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Abstract

Forest fires are a major environmental issue, creating economical and ecological
damage while dangering human lives. Cortez and Morais (2007) provided data
on 517 forest fires in northeast region of Portugal. Cortez and Morais (2007)
claimed fitted a Support Vector Machine which they claimed outperformed Mul-
tiple Linear Regression for prediction. In particular, Cortez and Morais (2007)
claimed to be able to predict small forest fires based on a Regression Error
Characteristic (REC) Curve. A number of input variables are available includ-
ing spatial, temporal and weather attributes. Cortez and Morais (2007) also
explored the use of other data mining methods including Feed-Forward Neural
Nets and Random Forests. A brief review of these data mining methods is given.
It is of interest to determine which of the inputs are most relevant as well as to
assess the quality of any predictions that can be made. We find a number of
shortcomings in the formulation and analysis by Cortez and Morais (2007). An
improved formulation of the problem is suggested. Logistic and multi-response
logistic regression are also suggested. We will look at Cortez and Morais paper
critically. We perform a Data Mining (DM) approach to predict the burned area
of forest fires. Eight different DM techniques such as Naive, Multiple Regression,
Feed Forward Neural Networks, a skip-layer Neural Networks, Support Vector
Machine, LASSO and Lar, and Random Forest and four distinct feature selec-
tion setups (using spatial, temporal, FWI components and weather attributes)
will be applied on recent real-world data collected from the northeast region of
Portugal. We will also take a different approach as a classification problem to
predict the burned area of forest fires. Logistic Regression and Multiclass logis-
tic regression will be applied to see if they provide improvements on predicting
forest fires data and which input variables are important.



Chapter 1

Introduction

In section 2, the description of the forest fires data will be presented. Exploring
data will be present in section 4.1 and some modifications will be provided on
some data to make improvements and explore which variables are important.

In section 4, all data mining methods and analyses will be presented. Data
Mining methods such as Naive, Multiple Regression, Feed Forward Neural Net-
works, a skip-layer Neural Networks, Support Vector Machine, LASSO and Lar,
and Random Forest and eight distinct feature selection setups are applied on
forest fires data. In Cortez and Morais paper [3], they used 4 features selection
setups but we added 4 more feature selection setups. Some modifications on
spatial and temporal variables are provided. We will compare our results with
the paper. Later, we will compare the results with MAD and RMSE as well
as REC curve and figure out which method performs the best for predicting
forest fires and which input variables are important. Also, Logisistic and Multi-
response Logistic Regression will be applied as a classification problem and see
if they make some improvements.
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Chapter 2

Description of Forest Fire
Data

This problem will consider forest fire data from the Montesinho natural park,
from the Trá-os-Montes Northeast region of Portugal. Satellite-based and in-
frared/smoke scanners have high costs. However, weather conditions, such as
temperature and air humidity, are known to affect fire occurence, automatic
meteorological satations are often available, and such data can be collected in
real-time with low costs. We will present a Data Mining forest fire approach
with emphasis on the use of real-time and non-costly meteorological data to
predict the burned area of forest fires.

The data was collected from January 2000 to December 2003 with a total
of 517 entries. In the dataset, there are 13 attributes that are the spatial and
temporal attributes, four FWI components that are affected directly by the
weather conditions, four meteorological attributes, and the response variable,
the burned area. The data is consist of 12 input variables that are X, Y,
month, day, FFMC, DMC, DC, ISI, temp, RH, wind, and rain and the response
variable that is area.

The first four attributes are the spatial and temporal attributes. The first
two attributes are the X and Y axis values where the fire occured within a 9*9
grid and the third and fourth attributes are the month and day of the week
temporal variables. The next four FWI components are affected directly by the
weather conditions. The forest Fire Weather Index(FWI) [3] is the Canadian
System for rating fire danger and it includes six components. Fine Fuel Moisture
Code (FFMC), Duff Moisture Code (DMC), Drought Code (DC), Initial Spread
Index (ISI), Buildup Index (BUI) and FWI. The first three are related to fuel
codes: the FFMC denotes the moisture content surface litter and influences
ignition and fire spread, while the DMC and DC represent the moisture content
of shallow and deep organic layers, which affect fire intensity. The ISI is a score
that correlates with fire velocity spread, while BUI represents the amount of
available fuel. The FWI index is an indicator of fire intensity and it combines
the two previous components. Different scales are used for each of the FWI
elements, but high values suggest more severe burning conditions. The BUI and
FWI were discarded since they are dependent of the previous values. The next
four weather attributes are used by the FWI system and from the meteorological
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Attributes Description
X x-axis coordinate (from 1 to 9)
Y y-axis coordinate (from 1 to 9)
month Month of the year (January to December)
day Day of the week (Monday to Sunday)
FFMC FFMC code
DMC DMC code
DC DC code
ISI ISI index
temp Outside temperature (in Celsius)
RH Outside relative humidity (in percentage)
wind Outside wind speed (in kilometer per hour)
rain Outside rain (in millimeter per square meter)
area Total burned area (in ha)

station database. In this case the values denote instant records, as given by the
station sensors when the fire was detected. The rain variable represents the
accumulated precipitation within the previous 30 minutes. The area variable
represents the total burned area in hectares (ha). In the dataset, there are 247
samples with a zero value. All entries denote fire occurrences and zero value
means that an area lower than 1ha/100 = 100m2 was burned. The burned area
denoted a positive skew and we applied the logarithm transformation, y = ln(x
+ 1), to reduce the skewness and improve symmetry.

We’d like to examine the impact of the input variables and four distinct
feature selection setups were tested for each DM algorithm. The four feature
selection setups are as follows.

STFWI using spatial, temporal and the four FWI components
STM with the spatial, temporal and four weather variables
FWI using only the four FWI components
M with the four weather conditions

Later, we will make some modificaitons on spatial and temporal variables
and examine four more feature selection setups such as:

SF using spatial and the four FWI components
SM using spatial and four weather variables
SFM using spatial, the four FWI compoents, and four weather variables
S using spatial variables only
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Chapter 3

Standardization and Error
Criteria

Before performing analyses and fitting the models, some preprocessing was re-
quired. All attributes except the response variable were standardized to a zero
mean and one standard deviation. After fitting the models, the overall perfor-
mace is computed using the Mean Absolute Deviation (MAD) and Root Mean
Squared (RMSE) below.

MAD = 1/N ∗
N∑
i=1

|yi − ŷi|

RMSE =

√√√√ N∑
i=1

(yi − ŷi)2/N
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Chapter 4

Analysis

In this chapter, first we will perform some exploratory analysis on input variables
and make some improvments on some input variables. Then, the Data Mining
methods and their analyses will be provided. We will predict the forest fires
using all Data Mining methods, provide the overall performace by using MAD
and RMSE criteria and the REC curves, and later compare all the DM methods.

4.1 Exploratory Analysis

We will perform exploratory analysis on input attributes for forest fires data.
We perform explanatory analysis to see how important the input variables

are. We solve this using regression. We use F test using anova function in R.
First, we analyze spatial variables of X and Y and see if they are important for
predicting ’lburned’. We standardized X and Y coordinates and fitted a F test.

