanding about the process. The emphasis in this case is on model building. 

The development of parameter distributions has often been the focus of objections due to its implied 
subjectiveness. Of course, the formulation of the data and process models are quite subjective as well, 
but those choices have not generated as much concern, probably because such subjectiveness is just as 
much a part of classical model building as it is the Bayesian approach. One must simply recognize that 
a strength of the hierarchical (Bayesian) approach is the quantification of such subjective judgment. 
Hierarchical models provide a coherent probabilistic framework in which to incorporate explicitly 
in the model the uncertainty related to judgment, scientific reasoning, subjective decisions, and 
experience. 

3 Data Models and Change of Support 

Section 2.1 outlined the general framework for data distributions, in which one specifies the 
distribution of the data given the process. This approach also provides a coherent framework in 
which to include data at different support than the process. 

The consideration of problems where the data have a different level of support (usually spatial) 
than the desired inference is long-standing in many different disciplines and known by many different 

This content downloaded from 129.100.76.137 on Thu, 15 Jan 2015 15:48:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


186 C.K. WIKLE 

names (e.g., Cressie, 1996; see Gotway & Young (2002) for a comprehensive review). Increasing 
attention has been focused on this issue as technological advances have made available many new 
datasets at varying spatial scales and orientations, primarily from Geographical Information Systems 
(GIS), remotely sensed data, and massive numerical models. Several recent studies have shown that 
the Bayesian paradigm provides a natural framework in which to incorporate such datasets (e.g., 
Gelfand et al., 2001; Mugglin et al., 2000). We refer to this as the change of support (COS) problem 
and discuss a basic hierarchical approach below. 

3.1 Hierarchical Change of Support 

Wikle & Berliner (2002) formulate the COS problem specifically within the hierarchical frame- 
work. Although this approach can be applied in general to spatio-temporal processes and COS in 
space and time, the following discussion illustrates the idea in terms of a spatial process. 

Wikle & Berliner (2002) consider a spatial process {Y(s) : s E D} where s is a spatial location 
in domain D C R2, and var(Y(s)) < xo. For any region S C D, they adopt the geostatistical COS 
notion of "block average": 

Y(S) = Y(s)ds, ISI > 0 (4) 

where IS| = 
fs ds is just the area of S in two-dimensional Euclidean space. Now, consider three 

types of support: "Subgrid", Ai, i = 1 
...., 

na; "Grid", Bj, j = 1, ..., nb; and "Supergrid", 
Ck, k = 1 

...., 
n,, where 0 < I Ail < I BjI < ICk < 00. Note that this framework includes 

situations with "nested grids" for which each A is contained in only one of the B 's and in turn, each 
B is contained in only one of the C's. Alternatively, this formulation allows situations in which the 
grids overlap (e.g., some of the A's may overlap with various B's, etc.). In addition, the framework 
accommodates cases where the grids are regularly spaced or irregularly spaced. 

Assume one has observations Z(Ai), Z(Ck) for i = 
1.... , n,, k = 

1i...., 
nc, and the process 

of interest is to be considered at the intermediate B level of support. Although not considered here, it 
is easy to include data at the B level and data with point support as well. One approach to hierarchical 
COS is based on the assumption that for any s E D there is some B j E D such that: 

Y(s) = Y(Bj) + y(s), (5) 

where {y (s) : s E D} is a correlated spatial process with covariance c y(r, s) and the distribution of 
y(s) does not depend on Y(Bj), j = 1, ... nb. Then, one defines a subgrid process utilizing (4) 
and (5): 

Ai I Ai I 

- gYB + I y(s)ds, (6) 

where YB - (Y(BI),..., Y(B,1))' and elements of gai are given by ga,i(j) 
= B 

il, the area of 
overlap between Bj and Ai, normalized by the area of A i. Note, this is similar to the ad hoc approach 
used in many GIS packages to accommodate data of differing support and alignment (see the review 
by Gotway & Young, 2002). 

For illustration, consider a conditional Gaussian assumption for the process Y A = (Y(A1) ... 

Y(A,,))'. 
In that case, 

YAIYB, ~A N(GaYB, A) (7) 
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where Ga contains the elements ga,i(j) and the (p, q)-th element of EA is given by 

EA(p, q) cy(r, s)drds/(|Aq||Ap|). (8) 

Given the measurement error model: 

ZAIYA, Ea "N(YA, Ea) (9) 

one can combine (7) and (9) by integrating out the YA process to get, 

ZAIYB, • 
E a " N(GaYB, E + Ea). (10) 

Note that we can derive an analogous distribution for [Z c IYB ], the case where the data have larger 
support than the process. 

Typically, the covariance function c, and the measurement error process must be parameterized 
in this setting. However, given that most of the complicated structure is in the process, it is often the 
case that these can be represented by relatively simple processes (e.g., stationary spatial models for 
y and simple white noise measurement error). Indeed, the separation of the COS and measurement 

processes from the environmental process is the primary advantage of the hierarchical data model. 

