## CHAPTER 12

## A note on computing with SAS (Version 9):

The SAS GENMOD procedure is used for fitting the Poisson regression models of Chapter 12. This procedure is very general. It can also be used for the logistic regression models in Chapter 11, as well as most generalized linear models.

SAS works slightly different than the previously considered spreadsheet programs Minitab, SPSS, or EXCEL. In SAS one needs to write out a line code. The line code gets entered into a program editor, and is executed by clicking the SAS "run" and "submit" tabs. Here we list an example of the line code, with a detailed discussion of important options. Many more options are available, and they can be reviewed by looking at the on-line help pages within SAS.

We list the input for Exercise 12.1:

```
data exer12n1;
```

    specifies the file name for data set
    input type year period ms nudamage;
specifies the input variables
lnms=log(ms);
specifies a transformation; here the natural log transformation
datalines;

| 1 | 1 | 1 | 127 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 63 | 0 |
| 1 | 2 | 1 | 1095 | 3 |
| 1 | 2 | 2 | 1095 | 4 |
| 1 | 3 | 1 | 1512 | 6 |
| 1 | 3 | 2 | 3353 | 18 |
| 1 | 4 | 2 | 2244 | 11 |
| 2 | 1 | 1 | 44882 | 39 |
| 2 | 1 | 2 | 17176 | 29 |
| 2 | 2 | 1 | 28609 | 58 |
| 2 | 2 | 2 | 20370 | 53 |
| 2 | 3 | 1 | 7064 | 12 |
| 2 | 3 | 2 | 13099 | 44 |
| 2 | 4 | 2 | 7117 | 18 |
| 3 | 1 | 1 | 1179 | 1 |
| 3 | 1 | 2 | 552 | 1 |
| 3 | 2 | 1 | 781 | 0 |
| 3 | 2 | 2 | 676 | 1 |
| 3 | 3 | 1 | 783 | 6 |
| 3 | 3 | 2 | 1948 | 2 |
| 3 | 4 | 2 | 274 | 1 |


| 4 | 1 | 1 | 251 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 2 | 105 | 0 |
| 4 | 2 | 1 | 288 | 0 |
| 4 | 2 | 2 | 192 | 0 |
| 4 | 3 | 1 | 349 | 2 |
| 4 | 3 | 2 | 1208 | 11 |
| 4 | 4 | 2 | 2051 | 4 |
| 5 | 1 | 1 | 45 | 0 |
| 5 | 2 | 1 | 789 | 7 |
| 5 | 2 | 2 | 437 | 7 |
| 5 | 3 | 1 | 1157 | 5 |
| 5 | 3 | 2 | 2161 | 12 |
| 5 | 4 | 2 | 542 | 1 |
| proc genmod data=exer12n1; |  |  |  |  |
|  |  |  | GENM | is |
| class type / |  |  | $a \mathrm{~m}=\mathrm{r}$ |  |
| class year / |  |  | $a \mathrm{~m}=\mathrm{re}$ | r |
| class peri |  |  | aram= | f |

specifies that type, year, and period are class (factor) variables; SAS creates the appropriate indicator variables automatically. The first numeric value is taken as the base for comparisons.
model nudamage=type year period lnms / d=poisson obstats covb corrb lrci type3;

Here the model gets specified. The response is nudamage. The first three variables on the right hand side of the equal sign are factors. The last variable (lnms) is a covariate (not a factor). Options are listed after the slash.
$\mathrm{d}=$ Poisson: Poisson link.
Covb, Corrb: Covariance and correlation matrices of the parameter estimates are displayed.

Obstats: results in detailed output (fitted values, residuals, ...)
Lrci requests that two-sided confidence intervals for all model parameters are computed based on the profile likelihood function. This is sometimes called the partially maximized likelihood function. Two-sided Wald confidence intervals are calculated, if lrci is not specified.

Likelihood ratio-based confidence intervals, also known as profile likelihood confidence intervals, of parameter estimates in generalized linear models can be explained as follows. Suppose that the parameter vector is $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{\mathrm{p}}\right)^{\prime}$ and one wants a confidence interval for $\beta_{\mathrm{i}}$. The profile likelihood function for $\beta_{\mathrm{i}}$ is defined as $l^{*}\left(\beta_{\mathrm{i}}\right)=\max \tilde{\boldsymbol{\beta}}^{l(\boldsymbol{\beta})}$, where $\tilde{\boldsymbol{\beta}}$ is the vector $\boldsymbol{\beta}$ with the ith element fixed at $\beta_{\mathrm{i}}$ and $l=l(\boldsymbol{\beta})$ is the $\log$ likelihood function. Let $l=l(\hat{\boldsymbol{\beta}})$ be the $\log$ likelihood evaluated at the maximum likelihood estimate $\hat{\boldsymbol{\beta}}$. Under the assumption that $\beta_{\mathrm{i}}$ is the true parameter value, $2\left(l-l^{*}\left(\beta_{\mathrm{i}}\right)\right)$ has a limiting chi-square distribution with one degree of freedom. A $100(1-\alpha)$ percent confidence interval for $\beta_{\mathrm{i}}$ is

$$
\left\{\beta_{\mathrm{i}}: I^{*}\left(\beta_{\mathrm{i}}\right) \geq l-0.5 \chi^{2}(1-\alpha ; 1)\right\}
$$

where $\chi^{2}(1-\alpha ; 1)$ is the $100(1-\alpha)$ percentile of the chi-square distribution with one degree of freedom. The endpoints of the confidence interval can be found by solving numerically for values of $\beta_{\mathrm{i}}$ that satisfy the equality in the preceding relation.

Type 3: requests that statistics for Type 3 contrasts be computed for each class variable (factor) specified in the MODEL statement. This means that likelihood-ratio tests are calculated for the contrasts of the class variables.Type 3 means that these are partial tests, comparing the full model with the restricted model that lacks the indicated class variable (factor).

OFFSET = lnms: specifies a variable in the input data set (here lnms) to be used as an offset variable. This variable cannot be a CLASS variable. In our example it seems reasonable to suppose that the number of damage incidents is directly proportional to MS, the months of service, and one can expect that the coefficient in the Poisson regression model that corresponds to $\ln (\mathrm{MS})$ is one. OFFSET $=\operatorname{lnms}$ restricts this parameter to one.

Scale = deviance: Overdispersion is a phenomenon that sometimes occurs in data that are modeled with the Poisson (and also binomial see Chapter 11) distributions. If the estimate of dispersion after fitting, as measured by the deviance or Pearson's chi-square divided by the degrees of freedom, is not near 1 , then the data may be overdispersed if the dispersion estimate is greater than 1 , or underdispersed if the
dispersion estimate is less than 1 . A simple way to model this situation is to allow the variance function of the Poisson distribution to have a multplicative overdispersion factor, $\operatorname{Var}(\mu)=\phi \mu$ (or $\operatorname{Var}(\mu)=\phi \mu(1-\mu)$ for the binomial link).

The models are fit in the usual way. The parameter estimates are not affected by the value of $\phi$. The covariance matrix, however, is multiplied by $\phi$, and the scaled deviance and log likelihoods used in likelihood ratio tests are divided by $\phi$.

The SCALE= option in the MODEL statement enables you to specify a value of $\phi$ for the Poisson (and also binomial) distributions. If you specify the SCALE=DEVIANCE option in the MODEL statement, the procedure uses the deviance divided by the degrees of freedom as an estimate of $\phi$, and all statistics are adjusted appropriately. You can use Pearson's chi-square instead of the deviance by specifying the SCALE=PEARSON option.
run;
Executes the program
Many other options are available. See the SAS on-line help for further discussion and examples.

## 12.1

(a) We use SAS GENMOD to estimate the Poisson regression model with link

$$
\ln \mu=\beta_{0}+\beta_{1} \ln (\mathrm{MS})+\beta_{2} \mathrm{X} 2+\ldots+\beta_{5} \mathrm{X} 5+\beta_{6} \mathrm{Z} 2+\ldots+\beta_{8} \mathrm{Z} 4+\beta_{9} \mathrm{~W} 2
$$

Here X 1 through X 5 are the indicator variables for the type of ship (a class variable with five possibilities), Z 1 through Z 4 are the indicator variables for the year of construction (a class variable with four possibilities), and W1 and W2 are the indicator variables for the period of operation (a class variable with two possibilities). SAS GENMOD creates the associated indicator variables for the specified class variables automatically. The first outcome is declared as the reference.

The (type 3) test statistics at the end of the program output test the significance of the class variables. For example, the test statistic for "type" is obtained by comparing the log-likelihood of the full model (768.4585) with the log-likelihood of the restricted model that is missing that factor (the model with year, period, and $\ln (\mathrm{MS})$ ). The loglikelihood of the restricted model is 762.1757 . Hence the log-likelihood statistic is $2(768.4582-762.1757)=12.57$. Comparing this value to a chi-square with 4 degrees of freedom (since there are 4 restrictions), leads to the probability value
$\mathrm{P}\left(\chi^{2}(4) \geq 12.57\right)=0.0136$. These are the values given at the end of the output. The tests for the other factors can be obtained similarly. They indicate that one can not simplify the model. All three factors are needed to explain the number of damage claims.

Ships of type 3 report the smallest number of damage incidents. Ships constructed in years 2 (1965-1969) and 3 (1970-1974) experience the highest number of reported damage incidents. The second period of operation (1975-79) is associated with a higher number of reported damage incidents.