From Table 4.1, X and Y are not significant and the R squared is 0.39%.
The linear predictors X and Y used by Cortez and Morais are not useful and
the result is shown in Table 4.2.

To make an improvements on the spaital variables of X and Y, we tried and
performed the F test for ’xyarea’ factor variable for the spatial variables. The
’xyarea” variable is a factor variable which indicates each area on the grid. The
result of the F test on the ’xyarea’ factor variable is shoWn in table 4.2. The
factor variables are statistically significant at 1.13% We also tried F test using
interaction and the interaction was not important. So an additive model works.

Also, we tried to use additive regression splines to make an improvement on
the spatial variables. We suggest to use additive regression splines on spatial
variables X and Y. We make 7 splines for each spatial variables X and Y and test
the splines for each spatial variables X and Y. The result is shown in Table 4.2.
We make additive spline basis using ns function in splines package in R. We
standardized all splines and fitted the F test. The last column which is Y7
is redundant, so it is removed and refitted the F test. The result is shown in
Table 4.3.

Using splines for spatial variable is highly significant at 0.7% in Table 4.3
The R squared is 6.73%, it has a little predictive power. The factors have a
higher R squared which is 10.79% than the splines but they have a lower p-
value. Using the factors don’t make a real difference with using the splines. So,
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we suggest to use additive regression splines.

Df Sum Sq Mean Sq F value Pr(>F)
firesXY 2 3.92 1.96 1.00 0.3678
Residuals 514 1005.18 1.96

Table 4.1: Results of X and Y coordinates

Df Sum Sq Mean Sq F value Pr(>F)
firesFactor 35 108.93 3.11 1.66 0.0113
Residuals 481 900.17 1.87

Table 4.2: Results of X and Y factor variables

Df Sum Sq Mean Sq F value Pr(>F)
firesS 13 67.86 5.22 2.79 0.0007
Residuals 503 941.24 1.87

Table 4.3: Results of X and Y splines

For more datails, we would like to visualize if there is a regional variation in
the fires and see how best the regional variation can be modelled. We want to
explore if the number of fires are dependent on X and Y.

In figure 4.1, X and Y coordinates against the number of fires are plotted
and the number of fires are not dependent on X and Y. RGB color is encoded
for quartile information. Black is (lowest) for observations less than or equal to
the first quartile. Red (lowest frequency), Green and Blue (highest frequency)
are corresponding the next quartiles.

We also performed F test on X and Y factors vs. the number of fires and
the result is in table 4.4. They are not significant at all.

Also, X and Y against the median of the ’lburned’ for each region are plotted
in Figure 4.2. Median ’lburned’ depends on X and Y. That means that low X,
Y tends to have low ’lburned’. So, there is obvious dependence of X and Y
on area for ’lburned’. We also performed the F test on X and Y factors vs.
the the median of the ’lburned’ and the result is shown in table 4.5. They are
statistically significant now.

Also, X and Y is plotted against the mean of ’lburned’ for each region in
Figure 4.3. Mean ’lburned’ depends on X and Y. That means that low X, Y
tends to have low ’lburned’. We also performed the F test on X and Y factors
vs. the mean of the ’lburned’ and the result is shown in table 4.5. They are
statistically significant now.
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Df Sum Sq Mean Sq F value Pr(>F)
X 8 1145.51 143.19 0.55 0.8049
Y 6 1427.30 237.88 0.92 0.5031
Residuals 21 5455.50 259.79

Table 4.4: The result of the number of fires.

Df Sum Sq Mean Sq F value Pr(>F)
X 8 13.25 1.66 2.30 0.0603
Y 6 22.15 3.69 5.13 0.0022
Residuals 21 15.12 0.72

Table 4.5: The result of median lburned.

We also plotted X and Y against the SD of ’lburned’ for each region and SD
’lburned’ depends on X but not on Y. Thus, there is an obvious dependence of
X and Y on the response variable ’lburned’ and there is a regional variation in
the fires.

However, the X and Y coordinates are not significant as it is shown in ta-
ble 4.1. So, we suggest to use tensor splines rather than using simple linearlity
of X and Y values. We tried and performed F test for the 7 splines of the spatial
variables earlier in the previous table 4.3 and they are statistically significant
at 0.07%. Therefore, the 7 splines for spatial variables X and Y are important
for impacting the ’lburned’ of the forest fires. So, the regional variation can be
modelled by the 7 splines of X and Y.

Df Sum Sq Mean Sq F value Pr(>F)
X 8 10.62 1.33 2.33 0.0577
Y 6 17.02 2.84 4.98 0.0026
Residuals 21 11.97 0.57

Table 4.6: The result of mean lburned.

Next, we perform exploratory analysis for temporal variables. We first ana-
lyze the temporal variables of month and day. We performed the F test using
month and day categorical variable in in Table 4.9 and the temporal variables
are not significant. So, we tried to use sinusoids for temporal variables of month
and day. We performed F test for twi sinusoids for each temporal variables using
anova and the result is shown in Table 4.7. They are not statistically significant.
In Table 4.8, we used only month sinusoids and performed the F test. Using
month sinusoids only provided better p-value than using both month and day
sinusoids. Using month sinusoids was significant almost at 5%. The R squared
were 1.15% and 1.05%.

For using month and categorical variables, the R-squared was 4.36 %, it was
better than sinusoids but it didn’t make a real difference. In our analysis in
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Df Sum Sq Mean Sq F value Pr(>F)
firesT 4 11.56 2.89 1.48 0.2058
Residuals 512 997.54 1.95

Table 4.7: The result of sinusoids

Df Sum Sq Mean Sq F value Pr(>F)
firesTmonth 2 10.62 5.31 2.73 0.0659
Residuals 514 998.48 1.94

Table 4.8: The result of sinusoids just for month

section 4, we are going to use temporal variables for sinusoids for each month
and day instead of categorical varables, since the cross validation may fail when
using the categorical variables.

Next, we perform exploratory analysis for four FWI components (Fires) and
four weather variables. In Table 4.10, it shows the exploratory analysis for four
Fire variables (four FWI components). In Table 4.1, it shows the exploratory
analysis for four weather variables. They were not statistically significant as
shown in the tables and the R-squared were low as 0.8% and 1.04%.