Finally, note that the approach is not limited to the Gaussian assumptions. For example, Mugglin & 
Carlin (1998), Mugglin et al. (1999), Mugglin et al. (2000), and Best et al. (2000) discuss hierarchical 
approaches for misaligned count data. 

In many cases, the volume of spatial data and/or the density and size of the prediction domain 
are so large that the hierarchical approaches mentioned above are not feasible. An alternative in 
that case is based on multi-scale models (e.g., Chou et al., 1994; Huang & Cressie, 2000). That is, 
one considers nested levels of support where the "parent" at one level of support is associated with 
several "children" with smaller levels of support. For example, assume the data Z is observed at some 
support S, so one obtains a data model such as [Z s Ys, E]. Then, one considers the distribution of 
this process Ys conditioned on its "parent" so [Y s H, Y,, Es], where Y, represent the parent nodes, 
and H describes the relationship between "parent" and "child". Clearly, in the Gaussian case one can 
also write a distribution for the parent nodes conditional on the children. Chou et al. (1994) illustrate 
how the use of these conditional distributions leads to very efficient Kalman filter implementations 
across scale. Huang & Cressie (2000) extend this idea into the fully hierarchical setting. Examples 
have considered ocean surface height (Fieguth et al., 1995) and global ozone measurements from 
satellites (Huang et al., 2002). It is important to keep in mind the vast amount of data considered in 
such analyses. 

4 Process Models 

Although the process models can relate to any process of interest in environmental science, this 
discussion will focus on spatial and spatio-temporal processes. In particular, we will focus on a 
general framework for spatial processes, approaches for modeling spatial structure, and hierarchical 
approaches to multivariate spatial models. We will also consider hierarchical spatio-temporal models 
and dynamic processes. 

4.1 Spatial Models 

The hierarchical framework can generalize most of the standard modeling techniques used for 
spatial statistical modeling (e.g., Cressie, 2000a). The following describes a general framework for 
spatial models, but is not intended to be exhaustive. 
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4.1.1 General hierarchical spatial model framework 

Assume there are observations of a spatial process, denoted by Z = (Z(r 1), ... Z (r,, ))'. Further- 
more, assume there is some underlying spatial process of interest, denoted by y = (y (s 1), ... , y (s, ))' 
where the spatial locations of the observations may or may not correspond to the locations (or the 
support) of the process of interest. Thus, the general framework for hierarchical spatial modeling is 
simply given by the component models: 

[Zly, 0][yl0,][0, 09], (11) 
where 0 and 0,. are parameter vectors. As simple as this seems, it is quite flexible. For example, as 
shown by Le & Zidek (1992) and Handcock & Stein (1993), a hierarchical version of the geostatistical 
"universal kriging" model can be written, 

ZI3, y, 2 -- N(XP3 + Ky, a2I) (12) 

y 
~- 

N(0, E(0,)) (13) 

, - N(30, E•) (14) 

[u2, 01,9/30, EI] (15) 
where the X/3 term typically corresponds to large-scale trend attributable to covariates in X, a 
accounts for small-scale spatial variability, and y is the underlying correlated spatial process. Usually, 
if the observations and underlying spatial processes coincide, then K is just the identity matrix. 
Otherwise, K might be an incidence matrix or something more complicated (e.g., Wikle et al., 
1998). One may specify distributions for the parameters (15); often, point mass priors are specified. 

The "universal kriging" model presented above is analogous to the linear mixed model (LMM) 
framework in classical modeling (i.e., specifically if/3 and the parameters are assumed to be fixed but 
unknown). This suggests that the general framework shown in (11) might also be used to consider a 
generalized linear mixed model (GLMM) formulation. Indeed, Diggle, Tawn & Moyeed (1998) have 
shown that one can consider non-Gaussian data conditioned on a Gaussian random field from this 

perspective. That is, one assumes the conditional mean relationship E(Z(r i)ly, 3) = g (ri). Then, for 
some link function g( ), it is assumed that the transformed mean can be written g (M) = X/3 + Ky + E, 
where the error term E is sometimes not necessary. Critical to this approach is the assumption 
y -- N(0, E(O,Q)). That is, y follows a Gaussian random field model, depending on some parameters 
0,. that describe the spatial structure. As with the Gaussian case, there may be distributions on /3 and 
the variance parameters as well, similar to (14) and (15). This modeling approach is quite powerful. 

4.1.2 Spatial structure 

In the hierarchical spatial model above, it is assumed that y has covariance matrix E(O,). In simple 
cases where y is defined in continuous space and is assumed to be stationary, one of the well-known 
classes of spatial dependence functions (e.g., the Matern class) can be considered, conditional on a 

relatively few parameters (e.g., Handcock & Stein, 1993). Although the stationary assumption seems 
restrictive, it is important to remember that after conditioning on the X/3 component, the spatial 
structure is often reasonably close to stationary. 

