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Spatial and spatiotemporal processes in the physical, environmental, and biological sciences often exhibit 

complicated and diverse patterns across different space-time scales. Both scientific understanding and ob 

servational data vary in form and content across scales. We develop and examine a Bayesian hierarchical 

framework by which the combination of such information sources can be accomplished. Our approach is 

targeted to settings in which various special spatial scales arise. These scales may be dictated by the data 

collection methods, availability of prior information, and/or goals of the analysis. The approach restricts 

to a few essential scales. Hence we avoid the challenging problem of constructing a model that can be used 

at all scales. This means that we can provide inferences only at the preselected special scales. However, 

problems involving special scales are sufficiently common to justify the trade-off between our compara 

tively simple modeling and analysis strategy with the formidable task of forming models valid at all scales. 

Specifically, our approach is based on a simple idea of conditioning the spatially continuous process on 

an areal average of the process at some resolution of interest. In addition, the data at prescribed resolu 

tions are then conditioned on this areal-averaged true process. These conditioning arguments fit nicely 
into the hierarchical Bayesian framework. The methodology is demonstrated for the spatial prediction of 

an important quantity known as streamfunction based on wind information from satellite observations and 

weather center, computer model output. 

KEY WORDS: Bayes; Change of support; Hierarchical; Poisson equation; Spatiotemporal; Streamfunc 

tion; Wind. 

1. INTRODUCTION 

In many spatial and spatiotemporal modeling problems, data 

concerning a process of interest are often of different spatial 
resolutions and alignments; that is, they provide information 
at varying spatial scales. In addition, one may be interested in 

the true process at some other spatial resolution, including res 

olutions not represented in the observations. These issues fall 

under the topic of "change of support" (COS) in spatial statis 
tics and are longstanding, especially in geography (e.g., Cressie 

1993, 1996). Various approaches have been considered for this 

problem, as reviewed by Gotway and Young (2002). Contin 

uing interest in the problem has been fueled by technological 
advances in both data collection (e.g., remote sensing) and data 

management (e.g., geographic information systems). 

Scientific understanding of spatiotemporal processes often 
varies with scale. For example, meteorologists have greater 

understanding of large-scale processes, such as fronts, than 

for microscale processes, such as raindrop formation. In ad 

dition, the choice of spatial scales for processes may arise 

for practical reasons. For example, it is increasingly com 

mon for scientists and engineers to rely on numerical models 

based on relevant mathematical models of the process. Such 

models are developed as approximations to underlying physi 

cal/biological theory. An ideal example is modern approaches 
to global numerical weather forecasting. Physical theories are 

applied to produce systems of partial differential equations 
for the evolution of the meteorological state process. These 

complicated nonlinear equations cannot be solved exactly, and 

thus modelers produce discretized approximations to the equa 

tions. For example, derivatives are often replaced by finite 

differences, leading to a discrete model describing the evolu 

tion of variables representing spatial averages of the weather 

variables. 

The problem of interest here concerns the case where both 

the data and the process are at disparate spatial scales. In such 

cases, particularly when there is additional information such as 

the process models described earlier, the Bayesian view is nat 

ural. It has been demonstrated that hierarchical Bayesian mod 

els are well suited to the analysis of such complicated spatial 
and spatiotemporal problems (e.g., Wikle, Berliner, and Cressie 

1998). There have been other recent examples of Bayesian 

approaches to the COS problem (e.g., Mugglin, Carlin, and 

Gelfand 2000; Gelfand, Zhu, and Carlin 2001; Wikle, Milliff, 

Nychka, and Berliner 2001). Our approach differs from these 

approaches in that we make use of the conditional models in 

herent in the Bayesian hierarchical approach. Specifically, our 

approach is based on the idea of conditioning a continuous spa 

tial process on values (often, areal averages) of the process de 

fined at some resolution for which inference is desired and/or 

prior scientific information is available. We then consider data 

observed at resolutions that are larger, the same, or smaller than 

the resolution desired for inference. These data are also condi 

tioned on the process at the resolution of interest. Implementa 

tion of these conditioning arguments is relatively simple within 

the hierarchical Bayesian framework. 

The hierarchical change of support methodology is described 

in Section 2. In Section 3 the methodology is illustrated with the 

prediction of atmospheric streamfunction given wind observa 

tions at different supports. Enhancements and extensions to the 

approach are presented in Section 4, followed by a conclusion 

in Section 5. 
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2. HIERARCHICAL BAYESIAN APPROACH TO 
CHANGE OF SUPPORT 

At the risk of some oversimplification, most Bayesian and 

Bayesian-like treatments of COS (e.g., Mugglin et al. 2000; 
Gelfand et al. 2001) are grounded in specification of a sta 
tistical model or prior distribution for the process of interest 
at the finest spatial resolution possible. Typically, this resolu 
tion corresponds to point support. Consider a spatial process 

{Y} = {Y(s) :seD], where D is a bounded subset of 1Zd. For a 
set S, let |5| 

= 
fs ds denote the volume of S. (Typically d ? 2, 

and volume is simply geometric area.) For much of this article, 
'T with spatial support on S" is taken to mean Y(s) averaged 
over S C D, 

? 
f Y(s)ds, \S\>0 

Y(S)=\ \S\Js (1) 
.ave{y(s):seS}, |5|=0, 

where the discrete case accounts for point (e.g., weather station) 

data. Inference on {Y} or Y supported on selected sets, based 
on observations, relies on specification of a spatial stochastic 

process model (or at least on formulation of first and second 
moments of the process). A common assumption is that {Y} is 
a Gaussian random field with mean function p(s) and covari 
ance function <r(r, s). In principle, general approaches to the 

COS problem are available through application of probability 
theory. Specifically, a Gaussian-process assumption for Y im 

plies a readily obtained multivariate normal joint distribution 
for {Y(S)} for any selection of a finite collection of support sets. 
We consider situations in which full specification of a 

complete model, or even of first and second moments, valid 

at all scales is deemed too difficult. We focus on predict 
ing the spatial process supported on a finite collection of 

nonoverlapping subsets of D, all with similar areas. That 

is, we consider disjoint sets 
Bj, j 

= 1, ..., nt>, whose union 

is D such that \Bj\ > 0 are similar for all j. Although we 

may observe data with supports on some of the Bj, 
we fo 

cus on the more difficult case where data are observed with 

support sets (all subsets of D) A,,i 
= 

\,...,na, and Q, 

k=\,...,nc, such that 0 < |_4,-| < \Bj\ < |Q| for all i,j,k. 
That is, the C# are at a larger scale than the Bj, which are 

in turn at a larger scale than the A/. It is useful to think 
of Y(Bj), j 

? 
1,..., nb, as the process on a desired predic 

tion grid and Y(Ai), i ? 1, ..., na, and Y(Ck), k= 1, ..., nc, 
as the subgrid and supergrid processes. We define the vector 

Ya = (y(Ai),..., Y(Ana)Y, and define Y# and Yc analogously. 
In geostatistical contexts, our primary suggestion is to model 

in two steps: (1) conditionally model subgrid-scale residuals 
from Y# and (2) separately model Y#. Such a decomposition 
is often used in the turbulence literature (e.g., Holton 1992, 
sec. 5.1) and numerical modeling of partial differential equa 
tions via finite differences (e.g., Holton 1992, chap. 13). More 

precisely, we construct the process Y(s) conditional on Y# 
based on the following assumption. 