Now we look at other groups of variables considered in Cortez and Morais
For the feature selection setup STFWI (X and Y coordinates for spatial, month
and day categorical variables for temporal, and four FWI components), only
month12 and DMC variables are important. The overall p-value is 0.1042 and
they were not statistically significant. For the feature selection setup STM (X
and Y coordinates for spatial, month and day categorical variables for temporal,
and four weather variables), only month12 and temp variables are important
and the overall p-value was 0.08863. They were not statistically significant,
either. However, we replaced the spatial varialbes with the splines, fitted the
regression and the overall p-value was improved to p=0.0003547 for STFWI and
p=0.0004487 for STM. They are now statistically significant when comparing
to the variables used in Cortez and Morais. The splines for spatial variables
X and Y improved the models hugely. STFWI and STM became statistically
significant by using the modified models of STFWI and STM. The modified
models using the improved formulation on spatial variables of X and Y for the
feature selection setups STFWI and STM are improved than the models in the
Cortez and Morais paper.
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Df Sum Sq Mean Sq F value Pr(>F)
month 11 37.37 3.40 1.76 0.0589
day 6 6.65 1.11 0.57 0.7520
Residuals 499 965.09 1.93

Table 4.9: The result of month and day categorical variables

Df Sum Sq Mean Sq F value Pr(>F)
firesF 4 8.12 2.03 1.04 0.3869
Residuals 512 1000.98 1.96

Table 4.10: The result of four FWI components

4.2 Multiple Linear Regression

First, We fit a Multiple Linear Regression on forest fires data. Multiple Linear
Regression (MR) was applied on each feature selection setup, STFWI, STM,
FWI, M, SF, SM, SFM, and S and predicted the ’lburned’ (log transformed)
area of forest fires. All attributes except the response variable were standardized
to a zero mean and one standard deviation.

For the input variables, we used the splines that we obained previously in
section 4.1 instead of X and Y coordinates for spatial variables and sinusoids
instead of the categorical variables for temporal variables. We have applied a
10-fold cross validation with 30 replications to each configuration to access the
predictive performances. The cross validation may fail when using categorical
variables, so that’s why we used formulation with days and weeks as sinusoids.
This seems preferable to alternative of just deleting.

The Multiple Linear regression models were fitted using lm function in R.
The MR parameters were optimized using a least squares algorithm. Multiple
Linear Regression (MR) was applied on each feature selection setup using 10-
fold cross validation. Then the overall performace was computed using the Mean
Absolute Deviation (MAD) and Root Mean Squared (RMSE).

We will compare the error criterion for each data mining method and feature
selection setups using the log transformed ’burned’ variable (ie. log(x+1)).
The MAD and RMSE for Multiple Linear Regression models are provided in
Table 4.11.

The MR with S produced the lowest error for RMSE which is the best DM
method for RMSE. S is the feature selection setup that contains the seven splines
for spatial variables X and Y. We explored that all S variables are statistically
significant in section 4.1 earlier. These input variables are important for predict-
ing forest fires. For MAD, the MR with STF provided the lowest error among
all multiple linear regression methods and this is the second best data mining
method for MAD. All MR methods contain S variables perform better than the
feature selection setups F and M which do not contain the splines variables. All
MR methods except the feature selection setups F and M provided better MAD
errors than all other DM methods except all SVM feature selection setups. Us-
ing the modifications on spatial variables, S, provided improvements on mulitple
linear regression model.
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Df Sum Sq Mean Sq F value Pr(>F)
firesM 4 10.50 2.62 1.35 0.2519
Residuals 512 998.61 1.95

LM.MAD LM.RMSE
STF 1.13291 1.39078
STM 1.13759 1.41969

SF 1.13608 1.39322
SM 1.14265 1.42473

SFM 1.14240 1.43302
S 1.13338 1.38741
F 1.16011 1.40264
M 1.17472 1.44003

Table 4.11: MAD and RMSE for Multiple Linear Regression

The summary result of MR with S that we obtained after running a 10-fold
cross validation is shown in Table 4.12 and the result of MR with STF is shown
in Table 4.13. The both linear regression models are statistically siginificant.
The overall p-value for S was 0.0015 and the overall p-value for STF is 0.00065.
The p-value of the MR with STF was a little less than the MR with S. We’ll later
compare both of the MR models for the REC curves with other DM models in
secton 4.8. We will compare the MR model with other Data Mining methods.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0899 0.0632 17.24 0.0000

X1 -0.3450 0.0872 -3.95 0.0001
X2 0.1740 0.0975 1.78 0.0750
X3 -0.2204 0.0933 -2.36 0.0186
X4 0.1414 0.1067 1.33 0.1858
X5 -0.3090 0.1029 -3.00 0.0028
X6 0.0851 0.1048 0.81 0.4174
X7 0.1853 0.0961 1.93 0.0545
Y1 0.7278 0.2928 2.49 0.0133
Y2 0.3254 0.1381 2.36 0.0189
Y3 3.7520 1.0316 3.64 0.0003
Y4 -4.2569 1.2269 -3.47 0.0006
Y5 2.7842 0.6987 3.99 0.0001
Y6 0.4134 0.3250 1.27 0.2040

Table 4.12: The results of MR with S

4.3 Neural Networks

Next, we fitted Neural Netsworks on forest fires data. The same preprocessing
was used as the previous method (MR) such as using indicator variables and
standardization. The neural network is fitted using the nnet function in library
nnet in R. We will fit the feed-forward neural networks in which inputs are
connected to one or more nodes in the input layer, and these nodes are connected
forward to further layers until they reach the output layer. The input nodes are
used to represent the input attributes and an ouput node is used to represent the
model output. The input nodes are connected forward to each and every node
in the hidden layer, and these hidden nodes are conneted to the single node in
the output layer. We will consider multilayer perceptrons with one hidden layer
of H hidden nodes and logistic activation functions and one output node with a
linear function. The jth node of the hidden layer of the feed-forwad network [6]
is

hj = fj(α0j +
∑
i−>j

wijxi)

where xi is the value of the ith input node, fj(.) is an activation function which
is logistic function in here fj(z) = exp(z)/1 + exp(z). α0j is called the bias, the
summation i->j means summing over all input nodes feedting to j, and wij are
the weights.

For the output layer, the node is defined as

o = fo(α0o +
∑
j−>o

wjohj),

where the activation function fo(.) is either linear or a Heaviside function.
If the output activation function is linear, then the output of a feed-forward

neural network (FFNN) can be written as

o = α0o +
k∑
j=1

wjohj ,
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0914 0.0627 17.41 0.0000

X1 -0.3297 0.0879 -3.75 0.0002
X2 0.1906 0.0981 1.94 0.0528
X3 -0.2116 0.0934 -2.27 0.0239
X4 0.1904 0.1078 1.77 0.0780
X5 -0.3298 0.1030 -3.20 0.0015
X6 0.1340 0.1049 1.28 0.2019
X7 0.2574 0.0977 2.63 0.0087
Y1 0.8220 0.2932 2.80 0.0053
Y2 0.2996 0.1383 2.17 0.0309
Y3 3.8789 1.0273 3.78 0.0002
Y4 -4.4127 1.2220 -3.61 0.0003
Y5 2.8693 0.6960 4.12 0.0000
Y6 0.3214 0.3249 0.99 0.3232

month1 0.2817 0.0852 3.31 0.0010
month2 -0.4779 0.2600 -1.84 0.0668

day1 -0.0945 0.0646 -1.46 0.1444
day2 -0.0262 0.0641 -0.41 0.6832

FFMC 0.1263 0.0771 1.64 0.1020
DMC 0.1844 0.1098 1.68 0.0937

DC -0.4929 0.2887 -1.71 0.0884
ISI -0.0478 0.0784 -0.61 0.5419

Table 4.13: The results of MR with STF

Hidden Nodes STFWI STM FWI M SF SM SFM S
NN 4 6 4 4

NN which we obtained 2 2 2 2 2 2 2 2

If the output activation function is linear, then the output of a skip-layer
feed-forward neural network can be written as

o = α0o +
l∑
i=1

αioxi +
k∑
j=1

wjohj ,

where the first summation is summing over the input nodes, l is the number
of input nodes, k is the number of nodes in the hidden layer and hj is given
above. The second equation allows the direct connections from the input layer
to the output layer which is referred as a skip-layer feed-forward network.

