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Time Series Data and Regression

Millions of socio-economic time series are available from the Statistics Canada CANSIM database and tens
of thousands of financial time series are available in R using the quantmod package (CRAN). Millions of
climate, meteorological, hydrological, environmental and other types of scientific time series are also available.

In an MMSc. thesis my student L. King developed a comprehensive simulation method based on 30 years of
daily meteorological observations on 7 variables (including precipation, daily max temperature, etc.) at 27
different locations in the Thames Valley watershed.

The multiple linear regression with some adjustments may be used to describe the relationship between time
series. We start with the univariate model where we have one output variable yt, t = 1, . . . , n observed at
n successive times. In many cases these observation time correspond to actual time units such as seconds,
days, quarters, years, etc. We assume there are p dependent or input variabes, xt,j , t = 1, . . . , n j = 1, . . . , p.
Sometimes lagged values of the input variables may also be included. The model may be written,

yt = β0 + β1xt,1 + . . .+ βpxt,p + et,

where βj , j = 1, . . . , p are parameters and et, t = 1, . . . , n is the error term. The error is assumed stochastic
with mean zero and constant variance σ2. Variations of this model can be used in a wide variety of applications.
Often more specific assumptions are needed to describe the error of noise component et.

Models for Time Series Regression

• OLS
• Regression with autocorrelated error
• Dynamic regression with autocorrelated error
• Regression with ARIMA-GARCH errors

Ordinary Least Squares (OLS)

OLS models assume that et ∼ IID(0, σ2) or perhaps et ∼ NID(0, σ2) where IID/NID are respectively
independent/normal identically distributed with mean 0 and variance σ2.

Advertising Example

A company seeks to determine the optimal mix of expenditures on advertising to maximize sales. This dataset
was obtained from the book homepage for *Introduction to Statistical Learning and is discussed in their
textbook. A PDF copy of this textbook is also available on the book homepage.

Three advertising expenditures on Newspaper, Radio and TV are varied over 200 weekly periods. Time
series plots shown in Figure 1 suggest that there is little or no trends so perhaps all the series are uncorrelated.
Actually, I surmise that this data is completely artifical since real data of this nature is of crucial importance
to a business and is not usually made publically available. Figure 1 supports my conjecture since the complete
lack of time series structure either in trends or seasonality is unusual although not impossible.
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#ads <- read.csv("D:/Dropbox/R/2017/3859/data/advertising.csv")
ads <- cbind(week=1:nrow(ads), ads)
adsL <- gather(ads, key=media, value=expenditure, -week)
ggplot(adsL, aes(x=week, y=expenditure)) +
#geom_point(color="blue") +
geom_line() +
facet_wrap(~media, scales="free_y")
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Figure 1: Time series plots of the Advertising dataset

Dependence in an observed time series is often assessed by its sample autocorrelation function (SACF) defined
by,

rk =
∑

(zt − z̄)(zt−k − z̄)∑
(zt − z̄)2

where k = 1, ...,M where M is the maximum lag of interest. For most time series lag one is the most
important lag since usually observations closer together in time are more highly correlated. In selecting a
time series ARIMA model we usually take M between 15 and 50 depending on the series length n.
ggacf <- function(z) {
bacf <<- acf(z, plot = FALSE)
bacfdf <<- with(bacf, data.frame(lag=c(lag)[-1], acf=c(acf)[-1]))
ggplot(data = bacfdf, mapping = aes(x = lag, y = acf)) +
geom_hline(aes(yintercept = 0)) +
geom_segment(mapping = aes(xend = lag, yend = 0), size=2) +
geom_hline(aes(yintercept = 1.96/sqrt(length(z))), col="red", size=2) +
geom_hline(aes(yintercept = -1.96/sqrt(length(z))), col="red", size=2)

}
ggacf(ads$Sales)
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Figure 2: SACF for Sales

Asymptotically, if the IID assumption holds
√
nrk → NID(0, 1) for k = 1, . . . ,M . The benchmark 95%

confidence limits are shown in red. This is only an informal check since due to randomness we expect 1 in 20
to exceed the limits.

Next we fit the OLS model using R’s lm() function.
ans <- lm(Sales ~ TV+Radio+Newspaper, data=ads)
RSq <- 1-(sum(resid(ans)^2))/with(ads, sum((Sales - mean(Sales))^2))
out <- xtable(ans, caption="OLS of Sales on Advertising Variables")
print(out, type="latex")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9389 0.3119 9.42 0.0000

TV 0.0458 0.0014 32.81 0.0000
Radio 0.1885 0.0086 21.89 0.0000

Newspaper -0.0010 0.0059 -0.18 0.8599

Table 1: OLS of Sales on Advertising Variables

From Table 1, Newspaper is not significant at 10% so it can be dropped from the model. Refitting the
model does not change the other estimates very much as can be seen from Table 2.
ans <- lm(Sales ~ TV+Radio, data=ads)
RSq <- 1-(sum(resid(ans)^2))/with(ads, sum((Sales - mean(Sales))^2))
out <- xtable(ans, caption="OLS of Sales on TV and Radio")
print(out, type="latex")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9211 0.2945 9.92 0.0000