Assumption J. Conditional on Y#, define a continuously in 
dexed process {y(s),seD} such that for each Bj and all s e Bj, 

Y(s) = Y(Bj) + y(s), (2) 

where the y process has mean 0 everywhere, the covariance 

function o(s, r) = cov[y(s), y(r)] for all s, r e D, and the dis 
tribution of the y process does not depend on Y#. 

This strategy does not obviate the need for a statistical model 
of a process varying continuously in space. However, because 

our modeling of the residual y -process takes place condition 

ally on Y#, covariance structures are likely to be simpler than 
those used in complete joint modeling. 

Note that when constructing a process F(s) following the 

recipe of Assumption 1, we have that for all s e Bj, E(Y(s)\ 
YB) = 

Y(Bj), implying that E(Y(s)) = 
E(Y(Bj)). That is, 

the overall mean is constant within each Bj. Next, note that 

co\[Y(s),Y(r)\YB] = cr(s,r), and hence cov[F(s), Y(r)] = 

a(s, r) + cov[Y(Bj), Y(Bk)] fors e Bj andr e Bk. An interesting 
question is whether given a complete model for {Y} with mean 
function /i(s) and covariance function g(y, s), does it admit a 

representation as described in Assumption 1 ? As indicated ear 

lier, a positive answer requires that /x can be constant on the Bj. 
We also require that a(r, s) = a(s, r) + cov[Y(Bj), Y(Bk)] for 
s e Bj and r e Bk. This requirement is delicate; in the case of 
areal averaging, it may introduce singularities in a. 

Assumption 1 implies that we have lost some level of gen 
erality compared with traditional approaches beginning with a 

complete model for {Y}. The requirement that overall mean p 
must be constant within each Bj relates to a fundamental 
issue in practical spatial statistics: the modeling trade-offs 
between trend and spatial dependence. Unlike the full-joint 
modeling approach, our approach essentially limits explana 
tion of subgrid-scale variation to locally trend-free spatial de 

pendence modeling. On the other hand, without strong beliefs 
about local trends (exactly our circumstance), spatial covari 

ance modeling is generally believed to be capable of capturing 
spatial structure. 

While enduring the loss of subgrid-scale trend modeling, we 

gain substantial generality, because we can relax the full joint 
normality assumption. That is, Y# need not have a multivari 

ate normal distribution. Such models would be very difficult 
to formulate based on a complete joint specification. Also, as 
we discuss later, the data models that incorporate the change 
of support can be developed without reference to the specific 
prior on Y# and can be used for various spatial models as well 
as certain space-time models. Finally, our methodology is tai 

lored to allow ready incorporation of numerical model output 
restricted to particular scales. Within the hierarchical Bayesian 
framework, such model outputs are viewed simply as data. This 

is particularly natural in the context of weather center analyses, 
which are statistics in the conventional definition as functions 

of observations. 

2.1 Hierarchical Models Based on Areal Averaging 

In complex problems, hierarchical Bayesian models can also 

appear to be complex. However, it is useful to view the basic ap 
proach as model building in three essential stages (e.g., Berliner 

1996). The first step is to construct a statistical data model. 
This involves statistical modeling of the measurement process, 
whereby one considers the distribution of the observations con 
ditioned on the true process of interest and model parameters. 
In the second stage, that process is then modeled via a process 

model, which itself may be composed of a several substages. 
Finally, parameters introduced in these two stages are endowed 

with a joint prior distribution in the parameter model. 
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The step of modeling the observations conditional on the 

process of interest is extremely powerful. It allows explicit 
treatment of measurement error separately from process varia 

tion, thereby leading to comparatively easy combination of dif 
ferent data sources. Furthermore, construction of the process 
model offers the opportunity for imputation of scientific under 

standing regarding the variables of interest and, as we demon 

strate in this article, the treatment of various spatial scales. 
2.1.1 Data Models. We let Z denote observational data. 

To indicate appropriate support, Z(S) represents an observation 
of Y(S). Although this notation appears to suggest that some av 

eraging of a process Z(s) is involved, this need not be the case. 
Let Xa = (Z(A\),..., Z(Ana))' be the vector of observations of 
the YA vector. Similarly let Zc = 

(Z(C\),...,Z(Cnc))' be the 
vector of observations of the Yc vector. Our task is to construct 
the data model, 

[ZA,Zc\YA,Yc,YB,Om], (3) 

where 0m denotes a collection of model parameters and the 
brackets [ ] refer to a probability distribution. 

Assumption 2. Conditional on Y^, Yc, Y#, and 0m, 
(a) Za and Zq are independent and have distributions that do 
not depend on Y#, and (b) the conditional distribution of Za 
does not depend on Yc and the conditional distribution of Zq 
does not depend on YA. Formally, we assume that 

[ZA, Zc|Ya, Yc, Y*, $m] = [ZA, ZC|YA, Yc, 0m] (4) 

= [ZA|YA,tfm][Zc|Yc,#m]. (5) 

Throughout this section, we also make the following assump 

tion. 

Assumption 3. All observations follow models of the form 

Z(S) = Y(S) + S, (6) 

where es is an associated measurement error. 

In vector notation, the additive measurement error model (6) 

implies that 

ZA=YA+ A, (7) 

where a is an /^-vector of measurement errors. Similarly, we 

have 

Zc = Yc + *c, (8) 

where c is an ?c-vector of measurement errors. As mentioned 

earlier, we can also include observations at the ^-support, but 

this is actually quite easy and is suppressed here for simplicity. 
Also, this notation does not include conditionally independent 

replicates (i.e., multiple observations corresponding to some 

A and/or C grid boxes), although adjustments in that case are 

simple. In some cases, replacing (7) with Za = HaYa + a, 
where Ha a known design matrix, is mandated. For example, 

in obtaining satellite data, observations are often nonlinearly 

related to the underlying y-process. A common procedure is 
to approximate that relationship with a linear one, quantified 
by Ha. [Analogous modeling for (8) would also be performed.] 
To ease the notational burden, we do not incorporate these fea 

tures here; the rest of the formulas in this article can be easily 
adapted to handle such issues. 

