CHAPTER 7

7.1

(a) Backward elimination: Drop x_{3} (step 1); drop x_{4} (step 2); next candidate x_{2} for elimination can not be dropped. Model with x_{1} and x_{2}.
(b) Forward selection: Enter x_{4} (step1); enter x_{1} (step 2); enter x_{2} (step 3); next candidate x_{3} for selection can not be entered. Model with $\mathrm{X}_{1}, \mathrm{x}_{2}$, and x_{4}.
(c) Stepwise Regression: Steps 1, 2 and 3 of forward selection; x_{4} can be dropped from the model containing x_{1}, x_{2}, and X_{4}; no reason to add X_{3} to the model with X_{1} and x_{2}. Model with X_{1} and x_{2}.
(d) Model with x_{1} and $x_{2}: C_{p}=2.68$, close to desired value 3. Full model: $C_{p}=5$. Prefer model with X_{1} and x_{2}.
(e) x_{2} and x_{4} are highly correlated.
(f) $\mathrm{F}=68.6 ; \mathrm{p}$-value less than 0.001 ; reject $\beta_{1}=\beta_{3}=0$.

7.2

(a) C_{p} : Model with x_{1} and $x_{2}\left(C_{p}=2.7\right)$
R^{2} : Model with X_{1} and X_{2}, or model with x_{1} and X_{4}. Small gain by going to more complicated models.
(b) Backward elimination $\left(\alpha_{\text {drop }}=0.1\right)$: Model with x_{1} and x_{2}.

Forward selection $\left(\alpha_{\text {enter }}=0.1\right)$: Model with $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{4}.
Stepwise regression $\left(\alpha_{\text {drop }}=\alpha_{\text {enter }}=0.1\right)$: Model with x_{1} and x_{2}.

7.3
 Minitab Best Subset Regression results:

Response is \mathbf{Y}_{1}

Response is \mathbf{Y}_{2}

Minitab Stepwise Regression results:

Response is \mathbf{Y}_{1}
The regression equation is
$\mathrm{Y} 1=7770+49.6 \mathrm{X} 3+45.1 \mathrm{X} 4$

Predictor	Coef	SE Coef	T	P		
Constant	7770	2349	3.31	0.006		
X3	49.55	23.14	2.14	0.053		
X4	45.07	14.56	3.10	0.009		
S = 1302	R-Sq $=63.3 \%$					R-Sq (adj) $=57.2 \%$

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	35115127	17557564	10.36	0.002
Residual Error	12	20335325	1694610		
Total	14	55450452			
Response is \mathbf{Y}_{2}					

The regression equation is
Y2 = - $67.4+5.66$ X1 + 8.02 X2

| Predictor | Coef | SE Coef | T | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Constant | -67.40 | 41.20 | -1.64 | 0.128 |
| Abraham/Ledolter: Chapter 7 | | $7-2$ | | |

X1	5.662	1.802	3.14	0.009	
X2	8.018	1.864	4.30	0.001	
$S=33.55$	$\mathrm{R}-\mathrm{Sq}=$	99.1\%	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=$	99.0\%	
Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	2	1546691	773346	687.05	0.000
Residual Error	12	13507	1126		
Total	14	1560198			
Response is Y_{3}					
The regression equation is					
$\mathrm{Y} 3=292-2.68 \mathrm{X} 1$ + 5.94 X3					
Predictor	Coef	SE Coef	T	P	
Constant	292.4	122.2	2.39	0.034	
X1	-2.6796	0.8168	-3.28	0.007	
X3	5.943	1.278	4.65	0.001	
$S=68.69$	$\mathrm{R}-\mathrm{Sq}=66.3 \%$		R-Sq(adj) $=60.7 \%$		
Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	2	111462	55731	11.81	0.001
Residual Error	12	56613	4718		
Total	14	168075			

(a) For production overhead costs $\left(\mathrm{y}_{1}\right): \mathrm{x}_{3}$ and x_{4} are important. For direct production $\operatorname{costs}\left(y_{2}\right): x_{1}$ and x_{2} are important. For marketing costs $\left(y_{3}\right): x_{1}$ and x_{3} are important. (b) For production overhead costs (y_{1}), the change in production from the last period $\left(x_{4}\right)$ is the single most important variable. For direct production $\operatorname{costs}\left(y_{2}\right)$, the production quantity (x_{2}) is the single most important variable.