TV 0.0458 0.0014 32.91 0.0000
Radio 0.1880 0.0080 23.38 0.0000

Table 2: OLS of Sales on TV and Radio

In this model R2 = 90% so the model may be useful provided it passes all diagnostic checks. Since we
are dealing time series data, I recommend using R’s function tsdiag to check the residuals for lack of
independence.
tsdiag(arima(resid(ans)))

The basic time series diagnostic plot in Figure 3 is comprised of three panels:
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Figure 3: Time Series Diagnostic Checks for Residuals in OLS Model
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1. time series plot of residuals
2. SACF plot of the residuals
3. P-value plot of the portmanteau test statistic Qm,m = 1, . . . ,M

In the time series plot we look for any systematic departures from randomness such as trend, seasonality,
clustering and outliers. Volatility clustering is an especially important departure that often arises when long
financial time series of daily returns are used. In the present case, the time series panel merely suggests that
there is one outlier relative to the normal distribution assumption since we see that at $t=131 the value of
the standard residual is -5.3. This is of little account since the sample size n = 200 is quite large and the IID
assumption is not violated by this outlier.

The SACF plot is used to detect if there is strong autocorrelation present. Positive autocorrelation in the
residuals occurs frequently when OLS models are fitted to time series. It is a common cause of spurious or
nonsense correlation in time series regression. The value of the lag-one autocorrelation is of special interest
because we normally expect that if there is correlation it will be largest at lag one. The seond panel does not
indicate any departure from the IID assumption.

The third panel presents another informal diagnostic check for autocorrelation. Under the IID assumption
the portmanteau test statistic Qm,

Qm = n(n+ 2)
m∑

k=1

r2
k

n− k

is approximately χ2 distributed on m degrees of freedom. The plot shows the p-value of this test for
m = 1, . . . ,M , where M may be chosen by the software or specified as an argument to tsdiag().

A further type of major violation of the IID assumption is caused by clustering of volatility. The presence of
such heteroscedasticity may also cause spurious inferences to be made. Most frequently this departure from
IID occurs with long daily financial returns but some researchers have claimed to find this with economic and
environmental data – I am skeptical since some of these claims are simply due model mis-specification and/or
p-value hacking.

It turns out that an efficient all round test for the presence of conditional volatility can be obtained from the
SACF of the squared residuals, êt

2 – see W. K. Li’s book.
tsdiag(arima(resid(ans)^2))

There is no evidence of conditional heteroscedaticity in this dataset. Not surprising since it is artificial data!

The basic regression diagnostic checks and further modeling of this dataset will be discussed in a separate
lecture note.
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Standardized Residuals
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Figure 4: Squared Residuals Diagnostic Check
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Regression with Autocorrelated Error

Often the error term is autocorrelated perhaps even nonstationary so the IID assumption is violated.

Famous Spurious Regression Example

In a paper published in a leading journal the authors claimed that they could predict level of the quarterly
level of the UK stock market based on the UK car production six quarters prior and the index for the
commodities market seven quarters previous. In other words, car production and the commodities market
are leading indicators for stock market with a lags of six and seven quarters respectively. If this relationship
were to continue to hold outside the of training data then one could make a lot of money!

In fact the authors used stepwise regression with a large number of possible variables resulting in an overfit
model. Even more seriously the residuals in their fitted model were positively correlated so the statistical
inference was completely inaccurate for this reason alone.
CGK <- matrix(c(z$UKCars, z$FTICom, z$FTI), ncol=3)
dimnames(CGK)[2] <- list(c("Cars", "FTI Commod.", "FTI"))
CGK <- ts(CGK, start=c(1952, 3), frequency=4)
xyplot(CGK, lwd=2, pch=16, type="o", cex=1, xlab="year")
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Figure 5: UK Stock Market Dataset

cars <- dplyr::lag(z$UKCars, 6)
FTICommod <- dplyr::lag(z$FTICom, 7)
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FTI <- z$FTI
dfCGK <- na.omit(data.frame(cars=cars, FTICommod=FTICommod, FTI=FTI))
ans <- lm(FTI ~ cars + FTICommod, data=dfCGK)
out <- xtable(ans, caption="OLS UK FTI On Lagged (6) Car Production and Lagged (7) FTI Commodities")
print(out, type="latex")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 594.5106 60.6512 9.80 0.0000

cars 0.0005 0.0000 15.10 0.0000
FTICommod -5.5439 0.6727 -8.24 0.0000

Table 3: OLS UK FTI On Lagged (6) Car Production and Lagged (7) FTI Commodities

Examining the time series diagnostics, all three panels in Figure 6 indicates the residuals are not IID. The
time series plot is too smooth. The SACF of the residuals shows a large value at lag one. And the portmaneau
test shows all p-values are less than 5%.
lagOneACF <- c(acf(resid(ans), plot=FALSE, lag.max=1)$acf)[2]
tsdiag(arima(resid(ans)))

The value of the lag one residual autocorrelation is r1 = 0.453. Since n = 62, the approximate sd under the
null hypothesis of IID is about 0.13 so the result is significant at less than 0.1%.
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Standardized Residuals
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Figure 6: Time Series Diagnostic Checks for Residuals in OLS Model For UK FTI
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When strong positive autocorrelation exists in the residuals, the simplest approach is to consider a model
obtained by differencing all the variables in the regression.