Much of the COS literature focuses on manipulations of 
the Z variables to account for their different supports. In our 
hierarchical formulation, we view the models (7) and (8) as con 
ditional (on Y) models, and focus on manipulation of the Y vari 
ables to account for changes of support. This differentiates the 

spatial modeling challenge from one involving the complexities 
of the dependence structures present in the observations treated 

marginally (i.e., unconditionally on Y) to one involving prior 
formulations for Y. In particular, it is often quite plausible that 
the eA and *c can be modeled as mutually independent, with 
each having covariance matrices that are diagonal. 

To write models in a compact form, we use the following 
notational device: X ~ (il, E) is read as "the random vector X 
has mean, ll, and covariance matrix, ?." To add a joint normal 

ity assumption, we write X ~ N(/l, ?). With this notation, we 
combine (7) and (8) as 

(?)|y..yc.z.~((?).i.). 
m 

where Hm is the measurement error covariance, represented in 

partitioned form as 

*m=(*m" *y. cio) 

As mentioned earlier, we may often argue that ?mac =0 and, 

further, that 

Ml' *) 
Adjustments to allow these variances to depend on location are 

comparatively direct. 
2.7.2 Completing the Hierarchy. A critical point in con 

structing the process model is interrelating the vectors Y^, YB, 
and Yc, by providing 

[YA,Yc\YB,0ac], (12) 

where 0ac is a collection of model parameters. Then modeling 

proceeds with development of the primary process model, 

[YB\0b], (13) 

and, finally, a prior on all parameters, 

[0mJac,0bl (14) 

Models (4), (12), (13), and (14) form a hierarchical model. 

Bayesian analysis produces the posterior distribution 

[YA,YB,Yc,0m,0ac,0b\ZA,Zcl (15) 

For relatively simple problems, this posterior may be deter 
mined analytically. In large, complex problems, posterior in 
ferences are typically approximated via Markov chain Monte 

Carlo (MCMC). Even then, analyses of the foregoing model 

may be extremely difficult to perform. If primary interest is on 

inference for YB (as is usually the case), then we may be able to 

reduce the size of the problem. We simply multiply (4) and (12) 
and integrate out Y^ and Yc, yielding 

[ZA,Zc\YB,0m,0ac]. (16) 
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Bayesian analysis based on (16), (13), and (14) then proceeds, 
producing the posterior 

[YB,Om,Oac,0b\ZA,Zcl (17) 

The second option, focusing on (16), (13), and (14), appears 
easier to manage than the first. In precisely the sort of problems 
that we consider here, the dimensionality of (17) is consider 

ably lower than that of (15). Hence attacking (17) via MCMC 

appears to be the better choice. However, there is a delicate bal 

ance; integrations used to produce (16) may lead to complicated 
models. For example, such integrations are done conditionally 
on model parameters but often link those parameters in intri 
cate ways, making the Bayesian calculations difficult. This is 
sue arises quite generally in hierarchical analysis. 

2.1.3 Moment Conditions Based on Areal Averaging. The 

primary goal of this section is the development of (12), or at 
least first and second moments, based on areal averaging. We do 
this by relying on Assumption 1. Consider integrals of both 
sides of expressions like (2) with respect to supports corre 

sponding to the subgrid and supergrid processes. For example, 
in the subgrid case, if A/ C Bj, then for some Bj, we have that 

Y^ = ttt ( y<*/)ds + ttt I y(s)ds 
\Ai\ JAi |A/1 JAi 

= Y(Bj) + -l- 
[ y(s)ds. (18) 

IA/l Ja, 

Alternatively, consider the supergrid process. For each k, 

i nb r \ r 
IQI ^JcknBj \Ck\ Jck 

= 
g(c)fYB + 7^ f Y(s)ds. (19) 

\Ck\ Jck 

The first term on the right side of (19) is a weighted combina 
tion of the relevant Y(Bj) (i.e., those for which Ck H Bj is not 

empty), with weights given by the areas \Bj Pi Ck\ divided by 
(k) 

the area of Ck. Thus g^ is an n^-vector of weights, many of 

which will be 0 (i.e., those for which Ck D Bj is empty). Finally, 
a similarly derived expression holds for arbitrary At, in which 
case (18) can be written as 

y(Ai) = gjf'Y* + -J- f y (s) ds. (20) 
IAi | JAi 

Nonzero entries of g^ 
are of the form \Bj D A/|/|A/|. Thus this 

approach is valid regardless of whether the data are "aligned" or 

"misaligned" relative to the prediction process support. Further 

more, note that the first terms on the right side of (19) and (20) 
essentially constitute the simple "area of overlap" approaches to 
COS as used in standard GIS packages. Clearly, if y (s) is not 0, 
then this simple approach is not sufficient as a stand-alone COS 

methodology. 
From calculations like those in (19) and (20), we can obtain 

the following first- and second-moment information, 

(^^-((SK1)- 
<2" 

where Ga is na x nt> and Gc is nc x rib and contain the averaging 

weights corresponding to the A/ and Q. The elements of the 

(na + ftc) x (na + ?c) covariance matrix _E are given by 

[ [ o(r,s)drds/(\S\\S'\), (22) 

as S and 5" vary over those sets represented in Ya and Yc- Fi 

nally, (16) is then 

(zc)\^-^-{(Z)YB>* 
+ 
Tm)- 

(23) 
We close this section with a technical remark. Modeling 

subgrid scale covariances o of the residual process induces a 

consistency issue in modeling the process y(s). Formally, con 

sistency requires that for each j and any sequence of (Lebesgue 
measurable) A{m) such that as m -? oo, A(m) t #/ implies that 

Y(A{m)) -> y(#/), almost surely. Stated more simply, this in 
volves a singularity condition on o, because it requires that 

JB y(s)ds = 0 for all j. In computationally intense problems, 
we may not always demand consistency but rather may rely on 

approximation, namely ignore the consistency issue as long as 
all At are small relative to the Bj and no Bj is filled by the collec 
tion of A/ sampled. Besides technical issues of implementation, 
a second reason for not enforcing consistency is that definitions 

of all the A-, B-, and C-locations are typically themselves sub 

ject to error. Although a better approach is to model such map 
ping and truncation errors, an expedient adjustment is to relax 

consistency. Note that even without consistency, a process Y(s) 

generated from (2) still exists, but such a process averaged over 

any Bj would no longer equal Y(Bj). 

