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The purpose of our article is to provide a summary of a selection of some
of the high-quality published computational time series research using R. A
more complete overview of time series software available in R for time series
analysis is available in the CRAN1 task views.2 If you are not already an R
user, this article may help you in learning about the R phenomenon and
motivate you to learn how to use R. Existing R users may find this selective
overview of time series software in R of interest. Books and tutorials for
learning R are discussed later in this section. An excellent online
introduction from the R Development Core Team is available3 as well as
extensive contributed documentation.4

In the area of computational time series analysis, especially for advanced
algorithms, R has established itself as the choice of many researchers. R is
widely used not only by researchers but also in diverse time series
applications and in the teaching of time series courses at all levels.
Naturally, there are many other software systems such as Mathematica
(Wolfram Research, 2011), that have interesting and useful additional
capabilities, such as symbolic computation (Smith and Field, 2001; Zhang
and McLeod, 2006). For most researchers working with time series, R
provides an excellent broad platform.

The history of R has been discussed elsewhere (Gentleman and Ihaka,
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1996) so before continuing our survey we will just point out some other key
features of this quantitative programming environment (QPE).

R is an open source project, providing a freely available and a high
quality computing environment with thousands of add-on packages. R
incorporates many years of previous research in statistical and numerical
computing and so it is built on a solid foundation of core statistical and
numerical algorithms. The R programming language is a functional,
high-level interactive and scripting language that offers two levels of
object-oriented programming. For an experienced R user, using this
language to express an algorithm is often easier than using ordinary
mathematical notation and it is more powerful since, unlike mathematical
notation, it can be evaluated. In this way, R is an important tool of
thought. Novice and casual users of R may interact with it using Microsoft
Excel (Heiberger and Neuwirth, 2009) or R Commander (Fox, 2005).

Through the use of Sweave (Leisch, 2002, 2003), R supports high-quality
technical typesetting and reproducible research including reproducible
applied statistical and econometric analysis (Kleiber and Zeileis, 2008).
This article has been prepared using Sweave and R scripts for all
computations, including all figures and tables, are available in an online
supplement.5 This supplement also includes a PDF preprint of this article
showing all graphs in color.

R supports 64-bit, multicore, parallel and cluster computing
(Schmidberger et al., 2009; Hoffmann, 2011; Revolution Computing, 2011).
Since R is easily interfaced to other programming languages such as C and
Fortran, computationally efficient programs may simply be executed in
cluster and grid computing environments using R to manage the rather
complex message-passing interface.

There is a vast literature available on R that includes introductory books
as well as treatments of specialized topics. General purpose introductions to
R are available in many books (Braun and Murdoch, 2008; Crawley, 2007;
Dalgaard, 2008; Adler, 2009; Everitt and Hothorn, 2009; Zuur et al., 2009).
Advanced aspects of the R programming are treated by (Venables and
Ripley, 2000; Spector, 2008; Chambers, 2008; Gentleman, 2009). Springer
has published more than 30 titles in the Use R book series, Chapman &

5http://www.stats.uwo.ca/faculty/aim/tsar.html
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Hall/CRC has many forthcoming titles in The R Series and there are many
other high quality books that feature R. Many of these books discuss R
packages developed by the author of the book and others provide a survey
of R tools useful in some application area. In addition to this flood of high
quality books, the Journal of Statistical Software (JSS) publishes refereed
papers discussing statistical software. JSS reviews not only the paper but
the quality of the computer code as well and publishes both the paper and
code on its website. Many of these papers discuss R packages. The rigorous
review process ensures a high quality standard. In this article, our focus
will be on R packages that are accompanied by published books and/or
papers in JSS.

The specialized refereed journal, The R Journal, features articles of
interest to the general R community. There is also an interesting BLOG
sponsored by Revolution Analytics.6

The non-profit association Rmetrics (Würtz, 2004) provides R packages
for teaching and research in quantitative finance and time series analysis
that are further described in the electronic books that they publish.

There are numerous textbooks, suitable for a variety of courses in time
series analysis (Venables and Ripley, 2002; Chan, 2010; Cryer and Chan,
2008; Lütkepohl and Krätzig, 2004; Shumway and Stoffer, 2011; Tsay,
2010). These textbooks incorporate R usage in the book and an R package
on CRAN that includes scripts and datasets used in the book.

