CHAPTER 9

A note on computing with SPSS (Version 11.5):

We use the SPSS software to fit the nonlinear regression models of Chapter 9. SPSS works like a spreadsheet program. We enter the data into the various columns of the spreadsheet and use the tabs: Analyze > Regression > Nonlinear. We write out the model equation and specify initial parameter values. We can save the fitted values and the residuals (also the derivatives of the objective function) into columns of the worksheet.

Several options for the iterative nonlinear estimation procedure are available. In the following examples we have used the Levenberg-Marquardt algorithm. Options for specifying the number of iterations and various convergence cutoffs are available. See the SPSS on-line help for further discussion and examples.
9.1 A graph of the leaf area against the age of the palm tree is given below.

Note that there is not an abundance of data points to determine the model. The graph indicates that the relationship between leaf area and age is not linear; a quadratic component needs to be added to the model. The estimation results for the quadratic model $\mathrm{y}=\beta_{0}+\beta_{1}$ Age $+\beta_{2} \mathrm{Age}^{2}+\varepsilon$ (Minitab output) is shown below. The quadratic coefficient is clearly needed; the estimate of the coefficient for Age**2 is -0.09616 , with a significant t-ratio of -4.95 .

Regression Analysis: Area (square meters) versus Age, Age**2

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	128.071	64.036	127.19	0.000
Residual Error	9	4.531	0.503		
Total	11	132.603			

Rasch/Sedlacek use the Gompertz model $\mathrm{y}=\mu+\varepsilon=\alpha \exp [-\beta \exp (-\gamma$ Age $)]+\varepsilon$ with parameters $\alpha>0, \beta>0, \gamma>0$. Before fitting this model, we need to determine suitable starting values for the iterative nonlinear parameter estimation. The graph indicates that the saturation level for large values of Age is about 15. Hence a suitable starting value for α is given by 15 . For Age $=1$, the response is about 2 ; for Age $=5$, the response is roughly 7 . The model equation implies $-\beta \exp (-\gamma)=\ln (2 / 15)$ and $-\beta \exp (-5 \gamma)=\ln (7 / 15)$. This implies $\exp (4 \gamma)=[\ln (2 / 15)] /[\ln (7 / 15)]$ and $\gamma=\{\ln [\ln (2 / 15)) / \ln (7 / 15)]\} / 4 \approx 0.25$. Finally, $-\beta \exp (-\gamma)=\ln (2 / 15)$ and $\beta=-\ln (2 / 15) \exp (\gamma) \approx 2.6$. The starting values $\alpha=15, \beta=2.6$ and $\gamma=0.25$ are used in the SPSS nonlinear regression routine. The (SPSS) outcome is given below:

Iteration	Residual SS	A	B	
		12.59000092	15.0000000	2.60000000
1	15.64377972	11.3812687	2.34691685	.336739045
1.1	6.515778841	13.4641276	2.14122037	.271436482
1.2	6.515778841	13.4641276	2.14122037	.271436482
2	6.243186484	12.0109653	2.42204992	.359733910
2.1	6.243186484	12.0109653	2.42204992	.359733910
3	5.136619171	12.4921144	2.50012161	.359000316
3.1	5.136619171	12.4921144	2.50012161	.359000316
4	5.136518308	12.4937910	2.49764737	.358922047
4.1	5.136518308	12.4937910	2.49764737	.358922047
5	5.136518286	12.4936881	2.49773050	.358935226

Run stopped after 11 model evaluations and 5 derivative evaluations. Iterations have been stopped because the relative reduction between successive residual sums of squares is at most SSCON $=1.000 \mathrm{E}-08$

The estimate of α is 12.5 ; the estimate of β is 2.5 , and the estimate of γ is 0.36 . All estimates are statistically significant. There is a fair amount of correlation, especially between the estimates of γ and $\alpha(-0.83)$ and the estimates of γ and β (0.83). The coefficient of determination (0.961) is similar to the R^{2} from the quadratic regression. There is little difference between the fits of the quadratic regression (which is linear in the parameters) and the Gompertz model (which is nonlinear in the parameters). Both models lead to similar fitted curves. One difference is that the fitted values for the Gompertz model increase with age to an asymptotic value, whereas the quadratic curve starts to decrease with age after having reached a maximum. However, over the observed age range the two fitted models are virtually indistinguishable.

9.2 A scatter plot of nitrate utilization versus light intensity is shown below. We use solid circles for day 1 observations, and triangles for day 2 observations. Furthermore, we have added some jitter to the light intensity in order to emphasize the differences between the measurements of day 1 and day 2 . The day 2 measurements are slightly lower, especially at increasing light intensity.

