## CHAPTER 4

## 4.1

$X^{\prime} X=\left[\begin{array}{cc}10 & 55 \\ 55 & 385\end{array}\right] ;\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{cc}0.4667 & -0.0667 \\ -0.0667 & 0.0121\end{array}\right] ;$
$\mathrm{V}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left[\begin{array}{cc}0.4667 & -0.0667 \\ -0.0667 & 0.0121\end{array}\right]$
$\mathrm{V}\left(\hat{\beta}_{0}\right)=(0.4667) \sigma^{2} ; \mathrm{V}\left(\hat{\beta}_{1}\right)=(0.0121) \sigma^{2}$
4.2 $\mathrm{L}(1)$ represents the 45 degree line through the origin in two-dimensional space. Projecting the observation vector $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ onto the subspace $L(\mathbf{1})$ results in the fitted values $\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}3 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and the least squares estimate $\hat{\beta}_{0}=3$. The residual vector $\boldsymbol{e}=\left[\begin{array}{l}2 \\ 4\end{array}\right]-\left[\begin{array}{l}3 \\ 3\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and the projection $\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ are orthogonal. The picture is given below.

## Exercise 4.2


4.3 $\mathrm{L}(\mathrm{X})$ is the two-dimensional subspace in three-dimensional space that is described by all linear combinations of the two vectors, $\mathbf{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$. You need to
visualize this as a plane in three-dimensional space. The orthogonal projection of the observation vector $\boldsymbol{y}=\left[\begin{array}{l}2.2 \\ 3.9 \\ 3.1\end{array}\right]$ onto this plane results in the vector of fitted values (the projection) $\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}2.21667 \\ 3.91667 \\ 3.06667\end{array}\right]$ and the least squares estimates $\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}\hat{\boldsymbol{\beta}}_{0} \\ \hat{\beta}_{1}\end{array}\right]=\left[\begin{array}{l}1.36667 \\ 0.85000\end{array}\right]$, satisfying $\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}2.21667 \\ 3.91667 \\ 3.06667\end{array}\right]=X \hat{\boldsymbol{\beta}}=\left[\begin{array}{ll}1 & 1 \\ 1 & 3 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}1.36667 \\ 0.85000\end{array}\right]$. The residual vector $\boldsymbol{e}=\left[\begin{array}{c}2.1-2.21667 \\ 3.9-3.91667 \\ 3.1-3.06667\end{array}\right]=\left[\begin{array}{c}-0.01667 \\ -0.01667 \\ 0.03333\end{array}\right]$ and the projection $\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}2.21667 \\ 3.91667 \\ 3.06667\end{array}\right]$ are orthogonal.

The difference of the data vector $\boldsymbol{y}$ and the projection $\hat{\boldsymbol{\mu}}$ is quite small, indicating that the data vector is almost in the plane spanned by the matrix X .
4.4 $\mathrm{L}(\mathrm{X})$ is the two-dimensional subspace in three-dimensional space that is described by all linear combinations of the two vectors, $\mathbf{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$. You need to
visualize this as a plane in three-dimensional space. The orthogonal projection of the observation vector $\boldsymbol{y}=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ onto this plane results in the vector of fitted values (the projection) $\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}3 \\ 5 \\ 4\end{array}\right]$ and the least squares estimates $\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, satisfying
$\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}3 \\ 5 \\ 4\end{array}\right]=\mathbf{X} \hat{\boldsymbol{\beta}}=\left[\begin{array}{ll}1 & 1 \\ 1 & 3 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]$. The residual vector $\boldsymbol{e}=\left[\begin{array}{c}2-3 \\ 4-5 \\ 6-4\end{array}\right]=\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]$ and the projection
$\hat{\boldsymbol{\mu}}=\left[\begin{array}{l}3 \\ 5 \\ 4\end{array}\right]$ are orthogonal.
Note that the difference of the data vector and the projection is larger here than in Exercise 4.3. The data vector is not close to the space spanned by the matrix X.