Fitting results for the full model:
The GENMOD Procedure

Model Information


| period | 1 | 0 |
| :--- | :--- | :--- |
|  | 2 | 1 |
|  | Parameter |  |
|  |  |  |


| Parameter | Effect | type year | period |  |
| :--- | :--- | :--- | :--- | :--- |
| Prm1 | Intercept |  |  |  |
| Prm2 | lnms |  |  |  |
| Prm3 | type | 2 |  |  |
| Prm4 | type | 3 |  |  |
| Prm5 | type | 4 |  |  |
| Prm6 | type | 5 |  |  |
| Prm7 | year |  | 2 | 2 |
| Prm8 | year |  | 3 | 4 |
| Prm9 | year |  | 4 | 2 |
| Prm10 | period |  |  |  |

## Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 24 | 37.8043 |  |
| Scaled Deviance | 24 | 37.8043 | 1.5752 |
| Pearson Chi-Square | 24 | 39.4494 | 1.5752 |
| Scaled Pearson X2 | 24 | 39.4494 | 1.6437 |
| Log Likelihood |  | 768.4585 | 1.6437 |

Algorithm converged.
Estimated Correlation Matrix

|  | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 | Prm6 | Prm7 | Prm8 | Prm9 | Prm10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Prm1 | 1.0000 | -0.9688 | 0.6048 | -0.3172 | -0.3046 | -0.3304 | -0.3405 | -0.4538 | -0.4298 | -0.1729 |
| Prm2 | -0.9688 | 1.0000 | -0.7587 | 0.2328 | 0.2200 | 0.2234 | 0.2291 | 0.3364 | 0.3495 | 0.1216 |
| Prm3 | 0.6048 | -0.7587 | 1.0000 | 0.0990 | 0.1226 | 0.1958 | -0.1165 | -0.0967 | -0.1341 | -0.0768 |
| Prm4 | -0.3172 | 0.2328 | 0.0990 | 1.0000 | 0.2798 | 0.3483 | 0.0899 | 0.1225 | 0.1660 | 0.0258 |
| Prm5 | -0.3046 | 0.2200 | 0.1226 | 0.2798 | 1.0000 | 0.3706 | 0.0788 | 0.1001 | 0.0024 | 0.0225 |
| Prm6 | -0.3304 | 0.2234 | 0.1958 | 0.3483 | 0.3706 | 1.0000 | 0.0466 | 0.0428 | 0.1200 | 0.0522 |
| Prm7 | -0.3405 | 0.2291 | -0.1165 | 0.0899 | 0.0788 | 0.0466 | 1.0000 | 0.6612 | 0.5146 | -0.0770 |
| Prm8 | -0.4538 | 0.3364 | -0.0967 | 0.1225 | 0.1001 | 0.0428 | 0.6612 | 1.0000 | 0.5938 | -0.1854 |
| Prm9 | -0.4298 | 0.3495 | -0.1341 | 0.1660 | 0.0024 | 0.1200 | 0.5146 | 0.5938 | 1.0000 | -0.2444 |
| Prm10 | -0.1729 | 0.1216 | -0.0768 | 0.0258 | 0.0225 | 0.0522 | -0.0770 | -0.1854 | -0.2444 | 1.0000 |
|  |  |  |  |  |  |  |  |  |  |  |


| Parameter |  | DF | Estimate | Standard <br> Error | Wald 95\% Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  | Chi- |  |  |
| :--- | ---: | ---: | ---: |
| Source | DF | Square | Pr $>$ ChiSq |
|  |  |  |  |
| lnms | 1 | 101.28 | $<.0001$ |
| type | 4 | 12.57 | 0.0136 |
| year | 3 | 27.20 | $<.0001$ |
| period | 1 | 9.97 | 0.0016 |

Fitting results for the restricted model without type of ship:
The GENMOD Procedure
Model Information

| Data Set | WORK.EXER12N1 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nudamage |
| Observations Used | 34 |

Abraham/Ledolter: Chapter 12

| Class | Value | Design Variables |  |  |
| :--- | :---: | :--- | :--- | :--- |
| year | 1 | 0 | 0 | 0 |
|  | 2 | 1 | 0 | 0 |
|  | 3 | 0 | 1 | 0 |
|  | 4 | 0 | 0 | 1 |
| period | 1 | 0 |  |  |
|  | 2 | 1 |  |  |
| Criteria For Assessing Goodness Of Fit |  |  |  |  |


| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 28 | 50.3699 | 1.7989 |
| Scaled Deviance | 28 | 50.3699 | 1.7989 |
| Pearson Chi-Square | 28 | 46.7116 | 1.6683 |
| Scaled Pearson X2 | 28 | 46.7116 | 1.6683 |
| Log Likelihood |  | 762.1757 |  |

Algorithm converged.


NOTE: The scale parameter was held fixed.
(b) It seems reasonable to suppose that the number of damage incidents is directly proportional to MS, the months of service, and one can expect that the coefficient $\beta_{1}$ is one. The literature refers to the term $\ln (\mathrm{MS})$ as an "offset." Let us test for the offset, and test whether $\beta_{1}=1$. The estimate is $\hat{\beta}_{1}=0.9027$, and the 95 percent Wald confidence interval is given by $0.9027 \pm(1.96)(0.1018), \quad 0.90 \pm 0.20$, or $0.70 \leq \beta_{1} \leq 1.10$. The interval includes one, which makes the off-set interpretation plausible.
(c) We assume an "offset" for aggregate months of service (that is, we impose the restriction $\beta_{1}=1$ ) and estimate the model with link

$$
\ln \mu=\beta_{0}+\ln (\mathrm{MS})+\beta_{2} \mathrm{X} 2+\ldots+\beta_{5} \mathrm{X} 5+\beta_{6} \mathrm{Z} 2+\ldots+\beta_{8} \mathrm{Z} 4+\beta_{9} \mathrm{~W} 2
$$

The results of the estimation are similar to the ones of the full model in (a).

Fitting results for the model with an offset:

| The GENMOD Procedure |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Model Information |  |  |  |  |
| Data Set |  | WORK. EXER12N1 |  |  |
| Distribution |  | Poisson |  |  |
| Link Function |  |  |  |  |
| Dependent Variable |  |  | nudamag |  |
| Offset Variable |  |  | 1 n |  |
| Observations Used |  | 34 |  |  |
| Class Level Information |  |  |  |  |
| Class | Value | Design | Variab |  |
| type | 10 | 0 | 0 | 0 |
|  | 2 | 0 | 0 | 0 |
|  | 3 | 1 | 0 | 0 |
|  | 4 | 0 | 1 | 0 |
|  | 5 | 0 | 0 | 1 |
| year | 10 | 0 | 0 |  |
|  | 2 | 0 | 0 |  |
|  | 30 | 1 | 0 |  |
|  | 4 | 0 | 1 |  |
| period | 1 |  |  |  |
|  | 2 |  |  |  |
| Parameter Information |  |  |  |  |
| Parameter | Effect | type | year | period |
| Prm1 | Intercept |  |  |  |
| Prm2 | type | 2 |  |  |
| Prm3 | type | 3 |  |  |
| Prm4 | type | 4 |  |  |
| Prm5 | type | 5 |  |  |
| Prm6 | year |  | 2 |  |
| Prm7 | year |  | 3 |  |
| Prm8 | year |  | 4 |  |
| Prm9 | period |  |  | 2 |
| Criteria For Assessing Goodness Of Fit |  |  |  |  |


| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 25 | 38.6951 | 1.5478 |
| Scaled Deviance | 25 | 38.6951 | 1.5478 |
| Pearson Chi-Square | 25 | 42.2753 | 1.6910 |
| Scaled Pearson X2 | 25 | 42.2753 | 1.6910 |
| Log Likelihood |  | 768.0131 |  |

Algorithm converged.
Estimated Correlation Matrix

|  | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 | Prm6 | Prm7 | Prm8 | Prm9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |
| Prm1 | 1.0000 | -0.8114 | -0.3784 | -0.3706 | -0.4699 | -0.4843 | -0.5501 | -0.4015 | -0.2161 |
| Prm2 | -0.8114 | 1.0000 | 0.4332 | 0.4468 | 0.5707 | 0.0856 | 0.2714 | 0.2285 | 0.0254 |
| Prm3 | -0.3784 | 0.4332 | 1.0000 | 0.2375 | 0.3136 | 0.0358 | 0.0455 | 0.0971 | -0.0031 |
| Prm4 | -0.3706 | 0.4468 | 0.2375 | 1.0000 | 0.3338 | 0.0277 | 0.0286 | -0.0966 | -0.0047 |
| Prm5 | -0.4699 | 0.5707 | 0.3136 | 0.3338 | 1.0000 | -0.0041 | -0.0371 | 0.0528 | 0.0269 |
| Abraham/Ledolter: Chapter 12 |  | $12-8$ |  |  |  |  |  |  |  |


|  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Prm6 | -0.4843 | 0.0856 | 0.0358 | 0.0277 | -0.0041 | 1.0000 | 0.6335 | 0.4755 | -0.1201 |
| Prm7 | -0.5501 | 0.2714 | 0.0455 | 0.0286 | -0.0371 | 0.6335 | 1.0000 | 0.5482 | -0.2636 |
| Prm8 | -0.4015 | 0.2285 | 0.0971 | -0.0966 | 0.0528 | 0.4755 | 0.5482 | 1.0000 | -0.3154 |
| Prm9 | -0.2161 | 0.0254 | -0.0031 | -0.0047 | 0.0269 | -0.1201 | -0.2636 | -0.3154 | 1.0000 |