Despite the usefulness of stationary spatial models, sometimes more complicated spatial structures 
must be considered, particularly over large spatial domains. Guttorp & Sampson (1994) and Samp- 
son, Damian & Guttorp (2001) have provided comprehensive reviews of approaches to modeling 
nonstationary spatial covariance. Many of these can be considered from a hierarchical perspective, 
including the spatial deformation approach (Damian, Sampson & Guttorp, 2001), the convolution 
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kernel approach (Higdon, 1998), and spectral approaches (Nychka et al., 1999; Nychka et al., 2002; 
Fuentes, 2002; Wikle, 2002b). 

Another issue of practical concern is when the spatial process is very high-dimensional. That is, if 
the spatial process of interest is required at a large number of prediction locations, the implementation 
of traditional hierarchical spatial methodology outlined by Diggle et al. (1998) can be problematic. 
Recently, Wikle (2002b) showed that spectral transform approaches can be used in the non-Gaussian 
hierarchical spatial setting to efficiently model spatial processes of high dimension. 

4.1.3 Markov random field models 

As described above, the process modeling stage in a hierarchical model may be decomposed into 
substages. This is one motivation for Markov random field (MRF) spatial models (Besag, 1974). 
These models are specified conditionally, which can afford certain computational advantages. For a 
review of these processes see Cressie (1993) and Besag et al. (1995). A very simple outline of such 
processes relative to spatial process models is given below. 

MRF models are most useful in situations where the set of all possible spatial locations is discrete 
(countable). A collection of such sites is often referred to as a lattice. Examples include disease 
mapping in counties and modeling air-pollution on a grid. The first is an example of an irregular 
lattice and the latter is often a regular lattice. Regular lattices have neighborhoods that are primarily 
defined by adjoining sites and irregular lattices often have neighborhoods defined by Euclidean 
proximity. 

Consider a spatial process defined at n spatial locations {s1,...,s,,}, y = (y(sl),..., y(s,))'. 
This process has joint distribution [y(s ), 

...., 
y(s,,)]. From this joint distribution, the conditional 

distribution of the process at each location i can be expressed in terms of all other sites (j # i) as 

[y(si)l{y(sj) : j i}], i= 1 ... , n. (16) 

The neighborhood Ni of the i-th site is then defined as the collection of locations such that 

[y(si)J{y(sj) : j # i}] = [y(si)l{y(sj) : j Nill], i = 1 ... , n. (17) 

In other words, the conditional probability at site i depends only on nearby values of the process 
{y(sj) : j E Ni }. The specification of these conditional, neighborhood-specific distributions must 
be made consistently so that the joint distribution is well-defined (e.g., Besag, 1974; Kaiser & 
Cressie, 2000). Examples of such models include auto-Gamma models for non-negative continuous 
processes, auto-Poisson models for spatial counts, auto-logistic models for binary spatial random 
variables, and auto-Gaussian models for spatial Gaussian processes on a lattice. The auto-Gaussian 
model is considered in more detail below. 

Consider a spatial process y in which the conditional models (17) are Gaussian with, 

Prob{y(si)y(Ni)} = -- exp[- {y(Si) -- g(Si) 
- 

E cij[y(sj) - g(SJ)]}2], (18) 
r-7U 2ai jENi 

where cij are coefficients that must obey certain restrictions (given below) and (s i) - E[y(si)]. It 
can be shown that the joint distribution for y is then given by 

y "~ 
N(_, 

(I - C)- M), (19) 

provided (I - C)-1 is positive-definite, and where 
-t 

[g(si) 
.... 

,g(s,,)]', C is an n x n matrix 
with (i, j)-th element cij, where cijoj = cjiai (symmetry), cii = O, Cik = 0 for k not in Ni, and 
M is a diagonal matrix with oa ..., o~ , on the main diagonal (e.g., Cressie, 1993). Note that the 
inverse of the joint covariance matrix, M -1(I - C), often called the "precision matrix", is typically 
sparse when the neighborhood is relatively small. 
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The Gaussian MRF can easily be incorporated in the hierarchical framework described previously. 
For example, let Z = XP3 + y + E, where now y - N(O, (I - C)-'M). The parameters are then 
specified at the next level of the hierarchy. In practice, the neighborhood structure of the MRF is 
often simplified greatly so that the number of unknown parameters is reasonably small. For example, 
a typical assumption is that only those neighbors that are immediately adjacent to a given location are 
necessary to specify the conditional distribution; this is often referred to as a first-order dependence 
model or conditional autoregressive (CAR) model. There are many examples of such models in the 
disease mapping and abundance mapping literature (e.g., Clayton & Bemardinelli, 1992). Although 
the CAR model is used frequently, its inherent local spatial dependence can be quite limiting. Rue 
& Tjelmeland (2002) show that one needs high-order dependence to obtain covariance structures 
similar to the classical geostatistical spatial dependence models (e.g., the Matern class). 