## 4.5

(a) $\mathrm{V}\left(\hat{\beta}_{1}\right)=18$
(b) $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)=1.2$
(c) $\operatorname{Corr}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)=0.0943$
(d) $\mathrm{V}\left(\hat{\beta}_{1}-\hat{\beta}_{3}\right)=\mathrm{V}\left(\hat{\beta}_{1}\right)+\mathrm{V}\left(\hat{\beta}_{3}\right)-2 \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)=24.6$

## 4.6

(a) $\mathrm{V}\left(\hat{\beta}_{2}\right)=4$; s.e. $\left(\hat{\beta}_{2}\right)=2$
(b) $\mathrm{t}\left(\hat{\beta}_{2}\right)=\hat{\beta}_{2}$ /s.e. $\left(\hat{\beta}_{2}\right)=15 / 2=7.5$; p -value $=2 \mathrm{P}(\mathrm{t}(12) \geq 7.5)<0.001$; reject $\beta_{2}=0$ in favor of $\beta_{2} \neq 0$
(c) $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=-0.05$
(d) Test $\beta_{1}-\beta_{2}=0 ; \mathrm{V}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\mathrm{V}\left(\hat{\beta}_{1}\right)+\mathrm{V}\left(\hat{\beta}_{2}\right)-2 \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=1+4+1=6$; $\hat{\beta}_{1}-\hat{\beta}_{2} /$ s.e. $\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=-3 / \sqrt{6}=-1.22 ; \mathrm{p}$-value $=2 \mathrm{P}(\mathrm{t}(12) \leq-1.22)=0.136$;
conclude $\beta_{1}-\beta_{2}=0$, or $\beta_{1}=\beta_{2}$.
$95 \%$ confidence interval for $\beta_{1}-\beta_{2}$ : $-3 \pm(2.179) \sqrt{6}$ or ( $-8.34,2.34$ ) covers zero.
(e) $\mathrm{SST}=120, \mathrm{SSE}=2(15-3)=24$, and $\mathrm{SSR}=96 ; \mathrm{F}=(96 / 2) /(24 / 12)=24$; very small p-value; reject $\beta_{1}-\beta_{2}=0$.
4.7
(a) $\mathrm{R}^{2}=0.9324$
(b) F-statistic $=110.35 ;$ p-value $=0.000$; reject $\beta_{1}=\beta_{2}=\beta_{3}=0$
(c) $95 \%$ confidence interval for $\beta_{\text {taxes }}$ : $0.074,0.306$ ); reject $\beta_{\text {taxes }}=0$; cannot simplify model
$95 \%$ confidence Interval for $\beta_{\text {baths }}$ : $(-16.83,180.57)$; can not reject $\beta_{\text {baths }}=0$; can simplify model by dropping "baths"
Abraham/Ledolter: Chapter 4 4-3

## 4.8

(a) $\mathrm{R}^{2}=500074 / 541119=0.9241$
(b) F -statistic $=152.29 ; \mathrm{p}$-value $=0.000$; reject $\beta_{1}=\beta_{2}=0$
(c) t-ratio for taxes $=0.24237 / 0.04884=4.96 ; \mathrm{p}$-value $=\mathrm{P}(\mathrm{t}(25) \geq 4.96)=0.0000$ reject $\beta_{\text {taxes }}=0$; response is related to taxes.

## 4.9

(a) From $\hat{\beta}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}$, we obtain $\hat{\beta}_{0}=885.161, \hat{\beta}_{1}=-6.571, \hat{\beta}_{2}=-1.374$; $\mathrm{s}=36.49$;
From $V(\hat{\beta})=s^{2}\left(X^{\prime} \mathrm{X}\right)^{-1}$ : s.e. $\left(\hat{\beta}_{0}\right)=61.75$, s.e. $\left(\hat{\beta}_{1}\right)=0.5832$, s.e. $\left(\hat{\beta}_{2}\right)=0.1943$
(b) $\mathrm{t}\left(\hat{\beta}_{0}\right)=14.33, \mathrm{t}\left(\hat{\beta}_{1}\right)=-11.27, \mathrm{t}\left(\hat{\beta}_{2}\right)=-7.07 ; 97.5^{\text {th }}$ percentile: $\mathrm{t}(27,0.975)=2.052$;
can reject $\beta_{1}=0$; can reject $\beta_{2}=0$.
(c) $\mathrm{R}^{2}=0.841$