Analysis Of Parameter Estimates

|  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Parameter |  | DF | Estimate | Standard <br> Error | Wald $95 \%$ Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |

NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis

|  | Chi- <br> Square |  |  |
| :--- | :---: | :---: | ---: |
| Source | Pr $>$ ChiSq |  |  |
|  |  |  |  |
| type | 4 | 23.67 | $<.0001$ |
| year | 3 | 31.41 | $<.0001$ |
| period | 1 | 10.66 | 0.0011 |

(d) Let us look at the deviance goodness-of-fit statistics. Comparing the deviance $\mathrm{D}=$ 37.8043 to a chi-square with 24 degrees of freedom, leads to the probability value $\mathrm{P}\left(\chi^{2}(24) \geq 37.80\right)=1-0.9637=0.0363$. The deviance exceeds the $95^{\text {th }}$ percentile and the probability value is slightly smaller than 0.05 . This is a sign of overdispersion. We adjust the analysis for overdispersion by allowing the variance function of the Poisson distribution to have a multplicative overdispersion factor, $\operatorname{Var}(\mu)=\phi \mu$. The model is fit in the usual way, and the parameter estimates are not affected by the value of $\phi$. The covariance matrix, however, is multiplied by $\phi$, and the scaled deviance and log likelihoods used in likelihood ratio tests are divided by $\phi$. The
SCALE=DEVIANCE option in the MODEL statement enables us to specify a value of $\phi$ for the Poisson distribution. The procedure uses the deviance divided by the degrees of freedom as an estimate of $\phi$, and all statistics are adjusted appropriately.

The results are basically unchanged. The test statistics indicate that all three factors are statistically significant. Ships of types 2 and 3 experience the smallest numbers of reported damage incidents. Ships constructed in years 2 (1965-1969) and 3 (19701974) experience the largest numbers of reported damage incidents. The second period of operation (1975-79) is associated with a higher number of reported damage incidents.

Fitting results for the model with scale adjustment:


| Prm6 | -0.4843 | 0.0856 | 0.0358 | 0.0277 | -0.0041 | 1.0000 | 0.6335 | 0.4755 | -0.1201 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Prm7 | -0.5501 | 0.2714 | 0.0455 | 0.0286 | -0.0371 | 0.6335 | 1.0000 | 0.5482 | -0.2636 |
| Prm8 | -0.4015 | 0.2285 | 0.0971 | -0.0966 | 0.0528 | 0.4755 | 0.5482 | 1.0000 | -0.3154 |
| Prm9 | -0.2161 | 0.0254 | -0.0031 | -0.0047 | 0.0269 | -0.1201 | -0.2636 | -0.3154 | 1.0000 |

Analysis Of Parameter Estimates

| Parameter |  | DF | Estimate | Standard <br> Error | Wald $95 \%$ Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

NOTE: The scale parameter was estimated by the square root of DEVIANCE/DOF.

| Source | LR Statistics For Type 3 Analysis |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Num DF | Den DF | F | Value | $\mathrm{Pr}>\mathrm{F}$ | Chi- <br> Square | Pr > ChiSq |
| type | 4 | 25 |  | 3.82 | 0.0147 | 15.29 | 0.0041 |
| year | 3 | 25 |  | 6.76 | 0.0017 | 20.29 | 0.0001 |
| period | 1 | 25 |  | 6.89 | 0.0146 | 6.89 | 0.0087 |

(e) A model with every possible two-factor interaction contains

1 (const) $+4+3+1$ (main effects) $+4 * 3+4 * 1+3 * 1$ (2-factor interactions) $=28$ parameters. This is a highly non-parsimonious model, considering that there are only 34 observations. The number of parameters in the fully saturated model (with the 3factor interaction added) exceeds the number of observations.

Here we enter each two-factor interaction one at-a-time. The type 3 test results for the models with the type by period interaction (4 additional parameters) and the year by period interaction (3 additional parameters) are given below. The model with the type by year interaction (12 additional parameters) experienced convergence problems, probably due to the large number of additional parameters and the sparseness of the data. The results indicate that interaction components are not needed. Note that type 3 LR test statistics are partial tests, always testing whether the factor in question is significant when added last to the model. The period effect is insignificant when adding it to the model with type, year, and the type by period interaction. However, it becomes significant when the type by period interaction is omitted.

Fitting results for the model with interaction:
LR Statistics For Type 3 Analysis
Source DF Square Pr > ChiSq

Abraham/Ledolter: Chapter 12
12-11

| type | 4 | 12.13 | 0.0164 |
| :--- | :--- | ---: | ---: |
| year | 3 | 30.70 | $<.0001$ |
| period | 1 | 1.57 | 0.2105 |
| type*period | 4 | 4.94 | 0.2936 |


| LR Statistics For Type 3 Analysis |  |  |  |
| :--- | :---: | ---: | ---: |
|  | Chi- |  |  |
| Source | DF | Square | Pr > ChiSq |
| type | 4 | 23.71 | $<.0001$ |
| year | 3 | 25.26 | $<.0001$ |
| period | 1 | 7.29 | 0.0069 |
| year*period | 3 | 4.00 | 0.2613 |

(f) See parts (a) - (e)
12.2 PROC GENMOD is used to estimate the Poisson regression model with link

$$
\ln \mu=\beta_{0}+\alpha \ln (\mathrm{H})+\beta_{1} \mathrm{~A}_{2}+\beta_{2} \mathrm{~T}_{2}+\beta_{3} \mathrm{~T}_{3}
$$

where $H$ is the number of policies and $A_{1}, A_{2}$ and $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ are the corresponding indicator variables for the two age groups and three car types.

The type 3 test statistics at the end of the program output are tests of the significance of the class variables. For example, the test statistic for "age" is obtained by comparing the log-likelihood of the full model (838.1594) with the log-likelihood of the restricted model (the model with type and $\ln (\mathrm{H})$; log-likelihood is 817.8596). The log-likelihood statistic is 40.60 . Comparing this values to a chi-square with 1 degree of freedom (since there is only restrictions), leads to the probability value $\mathrm{P}\left(\chi^{2}(1) \geq 40.60\right)=0.0000$.

The type 3 test statistics indicate that both age and type are highly significant. Both factors are needed to explain the number of claims. Looking at the individual parameter estimates, we see that the second age group experiences more claims than the first. The second and third car type experience fewer claims than the first, and the third car type experiences fewer claims than the second.

It seems reasonable to suppose that the number of claims is directly proportional to the number of policies, and that one can expect the coefficient $\beta_{1}$ to be one. Let us test whether $\beta_{1}=1$. The estimate is $\hat{\beta}_{1}=0.6189$, and the 95 percent Wald confidence interval is given by $0.6189 \pm(1.96)(0.3113), \quad 0.62 \pm 0.61$, or $0.01 \leq \beta_{1} \leq 1.23$. The
interval is quite wide because there are only very few (six) observations. However, it includes one, which makes the off-set interpretation plausible.

Note that this run also asked for an additional table of statistics to be displayed. For each observation, the following items are displayed: the value of the response variable $y_{\mathrm{i}}$, the values of the regressor variables, the predicted mean $\hat{\mu}_{\mathrm{i}}=\exp \left(\boldsymbol{x}_{\mathrm{i}}^{\prime} \hat{\boldsymbol{\beta}}\right)$, the standard error in the linear predictor $\boldsymbol{x}_{\mathbf{i}}^{\prime} \hat{\boldsymbol{\beta}}$, the value of the Hessian weight at the final iteration (diagonal elements of the matrix in equation (12.12)), lower and upper confidence limits of the predicted value of the mean (see equation (12.19), the raw residual, the Pearson residual (equation (12.23)), the standardized Pearson residual, the deviance residual (equation (12.22)), the standardized deviance residual, and the likelihood residual. Most of these statistics are explained in Chapter 12.

