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1 Introduction

With the rapid depletion of natural resources and at the same time the air pollution at all-time high, more and
more emphasis is shifting towards methods that can efficiently produce energy from environmentally friendly
renewable resources such as sun, wind, ocean waves, etc. Aside from that, the main source of energy on the
surface of Mars is the solar energy and therefore identifying and understanding effects of key variables on solar
radiation are of paramount values as they can help with building a model that can accurately predict the
amount of solar radiation as a function of some measurable predictors. Such model can equip the astronauts
or colonists with crucial information about when and where to deploy the solar energy harvesting equipment
for optimal performance. Building models like this is also very useful on Earth for the same reason.

In this project, we are interested to build a suitable model using multiple linear regression for prediction
of the average solar irradiance received in a day as a function of basic meteorological variables of that
day. Solar irradiance is power per unit area received from the Sun. The solar power is in the form of the
electromagnetic radiation which is emitted from the Sun at various range of wavelengths (Incropera and
DeWitt 2002, 700–787). As a result, the amount of solar power measured by a measuring instrument depends
on the range of wavelengths that the device can actually detect. For convenience, we shall refer to solar
irradiance as solar radiation or just radiation in the rest of this report.

Figure 1: The HI-SEAS Habitat (image from HI-SEAS (2017)).

To build a simple model that can predict the solar radiation, we use the dataset that was collected by
NASA HI-SEAS mission (Hawai’i Space Exploration Analog and Simulation, see HI-SEAS (2017)) and was
provided on Kaggle. HI-SEAS is a Habitat located on the Big Island of Hawaii at approximately 2500 meters
above the sea level (see Figure 1). This isolated and unique location was carefully chosen by NASA research
team so that it resembles environment on a Mars site. In particular, this location has little variation in
weather (with usually cool and dry climate) which makes it suitable for solar radiation study. This report
has been prepared in R (R Core Team 2017).
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2 Description of the Dataset

The dataset contains the measurements of the solar radiation along with meteorological measurements
recorded daily at several time intervals from September 1st, 2016 until December 31st, 2016. In total there
are 32,686 observations in the dataset. The raw data consists of UNIX time (indicating computer time in
seconds measured from January 1st, 1970), date and time of observation, radiation (W/m2), temperature
(°F), pressure (in-Hg), wind direction (degree), wind speed (mph), time of sunrise and sunset. The UNIX time
column is very helpful especially in sorting the data. The rest of columns were produced in MS Excel from
these columns. In particular, daylight denotes the duration of daylight, that is the time between sunrise and
sunset in seconds. The column with heading dt is the time interval between two consecutive measurements in
seconds and the rest of columns is basically the numerical integration of each variables in each time intervals
which will be used later. The goal of this project is to develop a model that can predict the radiation as
a function of explanatory variables. A quick check of the data reveals that no observations were taken on
these four days: September 30th, November 30th December 6th and 7th. The total number of days that data
were collected is n = 118 days. Majority of data was recorded at approximately 5 minute time intervals.
However, we notice that the time intervals are not the same for all observations. There are time intervals of
approximately 10, 15, 20 minutes and even for a few cases of several hours. This is important especially in
computation of daily average values. This means that we cannot simply use the sample mean (R function
mean()) and we need to do a numerical integration in order to compute the correct daily average values.
Before computing the integrals, we group the data conveniently by date. The daily average value then is
defined by f̄ = (

∫ t2
t1
fdt)/(

∫ t2
t1
dt) where f denotes any of the input/output variables and t1 and t2 denote the

time of the first and last observations in each day, respectively. The time integrals are numerically computed
using simple trapezoidal rule.

Table 1: Dataframe Summary.