The NN performance will depend on the value of H. The best hidden nodes
for each feature selection setups are as above. A internal 10-fold grid search was
used to find the best H. After selecting the H value, the NN model was retrained
with all training data.

Using the best hidden node, the Neural Net model is fitted for each feature
selection setups with all training data in R. E = 100 epochs is used.

We fitted both FFNN and a skip-layer FFNN for each feature selection setups
using 10-fold cross validation. The thirty runs of a 10-fold cross validation (in
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a total of 300 simulations) were applied to each tested configuration.
For the feature selection, STFWI, we obtained a 21-2-1 network with 47

weights for NN and with 68 weights for a skip-layer NN. For STM, we obtained
a 21-2-1 network with 47 weights for NN and with 68 weights for a skip-layer
NN. For FWI, a 4-2-1 network is obtained with 13 weights for NN and with 17
weights for a skip-layer NN. For M, a 4-2-1 network is obtained with 13 weights
for NN and with 17 weights for a skip-layer NN. We obtained the estimates of
their biases and weights using BFGS algorithm using nnet function in R.

After a feed forward neural network is built, it is used to predict the lburned
area of forest fires for each feature selection setups. Then the MAD and RMSE
are computed in Table 4.14 and Table 4.15.

The NN with S provided the lowest error among all NN methods for MAD.
A skip-layer NN with S provided lower error than NN with S for MAD. These
input variables, the splines for spatial variabes, are important for predicting
forest fires. Also, the NN with M provided the lowest error among all NN
methods for RMSE. For S, a 13-2-1 network is obtained with 31 weights for NN
and with 44 weights for a skip-layer NN.

NN.MAD NN.RMSE
STF 1.19010 1.51819
STM 1.20304 1.52553

SF 1.18761 1.48875
SM 1.18012 1.47415

SFM 1.20802 1.55030
S 1.15458 1.43172
F 1.17589 1.43711
M 1.15935 1.41969

Table 4.14: MAD and RMSE for NN

NNSkip.MAD NNSkip.RMSE
STF 1.23189 1.55715
STM 1.23178 1.59109

SF 1.19442 1.51205
SM 1.20097 1.55867

SFM 1.22612 1.58248
S 1.15499 1.44155
F 1.17411 1.43631
M 1.16536 1.51309

Table 4.15: MAD and RMSE for a skip layer NN

4.4 Support Vector Machine

Next, we fit a Support Vector Machine for each feature selection setups for
forest fires data. We fit the Support Vector Machine (SVM) using svm function
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in e1071 library in R. This library uses LIBSVM version 2.88. We used the same
input variables as they are used in the previous data mining methods.

In SVM regression, the input x ∈RA is transformed into a high m-dimensional
feature space, by using a nonlinear mapping. Then, the SVM finds the best lin-
ear seperating hyperplane in the feature space: [4] [3]

ŷ = b+
m∑
i=1

wiφi(x)

where φi(x) represents a nonlinear transformation, according to the kernel func-

tion K(x, x′) =
m∑
i=1

φi(x)φi(x′). We used the popular Radial Basis Function ker-

nel, which presents less hyperparameters and numerical difficulties than other
kernels (e.g. polynomial or sigmoid), K(x, x′) = exp(−γ||x − x′||2), γ > 0. To
estimate the best SVM, the ε-insensitive loss function is used.

Given a training set of instance-label pairs (xi, yi), i=1, ..., l, the SVM
regression require the solution of the following optimization problem. [2] SVM
regression performs linear regression in the high-dimension feature space using
ε-insensitive loss and, at the same time, tries to reduce model complexity by
minimizing wTw. This can be described by introducing (non-negative) slack
variables, to measure the deviation of training samples outside ε-insensitive
zone.

Thus SVM regression is formulated as minimization of the following.

min (1/2)wTw + C
l∑
i=1

(ξi + ξ∗i )

subject to wTφ(xi) + b− yi ≤ ε+ ξi,

yi − wTφ(xi)− b ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, ..., l.

This optimization problem can transformed into the dual problem, the dual
problem can be solved numerically using quadratic programming techniques,

and its solution is given by f(x) =
nsv∑
i=1

(αi−α∗i )K(xi, x)+ b s.t. 0 ≤ α∗i ≤ C, 0 ≤

αi ≤ C, and nsv is the number of support vectors.
The SVM performance is fitted and affected by three parameters, C which is

a trade-off between the model complexity and the amount up to which deviations
larger than ε are tolerated, ε which is the width of the ε-insensitive zone, and
γ which is the parameter of the kernel. C=3 and ε = 3σ̂

√
ln(N)/N are used

as heuristics proposed in Cortez and Morias [3] citeCM, where where σ̂ is the
standard deviation as predicted by 3-nearest neighbour algorithm.

The SVM is fitted using three parameters, C, ε, and γ and using the Se-
quential Minimal Optimization algorithm.

The thirty runs of a 10-fold (in a total of 300 simulations) were applied to
each feature setups in order to find the best γ ∈ {2−9, 2−7, 2−5, 2−3, 2−1} and
the selected γ are shown in table below. In the table, the first row presents the
γ obtained from the paper [3] and the second row are the γ we have obtained
from our analysis. We obtained a little different best gamma parameters for
each feature selection setups comparing to the paper. [3]
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γ STFWI STM FWI M SF SM SFM S
SVM 2−5 2−3 2−3 2−3

SVM 2−5 2−7 2−9 2−5 2−9 2−5 2−5 2−5

Then, we applied thirty runs of a 10-fold cross validation for SVM for each
feature selections using those parameters, predicted the ’lburned’, and computed
the overall performace by using MAD and RMSE.

The MAD and RMSE for SVM are shown in Table 4.16. The SVM with
STM provided the lowest error for MAD and it is the best DM model for MAD.
For MAD, all feature selection setups for SVM performed well on predictions.
They provided the lowest errors among all other DM methods for MAD. The
paper also claimed SVM is the best method and SVM with M provided the best
error for MAD. We obtained SVM with STM provided the best error for MAD
and SVM with STM provided slightly better MAD than SVM with M.

The SVM with STM provided the lowest error among all SVM methods
for RMSE as well, but SVM-STM for RMSE was not very good. The improved
spatial variables also improved the SVM model. Later, we will plot and compare
the REC curves for the SVM-STM and the SVM-M to see which performs better.