## Fitting results for the full model:

The GENMOD Procedure
Model Information

| Data Set | WORK. EXER12N2 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nuclaims |
| Observations Used | 6 |

Class Level Information

| Class | Value | Design <br> Variables |
| :--- | :--- | :--- |
| age | 1 | 0 |
|  | 2 | 1 |
| car | 1 | 0 |
|  | 2 | 1 |

Parameter Information

| Parameter | Effect | age | car |
| :--- | :--- | :---: | :---: |
|  |  |  |  |
| Prm1 | Intercept |  |  |
| Prm2 | lnnupol |  |  |
| Prm3 | age | 2 | 2 |
| Prm4 | car |  | 3 |
| Prm5 | car |  |  |
|  |  |  |  |


| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 1 |  |  |
| Scaled Deviance | 1 | 1.4084 | 1.4084 |
| Pearson Chi-Square | 1 | 1.4084 | 1.4084 |
| Scaled Pearson X2 | 1 | 1.2742 | 1.2742 |
| Log Likelihood |  | 1.2742 | 1.2742 |

Algorithm converged.
Abraham/Ledolter: Chapter 12 12-13

Estimated Correlation Matrix

|  | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |
| Prm1 | 1.0000 | -0.9979 | -0.7731 | 0.7040 | -0.4578 |
| Prm2 | -0.9979 | 1.0000 | 0.7416 | -0.7275 | 0.4500 |
| Prm3 | -0.7731 | 0.7416 | 1.0000 | -0.4975 | 0.2953 |
| Prm4 | 0.7040 | -0.7275 | -0.4975 | 1.0000 | -0.2073 |
| Prm5 | -0.4578 | 0.4500 | 0.2953 | -0.2073 | 1.0000 |
|  | Analysis 0f Parameter Estimates |  |  |  |  |


| Parameter |  | DF | Estimate | Standard <br> Error | Wald $95 \%$ Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis


Next, we assume an "offset" for the number of policies (that is, we impose the restriction $\beta_{1}=1$ ) and estimate the model with link

$$
\ln \mu=\beta_{0}+\ln (\mathrm{H})+\beta_{1} \mathrm{~A}_{2}+\beta_{2} \mathrm{~T}_{2}+\beta_{3} \mathrm{~T}_{3} .
$$

Abraham/Ledolter: Chapter 12

The results are given below. The interpretation of the earlier model is largely unchanged. Both age and type are highly significant. The second age group experiences more claims than the first, the second and third car type experience fewer claims than the first, and the third car type experiences fewer claims than the second.

Goodness-of-fit statistics: Comparing the deviance $\mathrm{D}=2.82$ (in the model with the offset) to a chi-square with 2 degrees of freedom, leads to the probability value $\mathrm{P}\left(\chi^{2}(2) \geq 2.82\right)=1-0.7559=0.2441$. The deviance does not exceed the critical $95^{\text {th }}$ percentile (5.99) and the probability value is larger than 0.05 . Hence there is no sign of overdispersion and there is no need to adjust the analysis.

Fitting results for the model with an offset:


Algorithm converged.

Estimated Correlation Matrix
Abraham/Ledolter: Chapter 12 12-15

|  |  | Prm1 |  | Prm2 |  | Prm3 | Prm4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Prm1 | 1.0000 | -0.7729 |  | 0.5286 | -0.1298 |  |
|  |  | Prm2 | -0.7729 | 1.0000 |  | 0.1487 | -0.0841 |  |
|  |  | Prm3 | -0.5286 | - 0.1487 |  | 1.0000 | 0.1877 |  |
|  |  | Prm4 | -0.1298 | -0.0841 |  | 0.1877 | 1.0000 |  |
|  |  | Analysis Of Parameter Estimates |  |  |  |  |  |  |
| Parameter |  | Standard |  |  | Wald 95\% Confidence | \% Confidence imits | Chi- | Pr > ChiSq |
| Intercept |  | 1 | -2.6367 | 0.1318 | -2.8950 | -2.3784 | 400.20 | <. 0001 |
| age | 2 | 1 | 1.3199 | 0.1359 | 1.0536 | 1.5863 | 94.34 | <. 0001 |
| car | 2 | 1 | -0.6928 | 0.1282 | -0.9441 | -0.4414 | 29.18 | <. 0001 |
| car | 3 | 1 | -1.7643 | 0.2724 | -2.2981 | -1.2304 | 41.96 | <. 0001 |
| Scale |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

|  | Chi- |  |  |
| :--- | ---: | ---: | ---: |
| Source | DF | Square | Pr $>$ ChiSq |
| age | 1 | 104.64 | $<.0001$ |
| car | 2 | 72.82 | $<.0001$ |

Finally, we estimate the model with an interaction term. This is a saturated model with the same number of parameters as observations. The output is given below. The type 3 analysis indicates that the interaction is not needed. Now you may wonder why it is possible to test for an interaction term in a saturated model. In the usual (normal) linear model this would not be possible as the saturated model leaves no degrees of freedom for the error term. With a Poisson link, however, the variance is the same as the mean and there is no extra parameter (variance or dispersion parameter) that needs to be estimated; the program indicates this fact when it says that the scale parameter was held fixed. Hence we can compare the log-likelihood of the full (saturated) model (838.8636) with the log-likelihood of the model without the interaction (837.4533) and compute the log- likelihood ratio test statistic $2(838.8636-837.4533)=2.82$. Since its probability value $\mathrm{P}\left(\chi^{2}(2) \geq 2.82\right)=1-0.7559=0.2441$ exceeds 0.05 , the interaction is insignificant and we can use the simpler model without interaction. Note that the likelihood ratio test statistic for the interaction in the saturated model is identical to the deviance in the model without the interaction component.

Fitting results for the model with interaction:

The GENMOD Procedure
Model Information

| Data Set | WORK. EXER12N2 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nuclaims |
| Offset Variable | lnnupol |
| Observations Used | 6 |

Abraham/Ledolter: Chapter 12
12-16

Class Level Information

| Class | Value | Design <br> Variables |
| :--- | :--- | :--- |
| age | 1 | 0 |
|  | 2 | 1 |
| car | 1 | 0 |
|  | 2 | 1 |

Parameter Information

| Parameter | Effect | age | car |
| :--- | :--- | :--- | :--- |
| Prm1 | Intercept |  |  |
| Prm2 | age | 2 |  |
| Prm3 | car |  | 2 |
| Prm4 | car |  | 3 |
| Prm5 | age*car | 2 | 2 |
| Prm6 | age*car | 2 | 3 |

Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | :---: | ---: | :---: |
| Deviance | 0 | 0.0000 |  |
| Scaled Deviance | 0 | 0.0000 | . |
| Pearson Chi-Square | 0 | 0.0000 | . |
| Scaled Pearson X2 | 0 | 0.0000 | . |
| Log Likelihood |  | 838.8636 |  |

Algorithm converged.

The GENMOD Procedure
Estimated Correlation Matrix

|  | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 | Prm6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| Prm1 | 1.0000 | -0.8404 | -0.6844 | -0.1525 | 0.5656 | 0.1468 |
| Prm2 | -0.8404 | 1.0000 | 0.5751 | 0.1282 | -0.6730 | -0.1747 |
| Prm3 | -0.6844 | 0.5751 | 1.0000 | 0.1044 | -0.8264 | -0.1005 |
| Prm4 | -0.1525 | 0.1282 | 0.1044 | 1.0000 | -0.0862 | -0.9625 |
| Prm5 | 0.5656 | -0.6730 | -0.8264 | -0.0862 | 1.0000 | 0.1175 |
| Prm6 | 0.1468 | -0.1747 | -0.1005 | -0.9625 | 0.1175 | 1.0000 |
|  |  |  |  |  |  |  |


| Parameter |  |  | DF | Estimate | Standard Error | Wald 95\% Confidence Limits |  | Chi- <br> Square | Pr | > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept |  |  | 1 | -2.4769 | 0.1543 | -2.7794 | -2.1745 | 257.68 |  | <. 0001 |
| age | 2 |  | 1 | 1.1006 | 0.1836 | 0.7407 | 1.4605 | 35.93 |  | <. 0001 |
| car | 2 |  | 1 | -1.0022 | 0.2255 | -1.4441 | -0.5603 | 19.76 |  | $<.0001$ |
| car | 3 |  | 1 | -2.1282 | 1.0118 | -4.1114 | -0.1451 | 4.42 |  | 0.0354 |
| age*car | 2 | 2 | 1 | 0.4544 | 0.2728 | -0.0803 | 0.9892 | 2.77 |  | 0.0958 |
| age*car | 2 | 3 | 1 | 0.4399 | 1.0513 | -1.6206 | 2.5003 | 0.18 |  | 0.6757 |
| Scale |  |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |  |

NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis

Source DF Square Pr $>$ ChiSq
Abraham/Ledolter: Chapter 12
12-17

| age | 1 | 40.03 | $<.0001$ |
| :--- | :--- | ---: | ---: |
| car | 2 | 23.43 | $<.0001$ |
| age*car | 2 | 2.82 | 0.2441 |

12.3 We use SAS GENMOD to estimate the Poisson regression model with link $\ln \mu=\lambda_{1} \mathrm{~T}_{1}+\lambda_{2} \mathrm{~T}_{2}$
The deviance is $\mathrm{D}=4.00$ and the standardized deviance is 0.67 . While the standardized deviance is somewhat smaller than one, the deviance is not small enough to suggest underdispersion $\left(\mathrm{P}\left(\chi^{2}(6) \leq 4.00\right)=0.32\right)$.

The estimate of $\lambda_{2}$ is not significantly different from zero; the likelihood ratio test statistic is 0.81 with probability value 0.3685 (larger than 0.05 ). Alternatively, one can look at the confidence interval for $\lambda_{2}$; it covers zero.

The model without $T_{2}$ (that is, the Poisson regression with link $\ln \mu=\lambda_{1} T_{1}$ ) is estimated next). The estimate of $\lambda_{1}$ is significant. A scatter plot of the observations against $T_{1}$, and the Poisson fit $\hat{\mu}=\exp \left(\hat{\lambda}_{1} T_{1}\right)$ are shown below.