Although data often arise in what may be viewed naturally as continuous space, one may param- 
eterize the underlying spatial process as a discrete-space MRF. This is a natural formulation when a 
convenient stratification scheme can be specified, where "within-strata" measurements are assumed 
to be independent conditional on the stratum effect. In this case, one would express the model as 
Z = X,3 + Ky + E where K associates each datum with one of the discrete strata. Note the similarity 
of this interpretation with the change of support notions given in Section 3.1. Indeed, the hierarchical 
change of support can be used to specify the data model such that the point support data are given in 
terms of a lattice process at larger support, which can then in turn be modeled by a MRF. Thus, MRFs 
may be useful regardless of whether or not the data actually have discrete spatial support. However, 
it is important to recognize the inherent disadvantage of MRFs regarding COS. In particular, MRFs 
defined on point support do not inherently aggregate to larger scales. The construction of the process 
on the larger support is non-trivial. For example, consider an n x I process y that has a MRF struc- 
ture with covariance matrix E = (I - C)-iM = {akl 

k,k=l1.....n. 
Now, consider a change of support 

problem in which we simply combine two elements of y, say z I = y(si) + y(sj) for some i # j. 
Then, consider the joint distribution of the (n - 1)-dimensional aggregated process consisting of z 1 
and all of the y(Sk), k # i, j. Even such a simple COS (adding two elements of original process) 
does not yield obvious MRF structure on the precision matrix of the new aggregated process. One 
can see this by noting that var(z 1) = ?ii + ?jj + 2uij and cov(z1, y(Sk)) = Uik + O jk, k # i, j. 
Thus, if we define the covariance of the new COS process as F, then it is not necessarily the case 
that the precision matrix of the aggregated process, r -1, is suitably sparse. 

Finally, we note that for the Gaussian MRF model, the spatial dependence is specified through the 
conditional distributions (17) and ultimately the inverse covariance matrix (i.e., precision matrix). 
This is in contrast to the continuous Gaussian random field case where one specifies the covariance 
matrix directly. There may be some computational advantages to the MRF approach in many prac- 
tical situations due to the sparcity of the inverse covariance matrix. Furthermore, in the Bayesian 
setting, one can usually make use of the conditional distributions in efficient MCMC algorithms. 

4.1.4 Multivariate spatial models 

It is seldom the case in environmental studies that measurements are made on a single variable. 
For example, air pollution monitoring networks usually collect observations on several pollutants as 
well as meteorological variables. Clearly, there are relationships between these variables and such 
relationships will make up the joint spatial structure of the variables. Even if interest is in one specific 
variable, it is often the case that one can "borrow strength" from other related variables. In either 
context, one must understand the relationships between the variables. 

The traditional approach to modeling multivariate spatial processes is known as "co-kriging" and 
involves the direct specification of the joint spatial structure among the relevant set of variables 
(Meyers, 1982; Ver Hoef & Cressie, 1993). Of course, it is often extremely difficult to specify 
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realistically the joint spatial structure for complicated environmental processes, especially the second- 
order spatial structure. Alternatively, one can recast the model in a hierarchical perspective as outlined 
in Royle & Berliner (1999). For example, in the case of a bivariate spatial process [y 1, Y2] and 

parameters 0 = {01, 02), one can simply consider 

[Y1, Y2, 01 = [YIY2, 01][y2102][1, 02]. (20) 

Rather than consider the interaction between the processes via the second-moments (e.g., covariance), 
one establishes a first-order relationship between the two processes. That is, y 1 is related to y2 in the 
conditional mean, about which one usually knows more than the joint covariance. This is particularly 
true if one knows that there is a mechanistic (or causal) relationship between y I and Y2. Of course, 
the model is valid regardless of such a relationship. Royle & Berliner (1999) illustrated the approach 
with the problem of predicting ozone given temperature. Since it is well known that the chemistry 
of ozone production is related to temperature, they conditioned ozone (y 1) on temperature (y2) with 
a model like: 

ylIY2, B,1 i, )112 " N(XI,31 + By2, E112), (21) 

Y212, 2 " N(X2/2, E2), (22) 

where X1 and X2 both contained a column of ones and a column representing the relevant latitude, 
B = 01, and the parameters were given distributions at the next stage. 

A very important aspect of such spatial modeling is that the conditioning on observed variables 
need not be explicit. Rather, one can condition the observed processes on some unobserved (latent) 
process, and model the latent process at a lower stage of the hierarchy. This is particularly useful 
when there are a large number of variables that can be at least partially explained by a common 
(hopefully, lower dimensional) spatial process. For example Royle et al. (1999) considered such an 
approach for modeling wind components given an unobserved pressure process. Specifically, for the 
east-west (U) and north-south (V) wind component processes with associated observations D , and 

D,,, respectively, and the unobserved pressure process P, the basic model was: 

D,, D,, 
IU, 

V, 
Og 

2 

K. 

l ,- 
K 

(23) 

((BKV 
,P 

U, VIP, BB,B, E .N BP )' ~E (24) 

P| pp, a2, Ro - N( pla, 
o'pR0), 

(25) 

where K was an incidence matrix relating observed locations to prediction locations, and B,, B,, 
specified the conditional relationship between wind and pressure (based on a physical relationship 
known as geostrophy). These parameters and the others were given distributions in the lower levels 
of the hierarchy. The critical idea in this model is that by specifying a relationship between the wind 
process and the pressure process in the mean, the structure of E is greatly simplified. 