1. Time series plots

In this section our focus is on plots of time series. Such plots are often
the first step in an exploratory analysis and are usually provided in a final
report. R can produce a variety of these plots not only for regular time
series but also for more specialized time series such as irregularly-spaced
time series. The built-in function, plot(), may be used to plot simple
series such as the annual lynx series, lynx. The aspect-ratio is often helpful
in visualizing slope changes in a time series (Cleveland et al., 1988;
Cleveland, 1993). For many time series an aspect-ratio of 1/4 is good
choice. The function xyplot() (Sarkar, 2008) allows one to easily control

6http://blog.revolutionanalytics.com/
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the aspect-ratio. Figure 1 shows the time series plot of the lynx series with
an aspect-ratio of 1/4. The asymmetric rise and fall of the lynx population
is easily noticed with this choice of the aspect-ratio.
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Figure 1: Annual numbers of lynx trappings in Canada.

There are many possible styles for your time series plots. Sometimes a
high-density line plot is effective as in Figure 2.
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Figure 2: High density line plot.

Another capability of xyplot() is the cut-and-stack time series plot for
longer series. Figure 3 shows a cut-and-stack plot of the famous Beveridge
wheat price index using xyplot() and asTheEconomist(). The
cut-and-stack plot uses the equal-count-algorithm (Cleveland, 1993) to
divide the series into a specified number of subseries using an overlap. The
default setting is for a 50% overlap.

Figure 4 uses xyplot() to plot the seasonal decomposition of the
well-known CO2 time series. The seasonal adjustment algorithm available
in R stl() is described in the R function documentation and in more detail
by Cleveland (1993). This plot efficiently reveals a large amount of
information. For example, Figure 4, reveals that the seasonal amplitudes
are increasing.
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data source: tseries R package
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Figure 3: Beveridge wheat price index.
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Figure 4: Atmospheric concentration of CO2.
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Bivariate or multivariate time series may also be plotted with xyplot().
In Figure 5, the time series plot for the annual temperature in ◦C for
Canada (CN), Great Britain (UK) and China (CA) 1973-2007, is shown.7

Figure 5 uses juxtaposition – each series is in a separate panel. This is often
preferable to superposition or showing all series in the same panel. Both
types of positioning are available using the R functions plot() or
xyplot().
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Figure 5: Average annual temperature, ◦C, 1973-2007 for Canada (CN), Great Britain
(UK) and China (CN).

A specialized plot for bivariate time series called the cave plot (Becker
et al., 1994) is easily constructed in R as shown by Zhou and Braun (2010).
When there are many multivariate time series, using xyplot may not
feasible. In this case, mvtsplot() provided by Peng (2008) may be used.
Many interesting examples, including a stock market portfolio, daily time
series of ozone pollution in 100 US counties, and levels of sulfate in 98 US
counties are discussed by Peng (2008).

7The data were obtained from Mathematica’s curated databases.
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Usually this plot is used with many time series – at least ten or more –
but for simplicity and in order to compare with the last example, Figure 6
displays the annual temperature series for Canada, Great Britain and
China using using mvtsplot(). The right panel of the plot shows a boxplot
for the values in each series. From this panel it is clear that China is
generally much warmer than Great Britain and Canada and that Great
Britain is often slightly cooler than Canada on an average annual basis.
The bottom panel shows the average of the three series. The image shown
shows the variation in the three series. The colors purple, grey and green
correspond to low, medium and high values for each series. The darker the
shading the larger the value. From image in Figure 6, it is seen that
Canada has experienced relatively warmer years than Great Britain or
China since about the year 2000. During 1989 to 1991 the average annual
temperature in Canada was relatively low compared to Great Britain and
China. There are many more possible option choices for constructing these
plots (Peng, 2008). This plot is most useful for displaying a large number of
time series.

CA

UK

CN

15
16
17
18
19
20
21

M
ea

n

●

●●

●●

●●

●● ●●
●●

●●
●● ●●

●● ●● ●●

●●

●●

●●

●●

●●

●●

●●
●●

●● ●●
●●

●●

●●

●●
●●

●● ●● ●● ●●

●● ●●
●

1975 1980 1985 1990 1995 2000 2005

16 20 24

●

●

●

Figure 6: Average annual temperature in ◦C, 1973-2007.
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Financial time series are often observed on a daily basis but not
including holidays and other days when the exchange is closed. Historical
and current stock market data may be accessed using get.hist.quote()

(Trapletti, 2011). Dealing with dates and times is often an important
practical issue with financial time series. Grolemund and Wickham (2011)
provide a new approach to this problem and review the other approaches
that have been used in R. Irregularly observed time series can be plotted
using Rmetrics functions (Wuertz and Chalabi, 2011). The RMetrics
package fImport also has functions for retrieving stock market data from
various stock exchanges around the world.

In Figure 7, the function yahooSeries() is used to obtain the last 60
trading days of the close price of IBM stock. The function RMetrics
timeSeries() converts this data to a format that can be plotted.
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Figure 7: IBM, daily close price, returns in percent.