In general, this new family of models may be written,

yt = β0 + β1∇xt,1 + . . .+ βp∇xt,p +∇et,

where ∇et is assumed IID ∇ is the first backward differencing operator so ∇xt,k = xt,k − xt−1,k, k = 1, . . . , p.
This model may be fit using lm(). In the fitted model none of the variables are significant at 5%.
dfCGK1 <- as.data.frame.matrix(diff(as.matrix.data.frame(dfCGK)))
ans <- lm(FTI ~ cars + FTICommod, data=dfCGK1)
out <- xtable(ans, caption="OLS with First Differences.")
print(out, type="latex")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7122 2.5469 1.46 0.1511

cars 0.0001 0.0001 1.75 0.0854
FTICommod -0.7857 1.1754 -0.67 0.5069

Table 4: OLS with First Differences.

The time series diagnostic checks do not suggest any model inadequacy.
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More generally we may extend the regression by assuming that et ∼ ARIMA(p, d, q) where ARIMA denotes
the family of ARIMA time series models. The model in the above example corresponds to an {ARIMA}(0,1,0).
Some authors prefer to drop the intercept term when there is differencing. This more general regression with
ARIMA errors may fit using arima().
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Intervention Analysis: Annual Nile Riverflow

stepIntervention <- ifelse(1870:1944 <= 1903, 0, 1)
ans <- lm(nile ~ stepIntervention)
plot(nile, xlab="year", ylab="average flow (cms)", col="blue", lwd=2)
lines(as.vector(time(nile)), fitted(ans), col=rgb(0.5,0.5,0.5, 0.5), lwd=4)
abline(v=1903, col=rgb(1,0,0,0.6), lty=2, lwd=3)
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Figure 7: Average Annual Flow of the Nile River at Aswan, May 1870 to May 1945.

out <- xtable(ans, caption="OLS Fit. Corresponds to t-test.")
print(out, type="latex")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3337.7688 77.0351 43.33 0.0000

stepIntervention -727.1008 104.1903 -6.98 0.0000

Table 5: OLS Fit. Corresponds to t-test.

tsdiag(arima(resid(ans)))

ans <- arima(nile, order=c(1,0,0), xreg=stepIntervention)
stargazer(ans, title="ARIMA Fit", header=FALSE)

tsdiag(ans)
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Standardized Residuals
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Figure 8: Diagnostic tests for OLS Fit
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Table 6: ARIMA Fit

Dependent variable:
nile

ar1 0.468∗∗∗
(0.103)

intercept 3,351.329∗∗∗
(122.198)

stepIntervention −747.302∗∗∗
(162.281)

Observations 75
Log Likelihood −554.422
σ2 153,799.600
Akaike Inf. Crit. 1,116.844

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Dynamic Regression with Autocorrelated Errors

Transfer function and filtering

Consider an output time series {yt} and an input time series {xt} related by a linear filter,

yt = xt +
∞∑

k=1
νkxt−k

.

Such linear filters are widely used in electrical engineering and in dynamic regression in econometric models.
See Wikipedia article.

It is assumed that a bounded input change, replacing {xt} with {xt + ∆} produces a bounded change in the
output signal {yt + ∆y}. This implies that ν1 + ν2 + . . . <∞ and the linear filter {νt} is said to be stable.
The filter gain is given by

g = 1 + ν1 + ν2 + . . . .

The gain g shows the long-run change in output signal given a unit change in input. So a ∆ change in input
produces a change of g∆ in the output.

Intervention Analysis

Regression with ARIMA-GARCH Errors

Appendix A. Durbin-Watson and Related Tests

Appendix B. Quantmod Package. Quantitative Financial Modelling Framework.

14

https://en.wikipedia.org/wiki/Linear_filter

	Time Series Data and Regression
	Models for Time Series Regression
	Ordinary Least Squares (OLS)
	Regression with Autocorrelated Error
	Famous Spurious Regression Example
	Intervention Analysis: Annual Nile Riverflow

	Dynamic Regression with Autocorrelated Errors
	Transfer function and filtering

	Regression with ARIMA-GARCH Errors
	Appendix A. Durbin-Watson and Related Tests
	Appendix B. Quantmod Package. Quantitative Financial Modelling Framework.