Statistic N Mean St. Dev. Min Max
R 118 210.458 76.103 27.112 331.543
T 118 51.153 3.458 43.583 58.158
P 118 30.423 0.050 30.231 30.511
H 118 75.317 20.780 23.440 101.184
WD 118 142.829 39.590 103.318 279.135
WS 118 6.211 1.548 2.461 13.805
DayRatio 118 0.480 0.021 0.456 0.522
TimeObsRatio 118 0.988 0.062 0.535 1.001

In total, we can define up to six linear predictors in our model (p = 6). The predictors are daily average
temperature (T), pressure (P), humidity (H), wind direction (WD), wind speed (WS) and day ratio (defined
as DayRatio = daylight

24×3600 ). The response variable is the daily average solar radiation (R). All the input/output
variables in this analysis are the daily average values and, for convenience, we may not explicitly mention
daily average everywhere we want to refer to them throughout the rest of this report. The statistical
summary of the data is given in Table 1. The last row (TimeObsRatio) indicates the ratio of each day that
data was recorded defined by (

∫ t2
t1
dt)/(24 × 3600). This variable is not an explanatory variable but rather is

defined to help with interpretation of other variables. The maximum value of this ratio is slightly above 1
and the reason is that for some cases the last point of integration was about a couple of seconds into the next
day. Moreover, we notice that the duration of data collection in a day can be as low as 53.47% of a day (look
at the minimum value of TimeObsRatio). It is worthwhile to note that the daily average and instantaneous
pressure fluctuations are very small and essentially negligible. One may quickly expect that pressure should
not play a significant role in the model.

We will perform a systematic analysis in a quest to find the best model for prediction of the solar
radiation using available explanatory variables.
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3 Preliminary Analysis of Dataset

3.1 Scatterplot Matrix

As the first step of exploration of the dataset, we use the scatterplot matrix shown in Figure 2.
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Figure 2: Scatterplot Matrix.

The main conclusions from the above scatterplot matrix can be summarized as:

• Reading across the top row for radiation, it seems that humidity is the most important predictor as
the points are more tightly clustered around the loess. We further notice that humidity is negatively
correlated with radiation and thus the lower the humidity, the higher is the amount of radiation
received on the surface of the Earth. This physically makes sense as in this case higher portion of solar
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radiation is either absorbed by the water molecules in the air or by the clouds in the case of cloudy sky
or is just simply reflected back into the sky and away from the Earth. Pressure and wind direction
show the weakest influence on radiation. There is a moderate positive association between wind
speed and radiation. Temperature and day ratio are both positively correlated with radiation.

• Reading across the second row from the top for temperature, we note that except the wind variables
(wind speed and wind direction), temperature is associated with all other variables. Temperature
is positively associated with radiation, pressure and day ratio, and is negatively associated with
humidity. Positive association of temperature with pressure may remind us of the ideal gas law
PV = nR̄T , where P is pressure, V is volume of gas, n is the number of kmol of gas, R̄ is the universal
gas constant and T is the absolute temperature (Sonntag, Borgnakke, and Van Wylen 2003, 61–66).

• Pressure (third row from the top), except for the positive association with temperature mentioned
above, does not illustrate any noticeable association with any other variables.

• Reading across the fourth row from the top for humidity, except for the negative association with
radiation and temperature discussed above, we do not see any other clear association.

• Wind variables (wind direction and wind speed, rows five and six, respectively) demonstrate the
weakest associations with any other variables.

• Day ratio is clearly positively associated with radiation and temperature (see the last row). These
associations are not surprising since the length of a day is longer during warmer seasons and thus both
average radiation and temperature are higher during warmer seasons.

In summary, the scatterplot matrix (Fig. 2) suggests that: (i) radiation is most closely predicted by
humidity, and (ii) pressure and wind direction are the least important explanatory variables.

3.2 Variance Inflation Factor (VIF)

There is multicollinearity in the explanatory variables when one of them can be linearly predicted with
high accuracy using other explanatory variables. The variance inflation factor (VIF) for the design matrix
indicates which variables contribute to multicollinearity. The VIF is shown in Figure 3 using bar chart. As
can be seen, there is no significant multicollinearity in the dataset as all VIF values are much smaller than
the empirical threshold VIF = 10 (marked by red dotted line in Fig.3).
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Figure 3: VIF for solar radiation predictors.
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Correlation matrix is shown in Table 2 which provides another useful tool for detecting possible
multicollinearity. A close inspection of the correlation matrix reveals that temperature and day ratio have
a correlation 0.6318 which is considered a moderate correlation since the coefficient of determination for the
regression of temperature on day ratio is only 39.92%.

Table 2: Correlation Matrix.