SVM.MAD SVM.RMSE
STF 1.12070 1.47097
STM 1.07333 1.43228

SF 1.09962 1.49069
SM 1.09683 1.44680

SFM 1.11203 1.45390
S 1.12201 1.46422
F 1.10041 1.50999
M 1.07506 1.45794

Table 4.16: MAD and RMSE for all SVM

4.5 Random Forest

We fit a Random Forest on each feature selection setups for forest fires data.
The RF is an ensemble of T unpruned Decision Tree, using random fea-

ture selection from bootstrap training samples. The RF predictor is built by
averaging the outputs of the T trees. In general, RF exhibits a substantial im-
provement over a single Decision Tree. Here is the algorithm for Random Forest
below. [5]

Algorithm: Random Forest for Regression or Classification.

1. For b = 1 to B:
(a) Draw a bootstrap sample Z∗ of size N from the training data.
(b) Grow a random-forest tree Tb to the bootstrapped data, by re- cursively
repeating the following steps for each terminal node of the tree, until the mini-
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mum node size nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees TbB1

To make a prediction at a new point x:

Regression: f̂Brf (x) = 1/B
B∑
b=1

Tb(x).

Classification: Let Ĉb(x) be the class prediction of the bth random-forest tree.

Then ĈBrf (x) = majority vote Ĉb(x)
B

1 .

We used Random Forest using rpart in R. The default parameters were
adopted for the Random Forest. Thirty runs of a 10-fold cross validation were
applied to eahch tested configuration, predicted the ’lburned’, and then the
overall performance is computed using MAD and RMSE. The results of the
errors are shown in table 4.17.

The RF with S provided the lowest error among all RF method for both MAD
and RMSE. For RMSE, RF performed well on predictions. They predicted the
second best among all RMSE. The paper metioned that the RF with M provided
the second best DM method for MAD. However, the MR with STF provided the
second best DM method for MAD since the modifications on spatial variables
improved the model. The RF with S provided better MAD than RF with M.
Also, for RMSE, RF with S provided better RMSE than RF with F, which is
the lowest error among all RF in the paper [3]. Therefore, the S (splines for
spatial variables) made improvements on MAD and RMSE for Random Forest.

RF.MAD RF.RMSE
STF 1.18223 1.47842
STM 1.18341 1.48241

SF 1.19472 1.48204
SM 1.16324 1.45164

SFM 1.19352 1.52483
S 1.14457 1.38867
F 1.18916 1.45412
M 1.16569 1.44305

Table 4.17: MAD and RMSE for all RF

4.6 LASSO and LAR

We also applied LASSO and LAR for each feature selection setups for forest
fires data.

The Lasso is a shrinkage and selection method for linear regression. In Lasso
Regression, given training data (x1, y1, ..., (xN , yN ), the lasso estimate is defined
by
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β̂lasso = argminβ

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2

subject to
p∑
j=1

|βj | ≤ t.

We can re-parametrize the constant β0 by standardizing the predictors; the
solution for β̂0 is ȳ, and thereafter we fit a model without an intercept.

We can also write the lasso problem in the equivalent Lagrangian form

β̂lasso = argminβ{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

|βj |}

Therefore, the main difference between Lasso and Ridge is that Lasso mea-

sures shrinkage by
p∑
j=1

|βj | while ridge uses
p∑
j=1

β2
j . For Lasso, this has the inter-

esting and desirable effect of setting coefficients to zero. The latter constraint
makes the solutions nonlinear in the yi and there is no closed form expression as
in ridge regression. Computing the lasso solution is a quadratic programming
problem, although we see that efficient algorithms are available for computing
the entire path of solutions as λ is varied. t should be adaptively chosen to
minimize an estimate of expected prediction error.

Least angle regression (LAR) is intimately connected with the lasso, and
in fact provides an extremely efficient algorithm for computing the entire lasso
path.

Here is an algorithm that provides the details for LAR. [5]

1. Standardize the predictors to have mean zero and unit norm. Start with
the residual r = y − ŷ, β1, β2, ..., βp = 0.
2. Find the preictor xj most correlated with r.
3. Move βj from 0 towards its least-squares coefficient < xj , r >, until some
other competitor xk has as much correlation with the current residual as does
xj .
4. Move βjandβk in the direction defined by their joint least squares coefficient
of the current residual on < xj ,xk >, until some other competitor xl has as
much correlation with the current residual.
5. Continue in this way until all p predictors have been entered. After min(N-
1,p) steps, we arrive at the full least-squares solution.

In step 5, if p > N-1, the LAR algorithm reaches a zero residual solution
after N-1 steps (the -1 is because we have centered the data).

For LASSO, there is a simple modification of the LAR algorithm that gives
the entire lasso path, which is also piecewise-linear.

LAR: Lasso Modification.
4a. If a non-zero coefficient hits zero, drop its variable from the active set of
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variables and recompute the current joint least squares direction.

This is why the LAR algorithm and lasso start to differ when an active co-
efficient passes through zero.

LASSO and LAR are fitted using lars function in package lars in R. We use
10-fold cross validation with 30 replications for each LASSO and Lar for each
configuration of forest fires data. Then we forcasted ’lburned’ using LASSO and
LAR, then MAD and RMSE for each configuration are computed and compared
in table 4.18 and 4.19. The coefficients we obtained from LASSO with STF using
10-fold cross validation is shown in the table below.

The MAD and RMSE for LASSO and LAR are shown in table 4.18 and 4.19.
LASSO and LAR provided similar errors but all LASSO except F and M are
better than LAR for MAD. The LASSO and LAR with the feature selection
setups F and M are the same. For MAD, the feature selection setups which
contain S are better than the ones which do not contain S which are F and M.
The LASSO and LAR with STF provided the lowest error among all LASSO and
LAR for MAD. The LASSO and LAR with F provided the lowest error among
all LASSO and LAR for RMSE. The LASSO with STF provided the third best
DM methods for MAD. (The LM wit STF was the second best DM methods
for MAD.) The splines for the spatial variables also improved the LASSO and
LAR models.

In section 4.8, we will compare LASSO with STF with other methods for
REC curves.

LASSO.MAD LASSO.RMSE
STF 1.14354 1.40825
STM 1.14743 1.43451

SF 1.14640 1.40702
SM 1.15303 1.43947

SFM 1.15376 1.44799
S 1.14435 1.40304
F 1.16148 1.40262
M 1.16555 1.41062

Table 4.18: MAD and RMSE for LASSO

LAR.MAD LAR.RMSE
STF 1.14409 1.40668
STM 1.15039 1.43276

SF 1.15010 1.40760
SM 1.15663 1.43576

SFM 1.15681 1.44463
S 1.14791 1.40345
F 1.16148 1.40262
M 1.16555 1.41062

Table 4.19: MAD and RMSE for LAR
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X1 X2 X3 X4 X5 X6 X7 Y1 Y2 Y3 Y4
LASSOcoef -0.24 0.14 -0.19 0.17 -0.26 0.14 0.31 0.78 0.19 2.61 -3.01

Y5 Y6 month1 month2 day1 day2 FFMC DMC DC ISI
LASSOcoef 2.00 0.00 0.31 -0.27 -0.02 -0.04 0.14 0.23 -0.36 -0.03