4.2 Spatio-Temporal Models 

As mentioned previously, most processes of interest to environmental scientists are either spatio- 
temporal, or space or time averages of such processes. In principle, models for spatio-temporal 
processes are relatively easy to formulate from a joint perspective. However, lack of complete under- 
standing and the "curse of dimensionality" make the implementation of these models challenging, to 
say the least. A hierarchical formulation is often preferable as it allows one to build very complicated 
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joint spatio-temporal structure in terms of relatively simple conditional models. 
Consider spatio-temporal observations Z(s; t) defined for s E D , t E 

Dt, 
where Ds and D, 

are spatial and temporal domains, respectively. The domains may be continuous or discrete, but 
we typically consider D, to be a discrete collection of times (e.g., D, = {1,2, ..., T}). Analo- 
gous to the spatial process discussion above, we may then formulate the spatio-temporal process 
where [Z(s: t)ly] is a conditionally independent distribution for all s and t, and where y(s; t) is 

spatio-temporal process such that y - (y .. y)', where Yt = (y(s t) . y(s,; t))' and 
y has covariance matrix E~,. In this case, E~, is an (n + T) x (n + T) covariance matrix with 
elements cy(s, s', t, t') = cov(y(s: t), y(s'; t')). There are practical limitations with this formulation. 
First, although the known classes of spatio-temporal covariance functions continues to expand (e.g., 
Cressie & Huang, 1999; Gneiting, 2002), most of these are not adequate for explaining complicated 
spatio-temporal interactions for environmental processes. Secondly, the dimensionality of the joint 
spatio-temporal process y is often prohibitively large. 

4.2.1 Hierarchical spatio-temporal models 

Complicated joint spatio-temporal process can often be decomposed into relatively simple condi- 
tional models. Early examples of this include the work by Handcock & Wallis (1994), Brown et al. 
(1994), Waller et al. (1997), Knorr-Held & Besag (1998), and Wikle et al. (1998). A general model 
for a spatio-temporal process y(s; t) takes the form: 

y(s: t) = ~t(s; O,,,t) + y(t; Oys) + a(s, t; Oa,s,,) + E(S; t). (26) 

In general, the first term on the right-hand side, ft (s; 0 ft,t) represents a spatial trend surface, but with 
parameters that may vary with time. Similarly, the second term y (t; 0 Ys) represents a temporal trend 
that may have spatially varying parameters. The third term on the right-hand side, a(s; t; 0 

,s.t) 
typ- 

ically represents a complicated (usually non-separable) spatio-temporal process of primary interest; 
often this is a dynamic process, as discussed below. The last term, E(s; t) is usually an uncorrelated 
spatio-temporal error process. 

Obviously, models such as (26) may not be identifiable unless substantial prior knowledge is 
used in the construction of the component distributions for f, y, a, and E. In essence, this is the 
fundamental challenge of space-time modeling. For example, one must decide if a process is better 
represented as a spatial process with time-varying parameters or a temporal process with spatially- 
varying parameters. In some cases, the dimensionality of the relevant processes suggests the proper 
form. However, in most cases, the decision is based on prior understanding. 

In Wikle et al. (1998) the process of interest was monthly average maximum temperature in Iowa. 
In that case it was clear from climatological understanding of the process that f should simply de- 
pend on space and it was assigned a conditionally Gaussian MRF with a mean depending on latitude 
and longitude according to a simple linear relationship. Furthermore, y was used to account for the 
very strong sinusoidal seasonal cycle of atmospheric temperature. Since the phase and amplitude 
of the seasonal cycle changes as a function of space, the parameters describing the sinusoidal cycle 
were allowed to vary as a linear function of latitude and longitude. Finally, the process of primary 
interest was a which was assumed to be a dynamic process, accounting for month-to-month circu- 
lation changes in the atmosphere. Such processes are described in more detail in the next section. In 
summary, the spatio-temporal process for monthly temperature included spatio-temporal variability 
from climatological, seasonal, and shorter-term dynamical processes. A realistic joint specification 
of this structure was not possible, but rather was "constructed" by the aforementioned component 
models. 
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4.2.2 Dynamic models 

It is natural for many environmental processes to assume that the immediate past state of the 
process affects the current state. Indeed, many spatio-temporal models have included such a dynamic 
component (e.g., Guttorp et al., 1994; Huang & Cressie, 1996; Waller et al., 1997; Knorr-Held & 
Besag, 1998; Mardia et al., 1998; Meiring et al., 1998; Wikle et al., 1998; Wikle & Cressie, 1999; 
Wikle et al., 2001; Stroud et al., 2001). In general, the joint spatio-temporal process a, corresponding 
to a (s; t) in (26) can often be further factored into a series of conditional models. For many processes, 
a dynamical factorization based on a Markov assumption in time is appropriate. That is, 