T P H WD WS DayRatio
T 1 0.578 -0.440 -0.283 -0.161 0.632
P 0.578 1 -0.268 -0.537 -0.115 0.292
H -0.440 -0.268 1 0.078 -0.382 0.118

WD -0.283 -0.537 0.078 1 0.023 -0.283
WS -0.161 -0.115 -0.382 0.023 1 -0.394

DayRatio 0.632 0.292 0.118 -0.283 -0.394 1

It may be helpful to also visualize the correlation matrix as illustrated in Figure 4. The moderate
positive correlations between temperature and pressure, and also temperature and day ratio are easily
noticeable in this figure.

T

P

H

WD

WS

DayRatio

−1.0

−0.5

0.0

0.5

1.0

Figure 4: Visualization of the Correlation Matrix.
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4 Model Building

4.1 Initial Model

As the first step towards constructing our model, we divide the dataset into two parts: train and test datasets.
The training data is used for model building. The test data is used for model validation. We randomly pick
2
3 of the data as training set, i.e. number of observations in the training set is ntr = 79. The remaining
observations are stored in the test set, nte = 39. It is suggested that when p > 5, the best subset method can
be used for model selection (see A. I. McLeod 2017, 9). For this purpose, we use function bestglm::bestglm()
developed by A. McLeod and Xu (2017) with BIC as criterion. The best subset method suggests the following
model:

R = β0 + β1H + β2(WD) + β3(WS) + β4(DayRatio) + error. (1)

Following this suggestion, we fit a linear model with predictors as described in Eq.(1). Table 3 summarizes
the fitted linear regression model R ~ H + WD + WS + DayRatio. It shows that all predictors are significant
at less than 1%. However R2 = 61.3% is not that impressive and hence the proportion of variability explained
by the model is low. We use basic model diagnostic checks to see how we may improve this model.

Table 3: Summary of the fitted linear regression model R ∼ H + WD + WS + DayRatio.

Dependent variable:
R

H −1.770∗∗∗

(0.280)

WD −0.515∗∗∗

(0.157)

WS 14.895∗∗∗

(3.952)

DayRatio 1,803.694∗∗∗

(271.570)

Constant −542.852∗∗∗

(150.261)

Observations 79
R2 0.613
Adjusted R2 0.592
Residual Std. Error 46.657 (df = 74)
F Statistic 29.348∗∗∗ (df = 4; 74)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.1.1 Basic Diagnostic Checks

The basic diagnostic checks for the model R ~ H + WD + WS + DayRatio are shown in Figure 5.
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Figure 5: Basic regression diagnostic plots for model R ∼ H + WD + WS + DayRatio.

A problem is indicated in the Residuals vs Fitted diagnostic plot since the loess trend is not flat. The
curve suggests possible nonlinearity due to interaction and/or some nonlinearity present in the inputs. Also,
the Normal Q-Q plot suggests that the distribution of the residuals does not follow a normal distribution.
However, the Residuals vs leverage plot shows that none of the observations have a strong influence on the fit.
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4.1.2 Residual Dependency Checks

The residual dependency plots shown in Figure 6 indicates that indeed humidity as well as day ratio and
possibly wind direction exhibit nonlinear effects.
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Figure 6: Residual dependency plots for model R ∼ H + WD + WS + DayRatio.
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4.2 Revised Model 1

The diagnostic checks suggest that the initial model may be improved by including a quadratic term with
humidity so the regression model can be represented as

R = β0 + β1H + β2H2 + β3(WD) + β4(WS) + β5(DayRatio) + error. (2)

Table 4 summarizes the fitted linear regression model 1 (see Eq.(2)). We see that the quadratic term is
significant at less than 1%. The R2 has increased by 8.2% from the previous model to 69.5% and the residual
sum squares (RSS) has dropped to RSS = 126943.4 from RSS = 161087.8 for the previous model. The
analysis of variance (ANOVA) lack-of-fit test comparing this model with the initial model gives F-statistic
F = 19.64 on (1, 73) DF and has a two-sided p-value 0.003238% which shows that the null-hypothesis (H0:
the initial model is true) is rejected at level less than 0.1%. Thus far this model has shown some improvement
compared with the previous model. Next, we will look at the basic diagnostic plots for this model.

Table 4: Summary of the fitted linear regression for model R ∼ poly(H,2) + WD + WS + DayRatio.

