CHAPTER 5

5.1 Interaction; bonus for having a MBA; furthermore, salary increases faster for MBAs.

5.2 (a) $\$ 3,000$; (b) \$ 900

5.3

Minitab regression output. Significant age and gender effects; body fat of males is 9.79 percent lower than that of females. However, very few data for males.

```
The regression equation is
bodyfat = 15.1 + 0.339 age - 9.79 gender
\begin{tabular}{lrrrr} 
Predictor & Coef & SE Coef & T & P \\
Constant & 15.071 & 6.224 & 2.42 & 0.029 \\
age & 0.3392 & 0.1196 & 2.84 & 0.013 \\
gender & -9.791 & 3.697 & -2.65 & 0.018 \\
S = 4.905 & R-Sq \(=74.6 \%\) & R-Sq \((\) adj \()=71.2 \%\)
\end{tabular}
```

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	1060.66	530.33	22.04	0.000
Residual Error	15	360.88	24.06		
Total	17	1421.54			

Regression with an interaction component: Interaction component is not needed.

$5.4 \mathrm{VIF}_{1}=1 /\left(1-\mathrm{R}_{1}^{2}\right)=2.5 ; \mathrm{VIF}_{2}=1 /\left(1-\mathrm{R}_{2}^{2}\right)=5 ; \mathrm{VIF}_{3}=1 /\left(1-\mathrm{R}_{3}^{2}\right)=10$; evidence of multicollinearity since variance inflation factors are large (10 or larger).
5.5 (e)
5.6 Define two indicator variables x_{1} and x_{2} such that $x_{1}=0$ and $x_{2}=0$ represent the group Sparrow, $x_{1}=1, x_{2}=0$ represent Robin, and $x_{1}=0$ and $x_{2}=1$ represent Wren. Then the model can be expressed as $\mathrm{E}(\mathrm{y})=\beta_{0}+\beta_{1} \mathrm{x}_{1}+\beta_{2} \mathrm{x}_{2}$ in which
$\beta_{1}=\mu$ (Robin) $-\mu$ (Sparrow) and $\beta_{2}=\mu$ (Wren) $-\mu$ (Sparrow).
Abraham/Ledolter: Chapter 5

Analysis of Variance

	Sum of				
Source	DF	Squares	Square	F Value Pr $>$ F	
Model	2	31.11193	15.55596	22.33	$<.0001$
Error	42	29.26052	0.69668		
Corrected Total	44	60.37244			

F-statistic $=22.33$ tests whether there are differences among the three group means; p value <0.0001; reject $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ (or $\beta_{1}=\beta_{2}=0$)

5.7 Minitab output for regression with averages

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	199.560	66.520	7.95	0.037
Residual Error	4	33.455	8.364		
Total	7	233.015			

$\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{i}}\right)=\mathrm{s}^{2} / 5=40 / 5=8 ; \mathrm{s}\left(\overline{\mathrm{y}}_{\mathrm{i}}\right)=\sqrt{8}=2.83$ (calculated from the pure error sum of squares) is very similar to $s=2.892$ that is calculated from the residuals. Hence there is no lack of fit. However, in general this must not be the same, and should be checked.

$$
\mathrm{V}(\hat{\boldsymbol{\beta}})=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \overline{\boldsymbol{y}}=\left(\mathrm{s}^{2} / 5\right)\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}=8\left[\begin{array}{cccc}
0.125 & 0 & 0 & 0 \\
0 & 0.125 & 0 & 0 \\
0 & 0 & 0.125 & 0 \\
0 & 0 & 0 & 0.125
\end{array}\right]
$$

s.e. $\left(\hat{\beta}_{\mathrm{i}}\right)=1 ; \mathrm{t}\left(\hat{\beta}_{1}\right)=-3.55 ; \mathrm{t}\left(\hat{\beta}_{2}\right)=-1.45 ; \mathrm{t}\left(\hat{\beta}_{3}\right)=3.20$; the effect of factor 2 is not significant.
5.8
(a) Expected difference in systolic blood pressure for females versus males who drink the same number of cups of coffee, excercise the same, and are of the same age
(b) Represents variation due to measurement error and omitted factors
(c) Association, but not causation
(d) Represents interaction between gender and coffee consumption