T 

[a] = Lao] H[at at1, 
Ot], 

(27) 
t=1 

where at = (a(sl; 
t),...., 

a(s,; t))' and the conditional distributions [a 
t•at-1, 

Ot] depend on a 
collection of parameters Ot that describe the dynamical evolution and the structure of the associated 
driving noise process. These parameters may or may not be time-varying depending on the specific 
process of interest. For example, this process might follow a first-order vector autoregressive model 
such as at = H0, at-1 -+ qt, where qrt " N(0, E,) is a spatial noise process, and H0, is a collection 
of parameters that describe the evolution of the a process. In settings where the parameters are 
known or can be estimated, one may implement such a model in a Kalman filter framework (e.g., 
West & Harrison, 1989; Huang & Cressie, 1996; Wikle & Cressie, 1999). 

When the number of spatial locations is large, the number of parameters in the "propagator matrix" 

Ho, may prohibit likelihood-based estimation procedures. One may have scientific knowledge that 

suggests relatively simple parameterizations of H0, (e.g., Ghil et al., 1981). Alternatively, one can 
model H0, in a hierarchical fashion, by specifying its distribution, or the distribution of the parameters 
Ot. In general, even a simple model in which H , is diagonal with parameters varying by spatial 
location (i.e., a spatially indexed first-order autoregressive process), provides a simple way to model 
processes with non-separable spatio-temporal interaction. Such formulations don't allow inherently 
for the propagating phenomena that are often present in geophysical processes. However, relatively 
simple modifications can allow for such things. For example, in Wikle et al. (1998) it was assumed 
that the dynamic structure was based on a "lagged nearest neighbor" structure. In that case, the value 
of a (s; t) was related to its immediate past value at location s and its four nearest neighbors at the 
previous time. The parameter corresponding to the location s was then spatially varying, but the 
lagged-neighbor coefficients were not. 

4.2.3 Motivation for spatio-temporal dynamic models 

Although it has been apparent for sometime that dynamic models are essential in describing 
spatio-temporal processes in the environmental sciences, it is only relatively recently that statisticians 
have been attempting to motivate the dynamical dependence in such models. For many biological 
and physical processes, one can make use of partial differential equations (PDEs) that govern 
(approximately) the underlying process in order to develop prior distributions for H 0,. For example, 
Wikle et al. (2001) used the shallow-water PDEs that approximate atmospheric processes in the 
tropics to motivate priors for predicting high-resolution wind fields over the tropical ocean. 

As an example of using PDE information to motivate a dynamic process model, consider the 
study of Wikle (2003) who used a classic diffusion PDE to develop priors for modeling the spread 
of an invasive species. In particular, he considered the general diffusion PDE for the spatio-temporal 
process u(x, y; t), 

= 3 (x y) + (x y) + /u, (28) t xx / yy 
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where the spatial location is defined by the Euclidean coordinates s = (x, y), 8 (x, y) is a spatially 
varying diffusion coefficient, and i is a growth coefficient. This is a generalization of Skellam's (1951) 
classic diffusion model plus Malthusian growth. Although analytical studies of such equations have 
shown them to be reasonable for explaining the spread of invasive organisms, it is by no means a 
perfect description of such processes. Thus, it is important to recognize that this model is only the 
basis for a stochastic dynamic model. That is, it is simply the motivation for our prior formulation, 
and will ultimately be modified by the data and the allowance of random parameters at the next stage. 
Specifically, the model is made much more flexible since the parameters 8(x, y) and / are given 
distributions at the next level of the hierarchy. These random parameters account for effects such 
as environmental and demographic stochasticity, which are difficult to consider in the traditional 
deterministic PDE-based framework. 

Discretization of (28) using first-order forward differences in time and centered differences in 
space yields a space-time difference equation in which the value of the u-process at a given time is 
related to its past value at that location and its four nearest neighbors (e.g., Wikle, 2003). Adding an 
error term to account for uncertainties due to the discretization and other model misspecifications 
then gives 

u, = H(6, P)u,_1 + 
HB(6)utB_I 

+ Y,, (29) 

where ut corresponds to an arbitrary vectorization of the gridded u-process at time t, and H(6, P) is 
a sparse matrix with five non-zero diagonals that depend on 6 and P. Furthermore, u 

_1B 

is a vector of 
boundary values for the u-process, and H B (6) is a sparse matrix with elements corresponding to the 
boundary elements of the discretization. It is possible, and indeed desirable in many cases, to model 

u B as a random process. One can show that this suggests a hierarchical approach to accommodating 
boundary conditions in stochastic solutions to PDE models (see Wikle et al., 2003). 