### 4.10

(a) Estimated equation: $\hat{\mu}=3.453+0.496 \mathrm{x}_{1}+0.0092 \mathrm{x}_{2} ; \mathrm{s}^{2}=4.7403$;

$$
\text { s.e. }\left(\hat{\beta}_{0}\right)=2.431 \text {, s.e. }\left(\hat{\beta}_{1}\right)=0.00605 \text {, s.e. }\left(\hat{\beta}_{2}\right)=0.00097
$$

(b) $\mathrm{t}\left(\hat{\beta}_{1}\right)=0.496 / 0.00605=81.89 ; \mathrm{p}$-value $(2$-sided $)=2 \mathrm{P}(\mathrm{t}(12)>81.89)=0.000$, which is very small. We reject the null hypothesis $\beta_{1}=0$.
$\mathrm{t}\left(\hat{\beta}_{2}\right)=0.009191 / 0.00097=9.49 ; \mathrm{p}$-value $(2$-sided $)=0.000$, which is very small.
We reject the null hypothesis $\beta_{2}=0$.
Neither of the two explanatory variables can be omitted from the model.

### 4.11

(a) Minitab output:

The regression equation is
Y = 295-481 X1 - 829 X2 + 0.00794 X3 + 2.36 X4

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | 295.33 | 40.18 | 7.35 | 0.000 |
| X1 | -480.8 | 150.4 | -3.20 | 0.006 |
| X2 | -829.4 | 196.5 | -4.22 | 0.001 |
| X3 | 0.007936 | 0.003554 | 2.23 | 0.041 |
| X4 | 2.3603 | 0.7616 | 3.10 | 0.007 |
| S = 46.77 | $=88.3 \%$ |  |  |  |

Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 4 | 246538 | 61635 | 28.18 | 0.000 |
| Residual Error | 15 | 32807 | 2187 |  |  |
| Total | 19 | 279345 |  |  |  |

(b) Test $\beta_{1}=0: \mathrm{t}\left(\hat{\beta}_{1}\right)=-3.20$; p -value $=0.006$; reject $\beta_{1}=0$; the number of beds in for profit hospitals is important.
(c) The observations (for the two time periods for each state) look very similar and, most likely, they are correlated. If the correlation is very high, it is reasonable to discard one of them or average the two observations, and reanalyze the data.
(d) Instead of selecting ten states at random, one could classify the states into three groups according to population size - small, medium, and large - and select three or four hospitals at random from each category.
4.12 The output from R software, using the function $\operatorname{lm}($ formula $=$ usage $\sim$ TEMP + PROD + DAYS + PAYR + HOUR) is given below:

Coefficients:

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| :--- | ---: | ---: | ---: | :--- |
| (Intercept) | 39.437054 | 12.110986 | 3.256 | 0.00765 |
| TEMP | 0.084067 | 0.060469 | 1.390 | 0.19194 |
| PROD | 0.001876 | 0.000607 | 3.091 | 0.01027 |
| DAYS | 0.131704 | 0.289800 | 0.454 | 0.65833 |
| PAYS | -0.215677 | 0.098810 | -2.183 | 0.05162 |
| HOUR | -0.014475 | 0.030052 | -0.482 | 0.63949 |