Table 4.20: The coefficients of LASSO with STF

4.7 Summary of Results

We have computed MAD and RMSE errors for all methods that are Naive,
LASSO, Lar, NN, a skip-layer NN, SVM, and RF in Table 4.21 and 4.22. The
naive average predictor was also added in the first column of the table. The naive
predictor was computed by averaging the response variable area, applied thirty
runs of 10-fold cross validation for each feature selection setups, and then MAD
and RMSE are computed. We have compared log transformed data because it
is more reliable and accurate to make the comparisons using the transformed
data (ie. log(x+1)). We have found that the SVM with the feature selection
STM provided the lowest error for MAD. For MAD, the SVM methods with all
feature selection setups provided the smallest errors than other methods. The
MAD for all SVM provided less errors than all other methods. Thus, SVM is
the best method for MAD. In the Cortez and Morais paper, they also claimed
that SVM is the best method for MAD, but they claimed that SVM with M
(four weather variables) was the best for MAD. However, we have found that
the SVM with STM (splines for spatial, sinusoids for temporal and four weather
variables) was best for MAD and it provided a little less MAD than SVM with
M. So, the modified STM made the improvement on the model. The Linear
Multiple Regression (MR) with STF feature selection was the second best data
mining method among all other DM methods for MAD. STF contains splines
for spatial, sinusoids for temporal and four FWI variables. The LASSO with
STF was the third best DM method for MAD. Thus, the modifications we made
on variables improved the model. In paper, they claimed that the second best
DM model for MAD was Random Forest with M feature selection. But the
Random Forest with S was found to be the fourth best DM method for MAD.
The MAD of the RF with S was less than the RF with M. So, the splines for
spatial variables are important as it was already seen in the previous sections.

For RMSE, we have found that the LM with the feature selection S provided
the lowest error and it was the best method for RMSE. S contains the splines
for spatial variables. Random Forest with S provided the second best RMSE as
well as the second best DM method for RMSE and the LM with STF and LM
with SF are the third and forth best RMSE. Among data mining methods, the
third best DM method for RSME was Naive (with SM). All the RMSE for Naive
method are simliar for all feature selections, but not same because we applied
a 10-fold cross validation and averaged the response variable ’lburend’. (Since
Naive-SM provided the best for RMSE among all Naive, we’ll plot this with
other methods in REC curve.) Then, the fourth and fifth DM method was Lar
and LASSO with F and S. The results are in Table 4.22. Therefore, S improved
models a lot. In paper [3], they claimed that the Naive method was the best for
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RMSE and the RF with F was the second best DM method. S improved the
model a lot especially for linear regression. The Random Forest with S provided
the lower RMSE (which is better) than RF with F. So, S improved RF model
as well.

For Neural Networks, it didn’t perform well compare to other DM methods
for MAD and RMSE.

Naive LASSO LAR LM SVM NN NNSkip RF
STF 1.15997 1.14354 1.14409 1.13291 1.12070 1.19010 1.23189 1.18223
STM 1.15939 1.14743 1.15039 1.13759 1.07333 1.20304 1.23178 1.18341

SF 1.15974 1.14640 1.15010 1.13608 1.09962 1.18761 1.19442 1.19472
SM 1.15934 1.15303 1.15663 1.14265 1.09683 1.18012 1.20097 1.16324

SFM 1.15960 1.15376 1.15681 1.14240 1.11203 1.20802 1.22612 1.19352
S 1.15970 1.14435 1.14791 1.13338 1.12201 1.15458 1.15499 1.14457
F 1.15959 1.16148 1.16148 1.16011 1.10041 1.17589 1.17411 1.18916
M 1.15949 1.16555 1.16555 1.17472 1.07506 1.15935 1.16536 1.16569

Table 4.21: MAD for all methods

Naive LASSO LAR LM SVM NN NNSkip RF
STF 1.40039 1.40825 1.40668 1.39078 1.47097 1.51819 1.55715 1.47842
STM 1.39975 1.43451 1.43276 1.41969 1.43228 1.52553 1.59109 1.48241

SF 1.40007 1.40702 1.40760 1.39322 1.49069 1.48875 1.51205 1.48204
SM 1.39966 1.43947 1.43576 1.42473 1.44680 1.47415 1.55867 1.45164

SFM 1.39984 1.44799 1.44463 1.43302 1.45390 1.55030 1.58248 1.52483
S 1.40000 1.40304 1.40345 1.38741 1.46422 1.43172 1.44155 1.38867
F 1.39994 1.40262 1.40262 1.40264 1.50999 1.43711 1.43631 1.45412
M 1.39979 1.41062 1.41062 1.44003 1.45794 1.41969 1.51309 1.44305

Table 4.22: RMSE for all methods

For a more detailed analysis to the quality of the predictive errors, the REC
curve is provided in the next section.

The REC curve of SVM, LM, RF, Naive, and LASSO will be plotted and
compared.

4.8 Regression Error Characteristic (REC) Curve

REC curves were introduced in ML (Bi and Bennett, 2003) [1] to compare the
predictive ability of regression models. This method was used by Cortez and
Morais (2007) [3] to compute predictions from multiple linear regression with RF
and SVM models. On the basis of the REC curves, Cortez and A. Morais (2007)
claimed that the SVM model forecast better than multiple linear regression for
small fires.

Let ei, i=1, ..., n be the residuals in a fitted regression model with n obser-
vations. For the plot we use either the absolute residual, εi=|ei| or the squared
residuals εi=e2i . The εi are referred to briefly as errors and we assume that they
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have been sorted in ascending order, ε1 ≤ ... ≤ εn. Then we define the accuracy,

a(ε) = i/n,

where i is the smallest value such that εi ≤ ε. Then a(ε) is a step function and
it is equivalent to the empirical cumulative distribution function for εi, i=1, ...,
n.

In most situations, especially with continuous variables, the εi are all distinct.
In this case the distinct values for the accuaracy are simply a(εi)=i/n, i=1, ...,
n. In the case where there are ties, an adjustment is needed. For example, if we
write ε=ε1, ..., εn and ε={1, 2, 2, 4, 5} then a(ε)={1/5, 3/5, 3/5, 4/5, 1}.

For a postive random variable, it may be shown that its expectation is the
area under its cumulative distribution funciton. Hence the area over the curve
(AOC) indicates the average model error. When ε is the squared residual, AOC
indicates the residual variance.

When ε represents squared error,

R2 .= (AOCNULL −AOCMODEL)/AOCNULL

where R2 is the coefficient of determination. The REC curve is used to com-
pare the predictive ability of fitted models. To set a benchmark we may consider
the null model which is simply a constant. This means there is no dependence
of the inputs. In this case the sample mean or median of the inputs may be
used and the corresponding model errors computed.

Here is our plot of REC curve for the DM models in figure 4.4. We will plot
the REC curve of SVM-STM, SVM-M, LM-STF, LASSO-STF, LM-S, RF-S,
Naive-SM. The SVM-STM is the best method for MAD, LM-STF is the second
best DM method for MAD, LM-S is the best method for RMSE, and RF-S is
the second best RMSE. LASSO-STF is the third best DM method for MAD
and Naive (-SM) is the third best DM method for RMSE. The Naive method
is a null model in here. They are plotted in different colors. The REC curve
of SVM-STM is plotted in black, SVM-M is in grey, LM-S is in red, RF-S is in
green, LM-STF is in pink, LASSO-STF is in light blue, and Naive-SM is in blue.
SVM-M is the second best method for MAD and we will include this curve in
figure 4.4 to compare with the result in the paper [3], since they claimed that
the SVM-M is the best DM method for predicting forest fires.