3. EXAMPLE: HIERARCHICAL MODELING OF 
ATMOSPHERIC STREAMFUNCTION 

To demonstrate the methodology, we consider the prob 
lem of determining a scalar measure of the near-surface at 

mospheric circulation over a limited domain, given remotely 
sensed winds and weather center assimilated ("analysis") wind 
estimates. Specifically, we are interested in the circulation over 

the Labrador Sea region. This domain is of interest in clima 

tology because of its role in triggering ocean deep convection 
(Renfrew and Moore 1999). One contribution to the initiation 
of such convection is thought to be the rapid progression of rel 

atively small-scale yet intense atmospheric cyclones across the 

region. That is, the triggering of ocean deep convection is likely 
related nonlinearly to the exchange of momentum from the at 

mosphere to the ocean that occurs when these storms move 

across the ocean. Thus small differences in the cyclone inten 

sity may be important in understanding the convection "thresh 

old" and the sensitivity to small changes in momentum transfer. 

Clearly, models for such sensitivities must account for the un 

certainty in the wind observations (both COS issues and mea 
surement error). To evaluate these issues formally, one must 

link an atmospheric model such as that presented here with a 

dynamic model of the ocean. This is beyond the scope of this ar 
ticle but was recently considered (without consideration of COS 
issues) by Berliner, Milliff, and Wikle (2003). We demonstrate 
how one can accommodate uncertainties in data resolution for 

such problems and also account for the uncertainties in the dis 
cretization of the relevant mathematical model and boundary 

process. 
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3.1 Data 

Satellite-based wind estimates from the NASA scatterometer 

(NSCAT) were available from September 15, 1996 to June 29, 
1997. These observations occurred in swaths on either side 
of the polar-orbiting satellite ground track. Different portions 
of the Labrador Sea were covered by successive orbits two 
times in a 24-hour period. Within the subregion of the NSCAT 

swath, observations were reported at 50-km spatial resolution. 

Figure 1(a) shows a subset of NSCAT data for December 26, 
1996 over the area of interest. In addition to the satellite data, 
low-resolution gridded observations were available from the 

National Centers for Environmental Prediction (NCEP) global 
analysis. These "data" arose from the assimilation of relevant 

atmospheric observations (excluding the NSCAT observations) 
into a high-dimensional numerical model. 

(a) 
NSCAT Satellite Wind Vectors and Prediction Grid 

65 
|-1-1-1-1-1-1-,-1 

64- ̂ ^____ <- ^_ 

+ + + 
'^^"^xT^O^Xjv ^^ ^^~?+ + + 

i + + + + + + + VAf^tfVfAn^ 

+ + + + + + + + + + + -H + 4 
55 I ' - 

54 I-1-1-1-1-1-1-1 
298 300 302 304 306 308 310 312 

Longitude (deg) 

(b) 
NCEP Analysis Wind Vectors and Prediction Grid 

65 |-1-1-1-1-i-1-1 

64h 
+ + + + + + + + + + + + + + 

63r t \ \ \ 
62^ + + + + + + + + + + + + + + 

| 
+ + + + + + + + + + + + + + 

I 59 - 
"" 

+ + + + + + + + + + + + + + 
58_ 

^^ ^? ^ /* / 
57 r 

+ + + + + + + + + + + + + + 
56 

+ + + + + + + + + + + + + + 
55 

54 I-1-1-1-1-1-1-1 
298 300 302 304 306 308 310 312 

Longitude (deg) 

Figure 1. Wind Data, (a) The NSCAT wind vectors for December 26, 
1996 over the Labrador Sea area. Note that the wind blows in the di 

rection of the arrow and the wind speed is proportional to the length of 

the arrow. In addition, the "+" shows the center of the prediction grid 
box. (b) The NCEP wind analysis for the same period, as well as the 

prediction grid (+). 

In our example, the assimilated observations are available at 

a 2.5-degree resolution (in latitude and longitude). Figure 1(b) 
shows the NCEP observations for December 26, 1996 over the 
Labrador Sea area of interest. In summary, the NSCAT obser 
vations have a resolution of about .5 degree, whereas the NCEP 
observations have a resolution of 2.5 degrees. The NCEP ob 
servations are on a regular grid, whereas the NSCAT observa 

tions are not. Our interest is the prediction of a scalar quantity 
(surface streamfunction) at an intermediate resolution of 1.0 de 

gree (see Fig. 1), given these wind observations at differing 
supports and orientations relative to the prediction grid support. 
Streamfunction is a scalar quantity that describes the flow of the 
vector wind field. Streamfunction can be thought of as a family 
of streamlines that are everywhere tangent to the velocity (flow) 
field. Furthermore, a change in streamfunction corresponds to 

a change in the flow rate and in turn indicates the flow direc 
tion. Thus streamfunction is a useful summary measure of the 

circulation state of the atmosphere (or ocean). 

3.2 Hierarchical Specification of a Boundary Process 

Before describing the full hierarchical model, we describe 
the physical-based process model in some detail. This approach 
is interesting in its use of physical information to motivate the 

process model and in the specification of a hierarchical bound 

ary process. 

To get streamfunction from winds, one can use the determin 

istic Poisson equation (see, e.g., Holton 1992), 

9 dv du 
v * = r 

- 
ir- (24) 

ox oy 

where \f/ is the streamfunction [at some location (x, y) in two 

dimensional Euclidean space], V2 is the Laplacian operator y\ r\2 77 OZ 77 

(i.e., V2F = 
yy + yj, 

where F is some scalar spatial process 

continuous over some domain in 1Z2), and the right side repre 
sents the vorticity of the flow defined by the horizontal deriva 
tives of the north-south (v) and east-west (u) wind components. 
This is a boundary value problem, and thus its solution requires 
information about the process at the boundary. Of course, we 

typically do not know the boundary values exactly. Besides this 

uncertainty, there is uncertainty regarding the wind process, 

which we do not know everywhere in the domain of interest. 