5.9

(a) $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\left\{\begin{array}{l}\beta_{0}+\beta_{1} \mathrm{t}, \mathrm{t}=1,2, \ldots, 7 \\ \beta_{2}+\beta_{3} \mathrm{t}, \mathrm{t}=8,9, \ldots, 14\end{array}\right.$

Intersecting lines at $\mathrm{t}=8: \beta_{2}=\beta_{0}+8\left(\beta_{1}-\beta_{3}\right)$, and
$\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\left\{\begin{array}{l}\beta_{0}+\beta_{1} \mathrm{t}, \mathrm{t}=1,2, \ldots, 7 \\ \beta_{0}+\beta_{1} 8+\beta_{3}(\mathrm{t}-8), \mathrm{t}=8,9, \ldots, 14\end{array}\right.$
In matrix form, $\mathrm{E}(\boldsymbol{y})=\mathrm{X} \boldsymbol{\beta}$ where
$\mathrm{X}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 0 \\ \cdots & \cdots \\ 1 & 7 & 0 \\ 1 & 8 & 0 \\ 1 & 8 & 1 \\ \cdots & \cdot & \cdot \\ 1 & 8 & 6\end{array}\right] \quad$ and $\boldsymbol{\beta}=\left[\begin{array}{l}\beta_{0} \\ \beta_{1} \\ \beta_{3}\end{array}\right]$
(b) $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\beta_{0}+\beta_{1} \mathrm{t}, \mathrm{t}=1,2, \ldots, 14$
(c) $\mathrm{F}=55.95$; p -value $=\mathrm{P}(\mathrm{F}(1,11)>55.95)=0.0000$; model in (a) is preferable.

5.10

(a) $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\beta_{0}+\beta_{1} \mathrm{t}, \mathrm{t}=1,2, \ldots, 12$
(b) $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\beta_{0}+\beta_{1} \mathrm{t}+\beta_{2} \mathrm{t}^{2}, \mathrm{t}=1,2, \ldots, 12$
(c) $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\beta_{0}+\beta_{1} \mathrm{t}+\beta_{2} \mathrm{x}_{\mathrm{t}}, \mathrm{t}=1,2, \ldots, 12$ where $\mathrm{x}_{\mathrm{t}}=0$ for $\mathrm{t}=1,2 \ldots, 6$, and $\mathrm{x}_{\mathrm{t}}=1$ for $\mathrm{t}=7,8, \ldots, 12$
(d) $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\left\{\begin{array}{l}\beta_{0}+\beta_{1} \mathrm{t}, \mathrm{t}=1,2, \ldots, 7 \\ \beta_{2}+\beta_{3} \mathrm{t}, \mathrm{t}=8,9, \ldots, 14\end{array}\right.$

Abraham/Ledolter: Chapter 5

Intersecting lines at $\mathrm{t}=7: \beta_{2}=\beta_{0}+7\left(\beta_{1}-\beta_{3}\right)$, and
$\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\left\{\begin{array}{l}\beta_{0}+\beta_{1} \mathrm{t}, \mathrm{t}=1,2, \ldots, 6 \\ \beta_{0}+\beta_{1} 7+\beta_{3}(\mathrm{t}-7), \mathrm{t}=7,8, \ldots, 12\end{array}\right.$

In matrix form, $\mathrm{E}(\boldsymbol{y})=\mathrm{X} \boldsymbol{\beta}$ where
$X=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 0 \\ \cdots & . \\ 1 & 6 & 0 \\ 1 & 7 & 0 \\ 1 & 7 & 1 \\ \cdots & . \\ 1 & 7 & 5\end{array}\right]$ and $\boldsymbol{\beta}=\left[\begin{array}{l}\beta_{0} \\ \beta_{1} \\ \beta_{3}\end{array}\right]$

5.11

Exercise 5.11

Note the unusual observation for one subject on diet $C(x=275, y=51)$. We define indicators for the three diets: IndA $=1$ if diet A and $=0$ otherwise; $\operatorname{IndB}=1$ if diet B and $=0$ otherwise; IndC $=1$ if $\operatorname{diet} C$ and $=0$ otherwise.
Minitab output from the estimation of the model $\mathrm{y}=\beta_{0}+\beta_{1} \mathrm{x}+\beta_{2}$ IndB $+\beta_{3}$ IndC $+\varepsilon$ is shown below.