From figure 4.4, the SVM-STM (black) and LM-STF (pink) predicted the
’lburned’ of the forest fires well. The SVM with STM (black) and SVM with
M (grey) produced the similar REC curves. The SVM-STM was a little above
the SVM-M but they are almost the same. SVM is surpassing LM-S if absolute
error between 0 and 1.4 allowed. LM-S is surpassing the SVM after absolute
error of 1.5 is allowed. LM-STF is surpassing the SVM after absolute error
of 1.6 is allowed. Regarding the native predictor, it is the worst method. It
predicted the lowest percentage of examples, which is 29% of the examples (log
transformed), if an error of 1 is accepted. It was surpassing SVM after absolute
error of about 1.3.

The SVM with STM and the SVM with M were the best if absolute error of
about 1 is allowed and the LM with S and STF performed best after absolute
error of about 2 is allowed. However, LM with STF was better than LM with S
for REC curves. The LM with STF with pink color is above the LM with S with
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Figure 4.4: REC curves: SVM-STM (black), SVM-M (grey), LM-S (red) , RF-S
(green), LM-STF (pink), LASSO-STF (light blue), and Naive (-SM) (blue)

red color. The SVM with STF and the SVM with M performed similarly. Thus,
the SVM with STM, the SVM with M and LM with STF are good for predicting
forest fires. The paper also mentioned that the SVM predicted well for small
fires. In Figure 4.4, the SVM with STM and the SVM with M predicted well
for small fires. Thus, the SVM with STM and the SVM with M are the best
DM methods if absolute error of about 1 is allowed and the LM with STF is the
best method if absolute error of about 2 and more are allowed.

4.9 Other Attempts: Logistic Regression

Other attemps such as fitting Logistic Regression and Multi-response Logistic
Regression are presented. We approach this problem as a classfication problem
using Logistic Regression and Multi-response Logistic Regression.

4.9.1 Logistic Regression

The logistic regrssion model model arises from the desire to model the posterior
probabilities of the K clases ia linear functions in x, while at the same time
ensuring that they sum to one and remain in [0,1]. The model has the form [5]
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log(Pr(G = 1|X = x)/Pr(G = K|X = x)) = β10 + βT1 x

log(Pr(G = 2|X = x)/Pr(G = K|X = x)) = β20 + βT2 x

·

·

log(Pr(G = 2|K − 1)/Pr(G = K|X = x)) = β(K−1)0 + βTK−1x.

The model is specified in terms of K-1 log-odds or logit transformations (reflect-
ing the constraint that the probabilities sum to one).

A simple calculation shows that

Pr(G = k|X = x) = exp(βk0 +βTk x)/(1 +
K−1∑
l=1

exp(βl0 +βTl x)), k = 1, ...,K − 1,

P r(G = K|X = x) = 1/(1 +
K−1∑
l=1

exp(βl0 + βTl x)),

and they clearly sum to one.
When K=2, this model is simple, since there is only a single linear function.

It is a logistic regression with a binary response.
We fitted Logistic Regression with binary response (two classes). We have

two class that are 0 and 1. All y (”burned”) values equal to zero are coded as
0 and all y values greater than 0 are coded as 1 The burned variable equal to
zero value means that an area lower than 1ha/100 = 100m2 was burned. In the
dataset, there are 247 samples with a zero value.

We fit a logistic regression with FIRES dataframe that contains splines for
spatial variables X and Y. The summary of results are provided in Table 4.24.
We obtained AIC: 709.44. An overall test which is likelihood ratio test is per-
formed to test null hypothese. H0: null model (all parameters not significant)
vs. H1: fitted model is significant (overall). We obtained p-value=0.001102, so
the logistic regression is significant at 0.11% level. The conditional misclassfica-
tion rate for 0 is 0.5465587 and for 1 is 0.2481481. The overall misclassfication
rate is 0.3907157 and the confusion matrix is shown in Table 4.23. The Logistic
Regression with splines predicts class 1 (some fires) slightly better than class 0

0 1
0 112 135
1 67 203

Table 4.23: Confusion matrix for Logistic Regression using splines for spatial
variables.

Then, we fitted a logistic regression with binary response using all input
variables. The dataframe x contains all variables that are splines for X and Y,
sinusoids for month and day, 4 fire codes, and 4 weather variables. We obtained
AIC: 720.8 and an overall test is performed. The overall p-value is 0.005059.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1223 1.0397 0.12 0.9064

X1 -0.5017 0.1322 -3.80 0.0001
X2 0.0254 0.1383 0.18 0.8545
X3 -0.1619 0.1290 -1.26 0.2094
X4 0.0140 0.1566 0.09 0.9286
X5 -0.3473 0.1644 -2.11 0.0347
X6 0.2746 0.1727 1.59 0.1118
X7 0.2862 0.2145 1.33 0.1821
Y1 0.8850 0.5405 1.64 0.1016
Y2 0.7423 0.2040 3.64 0.0003
Y3 10.7271 387.2216 0.03 0.9779
Y4 -12.2130 460.4876 -0.03 0.9788
Y5 7.1442 250.8662 0.03 0.9773
Y6 2.0865 90.7011 0.02 0.9816

Table 4.24: Results from a logistic regression fit to forest fires data using splines
data.

The logistic regression is almost statistically significant at 0.5% level. The con-
ditional misclassfication rate for 0 is 0.4939271 and for 1 is 0.2851852. The
misclassfication rate is 0.3849130 (a little improved than the previous logistic
regression) and the confusion matrix is as follows.

0 1
0 125 122
1 77 193

Table 4.25: Confusion matrix for Logistic Regression using all x variables.

Next, we fit a logistic regression using step function for the previous model.
We obtained AIC: 699.09 and the overall p-value=2.981e-05 which is very small.
The logistic regression is statistically significant. The conditional misclassfica-
tion rate for 0 is 0.5222672 and for 1 is 0.2703704 The misclassfication rate is
0.3907157 which is same as the first model using splines and the confusion ma-
trix is shown in Table 4.26. The results from the logistic regression is shown in
Table 4.27.

0 1
0 118 129
1 73 197

Table 4.26: Confusion matrix for Logistic Regression using step function.

X1, X5, X6, X7, Y1, Y2, Y3, Y5, month2 and wind variables are selected
using step function and all of them are important as shown in Table 4.27.