Fitting results for the model with $T_{1}$ and $T_{2}$ :

| The GENMOD Procedure |  |  |
| :---: | :---: | :---: |
| Model Information |  |  |
| Data | WORK. EXER12 |  |
| Distri | Pois |  |
| Link F |  |  |
| Depend | nufa |  |
| Observ |  |  |
| Parameter Information |  |  |
| Parameter Effect |  |  |
|  | Intercept |  |
|  | time1 |  |
|  | time2 |  |
| Criteria For Assessing Goodness Of Fit |  |  |
| Criterion | Value | Value/DF |
| Deviance | 4.0033 | 0.6672 |
| Scaled Deviance | 4.0033 | 0.6672 |
| Pearson Chi-Square | 3.9505 | 0.6584 |
| Scaled Pearson X2 | 3.9505 | 0.6584 |
| Log Likelihood | 362.7354 |  |

Algorithm converged.

|  | Prm1 | Prm2 | Prm3 |
| :--- | ---: | ---: | ---: |
|  |  |  |  |
| Prm1 | 1.0000 | -0.7791 | -0.2690 |
| Prm2 | -0.7791 | 1.0000 | -0.3272 |
| Prm3 | -0.2690 | -0.3272 | 1.0000 |
|  |  |  |  |
| Analysis 0f Parameter Estimates |  |  |  |


|  | DF | Estimate | Standard <br> Error | Wald $95 \%$ Confidence <br> Limits | Chi- <br> Square | Pr |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Parameter ChiSq |  |  |  |  |  |  |  |

NOTE: The scale parameter was held fixed

## Fitting results for the model without $T_{2}$ :

The GENMOD Procedure
Model Information

| Data Set | WORK. EXER12N3 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nufail |
| Observations Used | 9 |

Parameter Information

| Parameter | Effect |
| :--- | :--- |
| Prm1 | Intercept |
| Prm2 | time1 |

Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | :---: | ---: | ---: |
| Deviance | 7 | 4.8078 | 0.6868 |
| Scaled Deviance | 7 | 4.8078 | 0.6868 |
| Pearson Chi-Square | 7 | 4.6345 | 0.6621 |
| Scaled Pearson X2 | 7 | 4.6345 | 0.6621 |
| Log Likelihood |  | 362.3331 |  |

Algorithm converged.

> Estimated Correlation Matrix

|  | Prm1 | Prm2 |
| :--- | ---: | ---: |
|  |  |  |
| Prm1 | 1.0000 | -0.9515 |
| Prm2 | -0.9515 | 1.0000 |
|  |  |  |
| AnalysisOf | Parameter Estimates |  |



NOTE: The scale parameter was held fixed.


## 12.4

(a) Cancer incidence should be directly proportional to the size of the population. Hence it is reasonable to consider $\ln (\mathrm{POP})$ as an offset. Age is a categorical variable. We use indicator variables for the eight age groups (X1 through X8) and consider the Poisson regression with link

$$
\ln \mu=\beta_{0}+\ln (\mathrm{POP})+\beta_{2} \mathrm{X} 2+\ldots+\beta_{8} \mathrm{X} 8+\beta_{9} \text { Town }
$$

The results of the model fit are shown below. Both age and town are significant; you can see this from the (partial; type 3) likelihood-ratio test statistics and their probability values at the end of the output. The estimate of the town effect is $\hat{\beta}_{9}=0.85$, with standard error 0.06 . There is a significant location effect; women in Texas have a $100[\exp (0.85)-1]=134$ percent higher incidence of skin cancer. The deviance and the Pearson Chi-Square statistics are approximately one and indicate no problem with over/under-dispersion.

Fitting results for the full model with an offset:
The GENMOD Procedure

Model Information

| Data Set | WORK. EXER12N4 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nucases |
| Offset Variable | lnpop |
| Observations Used | 15 |

Class Level Information

| Class | Value | Design Variables |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| age | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

Abraham/Ledolter: Chapter 12
12-20

| 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Parameter Information

| Parameter | Effect | age |
| :--- | :--- | :--- |
| Prm1 | Intercept |  |
| Prm2 | town |  |
| Prm3 | age | 2 |
| Prm4 | age | 3 |
| Prm5 | age | 4 |
| Prm6 | age | 5 |
| Prm7 | age | 6 |
| Prm8 | age | 7 |
| Prm9 | age | 8 |

Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 6 | 5.2089 | 0.8682 |
| Scaled Deviance | 6 | 5.2089 | 0.8682 |
| Pearson Chi-Square | 6 | 5.1482 | 0.8580 |
| Scaled Pearson X2 | 6 | 5.1482 | 0.8580 |
| Log Likelihood |  | 6204.3156 |  |


|  | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 | Prm6 | Prm7 | Prm8 | Prm9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |
| Prm1 | 1.0000 | -0.0944 | -0.9521 | -0.9788 | -0.9868 | -0.9885 | -0.9900 | -0.9819 | -0.9730 |
| Prm2 | -0.0944 | 1.0000 | -0.0031 | -0.0047 | -0.0037 | -0.0024 | 0.0007 | 0.0927 | 0.0039 |
| Prm3 | -0.9521 | -0.0031 | 1.0000 | 0.9410 | 0.9486 | 0.9501 | 0.9513 | 0.9349 | 0.9347 |
| Prm4 | -0.9788 | -0.0047 | 0.9410 | 1.0000 | 0.9753 | 0.9769 | 0.9781 | 0.9610 | 0.9610 |
| Prm5 | -0.9868 | -0.0037 | 0.9486 | 0.9753 | 1.0000 | 0.9847 | 0.9860 | 0.9689 | 0.9687 |
| Prm6 | -0.9885 | -0.0024 | 0.9501 | 0.9769 | 0.9847 | 1.0000 | 0.9875 | 0.9706 | 0.9703 |
| Prm7 | -0.9900 | 0.0007 | 0.9513 | 0.9781 | 0.9860 | 0.9875 | 1.0000 | 0.9721 | 0.9715 |
| Prm8 | -0.9819 | 0.0927 | 0.9349 | 0.9610 | 0.9689 | 0.9706 | 0.9721 | 1.0000 | 0.9554 |
| Prm9 | -0.9730 | 0.0039 | 0.9347 | 0.9610 | 0.9687 | 0.9703 | 0.9715 | 0.9554 | 1.0000 |

Analysis Of Parameter Estimates

|  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Parameter |  | DF | Estimate | Standard <br> Error | Wald 95\% Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |

NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis
Source

town
Chi-
age
(b) The estimation results for the more general model
$\ln \mu=\beta_{0}+\beta_{1} \ln (\mathrm{POP})+\beta_{2} \mathrm{X} 2+\ldots+\beta_{8} \mathrm{X} 8+\beta_{9}$ Town
are given below. It seems reasonable to suppose that the number of cancers is directly proportional to the population, and that one can expect that the coefficient $\beta_{1}$ is one.
Let us test whether $\beta_{1}=1$. The estimate is $\hat{\beta}_{1}=1.96$, and the 95 percent Wald confidence interval is given by $1.96 \pm(1.96)(0.63), 1.96 \pm 1.23$, or $0.73 \leq \beta_{1} \leq 3.18$. The interval is quite wide (because there are few observations). The interval includes one, which makes the off-set interpretation plausible.

Fitting results for the full model without an offset:


Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 5 | 2.8539 | 0.5708 |
| Scaled Deviance | 5 | 2.8539 | 0.5708 |
| Pearson Chi-Square | 5 | 2.8439 | 0.5688 |
| Scaled Pearson X2 | 5 | 2.8439 | 0.5688 |
| Log Likelihood |  | 6205.4931 |  |
|  |  |  |  |

Algorithm converged.
Estimated Correlation Matrix

|  | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 | Prm6 | Prm7 | Prm8 | Prm9 | Prm10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Prm1 | 1.0000 | -0.9982 | 0.7154 | -0.3692 | -0.5729 | -0.6353 | -0.7844 | -0.8810 | -0.9360 | -0.9851 |
| Prm2 | -0.9982 | 1.0000 | -0.7206 | 0.3160 | 0.5241 | 0.5888 | 0.7465 | 0.8516 | 0.9138 | 0.9736 |
| Prm3 | 0.7154 | -0.7206 | 1.0000 | -0.2317 | -0.3831 | -0.4284 | -0.5401 | -0.6131 | -0.6327 | -0.7003 |
| Prm4 | -0.3692 | 0.3160 | -0.2317 | 1.0000 | 0.9260 | 0.9135 | 0.8357 | 0.7422 | 0.6489 | 0.5100 |
| Prm5 | -0.5729 | 0.5241 | -0.3831 | 0.9260 | 1.0000 | 0.9800 | 0.9448 | 0.8830 | 0.8112 | 0.6971 |
| Prm6 | -0.6353 | 0.5888 | -0.4284 | 0.9135 | 0.9800 | 1.0000 | 0.9691 | 0.9192 | 0.8560 | 0.7520 |
| Prm7 | -0.7844 | 0.7465 | -0.5401 | 0.8357 | 0.9448 | 0.9691 | 1.0000 | 0.9802 | 0.9444 | 0.8742 |
| Prm8 | -0.8810 | 0.8516 | -0.6131 | 0.7422 | 0.8830 | 0.9192 | 0.9802 | 1.0000 | 0.9852 | 0.9453 |
| Prm9 | -0.9360 | 0.9138 | -0.6327 | 0.6489 | 0.8112 | 0.8560 | 0.9444 | 0.9852 | 1.0000 | 0.9783 |
| Prm10 | -0.9851 | 0.9736 | -0.7003 | 0.5100 | 0.6971 | 0.7520 | 0.8742 | 0.9453 | 0.9783 | 1.0000 |