Exercise 9.2: Plot of nitrate utilization against light intensity

Michaelis-Menton model: Nitrate utilization reaches an asymptote of about 20,000 for large light intensity. Letting x go to infinity in the model equation

$$
\frac{\beta_{1} \mathrm{x}}{\beta_{2}+\mathrm{x}}=\frac{\beta_{1}}{1+\left(\beta_{2} / \mathrm{x}\right)} \approx 20,000
$$

Abraham/Ledolter: Chapter 9
leads to the starting value $\beta_{1} \approx 20,000$. Furthermore, the average nitrate utilization at light intensity 2.2 is 1075 . Solving the model equation with $\beta_{1}=20,000$ leads to the starting value $\beta_{2}=38.7$.

Using these starting values in the SPSS nonlinear regression routine results in the following estimation results:

Exponential rise model: Nitrate utilization reaches an asymptote of about 20,000 for large light intensity. Letting x go to infinity in the equation for the exponential rise model leads to the starting value $\beta_{1} \approx 20,000$. The average nitrate utilization at light intensity 2.2 is 1075 . Solving the model equation with $\beta_{1}=20,000$ leads to the starting value $\beta_{2}=-\frac{1}{2.2} \ln \left[1-\frac{1075}{20,000}\right]=0.025$. Using these starting values in the SPSS nonlinear regression program results in the estimation results:

Nonlinear Regression Summary	Statistics	Dependent Variable NITRATE	
	DF	Sum of Squares	Mean Square
Source			
	2	6504309173.87	3252154586.93
Regression	46	59453780.1310	1292473.48111
Residual	48	6563762954.00	
Uncorrected Total	47	2076766799.92	
(Corrected Total)	$9-5$		

```
R squared = 1 - Residual SS / Corrected SS = . }9713
\begin{tabular}{|c|c|c|c|c|}
\hline & & Asymptotic & Asymptot Confidence & ic 95 \% Interval \\
\hline Parameter & Estimate & Std. Error & Lower & Upper \\
\hline B1 & 19014. 305975 & 398.04663684 & 18213.079652 & 19815.532299 \\
\hline B2 & . 030021624 & . 001629334 & . 026741945 & . 033301303 \\
\hline
\end{tabular}
Asymptotic Correlation Matrix of the Parameter Estimates
\begin{tabular}{rrr} 
& B1 & B2 \\
B1 & 1.0000 & -.7393 \\
B2 & -.7393 & 1.0000
\end{tabular}
```

Quadratic Michaelis-Menton model: Starting with $\beta_{1}=20,000$ and $\beta_{2}=38.7$ (from the earlier Michaelis-Menton model) and a small value for the parameter in the quadratic component ($\beta_{3}=0.1$) leads to the following results:

Modified exponential rise model: Using $\beta_{1}=20,000$ and $\beta_{2}=0.025$ from the earlier exponential rise model and a small value for $\beta_{3}=0.01$ leads to the following results:

All four models lead to large R^{2}. The Michaelis-Menton and its quadratic extension lead to R^{2} of 0.954 and 0.979 , respectively. Carrying out an F-test for the significance of the quadratic component in the Michaelis-Menton model leads to the F-statistic $\mathrm{F}=[96,536,195-43,222,556] /[43,222,556 / 45]=55.5$, which is highly significant. This shows that the quadratic extension represents a significant improvement.

Similarly, the exponential rise model and its extension lead to R^{2} of 0.971 and 0.979 , respectively. The F-test for the significance of the extra component in the exponential rise model leads to the F-statistic $\mathrm{F}=[59,453,780-44,645,864] /[44,645,864 / 45]=14.9$, which is also highly significant.

The extensions are beneficial. The modified Michaelis-Menton and the modified exponential rise models perform similarly. In the following graph we show the fit of the quadratic Michaelis-Menton model; the fitted values of the modified exponential rise model are virtually indistinguishable.

Exercise 9.2: Fit of the quadratic Michaelis-Menten model

Standard Michaelis-Menton model with an indicator for the change of day: The final parameter estimates in the previous Michaelis-Menton model, $\hat{\beta}_{1}=23,500$ and $\hat{\beta}_{2}=34.2$, are taken as the starting values in the iterative nonlinear estimation. Small values for the day indicator $\alpha_{1}=-1000, \alpha_{2}=-1$ are used as the starting values for the two additional parameters. The estimation results are given below:


```
Asymptotic Correlation Matrix of the Parameter Estimates
```

	B1	B2	A1	A2
B1	1.0000	.8810	-.7214	-.6191
B2	.8810	1.0000	-.6356	-.7028
A1	-.7214	-.6356	1.0000	.8781
A2	-.6191	-.7028	.8781	1.0000

The F-statistic for testing the null hypothesis $\alpha_{1}=\alpha_{2}=0$ is $\mathrm{F}=[(96,536,195-86,509,529) / 2] /[86,509,529 / 44]=2.55$. The probability value from the $\mathrm{F}(2,44)$ distribution is $\mathrm{P}[\mathrm{F}(2,44) \geq 2.55]=1-0.91=0.09$. Hence there is only weak evidence for including a day effect. The individual confidence intervals for α_{1} and α_{2} cover zero, which makes the individual interpretation of the two day-effect parameters difficult. These estimates are also quite correlated.