Logistic Regression predicts class 1 (some fire) slightly better than class
0. The first or third model of the Logistic Regression can be used. However,
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.0936 0.0916 1.02 0.3067

X1 -0.4143 0.1129 -3.67 0.0002
X5 -0.2545 0.1241 -2.05 0.0403
X6 0.2953 0.1112 2.66 0.0079
X7 0.2288 0.1226 1.87 0.0621
Y1 0.5180 0.1809 2.86 0.0042
Y2 0.6933 0.1823 3.80 0.0001
Y3 0.4662 0.1420 3.28 0.0010
Y5 0.3581 0.1691 2.12 0.0342

month2 -0.2282 0.0955 -2.39 0.0169
wind 0.1846 0.0946 1.95 0.0511

Table 4.27: Results from a logistic regression fit to all forest fires variables and
step function.

predicting the class 0 was not very good (compare to the SVM method. SVM
predicted well for small fires). We will fit a Multi-response Logistic Regression
in next section and see if they make some improvements than logistic regression.

4.9.2 Multi response Logistic Regression

Now, we fit a Multi-response Logistic Regression.
All y (”burnd”) values that are equal to zero are coded as 0. For remaining

data (about 250 values) take the quartiles Q1, Q2 and Q3. We observe that
Q1=2.14, Q2=6.37, and Q3=15.4225. All y values greater than zero but less
and equal to Q1 are coded as 1, all values greater than Q1 but less and equal
to Q2 are coded as 2, All values greater than zero Q2 but less and equal to
Q3 are coded as 3, and all values greater than Q3 are coded as 4 We use
multinom to fit a Multi-response Logistic Regression in package nnet in R. The
xy data frame contains splines for spatial variables X and Y and the response
y variable. We fitted a multi-response logistic regression using xy data frame
and obtained AIC: 1500.739. An overall test which is likelihood-ratio test for
multi-logistic is performed. H0: null model (all parameters not significant) vs.
H1: fitted model is significant (overall). We obtained p-value=0.01837, so the
Multi-response logistic regression is statistically significant at 1.8% level. We
computed the misclassfication rate as 0.5125725 and the confusion matrix is
shown in Table 4.28. It predicted very well for class 0 which is burned area
equal to 0, but not good for other classes. It seems to be not very good.

Next, we fit a Multi response Logistic Regression with all variables that are
splines for X and Y, sinusoids for month and day, 4 fire codes, and 4 weather
variables. We obtained AIC: 1524.398 which is bigger than previous model
and the overall p-value was obtained as 0.001344. The multi-response logistic
regression is significant at 0.1% level. We computed the misclassfication rate
and it was 0.4893617 which is a little improved than previous model and the
confusion matrix is shown in Table 4.29. The predicted values are slightly
improved than the previous multi-response logistic regression but it seems to be
not very good either.
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0 1 2 3 4
0 246 0 0 0 1
1 66 2 0 0 1
2 66 0 0 0 0
3 64 1 0 0 2
4 63 1 0 0 4

Table 4.28: Confusion matrix for Multi response Logistic Regression using
splines.

0 1 2 3 4
0 231 4 6 4 2
1 51 16 1 0 1
2 54 4 6 0 2
3 56 3 3 2 3
4 54 4 1 1 8

Table 4.29: Confusion matrix for Multi response Logistic Regression using all x
variables.

Now, we fit a Multi response Logistic Regression using step function. AIC:
1475.101 and overall p-value=0.0001028. (very small.) The Multi response Lo-
gistic Regression is statistically significant. We computed the misclassfication
rate as 0.5125725 which is same as the first model multi response logistic re-
gression model and the confusion matrix is shown in Table 4.30. The predicted
class is similar to the first model and it doesn’t seem to be very good either.

0 1 2 3 4
0 241 1 1 1 3
1 64 4 0 0 1
2 65 0 1 0 0
3 62 3 0 2 0
4 62 2 0 0 4

Table 4.30: Confusion matrix for Multi response Logistic Regression using step
function.

Fitting a Logistic Regression with binary response was better than fitting
a Multi-response Logistic Regression. Logistic Regression with binary response
provided better misclassification rate than Multi-response Logistic Regression.
However, the Logistic Regression predicted well for class 1 but they didn’t per-
form good for class 0. For the Logistic Regression, either the model with spatial
variables or the model using step function can be used. However, they predicted
well for class 1 but they didn’t perform well for predicting forest fires (overall.)
The SVM and LM might perform better than Logistic Regression.
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Chapter 5

Conclusion

For MAD in table 4.21 in section 4.8, we obtained that the SVM with M is
1.07506 and the SVM with STM is 1.07333. They are similar and the SVM
with STM provided a little better MAD by 0.00173. The improved formulation
on spatial and temporal variables improved the SVM model. For the REC
curves, the SVM with STM and the SVM with M predicted very similarly. The
both curves predicted very similar. Also, the paper mentioned that the SVM
predicted well for small fires and we obtained the same result from the REC
curves in Figure 4.4.

The improved formulation on spatial and temporal variables which is using
splines for spatial and sinusiods for temporal improved other models as well.
Multiple Linear Regression has improved a lot for using improved saptial and
tempral variables than using X and Y coordinates and month and day categorical
variables. From MAD and RMSE in table 4.21 and 4.22, we have found that
LM with STF is the second best DM method for MAD and and LM with S
predicted the best for RMSE criteria. From the REC curve in figure 4.4, it was
observed that the SVM with STM and the SVM with M predicted the best if an
absolute error of about 1 is allowed and the LM with STF predicted best after
an abolute error of about 2 is allowed. Thus, the SVM-STM and the SVM-M
are the best methods if an absolute error of about 1 is allowed and the LM-STF
is the best method after an abolute error of about 2 is allowed. The result
was quite similar to the paper, since the SVM-STM and SVM-M performed
simlarly. However, the LM model has improved. For LM, the splines of spatial,
the sinusoids for temporal and four FWI components variables are important
for predicting forest fires. The seven splines on spatial variables improved the
SVM as well. For SVM, the splines of spatial, the sinusoids for temporal and
four weather variables are impacting importantly for predicting forest fires now.
If a small error tolerence is allowed, then the SVM with STM and the SVM with
M predict the best and the LM predicts the best if a little bigger error tolerence
is allowed than the SVM.

We fitted a logistic regression and multi-response logistic regression to see
if they can make improvements for predicting some fires (greater than 0), since
the SVM predicts well for small fires. The logistic regression predicted better
for class 1 (some fires) than class 0 (area lower than 1ha/100 = 100m2 was
burned). However, it didn’t predict well for class 0 so it wasn’t performing very
good.
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The modifications made on the spatial and temporal variables improved the
models such as MR, SVM, LASSO and LAR, and RF.

The LM with STF outperformed SVM with STM after the absolute error of
about 1.6 is allowed and the SVM outperformed LM if absolute error of about
1.5 is allowed. Thus, the SVM-STM and the SVM-M are the best methods if an
absolute error of about 1 is allowed and the LM-STF is the best method after
an abolute error of about 2 is allowed.

In paper [3], they said that the proposed model which is SVM with M is still
useful to improve firefighting resource management. For instance, when small
fires are predicted then air tankers could be spared and small ground crews could
be sent. Such management would be particularly advantageous in dramatic fire
seasons, when simultaneous fires occur at distinct locations. Thus, the SVM
with STM may be useful, too. The SVM with STM, the SVM with M, or LM
with STF can be suggested for predicting forest fires.
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