Furthermore, with data, one must use numerical approaches to 

solving this equation, and such numerical discretizations intro 

duce error. As described by Wikle, Berliner, and Milliff (2003), 
one can account for these uncertainties through a hierarchi 

cal formulation and stochastic boundary value specification. 
In summary, one can discretize (24) for a finite set of predic 
tion locations (e.g., a regular grid) and get the following matrix 

representation: 

Lfj 
= Dx\ 

- 
Dvu + hhcfbc + error' (25) 

where i/fj is the ^/-vector representation of the streamfunction 

process at the interior grid locations and ifrbc is the n^-vector of 

the streamfunction process at the boundary grid locations. The 

ni x ni matrix L is a representation of the finite difference of 
the Laplacian operator applied to the interior locations, whereas 

hbc is the corresponding nj x nbc matrix derived from the finite 
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difference of the Laplacian operator applied to the boundary lo 
cations. The (ni + nbc) vectors u and v contain the wind compo 
nent processes at all grid locations, and Dx and Dv correspond 
to operators for centered first-difference calculations. Details of 

the formulation of L, L^c, Dx, and D^ have been provided by 
Wikle et al. (2003). 

One can specify a hierarchical boundary value formulation 
of the streamfunction process according to 

If j, fbc\u, v] = [tt\tbc, u, v][^v|u, v]. (26) 

In the case of (25), the first distribution on the right side of (26) 
would be 

fW^u^^ (\,-{[Vx\-Vyxx + Ucfhcl^i), (27) 

where E/ is the error process covariance matrix. Depending 
on one's prior knowledge of the system, the distribution for 
the boundary streamfunction distribution may or may not de 

pend on the wind process. For example, one might simply allow 

i/rbc 
~ 

(fibc, Lbc). In this case, the usual solution in numerical 

analysis, in which one specifies a fixed boundary, would cor 

respond to the specification of pbc and Hbc as a matrix of 0's 

(no variance). Very seldom do we actually know the boundary 
value exactly, so the nonzero specification of Tbc corresponds 
to our uncertainty in this knowledge. 

3.3 Hierarchical Model 

Here we present our hierarchical model for the streamfunc 

tion at intermediate support given winds at larger and smaller 

supports. 
3.3. J Data Model. Let the NSCAT (satellite) data be 

represented by the vectors LU and V^. Similarly, let the 
NCEP (numerical model output) data vectors be denoted by 
Uc and Vc- The true wind process on the prediction grid is 

specified by uB and \B. The data model is then based on the hi 
erarchical change of support formulation in (23) and is given by 

(J^\ |m,, Tu, Lm - N 
((qA) ua, Lu + Hm\ (28) 

and 

(ZAc\ 
\yB, Zv, Tm - N 

((qA) 
vb, Zv + 

I,] 
(29) 

The conditional normality assumption is justified based on 
other studies using wind components (e.g., Freilich 1997; 
Royle, Berliner, Wikle, and Milliff 1998; Wikle et al. 2001). 

3.3.2 Process Model. As described previously, the pro 
cess model is based on the hierarchical boundary specification. 
In addition, we specify a distribution for the wind components. 
As described by Wikle et al. (2003), it is reasonable to assume 
that these distributions are Gaussian, 

f/|^r,u,v^N(L-1[Dxv-Dvu + L/?r^.J,i:/), 

fte^Nbi^Tbc), (30) 

and 

(::)-n((m>4 
Note that we are assuming that the streamfunction at both the 
interior and the boundary are at the same ("5") scale as the wind 

process u and v. 

3.3.3 Parameter Models. For a completely hierarchical 

analysis, we must specify distributions for EM, 2_v, _!m, ?/, 

?/?o ^c Mw> and Mv, or their relevant parameterizations. 
To demonstrate of the COS methodology in the present applica 
tion, it is sufficient to assume that these parameters are fixed and 

known (as described later). We discuss implementation strate 

gies for fully hierarchical models in Section 4. 
Thus the foregoing data and process models represent a mul 

tivariate spatial model (with u#, v#, fj, and i/rbc as the various 

spatial processes) with a hierarchical boundary process and data 
at different spatial supports than the prediction process. 

3.4 Posterior Distribution of Streamfunction 

Although the data and process models are relatively compli 
cated, in this case where the parameters are fixed and known, 

the distributions are Gaussian, and the boundary streamfunc 

tion process does not depend on the data, we can determine the 

marginal posterior of the interior streamfunction analytically. 
For ease of notation, let U = [U^ U'c]', V = [V^ V'c]', W = 

[U' VT, G ee 
[G; G'c]', D ^ f-Dv Dx], nuv ee [puV MvlT, 

and 

/_;? + _;- o \ 

~\ 0 Ev + lJ" 
At this point we apply the hierarchical COS ideas to obtain the 

posterior distribution of the interior streamfunction given the 
data. It is easily shown (see the App.) that the marginal posterior 
of the interior streamfunction is given by 

*,|U,V-N(/i^.v,_V|t/,v), (32) 

with 

/^TAIty.v 
? L Dpuv\UV + L \-bcl*>bc (33) 

and 

^f\u,v 
= 

^ir\u,v.\ifbc +L~ L&cUfoL^L- , (34) 

where 

^i/\u.v.fhc 
= 

?/ + L~ DE^yi^yD'L- , (35) 

VuMU.v 
= 

^uMU.v(G'TJl\V + I.-J iiuv), (36) 

and 

2M^v 
= 

(G,Z71G + _:-1r1. (37) 

3.4.1 Parameter Specification. The parameter specifica 
tions used for this example were based on preliminary data 

analysis and previous studies (e.g., Milliff, Niiler, Sybrandy, 
Nychka, and Large 2003; Wikle et al. 2003). First, we note that 
nA = 369, nc = 15, m ? 

84, and nbc = 42. We let 

m~l o 4i)> 
with 

cr^ 
=1.7 m2s~2 and 

o^ 
= 2.7 m2s-2. Furthermore, 

we assume that the residual covariance matrices for u and v 

are equal (Hu = _EV) and that the spatial covariance o(r, s) 
is exponential and isotropic [o(r, s) = cr2exp(-#||r 

? 
s||)] 

with a2 = 1.5 mV2 and 0 = 1/150 km"1. We let Tuv = 
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SMV (g> RMV, where Suv is a 2 x 2 covariance matrix be 

tween the u and v wind components, with the covariance be 

tween u and v set at 12 m2s~2 and the variance of u and v 

set at 213 m2s~2 and 55 m2s-2. Furthermore, Rwv is an 

(nj + nbc) x (ni + nbc) spatial correlation matrix assumed to be 

isotropic and exponential [e.g., r(d) = exp(?6uvd)], where d is 
the distance between two prediction grid locations and we se 
lect 0UV 

= 1 /300 km~1. We also let pu 
= 0 ms~l, pv 

= 3 ms"l, 
and ?/ = or?I, with or? = 1010 m4s~2. We specified the prior 
mean for the streamfunction boundary process to match the 

implied domain inflow and outflow based on visual inspec 
tion of the wind data plot (see Fig. 1) (see, e.g., Wikle et al. 