7.4

(a) False; different models may result if multicollinearity is present
(b) True
(c) False; can stay the same

7.5

Dot plots of rainfall for days with and without seeding are shown below. We see little difference between the two groups. The results of the two-sample t-test shown below indicate that the group difference is not significant.
Abraham/Ledolter: Chapter 7

Exercise 7.5

The question now becomes whether the significance of the seeding action changes when other explanatory variables are included in the model. The results of the full model shown below are:
$\mathrm{F}=1.77$ for overall regression; p -value $=0.1647$; the evidence for including any of the variables is quite weak;
t -values of the regression coefficients are small; their p -values are large, indicating that the variables are not important given that the other variables are in the model.
Seeding action is insignificant, indicating that it is difficult to justify cloud seeding.
Case diagnostics reveal that case 2 has a large studentized residual $=-2.278$, Cook's D = 4.748 and leverage $=0.865$.

The regression equation is $y=$ Rainfall $=4.65+1.01 S A-0.0321$ Time - 0.911 SC + 0.006 EchoCov +2.17 EchoMot + 1.84 PreWet

Predictor	Coef	SE Coef	T	P
Constant	4.654	3.337	1.39	0.181
SA	1.013	1.203	0.84	0.411
Time	-0.03212	0.02892	-1.11	0.282
SC	-0.9109	0.7512	-1.21	0.242
EchoCov	0.0057	0.1149	0.05	0.961
EchoMot	2.168	1.579	1.37	0.188
PreWet	1.844	2.758	0.67	0.513

$S=2.836 \quad R-S q=38.5 \% \quad R-S q(a d j)=16.8 \%$

Abraham/Ledolter: Chapter 7 7-4

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	6	85.584	14.264	1.77	0.165
Residual Error	17	136.751	8.044		
Total	23	222.335			

We also investigate the effects of interaction effects between the seeding action (SA) and the other explanatory variables. Using stepwise regression leads to a model with SA, the interaction between SA and SC, and time.

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|t\|$
Intercept	1		6.27308	1.04889	5.98
SA	1	7.81779	3.47088	2.25	0.0001
Time	1	-0.06076	0.02132	-2.85	0.0357
SA*SC	1	-2.18142	0.99308	-2.20	0.0400

The significant estimate of SA indicates that seeding action may be effective. However, the negative interaction SA*SC is difficult to explain; it indicates that the rainfall under cloud seeding decreases with increasing suitability. Also, there are two cases with relatively large Cook's distances (0.38 and 0.56). Omitting these two cases makes the effects of SA and SA*SC insignificant, leaving time (with a negative coefficient) as the only significant variable. In summary, this small data set is not particularly helpful in settling the issue whether cloud seeding is effective.
7.6 The Minitab Best Subset Regression procedure suggests a model with police expenditures (PE), the number of families per 1,000 earning below one half of the median income (IncInequ), the mean number of years of schooling x 10 of the population (Ed), and the number of males aged 14-24 per 1,000 of total state population (Age). Case \#29 exhibits the largest leverage (0.471):

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	4	48196	12049	24.55	0.000
Residual Error	42	20614	491		
Total	46	68809			

7.7
$\hat{\mu}=-5.0359+$ 0.0671AirFlow +0.1295 CoolTemp ; $\mathrm{R}^{2}=0.909 ; \mathrm{C}_{\mathrm{p}}=2.9$.
Last case (AirFlow = 70; CoolTemp $=20$; StackLoss $=1.5$) is an influential observation and should be scrutinized. Without this case:
$\hat{\mu}=-5.1076+0.0863$ AirFlow +0.0803 CoolTemp ; $\mathrm{R}^{2}=0.946$

7.8

Stepwise regression ($\alpha_{\text {drop }}=\alpha_{\text {enter }}=0.15$):
$\hat{\mu}=-62.60+7.427 \% A S u r f+6.828 \%$ ABase $-5.2685 R u n$;
$\mathrm{R}^{2}=0.724 ; \mathrm{R}_{\text {adj }}^{2}=0.693 ; \mathrm{C}_{\mathrm{p}}=1.3$.
Similar model: $\hat{\mu}=-23.00+5.975 \%$ ASurf -5.4058 Run ;
$\mathrm{R}^{2}=0.695 ; \mathrm{R}_{\text {adj }}^{2}=0.673 ; \mathrm{C}_{\mathrm{p}}=1.9$.
Cases 13 and 15 with large Cook's influence. Second set of runs with considerably smaller change in rut depth.
7.9 Case 89 with age =197 should be omitted from the data set. The age of this child is very different from the ages of the other children. Results of the remaining $n=108$ students are shown below:

Correlation among the variables:

	age	iq	math1	math2	read1
iq	-0.724				
math1	0.095	-0.024			
math2	-0.293	$\mathbf{0 . 5 4 2}$	-0.418		
read1	-0.286	0.474	0.133	0.176	
read2	-0.071	-0.006	0.380	-0.357	0.314

Math problem solving and reading speed are positively correlated with IQ; IQ and age are correlated. Since we don't really know how students were selected into this study it is unclear what to make of this strong negative correlation between age and IQ.