Time series plots are ubiquitous and important in time series
applications. It must also be noted that R provides excellent time series
graphic capabilities with other standard time series functions, including
functions time series diagnostics, autocorrelations, spectral analysis, and

8



wavelet decompositions to name a few. The output from such functions is
usually best understood from the graphical output.

More generally, there are many other types of functions available for
data visualization and statistical graphics. For example, all figures in the
celebrated monograph on visualizing data by Cleveland (1993) may be
reproduced using the R scripts.8

The R package ggplot2 (Wickham, 2009) implements the novel graphical
methods discussed in the wonderful graphics book by (Wilkinson, 1999).
An interesting rendition of Millard’s famous temporal-spatial graph of
Napoleon’s invasion of Russia using ggplot2 is available in the online
documentation.

Dynamic data visualization, including time series, is provided with
rggobi (Cook and Swayne, 2007).

The foundation and the state-of-the-art in R graphics is presented in the
book by Murrell (2011).

2. Base packages: stats and datasets

The datasets and stats packages are normally automatically loaded by
default when R is started. These packages provide a comprehensive suite of
functions for analyzing time series, as well as many interesting time series
datasets. These datasets are briefly summarized in the Appendix (§12.1).

The stats package provides the base functions for time series analysis.
These functions are listed in the Appendix (12.2). For further discussion of
these functions, see Cowpertwait and Metcalfe (2009). Many time series
textbooks provide a brief introduction to R and its use for time series
analysis (Cryer and Chan, 2008; Shumway and Stoffer, 2011; Venables and
Ripley, 2002; Wuertz, 2010).

Adler (2009) provides a comprehensive introduction to R that includes a
chapter on time series analysis.

An introduction to ARIMA models and spectral analysis with R is given
in the graduate level applied statistics textbook by Venables and Ripley
(2002). This textbook is accompanied by the R package MASS.

8http://www.stat.purdue.edu/~wsc/visualizing.html
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The time series analysis functions that R provides are sufficient to
supplement most textbooks on time series analysis.

2.1. stats

First we discuss the stats time series functions. In addition to many
functions for manipulating time series such as filtering, differencing, inverse
differencing, windowing, simulating, aggregating and forming multivariate
series, there is a complete set of functions for auto/cross correlations
analysis, seasonal decomposition using moving-average filters or loess,
univariate and multivariate spectral analysis, univariate and multivariate
autoregression, and univariate ARIMA model fitting. Many of these
functions implement state-of-the art algorithms. The ar() function includes
options, in both the univariate and multivariate cases, for Yule-Walker,
least-squares or Burg estimates. Although ar() implements the maximum
likelihood estimator, the package FitAR (McLeod et al., 2011b; McLeod
and Zhang, 2008b) provides a faster and more reliable algorithm.

The function spectrum(), also for both univariate and multivariate
series, implements the iterated Daniel smoother (Bloomfield, 2000) and in
the univariate case, the autoregressive spectral density estimator (Percival
and Walden, 1993).

The arima() function implements a Kalman filter algorithm that
provides exact maximum likelihood estimation and an exact treatment for
the missing-values (Ripley, 2002). This function is interfaced to C code to
provide maximum computational efficiency. The arima() function has
options for multiplicative seasonal ARIMA model fitting, subset models
where some parameters are fixed at zero, and regression with ARIMA
errors. The functions tsdiag() and Box.test() provide model diagnostic
checks. For ARMA models, a new maximum likelihood algorithm (McLeod
and Zhang, 2008a) written entirely in the R language is available in the
FitARMA package (McLeod, 2010).

A brief example of a medical intervention analysis carried out using
arima() will now be discussed. In a medical time series of monthly average
creatinine clearances, a step intervention analysis model with a
multiplicative seasonal ARIMA(0, 1, 1) (1, 0, 0)12 error term was fit. The
intervention effect was found to be significant at 1%. To illustrate this
finding, Figure 8 compares the forecasts before and after the intervention
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date. The forecasts are from a model fit to the pre-intervention series. The
plot visually confirms the decrease in creatinine clearances after the
intervention.
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Figure 8: Creatinine clearance series.