Using all $\mathrm{n}=30$ cases we find not much difference between the three diets. F-statistic for testing $\left.\beta_{2}=\beta_{3}=0: \mathrm{F}=(1740.1-1650.12) / 2\right] /(1650.12 / 26)=0.71$; p -value $=$ $\mathrm{P}(\mathrm{F}(2,26)>0.71)=0.50$; conclude $\beta_{2}=\beta_{3}=0$.

Models with all 30 cases:

Predictor	Coef	SE Coef	T	P
Constant	-18.388	7.067	-2.60	0.015
x	0.13703	0.03176	4.31	0.000
IndB	3.153	3.574	0.88	0.386
IndC	-0.893	3.565	-0.25	0.804
$S=7.967$	$\mathrm{R}-\mathrm{Sq}=$	5\%	(adj) =	1\%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	1323.25	441.08	6.95	0.001
Residual Error	26	1650.12	63.47		
Total	29	2973.37			

The regression equation is
$y=-18.2+0.140 x$

Predictor	Coef	SE Coef	T	P
Constant	-18.167	6.799	-2.67	0.012
x	0.13954	0.03132	4.45	0.000
$S=7.88328$	$R-S q$	$=41.5 \%$	$R-S q(a d j)=39.4 \%$	

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	1233.3	1233.3	19.84	0.000
Residual Error	28	1740.1	62.1		
Total	29	2973.4			

The observation (diet C; $\mathrm{x}=275, \mathrm{y}=51$) is highly unusual. Omitting this case, leads to the results given below. In the next chapter (Chapter 6) you will learn about diagnostic measures that allow you to quantify the effects of outliers. After reading Chapter 6, you may want to confirm that this case leads to the standardized residual $=$ 4.48 and Cook's distance $=0.98$.

Models with outlying case omitted:

The regression equation is
$y=-10.2+0.0977 x+3.51$ IndB -4.65 IndC

Predictor	Coef	SE Coef	T	P
Constant	-10.205	3.567	-2.86	0.008
x	0.09767	0.01610	6.07	0.000
IndB	3.511	1.747	2.01	0.055
IndC	-4.651	1.789	-2.60	0.015
$S=3.89272$	R-Sq $=72.0 \%$	R-Sq(adj) $=68.7 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	975.03	325.01	21.45	0.000
Residual Error	25	378.83	15.15		
Total	28	1353.86			

The regression equation is
$y=-12.1+0.106 x$

Predictor	Coef	SE Coef	T	P
Constant	-12.132	4.465	-2.72	0.011
x	0.10574	0.02079	5.09	0.000
S = 5.06040	$R-S q=48.9 \%$	$R-S q($ adj $)=47.0 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	662.45	662.45	25.87	0.000
Residual Error	27	691.41	25.61		
Total	28	1353.86			

F-statistic for testing $\left.\beta_{2}=\beta_{3}=0: \mathrm{F}=(691.41-378.83) / 2\right] /(378.83 / 25)=10.31$;
p -value $=\mathrm{P}(\mathrm{F}(2,25)>10.31)=0.001$; reject $\beta_{2}=\beta_{3}=0$.
(b) There are differences among the three diets in terms of their effectiveness on weight reduction. Diet C has the largest benefit.
5.12

Analysis of Variance Sum of Mean					
Source	DF	Squares	Squares	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	4	39.37694	9.84423	14.07	<. 0001
Error	25	17.49506	0.69980		
Corrected Total	29	56.87200			

Abraham/Ledolter: Chapter 5 5-7

	Parameter Variable				
DF	Estimate	Standard			
Intercept	1	-0.91221	0.87548	t Value	Pr $>\|\mathrm{t}\|$
x1	1	0.16073	0.06617	2.04	0.3074
x2	1	0.21978	0.03406	6.45	0.0227
x3	1	0.01123	0.00497	2.26	0.0001
x4	1	0.10197	0.05874	1.74	0.0948