2003). Finally, we set Lbc = &bcRba where R^c is based on an 

exponential covariance function with spatial dependence para 
meter 6bc = 1/100 km-1, reflecting a fairly near-range spatial 
dependence. 

3.4.2 Computation Issues. All distances used for calcu 

lating covariances are great circle distances, to account for the 

distortion in longitudinal distance with latitude. Similarly, the 
derivative and Laplacian operators Dx, Dy, L, and Lbc are ad 

justed to account for this effect. 
For the purposes of calculating Ga, Gc, and ?M (and 

hence Ev), we must specify the appropriate grid boxes at the 

"A," "#," and "C" scales. As mentioned previously, we as 

sume that the "5" scale is 1 degree x 1 degree. Similarly, 
we assume that the satellite "footprint" for the "A" scale is 

.5 degree x .5 degree. We evaluate the sensitivity to this as 

sumption by considering rectangular and circular "footprints" 
and find that the results are not sensitive to this choice. 

Finally, we assume that the "C"-scale data (NCEP) are at a 

2.5-degree x 2.5-degree resolution. Again, the results are not 

sensitive to reasonable variations in the orientation assumption 
as long as the area is the same. 

To obtain ?M (and hence Xv), we evaluated the integrals 
in (22) given the covariance function specified earlier. Follow 

ing Gelfand et al. (2001), we evaluated these integrals by Monte 
Carlo integration. Specifically, for each "A"-scale observation, 

we randomly selected 20 locations within the box, and for the 
"C"-scale data, we randomly selected 50 locations to perform 

the Monte Carlo evaluation. Such specifications provided suf 
ficient Monte Carlo accuracy. For example, when we increased 

each by 10 locations, the difference between the estimated co 

variances was in the third and fourth decimal places. 
To evaluate the G^ and Gc matrices, one must be able to 

calculate the area of overlap between the various "A"-, "5"-, 

and "C"-scale boxes as described in Section 2. Although such 
calculations can be done simply in most GIS software packages, 
we wrote our own general code to perform these calculations in 

cases where the grid boxes are four-sided polygons. 
3.4.3 Results. Figures 2(a) and 2(b) shows the posterior 

mean and standard deviation of the streamfunction process. 

Note that the negative streamfunction indicates a counter 

clockwise circulation, and that the closer the contour lines, the 

stronger the flow. Thus the posterior mean streamfunction field 

clearly suggests the presence of a fairly intense low-pressure 

system (i.e., a "cyclone") centered around 305 degrees east lon 

gitude and 60 degrees north latitude. The posterior standard 
deviation indicates that the least certainty in this prediction is 

(a) (b) 
Streamfunction: Posterior Mean Streamfunction: Posterior Standard Deviation 

63f^^ ] ^r7z^^^7i 
3 61 / / / / /^?^S>-^>0\ s5 / ,_ ^v r^\ 
o I \ \ ̂ \~\? / / / I I \ ^59 / ~^^^ ^\ \ 

3 58 "\ "^^^^"^^^ ^ I I 3 58^ c/^^^028 ?^C^O^ V 

56^ , ^T^-^**^\ seR^^Jg^EE^^d^ , H ._-? -.___j_I___l_I I_I-~~i fg_I___--1 -T-^-1_I 

300 302 304 306 308 310 312 300 302 304 306 308 310 
Longitude (deg) Longitude (deg) 

(c) (d) 
Streamfunction: Posterior Realization Streamfunction: Posterior Realization 

~//^^=n_[____C^4 ry ^^V^ZI^^--, 
?? 61 r / / A / A*>-?-^T^^S^^S^^^v 

" '** ^ \ / ci ft / ^---NS^v \ H fi eo (4 t(<^a \v\\\ ! ? / v (t ^ iv:\i 
159 \ \ x^-^y/ /// 159 f \^^rr><^ J T 558 \ V vrzzr~--2-5^V// j358[ ^^^^^S^'^^/l 
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Figure 2. Streamfunction Posterior Mean (a), Standard Deviation (b), and Realizations [(c) and (d)] for December 26, 1996, Corresponding to 
the Wind Data Given in Figure 1. Contour values should be multiplied by 106 mPs-1. 
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in the southwest corner of the domain. Not surprisingly, this 

is the area with the least amount of data. For comparison, the 

corresponding posterior mean wind vectors are shown in Fig 
ure 3(a). 

The realizations from the posterior shown in Figures 
2(c) and 2(d) [and wind vector realizations in Figs. 3(b) 
and 3(c)] show substantial variability around the posterior 

mean. 

To see the importance of the information at both large and 
small scales, we considered two additional analyses. Figure 4 

shows the posterior mean and standard deviation streamfunc 

tion fields for the case where only the large-scale (NCEP) data 
are considered. Although the streamfunction field still shows 

the cyclone, the orientation of the cyclone is east-west rather 

than northwest-southeast, and the cyclone intensity is much 

weaker. Furthermore, the variability in this case is extreme 

(note the contour intervals are two orders of magnitude larger 

than in Fig. 2!). Alternatively, Figure 5 shows the posterior 
mean and standard deviation streamfunction fields for the case 

where only the small-scale (NSCAT) data are considered. In 
this case the orientation is more similar to the posterior mean 

of Figure 2, and although the intensity is weaker than that in 

Figure 2, it is much stronger than that in Figure 4. Furthermore, 
the standard deviations are about twice as large in this case as 

in the full-data case shown in Figure 2. Thus these results show 

that the scatterometer data are probably most important in deter 

mining the streamfunction, but information is definitely added 

by the large-scale NCEP data. 

4. ENHANCEMENTS AND EXTENSIONS 

The conditional COS approach described here can easily be 

implemented in the fully Bayesian context. Furthermore, the 

methodology can be extended to the spatiotemporal and mul 
tivariate settings. We describe these scenarios in the following 
sections. 

4.1 Enhancements for Markov Chain 
Monte Carlo Implementation 

As the example in the previous section demonstrates, with 

relatively small datasets, Gaussian distributions on the data 

models and priors, and known parameters, the hierarchical COS 

methodology is relatively easy to implement. However, when 

these assumptions are not appropriate (as is often the case), the 

methodology is still appropriate, although one must use MCMC 
methods to evaluate the posterior. 

Bayesian computations, including MCMC approaches, are 
difficult when na x nc is very large. In particular, these com 

putations may require inversion of the (na + nc) x (na + nc) 
covariance matrix described in (23). This matrix naturally par 

titions into components for the ZA and Zc. We might consider 

computing the overall inverse of X directly, based on famil 
iar formulas for the inverse of a partitioned matrix. Instead, we 

expand on this notion further, essentially performing Bayesian 
updating sequentially. 