Residual standard error: 3.213 on 11 degrees of freedom Multiple R-Squared: 0.6446, Adjusted R-squared: 0.4831 F-statistic: 3.991 on 5 and 11 DF, p-value: 0.02607
$R^{2}=0.6446$, and the regression model is significant at $2.6 \%$ level. The output indicates that PROD is significant at the $1 \%$ level, even if other variables are present in the model. PAYS is also marginally significant ( $p$-value $=0.051$ ). All other variables are not significant when added last to the model. The model can be simplified
(b) In order to test $\beta_{1}=\beta_{3}=\beta_{5}=0$, we need to fit a reduced model that includes just $\mathrm{x}_{2}$ and $\mathrm{x}_{4}$. The R output for the reduced model with $\operatorname{lm}$ (formula $=$ USAGE $\sim$ PROD + PAYR) is listed below

```
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error t value & Pr \((>|\mathrm{t}|)\) \\
(Intercept) & 46.0177241 & 10.1085905 & 4.552 & 0.000452 \\
PROD & 0.0020353 & 0.0005587 & 3.643 & 0.002663 \\
PAYR & -0.2157919 & 0.0895867 & -2.409 & 0.030356
\end{tabular}
```

Residual standard error: 3.117 on 14 degrees of freedom Multiple R-Squared: 0.5743, Adjusted R-squared: 0.5135 F-statistic: 9.442 on 2 and 14 DF, p-value: 0.002535

The additional sum of squares = ResidualSS (reduced model) - ResidualSS (full model) $=$ SSR(full model) - SSR(reduced model) $=205.956-183.48$ and $\mathrm{F}=[(205.956-183.48) / 2] /(3.213)^{2}=1.09 ; \mathrm{p}$-value $=\mathrm{P}(\mathrm{F}(2,11)>1.09)=0.37$; we can not reject $\beta_{1}=\beta_{3}=\beta_{5}=0$.
(c) We prefer the reduced model $\hat{\mu}=46.02+0.00204 \mathrm{PROD}-0.216 \mathrm{PAYR} ; \mathrm{R}^{2}=$ 0.574 (only slightly smaller than the $\mathrm{R}^{2}$ of the full model $=0.6446$ ).
(d) Production has the smallest p-value.
(e) Water usage as linear function of PROD and PAYR. For fixed value of PAYR, each unit increase in production increases water use by 0.0020353 (gallons/100). Similarly, for a fixed value of PROD, a unit increase in PAYR decreases water usage by 0.2157919 (gallons/100).

### 4.13

(a) Minitab output:

The regression equation is $Y=177+2.17 \mathrm{X} 1+3.54 \mathrm{X} 2-22.2 \mathrm{X} 3+0.204 \mathrm{X} 4$

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | 177.229 | 8.787 | 20.17 | 0.000 |
| X1 | 2.1702 | 0.6737 | 3.22 | 0.009 |
| X2 | 3.5380 | 0.1092 | 32.41 | 0.000 |
| X3 | -22.1583 | 0.5454 | -40.63 | 0.000 |
| X4 | 0.2035 | 0.3189 | 0.64 | 0.538 |

$S=5.119 \quad R-S q=99.7 \% \quad R-S q(\operatorname{adj})=99.6 \%$
Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 4 | 89285 | 22321 | 851.72 | 0.000 |
| Residual Error | 10 | 262 | 26 |  |  |
| Total | 14 | 89547 |  |  |  |

(b) $\mathrm{R}^{2}=0.997$; estimates are part of the output given above

Abraham/Ledolter: Chapter 4
(c)
(i) t -ratio $=0.64 ; \mathrm{p}$-value $=0.538$; conclude $\beta_{4}=0$
(ii) $\mathrm{F}=[(43968-262) / 2] /[262 / 10]=834.1 ; \mathrm{p}$-value $=\mathrm{P}(\mathrm{F}(2,10)>834.1)=0.0000$; reject $\beta_{3}=\beta_{4}=0$
(iii) $\mathrm{F}=(58575-262) /(262 / 10)=2,225.7$; p -value $=\mathrm{P}(\mathrm{F}(2,10)>2,225.7)=0.0000$; reject $\beta_{2}=\beta_{3}$