Exponential smoothing methods are widely used for forecasting (Gelper
et al., 2010) and are available in stats (Meyer, 2002). Simple exponential
smoothing defines the prediction for zt+h, h = 1, 2, . . . as ẑt+1 where
ẑt+1 = λzt + (1 − λ)ẑt−1. The forecast with this method is equivalent to that
from an ARIMA(0,1,1). An extension, double exponential smoothing,
forecasts zt+h, h = 1, 2, . . . uses the equation ẑt+h = ât + hb̂t, where
ât = αzt + (1 − α)(ât−1 + b̂t−1), b̂t = β(ât − ât−1) + (1 − β)b̂t−1, where α and β are
the smoothing parameters. Double exponential smoothing is sometimes
called Holt’s linear trend method and it can be shown to produce forecasts
equivalent to the ARIMA(0,2,2). The Winter’s method for seasonal time
series with period p, forecasts zt+h, by ẑt+h = ât + hb̂t + ŝt, where
ât = α(zt − ŝt−p) + (1 − α)(ât−1 + b̂t−1), b̂t = β(ât − ât−1) + (1 − β)b̂t−1,
ŝt = γ(Y − ât) + (1 − γ)ŝt−p, α, β and γ are smoothing parameters. In the
multiplicative version, ẑt+h = (ât + hb̂t)ŝt. Winter’s method is equivalent to
the multiplicative seasonal ARIMA airline-model in the linear case. All of
the above exponential smoothing models may be fit with HoltWinters().
This function also has predict() and plot() methods.

Structural time series models (Harvey, 1989) are also implemented using

11



Kalman filtering in the function StructTS(). Since the Kalman filter is
used, Kalman smoothing is also available and it is implemented in the
function tsSmooth(). The basic structural model is comprised of an
observational equation,

zt = µt + st + et, et ∼ NID(0, σ2
e)

and the state equations,

µt+1 = µt + ξt, ξt ∼ NID(0, σ2
ζ),

νt+1 = νt + ζt, ζt ∼ NID(0, σ2
ζ),

γt+1 = −(γt + . . . + γt−s+2) + ωt, ωt ∼ NID(0, σ2
η).

If σ2
ω is set to zero, the seasonality is deterministic. The local linear trend

model is obtained by omitting the term involving γt in the observational
equation and the last state equation may be dropped as well. Setting
σ2
ζ = 0 in the local linear trend model results in a model equivalent to the

ARIMA(0,2,2). Setting σ2
ξ = 0 produces the local linear model which is also

equivalent to the ARMA(0,1,1).

In Figure 9, the forecasts from the multiplicative Winter’s method for
the next 12 months are compared with forecasts from the
multiplicative-seasonal ARIMA(0, 1, 1) (0, 1, 1)12 model. With this model,
logarithms of the original data were used and then the forecasts were
back-transformed. There are two types of backtransform that may be used
for obtaining the forecasts in the original data domain (Granger and
Newbold, 1976; Hopwood et al., 1984) — naive or
minimum-mean-square-error (MMSE). Figure 9 compares these
backtransformed forecasts and shows that the MMSE are shrunk relative to
the naive forecasts.

2.2. tseries

The tseries package (Trapletti, 2011) is well-established and provides
both useful time series functions and datasets. These are summarized in
Appendix (12.3).
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2.3. Forecast

The package Forecast (Hyndman, 2010) provides further support for
forecasting using ARIMA and a wide class of exponential smoothing
models. These methods are described briefly by Hyndman and Khandakar
(2008) and in more depth in the book (Hyndman et al., 2008). Hyndman
and Khandakar (2008) discuss a family of sixty different exponential
smoothing models and provide a new state-space approach to evaluate the
likelihood function.

Appendix 12.4, Table 16 summarizes functions for exponential
smoothing models.

Automatic ARIMA and related functions are summarized in Table 15.

In addition, general utility functions that are useful for dealing with time
series data such as number of days in each month, interpolation for missing
values, a new seasonal plot, and others are briefly described in Table 14.

3. More Linear Time Series Analysis

3.1. State space models and Kalman filtering

Tusell (2011) provides an overview of Kalman filtering with R. In
addition to StructTS, there are four other packages that support Kalman
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filtering and state-space modeling of time series. In general, the state space
model (Harvey, 1989; Tusell, 2011) is comprised of two equations, the
observation equation:

yt = dt + Ztαt + εt (1)

and the state equation:

αt = ct + Ttαt−1 + Rtηt, (2)

where the white noises, εt and ηt, are multivariate normal with mean vector
zero and covariance matrices Qt and Ht respectively. The white noise terms
are uncorrelated, E{ε′tηt} = 0.

The Kalman filter algorithm recursively computes,

� predictions for αt

� predictions for yt

� interpolation for yt

and in each case the estimated covariance matrix is also obtained.

Dropping the terms dt and ct and restricting all the matrices to be
constant over time provides a class of state-space models that includes
univariate and multivariate ARMA models (Brockwell and Davis, 1991;
Gilbert, 1993; Durbin and Koopman, 2001). As previously mentioned, the
built-in function arima uses a Kalman filter algorithm to provide exact
MLE for univariate ARIMA with missing values (Ripley, 2002). The dse

package Gilbert (2011) implements Kalman filtering for the time-invariant
case and provides a general class of models that includes multivariate
ARMA and ARMAX models.