Analysis Of Parameter Estimates

| Parameter |  | DF | Estimate | Standard Error | Wald 95\% Confidence Limits |  | ChiSquare | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept |  | 1 | -23.2489 | 7.5392 | -38.0256 | -8.4723 | 9.51 | 0.0020 |
| Inpop |  | 1 | 1.9613 | 0.6259 | 0.7345 | 3.1880 | 9.82 | 0.0017 |
| town |  | 1 | 0.7556 | 0.0862 | 0.5866 | 0.9245 | 76.81 | <. 0001 |
| age | 2 | 1 | 2.8684 | 0.4927 | 1.9027 | 3.8341 | 33.89 | <. 0001 |
| age | 3 | 1 | 4.2766 | 0.5339 | 3.2303 | 5.3230 | 64.17 | <. 0001 |
| age | 4 | 1 | 5.0990 | 0.5580 | 4.0053 | 6.1927 | 83.49 | <. 0001 |
| age | 5 | 1 | 5.8623 | 0.6768 | 4.5358 | 7.1888 | 75.02 | <. 0001 |
| age | 6 | 1 | 6.7681 | 0.8579 | 5.0866 | 8.4496 | 62.23 | <. 0001 |
| age | 7 | 1 | 7.7827 | 1.1265 | 5.5748 | 9.9906 | 47.73 | <. 0001 |
| age | 8 | 1 | 9.1783 | 2.0057 | 5.2473 | 13.1094 | 20.94 | <. 0001 |
| Scale |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

| Source | Chi- <br> Square |  |  |
| :--- | ---: | ---: | ---: |
| Pr $>$ ChiSq |  |  |  |
| lnpop | 1 | 9.77 | 0.0018 |
| town | 1 | 81.60 | $<.0001$ |
| age | 7 | 988.50 | $<.0001$ |

Additional model: We estimate a model that includes an interaction between town and age. We want to check whether the town effect depends on the age group. The results are given below. The likelihood-ratio test for the town by age interaction is
insignificant. Note that such a test is possible in the saturated Poisson regression model, as the variance is the same as the mean; the scale parameter is kept fixed.

## Fitting results for the model with interaction:



Analysis Of Parameter Estimates

| Parameter |  |  | DF | Estimate | Standard Error | Wald 95\% Confidence Limits |  | Chi- <br> Square | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept |  |  | 1 | -12.0592 | 1.0000 | -14.0191 | -10.0992 | 145.42 | <. 0001 |
| town | 1 |  | 1 | 1.3373 | 1.1180 | -0.8540 | 3.5286 | 1.43 | 0.2316 |
| age | 2 |  | 1 | 3.1113 | 1.0308 | 1.0910 | 5.1316 | 9.11 | 0.0025 |
| age | 3 |  | 1 | 3.9860 | 1.0165 | 1.9937 | 5.9784 | 15.38 | <. 0001 |
| age | 4 |  | 1 | 4.8917 | 1.0070 | 2.9180 | 6.8655 | 23.60 | <. 0001 |
| age | 5 |  | 1 | 5.4975 | 1.0049 | 3.5280 | 7.4671 | 29.93 | <. 0001 |
| age | 6 |  | 1 | 6.0167 | 1.0038 | 4.0492 | 7.9842 | 35.92 | <. 0001 |
| age | 7 |  | 1 | 6.5703 | 1.0038 | 4.6029 | 8.5376 | 42.85 | <. 0001 |
| age | 8 |  | 1 | 6.7207 | 1.0124 | 4.7364 | 8.7050 | 44.07 | <. 0001 |
| age*town | 2 | 1 | 1 | -0.6446 | 1.1571 | -2.9124 | 1.6232 | 0.31 | 0.5774 |
| age*town | 3 | 1 | 1 | -0.1917 | 1.1365 | -2.4193 | 2.0359 | 0.03 | 0.8661 |
| age*town | 4 | 1 | 1 | -0.3922 | 1.1263 | -2.5998 | 1.8154 | 0.12 | 0.7277 |
| age*town | 5 | 1 | 1 | -0.5455 | 1.1241 | -2.7487 | 1.6578 | 0.24 | 0.6275 |
| age*town | 6 | 1 | 1 | -0.4901 | 1.1229 | -2.6910 | 1.7107 | 0.19 | 0.6625 |
| age*town | 7 | 1 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | . | . |
| age*town | 8 | 1 | 1 | -0.7581 | 1.1360 | -2.9845 | 1.4683 | 0.45 | 0.5045 |
| Scale |  |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed

LR Statistics For Type 3 Analysis

| Source | Chi- <br> Square |  |  |
| :--- | ---: | ---: | ---: |
| DF | Pr $>$ ChiSq |  |  |
| town | 1 | 1.78 | 0.1817 |
| age | 7 | 845.79 | $<.0001$ |
| age*town | 7 | 5.21 | 0.6342 |

Another model: Finally, we introduce age as a continuous variable, and not as a factor as was done in the previous models. The output is shown below. Both age and town are significant. A graph of the number of cancer deaths against age (with the two towns indicated by different plotting symbols) and the Poisson model fit is given in the following graph. Every ten years the cancer rate (deaths per population) increases by a factor of $\exp (0.6133)=1.85$; that is, by 85 percent.

Fitting results for the model with age as continuous variable:
The GENMOD Procedure
Model Information

| Data Set | WORK. EXER12N4 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nucases |
| Offset Variable | lnpop |
| Observations Used | 15 |

Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | :---: | ---: | ---: |
| Deviance | 12 | 184.8091 | 15.4008 |
| Scaled Deviance | 12 | 184.8091 | 15.4008 |
| Pearson Chi-Square | 12 | 141.4307 | 11.7859 |

Abraham/Ledolter: Chapter 12
Scaled Pearson X2
12

$$
141.4307
$$

11.7859 Log Likelihood
6114.5155

Algorithm converged.

Analysis Of Parameter Estimates

| Parameter | DF | Estimate | Standard Error | Wald 95\% Confidence Limits |  | ChiSquare | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | 1 | -9.8191 | 0.0902 | -9.9959 | -9.6423 | 11846.5 | <. 0001 |
| town | 1 | 0.8584 | 0.0545 | 0.7515 | 0.9652 | 247.95 | <. 0001 |
| age | 1 | 0.6133 | 0.0142 | 0.5855 | 0.6411 | 1871.42 | <. 0001 |
| Scale | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed.

12.5 We use SAS GENMOD to estimate the Poisson regression model with link

$$
\ln \mu=\beta_{0}+\beta_{1} \ln (\mathrm{Pop})+\beta_{2} \mathrm{X} 2+\ldots+\beta_{9} \mathrm{X} 9+\beta_{10} \mathrm{Z} 2+\beta_{11} \mathrm{Z} 3+\beta_{12} \mathrm{Z} 4
$$

The output shows that age and smoking are statistically significant factors. Lung cancer deaths increase monotonically with age. Lung cancer deaths also increase with smoking. The situation is worst for people who smoke cigarettes only (smoking = 4). The surprising fact that people who smoke cigarettes and pipe (or cigar) have lower incidences is probably explained by the number of cigarettes smoked (which is not recorded). People who smoke cigarettes only probably smoke more cigarettes than people who smoke both cigarettes and pipe (or cigar).

The deviance is $\mathrm{D}=16.38$ and the standardized deviance is 0.71 . While the standardized deviance is somewhat smaller than one, the deviance is not small enough to suggest underdispersion $\left(\mathrm{P}\left(\chi^{2}(23) \leq 16.38\right)=0.16\right)$.

Let us test whether $\beta_{1}=1$. The estimate is $\hat{\beta}_{1}=1.0761$, and the 95 percent Wald confidence interval is given by $1.0761 \pm(1.96)(0.0340), 1.076 \pm 0.067$, or $1.01 \leq \beta_{1} \leq 1.14$. The interval fails to cover one - however just barely (the lower limit is about one). While we would reject at the 0.05 significance level that $\beta_{1}=1$, the offset interpretation is not entirely implausible.

Fitting results for the model without an offset:

The GENMOD Procedure
Model Information


| Scaled Deviance | 23 | 16.3820 | 0.7123 |
| :--- | ---: | ---: | ---: |
| Pearson Chi-Square | 23 | 16.3745 | 0.7119 |
| Scaled Pearson X2 | 23 | 16.3745 | 0.7119 |
| Log Likelihood |  | 45620.8854 |  |

Algorithm converged.