Dependent variable:
R

poly(H, 2)1 −323.587∗∗∗

(44.857)

poly(H, 2)2 −186.524∗∗∗

(42.094)

WD −0.529∗∗∗

(0.141)

WS 12.775∗∗∗

(3.565)

DayRatio 1,722.992∗∗∗

(243.405)

Constant −619.582∗∗∗

(133.955)

Observations 79
R2 0.695
Adjusted R2 0.674
Residual Std. Error 41.701 (df = 73)
F Statistic 33.317∗∗∗ (df = 5; 73)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.2.1 Basic Diagnostic Checks for Revised Model 1

The basic regression plots for model R ~ poly(H, 2) + WD + WS + DayRatio clearly show patters in
Residuals vs Fitted as well as Scale-Location diagnostic plots (see Figure 7). It seems that there is still some
nonlinearity that has not been adequately accounted for by the model. The Normal Q-Q plot has improved
and suggests that the distribution of the residuals for this model is closer to a normal distribution compared
with the initial model. The Residuals vs leverage plot shows that none of the observations have a strong
influence on the fit.
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Figure 7: Basic regression diagnostic plots for model R ∼ poly(H,2) + WD + WS + DayRatio.
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4.2.2 Residual Dependency Checks for Revised Model 1

To further analyze which variables may still have nonlinear behaviour, we employ the residual dependency
plots shown in Figure 8. We can see from the residual dependency plots for day ratio and wind direction
that they both display possible nonlinear behaviour. We will add a quadratic term for day ratio as the next
step which is discussed in the next section.
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Figure 8: Residual dependency plots for model R ∼ poly(H,2) + WD + WS + DayRatio
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4.3 Revised Model 2

As the next step in our model building procedure, we add a quadratic term for day ratio. Thus, the revised
model takes the form

R = β0 + β1H + β2H2 + β3(WD) + β4(WS) + β5(DayRatio) + β6(DayRatio)2 + error. (3)

The summary of the fitted model based on Eq.(3) is provided in Table 5. Note that all regression
coefficients are significant at less than 1%. The R2 has increased by 2.7% from the previous model to 72.2%
and the residual sum squares has dropped to RSS = 115666.7 from RSS = 126943.4 for the previous model.
The ANOVA lack-of-fit test comparing this model with the revised model 1 gives F-statistic F = 7.02 on (1,
72) DF and has a two-sided p-value 0.9904% which shows that the null-hypothesis (H0: the revised model 1
is true) is rejected at level less than 1%. Thus, this model is preferred compared with the previous model.
The next logical step is to analyze the basic diagnostic plots for this model.

Table 5: Summary of the fitted linear regression for model R ∼ poly(H,2) + WD + WS + poly(DayRatio,2).

Dependent variable:
R

poly(H, 2)1 −287.222∗∗∗

(45.246)

poly(H, 2)2 −203.976∗∗∗

(40.991)

WD −0.418∗∗∗

(0.141)

WS 14.287∗∗∗

(3.474)

poly(DayRatio, 2)1 347.178∗∗∗

(46.096)

poly(DayRatio, 2)2 −118.512∗∗∗

(44.731)

Constant 187.260∗∗∗

(31.175)

Observations 79
R2 0.722
Adjusted R2 0.699
Residual Std. Error 40.081 (df = 72)
F Statistic 31.224∗∗∗ (df = 6; 72)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.3.1 Basic Diagnostic Checks for Revised Model 2

The basic diagnostic plots for model R ~ poly(H, 2) + WD + WS + poly(DayRatio, 2) are shown in Figure 9.
Patterns are still easily detectable especially in Scale-Location plot (see Figure 7 top right plot). This signals
the possibility of presence of some other form of nonlinearity and/or interaction effects that have not been
handled well by the model. The Normal Q-Q plot has improved from the previous model 1 and suggests that
the distribution of the residuals of this model is close enough to a normal distribution. The Residuals vs
leverage plot shows that none of the observations have a strong influence on the fit.
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Figure 9: Basic regression diagnostic plots for model R ∼ poly(H,2) + WD + WS + poly(DayRatio,2).
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4.3.2 Residual Dependency Checks for Revised Model 2

Residual dependence plots are shown for revised model 2 in Figure 10. The only predictor that still
demonstrates some nonlinear behaviour is wind direction. In the next section we will add a quadratic term
for wind direction.
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Figure 10: Residual dependency plots for model R ∼ poly(H,2) + WD + WS + poly(DayRatio,2)
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4.4 Revised Model 3

Now we add a quadratic term for wind direction. The revised model 3 takes the form

R = β0 + β1H + β2H2 + β3(WD) + β4(WD)2 + β5(WS) + β6(DayRatio) + β7(DayRatio)2 + error. (4)

Table 6: Summary of the fitted linear regression for model R ∼ poly(H,2) + poly(WD,2) + WS +
poly(DayRatio,2).