Harrison and West (1997) and Harvey (1989) provide a comprehensive
account of Bayesian analysis dynamic linear models based on the Kalman
filter and this theme is further developed in the book by Petris et al. (2009).
This book also provides illustrative R scripts and code. The accompanying
package dlm (Petris, 2010) provides functions for estimation and filtering as
well as a well-written vignette explaining how to use the software.
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The following example of fitting the random walk plus noise model,

yt = θt + vt, vt ∼ N(0,V)
θt = θt−1 + wt, wt ∼ N(0,W)

.

to the Nile series and plotting the filtered series, Figure 10 and its 95%
interval, is taken from the vignette by Petris (2010).
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Figure 10: Nile river flows (solid line with circles), filter values after fitting random walk
with noise (solid thick line) and 95% confidence interval (dashed lines).

Three other packages for Kalman filtering (Dethlefsen et al., 2009;
Luethi et al., 2010; Helske, 2011) are also reviewed by Tusell (2011).

3.2. An approach to linear time series analysis using Durbin-Levinsion
recursions

Table 17 in Appendix 12.5 lists the main functions available in the ltsa
package for linear time series analysis.

The Durbin-Levinson recursions (Box et al., 2008) provide a simple and
direct approach to the computation of the likelihood, computation of exact
forecasts and their covariance matrix, and simulation for any linear process
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defined by its autocorrelation function. This approach is implemented in
ltsa (McLeod et al., 2007, 2011a).

In Section 3.3, this approach is implemented for the fractional Gaussian
noise (FGN) and a comprehensive model building R package is provided for
this purpose using the functions in ltsa.

Three methods of simulating a time series given its autocovariance
function are available: DHSimulate(), DLSimulate(), and SimGLP().
DHSimulate() implements the fast Fourier algorithm (FFT) of Davies and
Harte (1987). But this algorithm is not applicable for all stationary series
(Craigmile, 2003) so DHSimulate(), based on the Durbin-Levinson
recursion, is also provided. The algorithm SimGLP() is provided for
simulating a time series with non-Gaussian innovations based on the
equation,

zt = µ +

Q∑
i=1

ψiat−i. (3)

The sum involved in Equation (3) is efficiently evaluated using the R
function convolve() that uses the fast Fourier transform (FFT) method.
The built-in function arima.sim() may also be used in the case of ARIMA
models. The functions TrenchInverse() and TrenchInverseUpdate() are
useful in some applications involving Toeplitz covariance matrices.
TrenchForecast() provides exact forecasts and their covariance matrix.

The following illustration is often useful in time series lectures when
forecasting is discussed. In the next example we fit an AR(9) to the annual
sunspot numbers, 1700-1988, sunspot.year. For forecasting computations,
it is standard practice to treat the parameters as known, that is to ignore
the error due to estimation. This is reasonable because the estimation error
is small in comparison to the innovations. This assumption is made in our
algorithm TrenchForecast(). Letting zm(`) denote the optimal minimum
mean square error forecast at origin time t = m and lead time `, we compare
the forecasts of zm+1, . . . , zn using the one-step ahead predictor zm+`−1(1), with
the fixed origin prediction zm(`), where ` = 1, . . . , L and L = n−m + 1. Figure
11 compares forecasts and we see many interesting features. The fixed
origin forecasts are less accurate as might be expected. As well the fixed
origin forecasts show systematic departures whereas the one-step do not.
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Figure 11: Comparing forecasts from a fixed origin, 1969, with lead-one forecasts starting
in 1969 for sunspot.year.

As shown by this example, TrenchForecast() provides a more flexible
approach to forecasting than provided by predict().

3.3. Long memory time series analysis

Let zt, t = 1, 2, . . . be stationary with mean zero and autocovariance
function, γz(k) = cov(zt, zt−k). Many long memory processes such as the FGN
(fractional Gaussian Noise) and FARMA (fractional ARMA) may be
characterized by the property that kαγZ(k)→ cα,γ as k → ∞, for some
α ∈ (0, 1) and cα,γ > 0. Equivalently,

γZ(k) ∼ cα,γ k−α.