Analysis Of Parameter Estimates

| Parameter |  | DF | Estimate | Standard Error | Wald 95\% Confidence Limits |  | Chi- <br> Square | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept |  | 1 | -4.2192 | 0.2505 | -4.7103 | -3.7282 | 283.61 | <. 0001 |
| Inpop |  | 1 | 1.0761 | 0.0340 | 1.0095 | 1.1427 | 1002.25 | <. 0001 |
| age | 2 | 1 | 0.5855 | 0.0812 | 0.4263 | 0.7447 | 51.97 | <. 0001 |
| age | 3 | 1 | 1.0304 | 0.0800 | 0.8736 | 1.1872 | 165.93 | <. 0001 |
| age | 4 | 1 | 1.3814 | 0.0653 | 1.2535 | 1.5093 | 447.97 | <. 0001 |
| age | 5 | 1 | 1.6401 | 0.0629 | 1.5169 | 1.7634 | 680.41 | <. 0001 |
| age | 6 | 1 | 2.0158 | 0.0633 | 1.8917 | 2.1398 | 1014.09 | <. 0001 |
| age | 7 | 1 | 2.3330 | 0.0701 | 2.1957 | 2.4704 | 1108.03 | <. 0001 |
| age | 8 | 1 | 2.6721 | 0.0848 | 2.5060 | 2.8383 | 993.31 | $<.0001$ |
| age | 9 | 1 | 2.9916 | 0.0970 | 2.8015 | 3.1817 | 951.64 | <. 0001 |
| smoking | 2 | 1 | 0.0148 | 0.0494 | -0.0820 | 0.1117 | 0.09 | 0.7643 |
| smoking | 3 | 1 | 0.1159 | 0.0598 | -0.0012 | 0.2330 | 3.76 | 0.0524 |
| smoking | 4 | 1 | 0.3485 | 0.0503 | 0.2498 | 0.4471 | 47.91 | <. 0001 |
| Scale |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

LR Statistics For Type 3 Analysis

|  | Chi- <br> Source |  |  |
| :--- | ---: | ---: | ---: |
|  | DF | Square | Pr $>$ ChiSq |
| lnpop | 1 | 1244.55 | $<.0001$ |
| age | 8 | 3254.75 | $<.0001$ |
| smoking | 3 | 143.40 | $<.0001$ |

The regression results treating $\ln (\mathrm{POP})$ as an offset are given next. The interpretation of the results is mostly unchanged.

Fitting results for the model with an offset:



| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 24 | 21.4867 | 0.8953 |
| Scaled Deviance | 24 | 21.4867 | 0.8953 |
| Pearson Chi-Square | 24 | 20.6194 | 0.8591 |
| Scaled Pearson X2 | 24 | 20.6194 | 0.8591 |
| Log Likelihood |  | 45618.3330 |  |

Algorithm converged.
Analysis Of Parameter Estimates

|  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Parameter |  | DF | Estimate | Standard <br> Error | Wald $95 \%$ Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |

NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis

| Source | Chi- |  |  |
| :--- | ---: | ---: | ---: |
| DF | Square | Pr $>$ ChiSq |  |
| age | 8 | 3889.22 | $<.0001$ |
| smoking | 3 | 170.24 | $<.0001$ |

Abraham/Ledolter: Chapter 12
$12-29$

Results of the Poisson regression with the factors age, smoking and the interaction between age and smoking is given below. The interaction between age and smoking turns out to be insignificant.

Fitting results for the model with interaction:
The GENMOD Procedure

Model Information

| Data Set | WORK. EXER12N5 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nudeath |
| Offset Variable | Inpop |
| Observations Used | 36 |

Class Level Information

| Class | Value |  |  | Design Variables |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | 1 | 0 | 0 | 0 | 0 | 0 |
|  | 2 | 1 | 0 | 0 | 0 | 0 |
|  | 3 | 0 | 1 | 0 | 0 | 0 |
|  | 4 | 0 | 0 | 1 | 0 | 0 |
|  | 5 | 0 | 0 | 0 | 1 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 1 |
|  | 7 | 0 | 0 | 0 | 0 | 0 |
|  | 8 | 0 | 0 | 0 | 0 | 0 |
|  | 9 | 0 | 0 | 0 | 0 | 0 |
| smoking | 1 | 0 | 0 | 0 |  |  |
|  | 2 | 1 | 0 | 0 |  |  |
|  | 3 | 0 | 1 | 0 |  |  |
|  | 4 | 0 | 0 | 1 |  |  |


| Criterion | DF | Value | Value/DF |
| :--- | :--- | ---: | :---: |
| Deviance | 0 | 0.0000 |  |
| Scaled Deviance | 0 | 0.0000 | . |
| Pearson Chi-Square | 0 | 0.0000 | . |
| Scaled Pearson X2 | 0 | 0.0000 | . |
| Log Likelihood |  | 45629.0764 |  |

Algorithm converged.

Analysis Of Parameter Estimates

| Parameter |  | DF | Estimate | Standard <br> Error | Wald 95\% Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


| smoking | 4 |  | 1 | 0.2816 | 0.2522 | -0.2128 | 0.7760 | 1.25 | 0.2642 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| age*smoking | 2 | 2 | 1 | 0.2220 | 0.9225 | -1.5861 | 2.0301 | 0.06 | 0.8098 |
| age*smoking | 2 | 3 | 1 | -0.2752 | 0.3371 | -0.9359 | 0.3855 | 0.67 | 0.4143 |
| age*smoking | 2 | 4 | 1 | -0.2615 | 0.3409 | -0.9296 | 0.4067 | 0.59 | 0.4431 |
| age*smoking | 3 | 2 | 1 | -0.2255 | 0.9703 | -2.1273 | 1.6762 | 0.05 | 0.8162 |
| age*smoking | 3 | 3 | 1 | -0.0715 | 0.3465 | -0.7507 | 0.6076 | 0.04 | 0.8364 |
| age*smoking | 3 | 4 | 1 | -0.0010 | 0.3487 | -0.6844 | 0.6825 | 0.00 | 0.9978 |
| age*smoking | 4 | 2 | 1 | 0.8480 | 0.7746 | -0.6702 | 2.3663 | 1.20 | 0.2736 |
| age*smoking | 4 | 3 | 1 | 0.1651 | 0.2867 | -0.3967 | 0.7270 | 0.33 | 0.5646 |
| age*smoking | 4 | 4 | 1 | 0.3096 | 0.2894 | -0.2576 | 0.8768 | 1.14 | 0.2846 |
| age*smoking | 5 | 2 | 1 | 0.8851 | 0.7569 | -0.5985 | 2.3687 | 1.37 | 0.2423 |
| age*smoking | 5 | 3 | 1 | 0.2300 | 0.2680 | -0.2952 | 0.7552 | 0.74 | 0.3907 |
| age*smoking | 5 | 4 | 1 | 0.3452 | 0.2710 | -0.1860 | 0.8764 | 1.62 | 0.2028 |
| age*smoking | 6 | 2 | 1 | 0.6489 | 0.7531 | -0.8272 | 2.1251 | 0.74 | 0.3889 |
| age*smoking | 6 | 3 | 1 | 0.0221 | 0.2632 | -0.4937 | 0.5379 | 0.01 | 0.9330 |
| age*smoking | 6 | 4 | 1 | 0.1250 | 0.2664 | -0.3971 | 0.6470 | 0.22 | 0.6390 |
| age*smoking | 7 | 2 | 1 | 0.6471 | 0.7522 | -0.8272 | 2.1215 | 0.74 | 0.3896 |
| age*smoking | 7 | 3 | 1 | -0.0630 | 0.2636 | -0.5797 | 0.4536 | 0.06 | 0.8110 |
| age*smoking | 7 | 4 | 1 | 0.0178 | 0.2674 | -0.5063 | 0.5420 | 0.00 | 0.9469 |
| age*smoking | 8 | 2 | 1 | 0.7795 | 0.7537 | -0.6977 | 2.2566 | 1.07 | 0.3010 |
| age*smoking | 8 | 3 | 1 | -0.0292 | 0.2712 | -0.5608 | 0.5024 | 0.01 | 0.9142 |
| age*smoking | 8 | 4 | 1 | 0.1081 | 0.2768 | -0.4344 | 0.6507 | 0.15 | 0.6961 |
| age*smoking | 9 | 2 | 1 | 0.7608 | 0.7536 | -0.7161 | 2.2378 | 1.02 | 0.3127 |
| age*smoking | 9 | 3 | 1 | 0.0428 | 0.2755 | -0.4971 | 0.5827 | 0.02 | 0.8765 |
| age*smoking | 9 | 4 | 1 | -0.0402 | 0.2964 | -0.6211 | 0.5406 | 0.02 | 0.8920 |
| Scale |  |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis

|  | Chi- <br> Square |  |  |
| :--- | ---: | ---: | ---: |
| Source | Pr $>$ ChiSq |  |  |
| age | 8 | 382.21 | $<.0001$ |
| smoking | 3 | 3.80 | 0.2843 |
| age*smoking | 24 | 21.49 | 0.6099 |

Finally, we consider the Poisson regression that includes smoking as a factor (with the three indicators) and age as a continuous variable. The results are given below. We can test whether a class factor for age is needed or whether it is sufficient to include age as a continuous variable. The log-likelihood of the model that considers age as a factor (the full model) is 45,618.3330; the log-likelihood of the model that considers age as a continuous variable (the restricted model) is 45,591.2091. We compare the log-likelihood ratio statistic, $2(45,618.3330-45,591.2091)=54.25$, to a chi-square with 7 degrees of freedom (the nine intercepts in the unrestricted model, one for each age group, are tested against the linear formulation which includes two parameters, the intercept and the slope). The test statistic is large (probability value
$\mathrm{P}\left(\chi^{2}(7) \geq 54.25\right)<0.001$ is small), indicating that it is not adequate to consider a linear component of size. Size must be treated as a class factor.