(a) 
Posterior Mean Wind Vectors 
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(b) 
Posterior Sample Wind Vectors 
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(c) 
Posterior Sample Wind Vectors 
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Figure 3. Wind Vector Posterior Mean (a) and Realizations 

[(b) and (c)] for December 26, 1996, Corresponding to the Wind Ob 
servations Given in Figure 1. 
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(a) 
Streamfunction: Posterior Mean 
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(b) 
Streamfunction: Posterior Standard Deviation 
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Figure 4. Streamfunction Posterior Mean (a) and Standard Devia 

tion (b) for December 26, 1996, Using Only the Large-Scale (NCEP) 
Winds Shown in Figure 1(b). Contour values should be multiplied 

by 10s mPs'1. 

4.1.1 Combining Datasets Sequentially. Temporarily 

suppressing conditioning on parameters, we may always write 

[ZA, Zc|Yfl] = [ZC|ZA, Y*][Za|Y*]. (38) 

Adding a multivariate normality assumption and rewriting (23) 
in partitioned form, we have 

(?)!* 
" 

~n((?M%+c?"'" zc+O)'<39) 
Of course, we have 

ZA\\B, Z, Zm 
~ 

N(GAYfi, YA + ZmJ. (40) 

Next, applying the normal conditioning result, it follows that 

Zc\ZA,YB 

~ 
N(GCYB + ?ca(Xa + Tma)~l(^A 

- 
GA\B), 

Zc + Imc.-Sc4(SA + Im<,)"lSAc). (41) 

The main suggestion is to begin by performing MCMC using 
the A-data only. After a burn-in period, one may then augment 

(a) 
Streamfunction: Posterior Mean 

-1- l___--0.5-1-1-1-1 

|6o_ / / n \ \ \ \ \ 1 i \ \ ?-3?^ / / I j 
\ \-2 ^ y / / 

56 
-_-0.5-05 
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Longitude (deg) 

(b) 
Streamfunction: Posterior Standard Deviation 
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Figure 5. Streamfunction Posterior Mean (a) and Standard Devia 
tion (b) for December 26, 1996, Using Only the Small-Scale (NSCAT) 

Winds Shown in Figure 1(a). Contour values should be multiplied 

bylO6 mPs'1. 

the algorithm by then incorporating the C-data. Of course, the 

order of these data applications may be reversed. This approach 
offers reduced complexity of the MCMC for the burn-in phase; 
that is, it is a nice initialization for the full sampler. Perhaps 

more importantly, it also offers an opportunity to assess the 

value of the information added by the C-data. 
This discussion is strongly related to the Kalman filter, 

although we have adjusted for COS. That is, rather than se 

quentially updating over time, we update across spatial scales 

sequentially. A similar, although not identical, view was used 

by Huang and Cressie (2001). Their work involves a complete 
specification of a joint model, whereas our "filter" is for obser 
vations conditional on Y#. As such, these formulas can be used 
to simulate synthetic observations readily, which in turn may 
be used in model validation studies as well as in the design of 

spatial sampling networks. 
4.1.2 Combining Datasets via Importance Sampling. The 

Gaussian assumption in (39) may not always be appropriate. 
A more general approach is needed. In this context, the follow 

ing suggestion for combining datasets may be of broad practical 
value, and hence we develop the basic formulas in general. 

Assumption 4. First, assume that the parameters 0m appear 

ing in the data model can be partitioned into two subvectors, 
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Oma and Omc, where elements of 0ma appear in the conditional 

model for ZA, but not in the model for Zc (and vice versa). 

We write (38) as 

\ZA, Zc|Y#, 0ma,0mc,0ac] 
= 

[zc\zA,yb,ema,emc,eac][zA\YB,ema,eac\ (42) 

We also assume that the prior on parameters is of the form 

[0ma,0mc,0ac, 0h] 
= 

[0mc][0maJac, 0b\ (43) 

It follows that the complete joint posterior distribution is 

given by 

[YB, 0ma,0mc,0ac, Ob\ZA, Zc] 

=--- (44) 
h(ZA,Zc) 

x 
[Zc\ZA,YB,ema,0mcJac][0mc] (45) 

x 
[ZA\YB,0ma,0ac][YB\0b][0ma,0ac,eb], (46) 

where h(ZA, Zc) is the normalizing constant (i.e., the integral 
of the numerator over YB and all parameters). Manipulation 
of (46) and some algebra implies that 

[Y#, 0ma,0mc, 0ac, Ob\ZA, Zc] 
= w(ZA,Zc) (47) 

x 
[Zc\ZA,YB,0ma,0mc,0ac][0mc] (48) 

x[YB,0ma,0ac,0b\ZA] (49) 

where (49) is the posterior on the indicated quantities condi 
tional on ZA only and w(ZA, Zc) is the ratio of the correspond 
ing marginals. 

Standard results in importance sampling provide appro 

priate adjustment for these quantities, leading to inferences 
conditional on all data, based on MCMC samples from the sam 

pler based on ZA. Specifically, let (YB, 0ma,0ac, 0b)M denote 
the Mth realization from the MCMC conditioned only on ZA. 
Also, let O1^ denote an independently generated realization 
from the prior [0mJ. Assuming ergodicity of the sampler, we 

may asymptotically estimate expectations of integrable func 

tions f(YB, 0A,0ma,0ac, Ob, 0mc) conditional on ZA and Zc as 

J2f((YB,ema,0ac,oh)M,0^) M 

x[Zc\ZA,YB,(0ma,0ac,0b)M,0^] 

x 
(j^[Zc\ZA,YB,(0ma,0ac,0b)MJ^c]) 

. (50) 

Note that this result does not rely on computation of the 

weight w. 

Just as the Gaussian case presented in Section 4.1.1 is analo 

gous to well-known results in Kalman filtering, the importance 
sampling approach suggested here for the non-Gaussian case 

is analogous to the sequential Monte Carlo approach for time 
series (e.g., Doucet, de Freitas, and Gordon 2001). Again, the 

main differences are that updating is done not over time, but 
rather across spatial scales, and conditional on the process at 

the "ZT scale. 

4.2 Extensions of the Methodology 

The hierarchical model summarized as the data model (3), 

process model composed of (12) and (13), and parameter 
model (14) is quite general. Thus the associated COS method 

ology that focuses on the data model, as presented here, also is 

quite general. Here we describe some generalizations. 