The FARMA and FGN models are reviewed by Hipel and McLeod (1994);
Beran (1994); Brockwell and Davis (1991). FGN can simply be described as
a stationary Gaussian time series with covariance function,
ρk =

(
|k + 1|2H − 2|k|2H + |k − 1|2H)

/2, 0 < H < 1. The FARMA model
generalizes the ARIMA model to a family of stationary models with
fractional difference parameter d, d ∈ (−0.5, 0.5). The long-memory
parameters H and d may be expressed in terms of α,
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H ' 1 − α/2, H ∈ (0, 1), H , 1/2 and d ' 1/2 − α/2, d ∈ (−1/2, 1/2), d , 0
(McLeod, 1998). Gaussian white noise corresponds to H = 1/2 and in the
case of FARMA, d = 0 assuming no AR or MA components. Haslett and
Raftery (1989) developed an algorithm for maximum likelihood estimation
of FARMA models and applied these models to the analysis of long wind
speed time series. This algorithm is available in R in the package fracdiff

(Fraley et al., 2009). The generalization of the FARMA model to allow
more general values of d is usually denoted by ARFIMA. A frequently cited
example of a long-memory time is the minimum annual flows of the Nile
over the period 622-1284, n = 663 (Percival and Walden, 2000, §9.8). The
package longmemo (Beran et al., 2009) has this data as well as other time
series examples. FGN provides exact MLE for the parameter H as well as a
parametric bootstrap and minimum mean square error forecast. For the
Nile data, Ĥ = 0.831. The time series plots in Figure 12 show the actual
Nile series along with three bootstraps.
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Figure 12: Comparing actual Nile minima series with two bootstrap versions.

As a further illustration of the capabilities of R, a simulation experiment
was done to compare the estimation of the H-parameter in fractional
Gaussian noise using the exact MLE function FitFGN() in FGN and the
GLM method FEXPest() in the package longmemo. The function
SimulateFGN() in FGN was used to simulate 100 sequences of length
n = 200 for H = 0.3, 0.5, 0.7. Each sequence was fit by the MLE and GLM
method and the absolute error of the difference between the estimate and
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the true parameter was obtained, that is, ErrMLE = |ĤMLE − H| and
ErrGLM = |ĤGLM − H|. From Figure 13, the notched boxplot for
Err(GLM) − Err(MLE), we see that the MLE is more accurate. These
computations take less than 30 seconds using direct sequential evaluation
on a current PC.

difference in absolute error
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● ●
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Figure 13: Comparing MLE estimator and GLM estimator for the parameter H in frac-
tional Gaussian noise.

The ARFIMA model extends the FARMA models to the ARIMA or
difference-stationary case (Diebold and Rudebusch, 1989; Baillie, 1996).
The simplest approach is to choose the differencing parameter and then fit
the FARMA model to the differenced time series.

3.4. Subset autoregression

The FitAR package (McLeod and Zhang, 2006, 2008b; McLeod et al.,
2011b) provides a more efficient and reliable exact MLE for AR(p) than is
available with the built-in function ar(). Two types of subset
autoregressions may also be fit. The usual subset autoregression may be
written, φ(B)(zt − µ) = at, where φ(B) = 1 − φi1 B− . . . − φim Bim , where i1, . . . , im

are the subset of lags. For this model, ordinary least squares (OLS) is used
to estimate the parameters. The other subset family is parameterized using
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the partial autocorrelations as parameters. Efficient model selection,
estimation and diagnostic checking algorithms are discussed by McLeod and
Zhang (2006) and McLeod and Zhang (2008b) and implemented in the
FitAR package (McLeod et al., 2011b). Any stationary time series can be
approximated by a high order autoregression that may be selected using
one of several information criteria. Using this approximation, FitAR,
provides functions for automatic bootstrapping, spectral density estimation,
and Box-Cox analysis for any time series. The optimal Box-Cox
transformation for the lynx is obtained simply from the command R >

BoxCox(lynx). The resulting plot is shown in Figure 14.
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Figure 14: Box-Cox analysis of lynx time series.

The functions of interest in the FitAR package are listed in Appendix
12.6.

3.5. Periodic autoregression

Let zt, t = 1, . . . , n be n consecutive observations of a seasonal time
series with seasonal period s. For simplicity of notation, assume that
n/s = N is an integer, so N full years of data are available. The time index
parameter, t, may be written t = t(r,m) = (r − 1)s + m, where r = 1, . . . ,N
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and m = 1, . . . , s. In the case of monthly data, s = 12 and r and m denote
the year and month. If the expected monthly mean µm = E{zt(r,m)} and the
covariance function, γ`,m = cov(zt(r,m), zt(r,m)−`) depend only on ` and m, zt is
said to be periodically autocorrelated and is periodic stationary. The
periodic AR model of order (p1, . . . , ps) may be written,

zt(r,m) = µm +

pm∑
i=1

φi,m(zt(r,m)−i − µm−i) + at(r,m), (1.3)

where at(r,m) ∼ NID(0, σ2
m), where m obeys modular arithmetic base s. This

model originated in monthly streamflow simulation and is further discussed
with examples by Hipel and McLeod (1994). Diagnostic checks for periodic
autoregression are derived by McLeod (1994). The package pear (McLeod
and Balcilar, 2011) implements functions for model identification,
estimation and diagnostic checking for periodic AR models.