The regression equation is $Y=-61+4.61 \mathrm{X} 1+3.05 \mathrm{X} 2+\mathrm{X} 3+2.54 \mathrm{X} 4$

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | -61.4 | 102.4 | -0.60 | 0.561 |
| X1 | 4.613 | 9.575 | 0.48 | 0.639 |
| X2+X3 | 3.051 | 1.549 | 1.97 | 0.075 |
| X4 | 2.541 | 4.490 | 0.57 | 0.583 |
| S $=72.97$ | R-Sq $=34.6 \%$ | R-Sq $($ adj $)=16.7 \%$ |  |  |

Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 3 | 30972 | 10324 | 1.94 | 0.182 |
| Residual Error | 11 | 58575 | 5325 |  |  |
| Total | 14 | 89547 |  |  |  |

(iv) $\mathrm{F}=851.72 ; \mathrm{p}$-value $=0.0000$; reject $\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$
(d) Minitab output:

The regression equation is
$Y=179+2.11 \mathrm{X} 1+3.56 \mathrm{X} 2-22.2 \mathrm{X} 3$

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | 178.521 | 8.318 | 21.46 | 0.000 |
| X1 | 2.1055 | 0.6479 | 3.25 | 0.008 |
| X2 | 3.56240 | 0.09945 | 35.82 | 0.000 |
| X3 | -22.1880 | 0.5286 | -41.98 | 0.000 |

$S=4.980 \quad R-S q=99.7 \% \quad R-S q(a d j)=99.6 \%$
Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 3 | 89274 | 29758 | 1200.14 | 0.000 |
| Residual Error | 11 | 273 | 25 |  |  |
| Total | 14 | 89547 |  |  |  |

(e) $95 \%$ prediction interval for sales when $\mathrm{x}_{1}=3, \mathrm{x}_{2}=45, \mathrm{x}_{3}=10$ : (111.46, 135.08)
4.14
(a)
$X^{\prime} \mathrm{X}=\left[\begin{array}{cccc}13.00 & 59.43 & 81.82 & 115.40 \\ 59.43 & 394.73 & 360.66 & 522.08 \\ 81.82 & 360.66 & 576.73 & 728.31 \\ 115.40 & 522.08 & 728.31 & 1035.96\end{array}\right]$
$\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{cccc}8.06479464 & -0.082592705 & -0.094195115 & -0.790526876 \\ -0.08259271 & 0.008479816 & 0.001716687 & 0.003720020 \\ -0.09419511 & 0.001716687 & 0.016629424 & -0.002063308 \\ -0.79052688 & 0.003720020 & -0.002063308 & 0.088601286\end{array}\right]$
$\mathrm{X}^{\prime} \boldsymbol{y}=\left[\begin{array}{c}377.700 \\ 1877.911 \\ 2247.285 \\ 3339.300\end{array}\right]$
(c) Estimated equation: $\hat{\mu}=39.482+1.0092 \mathrm{x}_{1}-1.873 \mathrm{x}_{2}-0.367 \mathrm{x}_{3}$
(d) (i) (22.802, 25.653); $90 \%$ confidence interval for the mean value of $y$ when $x_{1}=3$, $\mathrm{x}_{2}=8$ and $\mathrm{x}_{2}=9$ can be obtained with the software R directly using the function "predict".

| Mean value | Lower limit | Upper limit |
| :--- | :---: | :---: |
| 24.22764 | 22.80225 | 25.65302 |

There is also an option in Minitab.
(ii) (20.109, 28.346); $90 \%$ prediction interval for an individual value of y when $\mathrm{x}_{1}=3, \mathrm{x}_{2}=8$ and $\mathrm{x}_{2}=9$ can also be obtained from the software R directly using the function "predict".
(e) F-statistic $=30.08 ; \mathrm{p}$-value $=0.000$; reject $\beta_{1}=\beta_{2}=\beta_{3}=0$.