(b) $\hat{\mu}=-0.9122+0.1607 \mathrm{x}_{1}+0.2198 \mathrm{x}_{2}+0.0112 \mathrm{x}_{3}+0.1020 \mathrm{x}_{4} ; \mathrm{R}^{2}=0.692 ; \mathrm{s}=$ 0.8365 ;
(i) $\mathrm{t}\left(\hat{\beta}_{1}\right)=2.43 ; \mathrm{p}$-value $=0.023$; reject $\beta_{1}=0$
(ii) $\mathrm{F}=(5.45747 / 2) /(0.69980)=3.90$ (use of additional SS); p -value $=0.034$; reject the null hypothesis $\beta_{3}=\beta_{4}=0$
(iii) $\mathrm{F}=14.07$; p -value $<.0001$; reject hypothesis $\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$.
(c)
$\hat{\mu}=-1.462+0.1536 \mathrm{x}_{1}+0.3221 \mathrm{x}_{2}+0.0166 \mathrm{x}_{3}+0.0571 \mathrm{x}_{4}-0.00087 \mathrm{x}_{2} \mathrm{x}_{3}+0.00599 \mathrm{x}_{2} \mathrm{x}_{4}$ $\mathrm{H}_{0}: \beta_{5}=\beta_{6}=0: \mathrm{F}=0.40 ; \mathrm{p}$-value $=0.67$; interactions not important.
(d) (i) Since all coefficients are positive: Lower wrinkle resistance for lower $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, and x_{4}.
(ii) Increased wrinkle resistance for higher $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, and x_{4}.
(e) It is difficult to generalize the conclusions from this study since the values of x_{1}, $\mathrm{x}_{2}, \mathrm{x}_{3}$, and x_{4} were not controlled. One suggestion for improvement is to conduct an experiment in which the values of $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, and x_{4} are controlled and the resulting response y measured.

5.13

(b) $\mathrm{z}=0$ (protein-rich); $\mathrm{z}=1$ (protein-poor): $\hat{\mu}=50.324+16.009 \mathrm{x}+0.918 \mathrm{z}-7.329 \mathrm{xz}$
$\mathrm{H}_{0}: \beta_{2}=\beta_{3}=0$. Test whether the linear relationship between height (y) and age (x) is the same for the two diets. Additional SS = ResidualSS (reduced model) - ResidualSS (full model) $=1120.22$, and $\mathrm{F}=(1120.22 / 2) /(5.22290)=107.24 ; \mathrm{p}$-value <0.0001; reject $\beta_{2}=\beta_{3}=0$; linear relationships between height and age not the same for the two diets.

5.14

(a) Since the columns of X are orthogonal, $\mathrm{X}^{\prime} \mathrm{X}$ is a diagonal matrix. Let
$\mathrm{X}^{\prime} \mathrm{X}=\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{p}+1}\right)$. We have seen that $\hat{\boldsymbol{\beta}}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \boldsymbol{y}$. Also
$\mathrm{V}(\hat{\boldsymbol{\beta}})=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \sigma^{2}=\Lambda^{-1} \sigma^{2}=\sigma^{2} \operatorname{diag}\left(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{\mathrm{p}+1}^{-1}\right)$. Since the off diagonal elements
are zero, $\operatorname{Cov}\left(\hat{\beta}_{\mathrm{i}}, \hat{\beta}_{\mathrm{j}}\right)=0$, for all $\mathrm{i} \neq \mathrm{j}$. In addition, $\hat{\beta}_{\mathrm{i}}$ and $\hat{\beta}_{\mathrm{j}}$ are normally distributed. Hence $\hat{\beta}_{\mathrm{i}}$ and $\hat{\beta}_{\mathrm{j}}$ are statistically independent.
(b) $\boldsymbol{y}=\mathrm{X} \boldsymbol{\beta}+\gamma \boldsymbol{z}+\boldsymbol{\varepsilon}$, where \boldsymbol{z} is orthogonal to the columns of X ; that is, $\mathrm{X}^{\prime} \boldsymbol{z}=\mathbf{0}$ and $\boldsymbol{z}^{\prime} \mathrm{X}=\mathbf{0}^{\prime}$. Let $\mathrm{X}_{1}=[\mathrm{X} \boldsymbol{z}]$ be a new matrix containing the columns of X and \boldsymbol{z}. Then

$$
\left.\begin{array}{rl}
\binom{\tilde{\boldsymbol{\beta}}}{\tilde{\gamma}} & =\left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1} \mathrm{X}_{1}^{\prime} \boldsymbol{y}=\left[\binom{\mathrm{X}^{\prime}}{z^{\prime}}(\mathrm{X}\right. \\
\mathrm{X})
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathrm{X}^{\prime} \\
z^{\prime}
\end{array}\right] \boldsymbol{y}=\left[\begin{array}{ll}
\mathrm{X}^{\prime} \mathrm{X} & \mathrm{X}^{\prime} z \\
z^{\prime} \mathrm{X} & z^{\prime} z
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathrm{X}^{\prime} \\
z^{\prime}
\end{array}\right] \boldsymbol{y} .
$$