We conclude with a brief mention of some recent work on periodically
correlated time series models which we hope to see implemented in R.
Tesfaye et al. (2011) develop a parsimonious and efficient procedure for
dealing with periodically correlated daily ARMA series and provide
applications to geophysical series. Ursu and Duchesne (2009) extend
modeling procedures to the vector PAR model and provide an application
to macro economic series. Aknouche and Bibi (2009) show that quasi-MLE
provide consistent, asymptotically normal estimates in a periodic GARCH
model under mild regularity conditions.

4. Time series regression

An overview of selected time series regression topics is given in this
section. Further discussion of these and other topics involving time series
regression with R is available in several textbooks (Cowpertwait and
Metcalfe, 2009; Cryer and Chan, 2008; Kleiber and Zeileis, 2008; Shumway
and Stoffer, 2011).

4.1. Cigarette consumption data

Most of the regression methods discussed in this section will be
illustrated with data from an empirical demand analysis for cigarettes in
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Canada (Thompson and McLeod, 1976). The variables of interest,
consumption of cigarettes per capita, Qt, real disposable income per capita,
Yt, and the real price of cigarettes, Pt, for t = 1, . . . , 23 corresponding to the
years 1953-1975 were all logarithmically transformed and converted to an R
dataframe cig. For some modeling purposes, it is more convenient to use a
ts object,

R >cig.ts <- ts(as.matrix.data.frame(cig), start = 1953,

+ freq = 1)

The time series are shown in Figure 15.

R >plot(cig.ts, xlab = "year", main = "", type = "o")
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Figure 15: Canadian cigarette data, consumption/adult(Q), real price(P), in-
come/adult(Y).

4.2. Durbin-Watson test

The exact p-value for the Durbin-Watson diagnostic test for lack of
autocorrelation in a linear regression with exogenous inputs and Gaussian
white noise errors is available with the function dwtest() in the lmtest
package (Hothorn et al., 2010). The diagnostic check statistic may be
written

d =

∑n
t=2(êt − êt−1)2∑n

t=1 ê2
t

, (4)

22



where êt, t = 1, . . . , n are the OLS residuals. Under the null hypothesis, d
should be close to 2 and small values of d indicate positive autocorrelation.

Many econometric textbooks provide tables for the critical values of d.
But in small samples these tables may be inadequate since there is a fairly
large interval of values for d for which the test is inconclusive. This does
not happen when the exact p-value is computed. Additionally, current
statistical practice favors reporting p-values in diagnostic checks (Moore,
2007).

The Durbin-Watson test is very useful in time series regression for model
selection. When residual autocorrelation is detected, sometimes simply
taking first or second differences is all that is needed to remove the effect of
autocorrelation. In the next example we find that taking second differences
provides an adequate model.

First we fit the empirical demand equation, regressing demand Qt on real
price Pt and income Yt, Qt = β0 + β1Pt + β2Yt + et using OLS with the lm()

function. Some of the output is shown below.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.328610 2.5745756 1.2928771 2.107900e-01

P -0.402811 0.4762785 -0.8457468 4.076991e-01

Y 0.802143 0.1118094 7.1741970 6.011946e-07

This output suggests Pt is not significant but Yt appears to be highly
significant. However, since the Durbin-Watson test rejects the null
hypothesis of no autocorrelation, these statistical inferences about the
coefficients in the regression are incorrect.

After differencing, the Durbin-Watson test still detects significant
positive autocorrelation.

Finally, fitting the model with second-order differencing,
∇2Qt = β0 + ∇2β1Pt + ∇2β2Qt + et, β̂1 = 0.557 with a 95% margin of error,
0.464, so the price elasticity is significant at 5%. As may be seen for the
computations reproduced below the other parameters are not statistically
significant at 5%.

R >cig2.lm <- lm(Q ~ P + Y, data = diff(cig.ts, differences = 2))

R >summary(cig2.lm)$coefficients
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Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.003118939 0.008232764 -0.3788447 0.70923480

P -0.557623890 0.236867207 -2.3541625 0.03012373

Y 0.094773991 0.278979070 0.3397172 0.73800132

The intercept term, corresponds to a quadratic trend, is not signficant and
can be dropped. Income, Yt is also not significant. The evidence for lag-one
autocorrelation is not strong,

R >dwtest(cig2.lm, alternative = "two.sided")

Durbin-Watson test

data: cig2.lm

DW = 2.6941, p-value = 0.08025

alternative hypothesis: true autocorelation is not 0

There is also no evidence of non-normality using the Jarque-Bera test. We
use the function jarque.bera.test() in the tseries package (Trapletti,
2011).