### 4.15

(a) Linear relationship between $y$ and $x_{1}$; perhaps some curvature in the scatter plot of y against $\mathrm{x}_{2}$ (see part (e))
(b) $\hat{\beta}_{0}=2.59 ; \hat{\beta}_{1}=-0.378 ; \hat{\beta}_{2}=0.877$

Fitted equation: $\hat{\mu}=2.59-0.378 \mathrm{x}_{1}+0.877 \mathrm{x}_{2}$
(c) Significant relationship between y and the variables $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$

The regression equation is
$Y=2.59-0.378 \mathrm{X} 1+0.877 \mathrm{X} 2$

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | 2.58810 | 0.08349 | 31.00 | 0.000 |
| X1 | -0.37802 | 0.06630 | -5.70 | 0.000 |
| X2 | 0.8768 | 0.1723 | 5.09 | 0.000 |
| S = 0.06263 | R-Sq $=90.8 \%$ | R-Sq $($ adj $)=89.3 \%$ |  |  |

Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 2 | 0.46419 | 0.23210 | 59.16 | 0.000 |
| Residual Error | 12 | 0.04707 | 0.00392 |  |  |
| Total | 14 | 0.51127 |  |  |  |

(d) Model with $x_{1}: R^{2}=0.709$. Model with $x_{2}: R^{2}=0.659$. Prefer model with $x_{2}$
(e) Prefer model with both $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$ as neither variable can be omitted from the model (see t-ratios in (c)).
No need to add $\left(\mathrm{x}_{2}\right)^{2}$ to the model; t-ratio $=0.24 ; \mathrm{p}$-value $=0.815$

### 4.16

$$
\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{cccc}
9.61093203 & 0.008587789 & -0.27914754 & -0.04452169 \\
0.00858779 & 0.509964070 & -0.25886359 & 0.00077654 \\
-0.27914754 & -0.25886359 & 0.13949996 & 0.00073956 \\
-0.04452169 & 0.00077654 & 0.00073956 & 0.00036978
\end{array}\right]
$$

Correction Factor $=45^{2} / 9=225$

$$
\begin{aligned}
& \mathrm{SST}=\mathrm{y}^{\prime} \mathrm{y}-\mathrm{CF}=285-225=60 \\
& \mathrm{SSR}=\hat{\beta} \mathrm{X} \text { ' } \mathrm{y}-\mathrm{CF}=282.9725-225=57.9725 \\
& \mathrm{SSE}=\mathrm{SST}-\mathrm{SSR}=60-57.9725=2.0275
\end{aligned}
$$

ANOVA table:

| Source | DF | SS | MS | F | P |
| :--- | :---: | ---: | ---: | :---: | :---: |
| Regression | 3 | 57.9725 | 19.3242 | 47.66 | $2.129815 \mathrm{e}-05$ |
| Residual | 5 | 2.0275 | 0.4055 |  |  |
| Total | 8 | 60.0000 |  |  |  |

F-statistic $=47.66$; reject $\beta_{1}=\beta_{2}=\beta_{3}=0$
(b) Estimated equation: $\hat{\mu}=-1.16346+0.13527 \mathrm{x}_{1}+0.01995 \mathrm{x}_{2}+0.12195 \mathrm{x}_{3}$; $\mathrm{s}^{2}=0.4055$;
s.e. $\left(\hat{\beta}_{0}\right)=1.974$; s.e. $\left(\hat{\beta}_{1}\right)=0.45474$; s.e. $\left(\hat{\beta}_{2}\right)=0.23784$; s.e. $\left(\hat{\beta}_{3}\right)=0.01225$
$\mathrm{t}\left(\hat{\beta}_{1}\right)=0.295 ; \mathrm{p}$-value $=0.78$; can not reject $\beta_{1}=0$
Abraham/Ledolter: Chapter 4 4-9

$$
\begin{aligned}
& \mathrm{t}\left(\hat{\beta}_{2}\right)=0.084 ; \mathrm{p} \text {-value }=0.94 ; \text { can not reject } \beta_{2}=0 \\
& \mathrm{t}\left(\hat{\beta}_{3}\right)=9.955 ; \mathrm{p} \text {-value }=0.000 ; \text { reject } \beta_{3}=0
\end{aligned}
$$