Fitting results for the model with age as continuous variable:
The GENMOD Procedure

Model Information
Data Set
WORK.EXER12N5
Abraham/Ledolter: Chapter 12


Algorithm converged.
Analysis Of Parameter Estimates

| Carameter | DF | Estimate | Standard <br> Error | Wald $95 \%$ Confidence <br> Limits | Chi- <br> Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

|  | Chi- <br> Square |  |  |
| :--- | ---: | ---: | ---: |
| Source | Dr $>$ ChiSq |  |  |
| age |  |  |  |
| smoking | 1 | 3834.97 | $<.0001$ |
|  | 3 | 196.00 | $<.0001$ |

12.6 The output from estimating the Poisson regression with link
$\ln \mu=\beta_{0}+\beta_{1} \mathrm{DIST}+\beta_{2} \mathrm{INC}+\beta_{3}$ SIZE2 $+\beta_{4}$ SIZE3 $+\beta_{5}$ SIZE $4+\beta_{6}$ SIZE5
is shown below. Here we treat SIZE as a class variable, specifying 4 indicators for the factor with five outcomes ( 1 through 5 people; size 1 is the baseline). Income does not affect the number of visits to the lake (probability value $=0.27$ ) and is omitted in the next run. The deviance and the Pearson chi-square statistics are roughly the size of the critical $95^{\text {th }}$ percentile (280.36).

Fitting results for the full model:
The GENMOD Procedure

Model Information

| Data Set | WORK. EXER12N6 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nuvisits |
| Observations Used | 250 |



Parameter Information

| Parameter | Effect | size |
| :--- | :--- | :--- |
| Prm1 | Intercept |  |
| Prm2 | dist |  |
| Prm3 | inc |  |
| Prm4 | size | 2 |
| Prm5 | size | 3 |
| Prm6 | size | 4 |
| Prm7 | size | 5 |


| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 243 | 313.6999 | 1.2909 |
| Scaled Deviance | 243 | 313.6999 | 1.2909 |
| Pearson Chi-Square | 243 | 286.2022 | 1.1778 |
| Scaled Pearson X2 | 243 | 286.2022 | 1.1778 |
| Log Likelihood |  | 11.3651 |  |

Algorithm converged.

Estimated Correlation Matrix

|  | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 | Prm6 | Prm7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  | -0.5740 |  |
| Prm1 | 1.0000 | -0.4081 | -0.6605 | -0.4409 | -0.5760 | -0.5506 | 0.0438 |
| Prm2 | -0.4081 | 1.0000 | -0.0275 | 0.0247 | 0.1431 | 0.0573 | 0.0749 |
| Prm3 | -0.6605 | -0.0275 | 1.0000 | -0.0391 | 0.0536 | 0.0374 | 0.6019 |
| Prm4 | -0.4409 | 0.0247 | -0.0391 | 1.0000 | 0.5739 | 0.5990 | 0.6437 |
| Prm5 | -0.5760 | 0.1431 | 0.0536 | 0.5739 | 1.0000 | 0.6386 | 0.6678 |
| Prm6 | -0.5506 | 0.0573 | 0.0374 | 0.5990 | 0.6386 | 1.0000 | 1.0000 |
| Prm7 | -0.5740 | 0.0438 | 0.0749 | 0.6019 | 0.6437 | 0.6678 |  |

Analysis Of Parameter Estimates

| Parameter | DF | Estimate | Standard Error | Wald 95\% Confidence Limits |  | Chi- <br> Square | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | 1 | 1.6578 | 0.1907 | 1.2840 | 2.0315 | 75.57 | <. 0001 |
| dist | 1 | -0.0215 | 0.0016 | -0.0245 | -0.0184 | 190.19 | <. 0001 |
| Abraham/Ledolter: Chapter 12 |  |  |  | 12-33 |  |  |  |


| inc |  | 1 | 0.0203 | 0.0184 | -0.0158 | 0.0563 | 1.22 | 0.2700 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| size | 2 | 1 | -0.0249 | 0.1595 | -0.3375 | 0.2877 | 0.02 | 0.8758 |
| size | 3 | 1 | 0.1032 | 0.1521 | -0.1949 | 0.4014 | 0.46 | 0.4973 |
| size | 4 | 1 | 0.3344 | 0.1454 | 0.0495 | 0.6194 | 5.29 | 0.0214 |
| size | 5 | 1 | 0.4731 | 0.1442 | 0.1904 | 0.7558 | 10.76 | 0.0010 |
| Scale |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis

|  | Chi- <br> Source |  |  |
| :--- | ---: | ---: | ---: |
|  | DF | Square | Pr $>$ ChiSq |
| dist | 1 | 213.97 | $<.0001$ |
| inc | 1 | 1.22 | 0.2699 |
| size | 4 | 21.19 | 0.0003 |

The output of the simplified Poisson regression with link $\ln \mu=\beta_{0}+\beta_{1} \mathrm{DIST}+\beta_{3} \mathrm{SIZE} 2+\beta_{4}$ SIZE3 $+\beta_{5}$ SIZE4 $+\beta_{6}$ SIZE5
is shown below.
Fitting results for the restricted model without income:
The GENMOD Procedure

Model Information

| Data Set | WORK.EXER12N6 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nuvisits |
| Observations Used | 250 |


|  | Class Level Information <br> Class |  |  |  |  |  |  | Value |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| size | 1 | 0 | 0 | 0 | 0 |  |  |  |  |
|  | 2 | 1 | 0 | 0 | 0 |  |  |  |  |
|  | 3 | 0 | 1 | 0 | 0 |  |  |  |  |
|  | 4 | 0 | 0 | 1 | 0 |  |  |  |  |
|  | 5 | 0 | 0 | 0 | 1 |  |  |  |  |

Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 244 | 314.9173 |  |
| Scaled Deviance | 244 | 314.9173 | 1.2906 |
| Pearson Chi-Square | 244 | 284.7341 | 1.2906 |
| Scaled Pearson X2 | 244 | 284.7341 | 1.1669 |
| Log Likelihood |  | 10.7564 | 1.1669 |

Algorithm converged.
Analysis Of Parameter Estimates


| size | 2 | 1 | -0.0184 | 0.1594 | -0.3308 | 0.2939 | 0.01 | 0.9079 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| size | 3 | 1 | 0.0941 | 0.1519 | -0.2035 | 0.3917 | 0.38 | 0.5355 |
| size | 4 | 1 | 0.3283 | 0.1453 | 0.0436 | 0.6130 | 5.11 | 0.0238 |
| size | 5 | 1 | 0.4610 | 0.1439 | 0.1790 | 0.7429 | 10.27 | 0.0014 |
| Scale |  | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed.

Additional model: Treating SIZE as a continuous variable and not as a factor leads to the Poisson link

$$
\ln \mu=\beta_{0}+\beta_{1} \mathrm{DIST}+\beta_{2} \mathrm{INC}+\beta_{3} \mathrm{SIZE} .
$$

The estimation results show that income can be omitted (output not shown). Omitting income leads to the results shown below. Both distance and family size are statistically significant. A change in distance by 10 miles reduces the mean number of visits by a factor of $\exp (-0.0212(10))=0.81$, or 19 percent. A change in the family size by one unit increases the mean number of visits by a factor $\exp (0.1358)=1.145$, or 14.5 percent.

We can test whether a class factor for size is needed or whether it is sufficient to treat size as a continuous variable. The log-likelihood of the model that considers size as a factor (the full model) is 10.7564; the log-likelihood of the model that considers size as a continuous variable (the restricted model) is 9.8849 . We compare the loglikelihood ratio statistic, $2(10.7564-9.8849)=1.74$, to a chi-square with 3 degrees of freedom (the five intercepts in the unrestricted model, one for each of the five size groups, are tested against the linear formulation which includes two parameters, the intercept and the slope). The test statistic is small (probability value
$\mathrm{P}\left(\chi^{2}(3) \geq 1.74\right)=1-0.37=0.63$ is large), indicating that it is sufficient to consider a linear component of size. A scatter plot of the number of visits against distance and fitted values from the Poisson regression against distance is also shown.

Fitting results for the model with size as continuous variable:

The GENMOD Procedure

Model Information

| Data Set | WORK. EXER12N6 |
| :--- | ---: |
| Distribution | Poisson |
| Link Function | Log |
| Dependent Variable | nuvisits |
| Observations Used | 250 |

Criteria For Assessing Goodness Of Fit

| Criterion | DF | Value | Value/DF |
| :--- | ---: | ---: | ---: |
| Deviance | 247 | 316.6602 |  |
| Scaled Deviance | 247 | 316.6602 | 1.2820 |
| Pearson Chi-Square | 247 | 287.1920 | 1.2820 |
| Scaled Pearson X2 | 247 | 287.1920 | 1.1627 |
| Log Likelihood |  | 9.8849 | 1.1627 |

Abraham/Ledolter: Chapter 12 12-35

Analysis Of Parameter Estimates

|  |  |  | Standard <br> Error | Wald $95 \%$ Confidence <br> Limits |  | Chi- <br> Square | Pr |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Parameter | DF | Estimate |  |  |  |  |  |
| Intercept | 1 | 1.5453 | 0.1367 | 1.2774 | 1.8133 | 127.75 | $<.0001$ |
| dist | 1 | -0.0212 | 0.0015 | -0.0242 | -0.0182 | 191.10 | $<.0001$ |
| size | 1 | 0.1358 | 0.0317 | 0.0736 | 0.1980 | 18.32 | $<.0001$ |
| Scale | 0 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |  |  |

NOTE: The scale parameter was held fixed.