Note that $\tilde{\boldsymbol{\beta}}$ is exactly the same as $\hat{\boldsymbol{\beta}}$, and hence they have the same distribution.
(c) Let us first explain the phrase "columns are centered about their means". Let \boldsymbol{w}_{1}, $\boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mathrm{p}}$ be column vectors of the matrix $\mathrm{W}=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mathrm{p}}\right]$. Let $\overline{\mathrm{w}}_{\mathrm{i}}$ be the average of column vector $\boldsymbol{w}_{\mathrm{i}}$. Define $\boldsymbol{x}_{\mathrm{i}}=\boldsymbol{w}_{\mathrm{i}}-\mathbf{1} \overline{\mathrm{w}}_{\mathrm{i}}$ where $\mathbf{1}$ is a column vector with n ones. Then $\mathrm{X}_{1}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\mathrm{p}}\right]$ has columns that are centered about their means. This implies that the sum of the elements in each column of the matrix X_{1} is zero; that is, $\mathbf{1}^{\prime} \boldsymbol{x}_{\mathrm{i}}=0$, for each i.
Defining the matrix $\mathrm{X}=\left[\mathbf{1}, \mathrm{X}_{1}\right]$ leads to the estimates

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\boldsymbol{\beta}}_{*}
\end{array}\right] & =\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \boldsymbol{y} \\
& =\left[\begin{array}{ll}
\mathrm{n} & \mathbf{0}^{\prime} \\
\mathbf{0} & \mathrm{X}_{1}^{\prime} \mathrm{X}_{1}
\end{array}\right]^{-1}\binom{\mathbf{1}^{\prime}}{\mathrm{X}_{1}^{\prime}} \boldsymbol{y}=\left[\begin{array}{ll}
\mathrm{n}^{-1} & \mathbf{0}^{\prime} \\
\mathbf{0} & \left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1}
\end{array}\right]\binom{\mathbf{1}^{\prime} \boldsymbol{y}}{\mathrm{X}_{1}^{\prime} \boldsymbol{y}}=\binom{\overline{\mathrm{y}}}{\left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1} \mathrm{X}_{1}^{\prime} \boldsymbol{y}}
\end{aligned}
$$

This shows that $\hat{\beta}_{0}=\overline{\mathrm{y}}$.
Furthermore, $\mathrm{V}(\hat{\boldsymbol{\beta}})=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \sigma^{2}=\left[\begin{array}{ll}\mathrm{n}^{-1} & \mathbf{0}^{\prime} \\ \mathbf{0} & \left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1}\end{array}\right] \sigma^{2}$ implies that the covariance between $\hat{\beta}_{0}$ and $\hat{\beta}_{\mathrm{j}}$, for $\mathrm{j}=1,2, \ldots, \mathrm{p}$, is zero. In addition, $\hat{\boldsymbol{\beta}}$ is normally distributed.
Hence $\hat{\beta}_{0}$ is distributed independently of all other $\hat{\beta}_{j}$, for $\mathrm{j}=1,2, \ldots, \mathrm{p}$.
5.15 Weight (x_{1}); $\mathrm{x}_{2}=0$ (type A engine); $\mathrm{x}_{2}=1$ (type B engine);
(a) $\mu=\beta_{0}+\beta_{1} \mathrm{x}_{1}+\beta_{2} \mathrm{x}_{2}$; (b) $\mu=\beta_{0}+\beta_{1} \mathrm{x}_{1}+\beta_{2} \mathrm{x}_{2}+\beta_{3} \mathrm{x}_{1} \mathrm{x}_{2}$

5.16

(a) β_{3} represents the change in expected yield of catalyst 2 over catalyst 1 when temperature is held fixed.
(b) Test of $\beta_{3}=0: \mathrm{t}\left(\hat{\beta}_{3}\right)=-0.32 / 0.36=-0.89 ; \mathrm{p}$-value $=2 \mathrm{P}(\mathrm{t}(26) \leq-0.89)=0.38$; conclude $\beta_{3}=0$; no evidence to suggest a difference in catalysts.
95% confidence interval for $\beta_{2}: \hat{\beta}_{2} \pm(0.975 ; 26)$ s.e. $\left(\hat{\beta}_{2}\right), 0.41 \pm(2.065)(0.11)$ or ($0.18,0.64$).
(c) (i) $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)=0$. Since $\hat{\boldsymbol{\beta}}$ is normally distributed, $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)=0$ implies that $\hat{\beta}_{1}$ and $\hat{\beta}_{3}$ are independent.
(ii) 95% confidence interval for $\mathrm{E}(\mathrm{y})$ when $\mathrm{x}=0$ and $\mathrm{z}=1$. Let $\theta=\mathrm{E}(\mathrm{y})=\beta_{0}+\beta_{3}$.