4.2.1 Spatiotemporal Process. As described previously, 
one of the primary strengths of the hierarchical approach to 

COS outlined earlier, is that the support transformations occur 

in the data model, leaving the process to be modeled at another 

stage. Thus the methodology is directly applicable in the case of 

spatiotemporal data and a spatiotemporal process. That is, the 
data model might assume that, conditioned on the true process 
at time t, the observations are independent in time; for example, 

[Za(\),...,Za(T),Zc(\).....Zc(T)\Yb(\),...,Yb(T)} 
T 

= 
Y\[ZA(t),Zc(t)\YB(t)}, 

t=\ 

with a subsequent spatiotemporal process model for [Y^(l), 
...,YB(T)]. An example of this was given by Wikle et al. 

(2001), although the COS implementation in the data model 
was substantially simpler than the moment condition approach 

outlined in Section 2.3. 
4.2.2 Spatiotemporal COS. The hierarchical COS meth 

odology can accommodate data of differing temporal as well 
as spatial supports. This requires straightforward modification 
to the notation presented previously. First, let r represent some 

period of time over which the process is to be defined. Then 
we let 

Y(B,z) = -^--]- 
[ [ Y(s,t)dsdt, |_9|>0,|r|>0, 

\B\ \t\ JtJb 
where t eT, the time domain of interest. Then a slight modifi 
cation of Assumption 1 would be as follows. 

Assumption lb. Conditional on Y(B, r), define a continu 

ously indexed spatiotemporal process {y(s,t),s e D,t e T) 
such that for each Bj and rz and all se Bj, and t e xx, 

Y(s,t) = 
Y(Bj,Ti) + y(s,t), (51) 

where the y process has mean 0 everywhere; covariance func 

tion o(s, r, t, t') = cov[y(s, t), y(r, /)] for all s, r e D and 

t, t' e T; and the distribution of the y process does not depend 
on the K-process at the support B and r. 

In principle, the development proceeds as for the purely spa 

tial case. In practice, the spatiotemporal case can be more dif 

ficult, due to the problem of specifying realistic spatiotemporal 
covariance structures for the y process and the dimensionality 
of the associated G and covariance matrices. 

4.2.3 Multivariate Data/Processes. There is no require 
ment that all of Y,4, Y#, and Yc represent the same variables, 

defined from a basic Y. For example, Y^ and YB may repre 
sent one process, and Yc may represent a completely differ 

ent variable, albeit one for which we could still form (12). An 
illustration related to our wind example would be if we ob 
tained sea surface height data (e.g., from an orbiting altimeter), 

which can be related physically to surface winds. (For a similar 

example with relatively simple COS methodology, see Royle 
etal. 1998.) 
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4.2.4 YB as "Parameter." In our development, YB, al 

though a vector of random parameters, is treated as a "process." 

Obviously, these parameters could be interpreted in the more 

traditional sense of parameters. For example, it might represent 
rate of disease or precipitation intensity distributed spatially. 

4.2.5 Nonadditive Errors. We can relax Assumption 3 of 
additive errors. In that case, the Z distributions can still be writ 
ten conditionally on the respective Y processes. 

5. CONCLUSION 

Due to technological advances, physical, biological, and en 

vironmental scientists and engineers are collecting many new 

datasets of various resolutions in space and time. These data do 
not always match up with the scales at which inference is de 

sired. Furthermore, prior information regarding the processes 

of interest may vary in availability and quality across scales. 
To address such issues, we have proposed a conditional change 
of support approach that is well suited to the hierarchical 

Bayesian framework. The key elements of our approach are 

that we assume that the true process of interest in continuous 

space can be reasonably modeled conditional on values (typi 

cally, areal averages) of the process defined at some support for 

which inference is desired and/or prior information is available. 

We then assume that we have data at lesser, equal, or greater 

supports relative to this process scale (which we call "subgrid," 
"grid," and "supergrid" scales). Such data are modeled condi 

tionally on the process defined at the supports corresponding to 

those of the data. These conditioning assumptions fit naturally 
into the hierarchical Bayesian framework. We have discussed 

alternative approaches for implementing this conditional COS 

methodology in the fully Bayesian context, suggesting sequen 
tial approaches for updating across spatial scales. Furthermore, 
we described how this methodology can be extended to the spa 

tiotemporal setting. 

The notion of considering data from different spatial scales 

in a hierarchical context is very powerful. As the modeling of 

complicated spatial processes is increasingly considered from a 

hierarchical perspective to account realistically for spatial vari 

ability, the use of hierarchical COS approaches will become 

increasingly important. 
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APPENDIX: DERIVATION OF STREAMFUNCTION 
POSTERIOR DISTRIBUTION 

Analogous to the example in Section 3, assume that we are 

interested primarily in a spatial process ^7 with an associated 

boundary process ijrbc.\x\ addition, assume that there is another 

related spatial process w# with support B and associated obser 
vations W at arbitrary support. Consider the following hierar 
chical model: 

w|wB-N(GwB,i; + i;m), 

*/|w_, tbc 
~ N(Hw# + Kfbc, Z/), 

fbc^N(pbc,T,bc), 

wb^n(pw,j:w). 

Thus we are assuming that G, X, ?w, H, K, 5./, _E^C, ̂ ^c, /i^, 

and ?w are known or estimated in some other fashion (e.g., 

empirical Bayes). 
Direct application of Bayes's rule gives the posterior distrib 

ution 

[*? fbc, w*|W] oc [W|w*] W7|^ wb][^][wb]. 

To evaluate this posterior, we first note that the constant of pro 

portionality is given by /[W|W?_[Wfi]_iw?, which is special 
for this model and follows from the fact that i/rbc is indepen 
dent of the Wfl process. Thus we can rewrite the posterior as the 

equality 

[fj, fbc, WB|W] = [WbIWK*;!^, VBK+bel 

Using the multivariate Gaussian assumptions in the hierar 
chical model, we obtain 

w#|W 
- 

N(pWB]W, T.WB\w), 

where 

pWB[w 
= 

YWBlw(Gf(T + Xm)-1 W + T~Vw) 

and 

^wB\w = (g'(e + nm)_ g + z~ ) . 

Furthermore, exploiting conditioning and Gaussian assump 

tions gives 

where 

and 

X^|^c,w 
= X/ + HXWfi|wH . 

Finally, integrating out the boundary process gives the desired 

posterior distribution for the interior spatial process, 

where 

flifrlW 
~ 

H^vvB|W + Kpbc 

and 

Yf\w 
= 

'EfWbcW + KX^K . 

[Received April 2002. Revised April 2004.] 
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