Quadratic Michaelis-Menton model with an indicator for the change of day: The final values from the earlier quadratic model $\hat{\beta}_{1}=66,700, \hat{\beta}_{2}=138, \hat{\beta}_{3}=0.01$ and small values for the three parameters associated with the day indicators, $\alpha_{1}=-2000, \alpha_{2}=-2, \alpha_{3}=0.001$, are used as the starting values in the iterative nonlinear SPSS estimation. The estimation results are given below:

```
Run stopped after 10 model evaluations and 5 derivative evaluations.
Iterations have been stopped because the relative reduction between
successive residual sums of squares is at most SSCON = 1.000E-08
Nonlinear Regression Summary Statistics Dependent Variable NITRATE
    Source DF Sum of Squares Mean Square
    Regression 6
    Residual 42 32022591.9535 762442.66556
    Uncorrected Total 48 6563762954.00
    (Corrected Total) 47 2076766799.92
    R squared = 1 - Residual SS / Corrected SS = . }9845
                            Asymptotic 95 %
    Parameter Estimate Asymptotic St. Error Confidence Interval
    B1 89797.916970 37540.345749 14038.432096 165557.40184
    B2 186.61862445 89.984553967 5.022442558 368.21480635
    A1 -38897.78690 39982.748874 -119586.2408 41790.667033
    A2 -83.09078151 96.727346453 -278.2944695 112.11290653
    B3 .016252421 .009207288 -.002328638 . 034833481
    A3 -.008449660 .009916211 -. 028461384 . 011562065
```

Abraham/Ledolter: Chapter 9

```
Asymptotic Correlation Matrix of the Parameter Estimates
```

	B1	B2	A1	A2	B3	A3
B1	1.0000	.9978	-.9389	-.9283	.9965	-.9252
B2	.9978	1.0000	-.9369	-.9303	.9913	-.9204
A1	-.9389	-.9369	1.0000	.9971	-.9356	.9953
A2	-.9283	-.9303	.9971	1.0000	-.9222	.9894
B3	.9965	.9913	-.9356	-.9222	1.0000	-.9285
A3	-.9252	-.9204	.9953	.9894	-.9285	1.0000

The F-statistic for testing the null hypothesis $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$ is given by $\mathrm{F}=[(43,222,556-32,022,591) / 3] /[32,022,591 / 42]=4.90$. The probability value from the $\mathrm{F}(3,42)$ distribution is $\mathrm{P}[\mathrm{F}(3,42) \geq 4.90]=1-0.995=0.005$, showing that the indicators for the day effect help explain the variation. Individually the three parameters are statistically insignificant and also highly correlated. This makes an individual interpretation of the estimates difficult.

The graph shown below compares the quadratic Michaelis-Menton model with and without the day indicator. The graph shows that the quadratic Michaelis-Menton model with a day indicator is capable of expressing the day differences.

Exercise 9.2: Quadratic Michaelis-Menton model with day indicator

9.3

Model 1: The logarithmic transformation of the first model leads to

$$
\ln (\mathrm{y})=\ln \left(\beta_{0}\right)+\beta_{1} \ln \left(\mathrm{x}_{1}\right)+\beta_{2} \ln \left(\mathrm{x}_{2}\right)+\ln (\varepsilon)
$$

A standard multiple linear regression of $\ln (\mathrm{y})$ on $\ln \left(\mathrm{x}_{1}\right)$ and $\ln \left(\mathrm{x}_{2}\right)$ leads to the estimates of $\alpha=\ln \left(\beta_{0}\right), \beta_{1}$, and β_{2} The estimate of β_{0} can be obtained
from $\beta_{0}=\exp (\alpha)$. When carrying out the regression with the transformed variables we need to assume that the error $\ln (\varepsilon)$ satisfies the standard regression assumptions. Model 2: Taking the reciprocal of the response in the second model leads to

$$
1 / \mathrm{y}=\beta_{0}+\beta_{1} \mathrm{x}+\varepsilon
$$

A simple linear regression of $(1 / \mathrm{y})$ on x_{1} leads to the estimates of β_{0}, β_{1}.
Model 3: The reciprocal of the response and a subsequent logarithmic transformation leads to the model

$$
\ln [(1 / \mathrm{y})-1]=\beta_{0}+\beta_{1} \mathrm{x}_{1}+\ln (\varepsilon)
$$

A simple linear regression of $\ln [(1 / y)-1]$ on x_{1} leads to the estimates of β_{0}, β_{1}. We need to assume that the error $\ln (\varepsilon)$ satisfies the standard regression assumptions.
9.4 Search the literature.