Dependent variable:
R

train dataset complete dataset
(1) (2)

poly(H, 2)1 −311.334∗∗∗ −413.490∗∗∗

(42.450) (40.641)

poly(H, 2)2 −194.111∗∗∗ −259.527∗∗∗

(38.073) (36.105)

poly(WD, 2)1 −122.786∗∗∗ −147.307∗∗∗

(40.030) (38.951)

poly(WD, 2)2 136.706∗∗∗ 160.461∗∗∗

(38.065) (36.349)

WS 14.426∗∗∗ 14.605∗∗∗

(3.218) (2.519)

poly(DayRatio, 2)1 353.716∗∗∗ 404.964∗∗∗

(42.741) (40.560)

poly(DayRatio, 2)2 −128.389∗∗∗ −138.061∗∗∗

(41.529) (39.094)

Constant 127.882∗∗∗ 119.750∗∗∗

(20.433) (15.975)

Observations 79 118
R2 0.765 0.799
Adjusted R2 0.742 0.786
Residual Std. Error 37.130 (df = 71) 35.189 (df = 110)
F Statistic 33.028∗∗∗ (df = 7; 71) 62.461∗∗∗ (df = 7; 110)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The summary of the fitted model 3 described in Eq.(4) is provided in Table 6 (see the train dataset
column). Note that all regression coefficients are significant at less than 1%. The coefficient of determination
for this model is R2 = 76.5% which shows an increase of 4.3% from the previous model. The residual sum
squares has dropped to RSS = 97885 from RSS = 115666.7 for the previous model. The ANOVA lack-of-fit
test comparing this model with the revised model 2 gives F-statistic F = 12.9 on (1, 71) DF and has a
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two-sided p-value 0.0602% which indicates that the null-hypothesis (H0: the revised model 2 is true) is
rejected at level less than 0.1%. As will be discussed later, this model provides the best performance compared
with all other linear regression models we tested in this project. The results of the same model (Eq.(4)) fitted
on the complete dataset is also provided in the second column of Table 6 for comparison purposes and as can
be seen, for instance, R2 = 79.9% for the complete dataset which shows that the proportion of variability
explained by this model is very significant and therefore we may have found a useful model provided that all
other diagnostic tests are OK. Next we will look at the basic diagnostic plots for this model.

4.4.1 Basic Diagnostic Checks for Revised Model 3

Basic diagnostic plots for model R ~ poly(H, 2) + poly(WD, 2) + WS + poly(DayRatio, 2) are shown in
Figure 11. No noticeable patters or fan-shape behaviour are detected in Residuals vs Fitted and Scale-Location
plots. Hence, there is no monotonic variance change. The Normal Q-Q plot demonstrates a satisfactory
shape. The Residuals vs leverage plot shows that none of the observations have a strong influence on the fit.
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Figure 11: Basic regression diagnostic plots for model R ∼ poly(H,2) + poly(WD,2) + WS + poly(DayRatio,2).
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4.4.2 Residual Dependency Checks for Revised Model 3

Residual dependence plots are shown for the revised model 3 in Figure 12. The loess curves are approximately
flat for the explanatory variables of this model (day ratio, humidity and wind direction) and hence the model
has sufficiently handled the nonlinearity.
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Figure 12: Residual dependency plots for model R ∼ poly(H,2) + poly(WD,2) + WS + poly(DayRatio,2)

Next, we compare the AIC and BIC values of all the above four models. Table 7 summarizes these
results and shows that the revised model 3 has the lowest AIC and BIC values and are preferred based on
these criteria. Backward stepwise/stagewise methods based on AIC and BIC criteria also suggests that the
revised model 3 has the best performance (not shown).