Strongest results for Math2 (mathematics problem solving). No gender effect, rather weak age effect, but strong relationship with IQ.

Predictor	Coef	SE Coef	T	P
Constant	-85.59	30.33	-2.82	0.006
age	0.3186	0.1804	1.77	0.080
iq	0.6230	0.1060	5.88	0.000
gender	0.327	2.575	0.13	0.899
$S=13.24$	$\mathrm{R}-\mathrm{Sq}=31.4 \%$	\% \quad-Sq(adj) $=29.4 \%$		
The regression equation is				
Predictor	Coef	SE Coef	T	P
Constant	-85.28	30.08	-2.84	0.005
age	0.3173	0.1793	1.77	0.080
iq	0.6227	0.1055	5.90	0.000
$S=13.18$	$\mathrm{R}-\mathrm{Sq}=31.4 \%$		R-Sq(adj) = 30.1\%	
The regression equation is math2 $=-34.0+0.488 \mathrm{iq}$				
Predictor	Coef	SE Coef	T	P
Constant	-33.998	8.170	-4.16	0.000
iq	0.48754	0.07349	6.63	0.000
$S=13.31$	$\mathrm{R}-\mathrm{Sq}=29.3 \%$		R-Sq(adj) $=28.7 \%$	

Similar results for Read1 (reading speed). No gender effect, rather weak age effect, but strong relationship with IQ.

The regression equation is
read1 $=-13.0+0.0875$ age +0.240 iq

Predictor	Coef	SE Coef	T	P
Constant	-13.02	15.07	-0.86	0.390
age	0.08749	0.08981	0.97	0.332
iq	0.23953	0.05285	4.53	0.000
S = 6.604	R-Sq $=23.2 \%$	R-Sq $($ adj $)=21.7 \%$		

Abraham/Ledolter: Chapter 7 7-7

Predictor	Coef	SE Coef	T	P
Constant	1.118	4.052	0.28	0.783
iq	0.20226	0.03645	5.55	0.000
$S=6.603$	$\mathrm{R}-\mathrm{Sq}=$. 5%	dj) =	. 8%

7.10

The stepwise procedure in SAS (with Alpha-to-Enter $=$ Alpha-to-Drop $=0.15$) includes the proportion of males (\%Male), the proportion of males older than 18 (\%Male18), the proportion of the population older than 65 (\%Pop65), the proportion of the rural (nonmetro) population (\%nonMetro) and the proportion of households earning more than 100 thousand dollars \%Inc100).

```
The regression equation is
% Votes for Bush = - 717 + 59.6 %Male - 44.3 %Male18 - 0.893 %Pop65
            + 0.149 %NonMetro - 2.04 %Incom100
\begin{tabular}{lrrrr} 
Predictor & Coef & SE Coef & T & P \\
Constant & -717.4 & 156.0 & -4.60 & 0.000 \\
\%Male & 59.57 & 12.78 & 4.66 & 0.000 \\
\%Male18 & -44.347 & 9.994 & -4.44 & 0.000 \\
\%Pop65 & -0.8928 & 0.5187 & -1.72 & 0.092 \\
\%NonMetro & 0.14864 & 0.04455 & 3.34 & 0.002 \\
\%Incom100 & -2.0361 & 0.5481 & -3.72 & 0.001
\end{tabular}
S = 5.531 R-Sq = 74.6% R-Sq(adj) = 71.7%
Analysis of Variance
\begin{tabular}{lrrrrr} 
Source & DF & SS & MS & F & P \\
Regression & 5 & 4034.86 & 806.97 & 26.38 & 0.000 \\
Residual Error & 45 & 1376.56 & 30.59 & & \\
Total & 50 & 5411.42 & & &
\end{tabular}
```

States 2 (Alaska) and 9 (District of Columbia) have large Cook's distance and leverage values. They have smaller population compared with other states. The proportion of votes for Bush was small (compared to other states) in the District of Columbia, and it was large (compared to other states) in Alaska.