The formulation (29) is similar to the space-time autoregressive (STAR) models outlined in Cliff 
et al. (1975). However, STAR models can be difficult to fit in high dimensions and don't account 
explicitly for boundary conditions. Wikle et al. (1998) showed that these models are relatively easy 
to consider from the hierarchical perspective. In the present case, the hierarchical structure of the 

propagator matrices H and H B is suggested by the PDE process parameters. This motivation greatly 
strengthens the hierarchical model and the justification of specific priors on parameters. 

Note that in addition to PDEs, recent work has shown that for continuous space/discrete time 

processes, one can use integro-difference equations in a hierarchical context to model dynamical 
systems (Wikle & Cressie, 1999; Brown et al., 2000; Brown et al., 2001; Wikle, 2001; Wikle, 2002a). 
These models have great potential for motivating dynamical variability in cases where PDEs are not 

appropriate. 

4.2.4 Dimension reduction 

Although the hierarchical representation of spatio-temporal dynamic processes simplifies the mod- 

eling, it is often the case that the process vectors a~ are of such high dimension that implementation 
is still problematic. Recasting the problem in a spectral context can enable implementation either 
through the use of fast computational algorithms, or by facilitating dimension reduction. That is, let 

a, = 
" 

a, (30) 

where , is a matrix of spectral basis functions (e.g., Fourier, wavelet, empirical) and a, are the 
associated spectral coefficients. In many cases, after such a transformation to spectral-space, one can 
then model the 

at process dynamically, e.g., at 
= 

Ha-1l 
+? 

t. 
Because of the spectral transformation, 

H and 
•, 

may be substantially simpler in structure than for the corresponding terms of the ar , process. 
This, in conjunction with the possible use of fast spectral transform routines, can greatly facilitate 

This content downloaded from 129.100.76.137 on Thu, 15 Jan 2015 15:48:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Hierarchical Models in Environmental Science 195 

computation and model specification (e.g., Wikle et al., 2001). In addition, it is often the case that 
only a few spectral coefficients are necessary to adequately describe the dynamical behavior of the 
process of interest. In that case, rather than (30) one might assume at = iat + vt, where at has 
dimension much smaller than a t, 4 represents some subset of the basis functions in b, and and vt 
can often be represented by relatively simple structure (e.g., Wikle & Cressie, 1999; Berliner et al., 
2000). 

4.2.5 Hidden processes 

As described above in the case of multivariate spatial models, the complicated joint structure in 
spatio-temporal models can often be simplified by conditioning on some other process. Typically, 
this process is not observed and is considered to be a latent or hidden process. An early example in 
environmental science is the work of Hughes & Guttorp (1994) who used hidden Markov models of 
unobserved weather states to model spatio-temporal variability in atmospheric precipitation. More 
recently, Berliner et al. (2000) used a hidden climate state process to facilitate long-lead forecasting 
of Pacific sea surface temperatures and ultimately El Nifio and La Nifia conditions. In particular, 
their model included a component like, at+r = 

H=•o, 
a +~ t+r, where the propagator matrix Hoo, was 

time-varying and depended on the current state of the ocean and the likely future state. The likely 
future state was determined by a hidden climate process. 

5 Challenges 

The use of complicated hierarchical models for environmental processes is relatively new, cor- 
responding for the most part to the popularization of MCMC techniques in statistics, beginning in 
the late 1980s. Since that time, a vast array of problems have been considered from this perspective 
ranging from disease mapping to weather prediction. Although the use of these techniques has led 
to analyses that would not have been thought possible a decade before, there are still many issues 
to be considered. A recent workshop at The Ohio State University ("Workshop on Hierarchical 
Modeling in Environmental Statistics, May 2000) produced a "position paper" that describes many 
of the outstanding issues related to the topic (Cressie, 2000b). Problem areas discussed included 
methodological issues, practical issues, and even issues concerning the inherent collaborative nature 
of hierarchical modeling and science. Some of these issues are discussed below. 

Although statistical computation has exhibited remarkable progress over recent years, there are 
still many issues related to computation and implementation of hierarchical models. For example, 
it is very difficult, if not impossible, to establish convergence for MCMC applications in very high- 
dimensional settings. Although much has been done to develop diagnostics for such models (e.g., see 
review in Robert & Casella, 1999, Chap. 8) much remains to be done. In addition, the use of parallel 
computing strategies in hierarchical models has not been adequately explored. As models become 
ever more complicated and applied in higher dimensional settings, the use of parallel computing may 
become practically essential. 

Hierarchical models are subjective; there is more than one way to model a complicated system. 
Consequently, there is a need for some "objective" measures of comparing models. Although some 
very nice approaches to model selection are now being considered (e.g., Spiegelhalter et al., 2002), 
much more remains to be done. Furthermore, model averaging is often seen as a useful approach for 
dealing with model uncertainty (e.g., Clyde, 1999). This is also an active area of research. Finally, 
issues related to model sensitivity must be considered. For example, at some point in a model hierar- 
chy, model choices are subjective, and may simply be given point-mass priors. In most cases, there 
are too many parameters to evaluate sensitivity to such priors by complete factorial experiments. 
There is a need for more objective approaches to evaluating such sensitivities. 
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As discussed above, dimensionality of spatial and spatio-temporal processes often prohibits effi- 
cient implementation of hierarchical formulations. In those cases, it is sometimes the case that the 
essential process variability can be efficiently modeled in a lower dimensional manifold. Although 
empirical orthogonal functions (EOFs) have proven useful in this regard (e.g., Wikle & Cressie, 
1999; Berliner et al., 2000), there is a need for additional dimension reduction strategies. 