Estimate: $\hat{\theta}=\hat{\beta}_{0}+\hat{\beta}_{3}=29.51$

$$
\begin{array}{r}
\mathrm{V}(\hat{\theta})=\mathrm{V}\left(\hat{\beta}_{0}\right)+\mathrm{V}\left(\hat{\beta}_{3}\right)+2 \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{3}\right)=\mathrm{s}^{2}[0.114+0.133+2(-0.0671)] \\
=(25.05 / 26)[0.114+0.133+2(-0.0671)]=0.1087 \\
\hat{\theta} \pm(0.975 ; 26) \sqrt{\mathrm{V}(\hat{\theta})}, 29.51 \pm(2.065) \sqrt{0.1087}, \text { or }(28.83,30.19) .
\end{array}
$$

(iii) 95% prediction interval

$$
\hat{\theta} \pm(0.975 ; 26) \sqrt{\mathrm{s}^{2}+\mathrm{V}(\hat{\theta})}, \quad 29.51 \pm(2.065) \sqrt{(25.05 / 26)+(0.1087)},
$$ or (27.37, 31.65)

(d) Model equation for catalyst 1: $\mathrm{E}(\mathrm{y})=\beta_{0}+\beta_{1} \mathrm{x}+\beta_{2} \mathrm{x}^{2}$

Model equation for catalyst 2: $\mathrm{E}(\mathrm{y})=\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+\beta_{4}\right) \mathrm{x}+\left(\beta_{2}+\beta_{5}\right) \mathrm{x}^{2}$ Test $\beta_{3}=\beta_{4}=0$: Additional $\mathrm{SS}=25.05-19.70=5.35$. Thus $\mathrm{F}=(5.35 / 2) /(19.70 / 24)=3.26 ; \mathrm{p}$-value $=0.056$. There is some weak evidence that the effect of temperature changes with the catalysts.

5.17

(a) Minitab output is given below. It helps to include the square of poverty as an explanatory variable (t-ratio $=2.72$ and p-value $=0.007$).

On Poverty only:

The regression equation is
test $=74.6$ - 0.536 pov

Predictor	Coef	SE Coef	T	P
Constant	74.606	1.613	46.25	0.000
pov	-0.53578	0.03262	-16.43	0.000
S = 8.76595	R-Sq $=67.3 \%$	R-Sq (adj) $=67.1 \%$		

Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	1	20731	20731	269.79	0.000
Residual Error	131	10066	77		
Total	132	30798			

On Poverty and (Poverty) ${ }^{2}$:
The regression equation is
test $=79.9-0.850$ pov +0.00343 pov**2

Predictor	Coef	SE Coef	T	P
Constant	79.950	2.520	31.72	0.000
pov	-0.8504	0.1201	-7.08	0.000
pov**2	0.003427	0.001261	2.72	0.007
S = 8.56001	R-Sq =	69.1\%	R-Sq(adj) $=68.6 \%$	

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	21272	10636	145.16	0.000
Residual Error	130	9526	73		
Total	132	30798			

(c) It is not necessary to include an indicator for students in the college community Iowa City (t-ratio $=0.73$ and p -value $=0.467$).

On Poverty, (Poverty) ${ }^{2}$, and Indicator for Iowa City:
The regression equation is
test $=79.2-0.832$ pov +0.00332 pov**2 +1.73 IowaCity

Predictor	Coef	SE Coef	T	P
Constant	79.197	2.728	29.03	0.000
pov	-0.8322	0.1229	-6.77	0.000
pov**2	0.003319	0.001272	2.61	0.010
IowaCity	1.735	2.380	0.73	0.467

$S=8.57548 \quad R-S q=69.2 \% \quad R-S q(a d j)=68.5 \%$
Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	21311.3	7103.8	96.60	0.000
Residual Error	129	9486.5	73.5		
Total	132	30797.8			