Table 7: Summary of the AIC and BIC values for different models.

initial model revised model 1 revised model 2 revised model 3 (best model)
AIC 838.19 821.37 816.02 804.84
BIC 852.41 837.96 834.98 826.16

Shapiro-Wilk and Jarque-Bera normality tests give p-values of 83.94% and 63.03%, respectively, and
therefore the null-hypothesis (H0: data are from a normally distributed population) cannot be rejected. In
other words, there is no evidence that the data are not from a normally distributed population as far as these
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tests are concerned.

Durbin-Watson test is useful to detect serial correlation. The null-hypothesis for this test is H0: there is
no correlation among residuals (no serial time dependence). We performed this test using both normal and
bootstrap methods and the p-values are 67% and 71.4%, respectively. The D-W statistic is d = 1.92 and the
sample autocorrelation of the residuals is r = 0.03. Thereby, the null-hypothesis cannot be rejected which
means there is no evidence to support possible serial dependence in the residuals based on this test.

4.5 Overfitting Lack-of-Fit Test

In this section we overfit the best model (revised model 3) and perform various tests to judge whether the
overfitted model is useful or not. To make the model overfit, let us add a quadratic term for wind speed. So
the model can be represented as

R = β0+β1H+β2H2+β3(WD)+β4(WD)2+β5(WS)+β6(WS)2+β7(DayRatio)+β8(DayRatio)2+error. (5)

The summary of the fitted model described by Eq.(5) is provided in Table 8. We notice that based on
the two-sided p-value for the t-test which is 21.1%, the quadratic term for wind speed is not significant at
10% and therefore should be dropped. The R2 has increased by only 0.5% from the previous model to 77%
and the residual sum squares has dropped to RSS = 95706 from RSS = 97885 for the revised model 3.

The ANOVA lack-of-fit test comparing this model with the revised model 3 gives F-statistic F = 1.59
on (1, 70) DF and has a two-sided p-value 21.1% (the same as p-value for the t-test discussed above) which
implies that the null-hypothesis (H0: the revised model 3 is true) cannot be rejected at 10%. The BIC values
are BIC3 = 826.16 and BICoverfit = 828.75 for the revised model 3 and the overfitted model, respectively,
which further reinforces the conclusion obtained by the ANOVA test and suggests that the simpler model
(revised model 3) is preferred. We have also tried other possibilities for the overfit model such as adding
temperature or pressure and found out that adding these predictors substantially deteriorate the performance
as compared with the revised model 3 and these overfitted models can be easily rejected using ANOVA or
AIC/BIC tests (not shown).
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Table 8: Summary of the fitted linear regression for model R ∼ poly(H,2) + poly(WD,2) + poly(WS,2) +
poly(DayRatio,2).

Dependent variable:
R

poly(H, 2)1 −302.863∗∗∗

(42.803)

poly(H, 2)2 −196.338∗∗∗

(37.956)

poly(WD, 2)1 −116.810∗∗∗

(40.144)

poly(WD, 2)2 124.587∗∗∗

(39.104)

poly(WS, 2)1 201.173∗∗∗

(44.244)

poly(WS, 2)2 −49.946
(39.564)

poly(DayRatio, 2)1 354.764∗∗∗

(42.572)

poly(DayRatio, 2)2 −120.891∗∗∗

(41.781)

Constant 217.543∗∗∗

(4.160)

Observations 79
R2 0.770
Adjusted R2 0.744
Residual Std. Error 36.976 (df = 70)
F Statistic 29.341∗∗∗ (df = 8; 70)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Comparison with Other Methods

We showed in the previous sections, following a step by step approach, that the revised model 3 (best model)
provides superior performance compared with all other linear regression models considered in this project.
In this section, we will compare our best model with two penalized regression models as well as a Random
Forest model.
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Figure 13: Variations of the mean-squared error as a function of log(λ) for L1-penalized (LASSO) regression.
The selected tuning parameter is λ = 0.38.

In order to be able to make proper comparison between penalized regression models and the best model,
we needed to redefine the design matrix to include the three quadratic variables for humidity, wind direction
and day ratio. For penalized regressions, we used glmnet package which, by default, implements regularized
10-fold cross-validation to select the tuning parameter λ. Figure 13 shows the variation of mean-squared
error as a function of λ for L1-penalized (LASSO) regression. The tuning parameter λ = 0.38 is chosen based
on the one-standard-deviation rule, that is the simplest model with average mean-squared error within one
standard deviation of the lowest mean-squared error is selected. Based on the one-standard-deviation rule, a
model with eight predictors is chosen (quadratic term in day ratio is removed).