Going back to the Introduction, the environment encompasses many different interacting pro- 
cesses. It follows that one of the biggest challenges and growth areas in environmental statistics will 
be concerned with linking the many processes contributing to specific environmental questions of 
concern. Although the approaches outlined above will be useful, many additional methodological 
and practical innovations must be developed before such linkages can easily be accomplished in 
practice. A study by Berliner, Milliff & Wikle (2003) involves linking a simple atmospheric model 
with a simple ocean model in the Labrador Sea. This coupled model is complicated by the non-linear 
nature of the ocean flow and especially, the non-linear interaction between the atmosphere and the 
ocean. Ultimately, this coupling is made possible by using physically-motivated process and prior 
models, and the use of a hybrid Gibbs Sampling/Importance Sampling algorithm. Much more work 
is required to implement such models over varying spatial and temporal scales. 

Many of the studies cited in this article involve both subject matter scientists and statisticians. Of 
course, such collaborations are not at all unusual in statistics. However, if one looks closely they 
will find that many collaborations involving hierarchical models are in fact different than traditional 
collaborative efforts. The chief difference is that the statistician and the subject matter scientist must 
both be involved in the detailed construction of the model. Since the essence of a good hierarchical 
model is strong prior information at each stage, it follows that the scientists must be able to convey 
their knowledge in this conditional framework. The statistician must be able to translate this scien- 
tific knowledge into reasonable statistical models, in some cases facilitating the scientist to "think 
conditionally", and ultimately decide whether the model can in fact be implemented. Thus, there is 
constant feedback and the endeavor is dynamic. 

Of course, as anyone who has engaged in serious multi-disciplinary research can attest, it is easier 
said than done. Not the least problem is the issue of communication. Clearly, jargon issues can 
be significant and scientists need to pay ever increasing attention to using well-defined scientific 
language. Furthermore, only in rare instances are all of the collaborating scientists located at the 
same physical facility. Although the Internet is invaluable to such enterprises, it is not a solution 
in itself. For example, e-mail, although nearly instantaneous, can easily lead to misunderstandings 
and unintentional annoyances. New communication infrastructures are being developed to facilitate 
more seamless remote collaboration in science. Statisticians and scientists must overcome their initial 
reluctance to utilize such technology. 

In conclusion, we reiterate the primary theme that hierarchical modeling provides a framework by 
which to simplify complicated environmental systems, so that uncertainty can be linked in a coherent 
fashion. Quite simply, by the power of conditioning, one can consider less complicated dependence 
structures, whether they be in the data model, process model, or parameters. Often, such conditional 
thinking follows naturally from the subject matter. In other cases, subject matter scientists and statis- 
ticians must work together to establish appropriate conditional models. If the immediate past is any 
indication, the future of hierarchical modeling in environment science is very bright indeed. As the 
human race places more and more demands on the planet and its component systems, we will never 
lack important environmental problems on which to work. We can take some consolation in the fact 
that we are well on our way to having the tools to examine them. 
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Resume 

Les systemes environnementaux sont complexes. Ils incluent des processus spatio-temporels tis complexes, interagissant 
sur une large vari&t6 d'6chelles. II existe des quantiis de plus en plus grandes de donnees sur de tels processus, provenant 
des systemes d'information g6ographiques, des plateformes de t6l6detection, des reseaux de surveillance et des mod&les 
informatiques. De plus, il y a souvent une grande variet6 de connaissance scientifique disponible sur de tels systmes, depuis 
les equations diff~rentielles partielles jusqu'aux enqwutes de panels. II est reconnu qu'il n'est Wneralement pas correct 
de considerer de tels processus d'une perspective commune. Au contraire, les processus doivent souvente tre examines 
comme des systhmes de modules conditionnels lies de maniere coherente. Cet article fournit un bref aperqu des approches 
hierachiques appliquees aux processus environnementaux. Les elements cles de tels modules peuvent &tre examines a trois 
etapes principales: l'6tape des donnees, celle du traitement et celle des paran'tres. A chaque 6tape, la structure complexe de 
dependance est att6nuee par le conditionnement. Par exemple, le stade des donrmes peut incorporer des erreurs de mesure ainsi 
que de multiples ensembles de donnres sous divers supports. Les stades du traitement et des pararntres peuvent admettre des 
processus spatiaux et spatio-temporels ainsi que l'inclusion directe du savoir scientifique. L'article conclut par une discussion 
de quelques problemes en suspens dans la mod6lisation hierarchique des systimes environnementaux, incluant le besoin de 
nouvelles approches de collaboration. 
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