### 4.17

(a) $\mathrm{t}(0.975 ; 20)=2.086$
$95 \%$ confidence interval for $\beta_{0}: 4 \pm(2.086)(2)$ or ( $-0.17,8.17$ ); covers $\beta_{0}=0$, but just barely.
$95 \%$ confidence interval for $\beta_{1}:-4.5 \pm(2.086)(3)$ or ( $-10.76,1.76$ ); covers $\beta_{1}=0$
(b) $95 \%$ confidence region is given below. The point ( $\beta_{0}=0, \beta_{1}=0$ ) is very close to the $95 \%$ contour (it is just barely within the $95 \%$ confidence region). This indicates that neither model A and B are particularly worthwhile.

(c) There is no conflict between the results in (a) and (b). In general there could have been a conflict if $\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ was not zero.
4.18 $\operatorname{Cov}(\boldsymbol{e}, \hat{\boldsymbol{\mu}})=\operatorname{Cov}((\mathrm{I}-\mathrm{H}) \boldsymbol{y}, \mathrm{H} \boldsymbol{y})=\sigma^{2}(\mathrm{I}-\mathrm{H}) \mathrm{H}=\mathrm{O}$, a (n x n) matrix of zeros. Vectors $\boldsymbol{e}$ and $\hat{\boldsymbol{\mu}}$ are linear functions of $\boldsymbol{y}$ and are normal. Hence $\boldsymbol{e}$ and $\hat{\boldsymbol{\mu}}$ are statistically independent.

### 4.19

(a) $\hat{\beta}^{\text {wLS }}=\sum\left(\mathrm{y}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}^{2}\right) / \sum\left(\mathrm{x}_{\mathrm{i}}^{2} / \mathrm{x}_{\mathrm{i}}^{2}\right)=\sum\left(\mathrm{y}_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}\right) / \mathrm{n} ; \mathrm{V}\left(\hat{\beta}^{\mathrm{WLS}}\right)=\sigma^{2} / \mathrm{n}$
(b) $\hat{\beta}^{\mathrm{WLS}}=30 / 12=2.5 ; \mathrm{V}\left(\hat{\beta}^{\mathrm{WLS}}\right)=\sigma^{2} / 12$

### 4.20

(a) $\hat{\beta}^{\mathrm{WLS}}=\sum \mathrm{y}_{\mathrm{i}} / \sum \mathrm{x}_{\mathrm{i}} ; \mathrm{V}\left(\hat{\beta}^{\mathrm{WLS}}\right)=\sigma^{2} / \sum \mathrm{x}_{\mathrm{i}}$
(b) $\hat{\beta}^{\mathrm{WLS}}=30 / 2=15 ; \mathrm{V}\left(\hat{\beta}^{\mathrm{WLS}}\right)=\sigma^{2} / 150$
4.21 See Exercise 4.9. Minitab output:

The regression equation is
$y=885-6.57 \times 1-1.37 \times 2$

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | 885.16 | 61.75 | 14.33 | 0.000 |
| x1 | -6.5708 | 0.5832 | -11.27 | 0.000 |
| x2 | -1.3743 | 0.1943 | -7.07 | 0.000 |
| S = 36.49 | R-Sq $=84.0 \%$ | R-Sq $($ adj $)=82.8 \%$ |  |  |

Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 2 | 189062 | 94531 | 71.00 | 0.000 |
| Residual Error | 27 | 35950 | 1331 |  |  |
| Total | 29 | 225011 |  |  |  |

95 percent confidence interval for the mean abrasion loss for rubber with hardness 70 and tensile strength 200: $(134.65,166.03)$

### 4.22

(a) Linear model not appropriate.
(b) Fitted equation:

TensileStrength $=-6.674+11.764$ Hardwood $-0.635(\text { Hardwood })^{2}$

Abraham/Ledolter: Chapter 4 4-11

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 2 | 3104.2 | 1552.1 | 79.43 | 0.000 |
| Residual Error | 16 | 312.6 | 19.5 |  |  |
| Total | 18 | 3416.9 |  |  |  |

Model adequate; quadratic term needed; increases $\mathrm{R}^{2}$ from 0.305 to 0.909 . $95 \%$ confidence interval for mean response when hardwood 6 percent: (38.14, 44.00) Prediction intervals are for individual observations while confidence intervals are for the mean value. Confidence intervals are shorter than the corresponding prediction intervals. 95\% prediction interval for tensile strength for a batch of paper with 6 percent hardwood concentration: $(31.25,50.88)$.
The maximum hardwood concentration in the data set used to fit the model is 7 percent, which is very low compared to 20 percent. It is not advisable to use the fitted model to predict the mean tensile strength of paper for 20 percent hardwood concentration.

### 4.23

Quadratic model. Estimated equation: $\hat{\mu}=82.385-38.310 x+4.703 x^{2}$
Regression significant; adequate fit.
Stars with $\ln$ (surface temperature) < 4 appear different and should be investigated separately. Without these stars, a linear model is appropriate.

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | 82.385 | 9.581 | 8.60 | 0.000 |
| x | -38.310 | 4.790 | -8.00 | 0.000 |
| x2 | 4.7025 | 0.5939 | 7.92 | 0.000 |

$S=0.3667 \quad R-S q=60.6 \% \quad R-S q(a d j)=58.8 \%$
Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 2 | 9.0945 | 4.5472 | 33.82 | 0.000 |
| Residual Error | 44 | 5.9165 | 0.1345 |  |  |
| Total | 46 | 15.01 |  |  |  |

### 4.24

(a) Minitab regression output

The regression equation is
$Y=31.4+9.31$ UFFI + 2.85 Tight

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: |
| Constant | 31.373 | 2.461 | 12.75 | 0.000 |
| UFFI | 9.312 | 2.133 | 4.37 | 0.000 |
| Tight | 2.8545 | 0.3764 | 7.58 | 0.000 |
|  |  |  |  |  |
| S $=5.223$ | R-Sq $=78.3 \%$ | R-Sq $($ adj $)=76.2 \%$ |  |  |

Abraham/Ledolter: Chapter 4 4-12

Analysis of Variance

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 2 | 2063.3 | 1031.6 | 37.82 | 0.000 |
| Residual Error | 21 | 572.9 | 27.3 |  |  |
| Total | 23 | 2636.1 |  |  |  |

(b)
$\left(X^{\prime} X\right)=\left[\begin{array}{ccc}24 & 12 & 123 \\ 12 & 12 & 61 \\ 123 & 61 & 823\end{array}\right] ;\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{ccc}0.221946 & -0.085569 & -0.026828 \\ -0.085569 & 0.166703 & 0.000433 \\ -0.026828 & 0.000433 & 0.005193\end{array}\right] ;$
$\mathrm{V}(\hat{\boldsymbol{\beta}})=\mathrm{s}^{2}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}=\left[\begin{array}{ccc}6.05462 & -2.33430 & -0.73187 \\ -2.33430 & 4.54761 & 0.01180 \\ -0.73187 & 0.01180 & 0.14165\end{array}\right]$
s.e. $\left(\hat{\beta}_{0}\right)=\sqrt{6.05462}=2.461$; s.e. $\left(\hat{\beta}_{1}\right)=\sqrt{4.54761}=2.133$;
s.e. $\left(\hat{\beta}_{2}\right)=\sqrt{0.14165}=0.376$
(c) The 95 percent confidence region for ( $\beta_{1}, \beta_{2}$ ) is shown below. The point ( $\beta_{1}=0, \beta_{2}=0$ ) is far from this region.


Abraham/Ledolter: Chapter 4
4-13