The results of L2-penalized (Ridge) regression is shown in Figure 14. The tuning parameter chosen based
on the one-standard-deviation rule is λ = 70.46 which corresponds to a model with all the nine predictors
(six linear terms plus three quadratic terms) retained in the model.
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Figure 14: Variations of mean-squared errors as a function of log(λ) for L2-penalized (Ridge) regression. The
selected tuning parameter is λ = 70.46.

As the last step, we use one of the machine learning technique, the Random Forest method. The results
of the root-mean-square errors (RMSE) for all the above methods are summarized in Table 9. As can be
seen, the best model (revised model 3) has the best performance on prediction of test dataset. However, as
expected, Random Forest shows better performance on the train dataset. The best model also performs much
better than both L1/L2 penalized regression models on both test and train datasets. The model selected by
the backward stagewise method is identical to the best model and thus their performances are also identical.

Table 9: Summary of the root-mean-square errors.

Best Model BackStage RidgeReg LASSO Random Forest
test 32.478 32.478 47.283 33.729 33.688
train 35.200 35.200 48.338 36.870 19.214
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The last plot (Figure 15) shows the values predicted for the radiation by the best model and their
corresponding actual values from the test dataset. The line y = x is added to assist with analyzing the
performance of the model. As can be seen, the points are clustered around the line y = x which further
shows that the best multiple linear regression model we built in this project is actually useful for prediction
purposes on a new dataset (test dataset).
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Figure 15: Actual response variable values of the test dataset versus their corresponding values predicted by
the revised model 3 (the best model).

6 Conclusions

The main goal of this project was to build a model using multiple linear regression for prediction of solar
radiation as a function of some basic meteorological variables as well as information about the length of a
day. We used the dataset that was collected recently (less than a year ago) by NASA HI-SEAS mission in a
period of four months on an isolated site located on the Big Island of Hawaii. The data was made available
recently and thus is considered as a live dataset.

Through a rigorous analysis, we constructed a model using multiple linear regression. We discovered
that temperature is a confounding variable as it is strongly correlated with the output variable (radiation)
and all the predictors excluding wind variables. This causes a spurious association between temperature and
radiation. This is in agreement with the findings of Sun et al. (2015) who suggested that day ratio is a much
more important variable than temperature as one may intuitively consider it as an important variable. We
found that the best model has the form R ~ poly(H, 2) + poly(WD, 2) + WS + poly(DayRatio, 2) with
coefficient of determination R2 = 76.5% and R2 = 79.9% on train and complete datasets, respectively. The

22



R2 of the best model is quite significant which shows that this model explains large proportion of variability
of the data.

We performed various diagnostic tests to check the validity of the model as well as to verify whether
the model obeys the standard assumptions of linear regression such as normality, constant variance and no
serial correlation. In particular, we implemented Wilk-Shapiro and Jarque-Bera tests for normality as well
as Durbin-Watson test for serial correlation. All of these tests showed that the dataset and the best model
complied really well with the linear regression assumptions.

In order to arrive at the best model, we used many variable selection methods such as, iterative model
building, stepwise/stagewise and best subset regression using AIC/BIC or repeated hold cross-validation, and
L1/L2 penalized regression. In addition, we used Random Forest method as a benchmark for comparison
purposes. We found that the best model has the superior prediction performance (lowest RMSE) on the
test dataset against all other methods. However, as expected, the Random Forest has the best prediction
performance on the train dataset. It was also shown that the best model performs better on both test and
train datasets when compared with L1-penalized (LASSO) and L2-penalized (Ridge) regression models.

We had no reason to drop wind variables (wind direction and wind speed) in the best model from
statistical point of view, however we suspect that these variables may be just manifestation of some lurking
variables. It is hard to imagine that radiation and wind direction or wind speed are causally related. For
instance, a high wind speed could be an indication of a sunny sky. If the dataset can be extended to at least
one full year and/or more input variables such as cloud cover, precipitation and solar zenith angle of the sun
can be considered, more accurate model may be constructed. It may be also useful to build a model that can
provide accurate hourly average solar radiation prediction based on the explanatory variables using time
series regression.
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