R >jarque.bera.test(resid(cig2.lm))

Jarque Bera Test

data: resid(cig2.lm)

X-squared = 1.1992, df = 2, p-value = 0.549

Kleiber and Zeileis (2008, §7) discuss lagged regression models for time
series. and present illustrative simulation experiment using R that compares
the power of the Durbin-Watson test with the Breusch-Godfrey test for
detecting residual autocorrelation in time series regression (Kleiber and
Zeileis, 2008, §7.1).

As discussed below in Section 4.4, fitting regression with lagged inputs is
best done using the package dynlm.
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4.3. Regression with autocorrelated error

The built-in function arima can fit the linear regression model with k
inputs and ARIMA(p, d, q) errors, yt = β0 + β1x1,t + . . . + βkxk,t + et, where
et ∼ ARIMA(p, d, q) and t = 1, . . . , n.

We illustrate by fitting an alternative to the regression just fit above for
the Canadian cigarette data.

R >with(cig, arima(Q, order = c(1, 1, 1), xreg = cbind(P,

+ Y)))

Call:

arima(x = Q, order = c(1, 1, 1), xreg = cbind(P, Y))

Coefficients:

ar1 ma1 P Y

0.9332 -0.6084 -0.6718 0.2988

s.e. 0.1010 0.2007 0.2037 0.2377

sigma^2 estimated as 0.0008075: log likelihood = 46.71, aic = -83.41

This model agrees well with the linear regression using second differencing.

4.4. Regression with lagged variables

Linear regression models with lagged dependent and/or independent
variables are easily fit using the dynlim package (Zeileis, 2010). In the case
of the empirical demand for cigarettes, it is natural to consider the possible
effect lagged price. ∇2Qt = β1∇

2Pt + β1,2∇
2Pt−1 + β2∇

2Yt + et,

R >summary(dynlm(Q ~ -1 + P + L(P) + Y, data = diff(cig.ts,

+ differences = 2)))$coefficients

Estimate Std. Error t value Pr(>|t|)

P -0.6421079 0.2308323 -2.7817077 0.01278799

L(P) -0.1992065 0.2418089 -0.8238177 0.42145104

Y -0.2102738 0.2993858 -0.7023507 0.49196623

We see that lagged price is not significant.
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4.5. Structural Change

Brown et al. (1975) introduced recursive residuals and related methods
for examining graphically the stability of regression over time. These
methods and recent developments in testing and visualizing structural
change in time series regression are discussed in the book by Kleiber and
Zeileis (2008, §6.4) and implemented in the package strucchange (Zeileis
et al., 2010, 2002). We use a CUMSUM plot of the recursive residuals to
check the regression using second differences for stability. No instability is
detected with this analysis.
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Figure 16: Cusum test of residuals in cigarette demand regression.

4.6. Generalized linear models

Kedem and Fokianos (2002) provide a mathematical treatment of the
use of generalized linear models (GLM) for modeling stationary binary,
categorical and count time series. GLM models can account for
autocorrelation by using lagged values of the dependent variable in the
systematic component. Under regularity conditions, inferences based on
large sample theory for GLM time series models can be made using
standard software for fitting regular GLM models (Kedem and Fokianos,
2002, §1.4). In R, the function glm() may be used and it is easy to verify
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estimates of the precision using the boot() function. These GLM-based
time series models are extensively used with longitudinal time series (Li,
1994).

As an illustration, we consider the late night fatality data discussed in
Vingilis et al. (2005). The purpose of this analysis was to investigate the
effect of the extension of bar closing hours to 2:00 AM that was
implemented May 1, 1996. This type of intervention analysis (Box and
Tiao, 1975) is known as an interrupted time series design in the social
sciences (Shadish et al., 2001). The total fatalities per month for the period
starting January 1992 and through to December 1999, corresponding to a
time series of length n = 84, are shown in Figure 17.
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Figure 17: Late night car fatalities in Ontario. Bar closing hours were extended May 1996.

The output from the glm() function using y as the dependent variable,
y1 as the lagged dependent variable9, and x as the step intervention defined
as 0 before May 1, 1996 and 1 after.

R >summary(ans)$coefficients

9 y and y1 are the vectors containing the sequence of observed fatalities and its lagged
values.

27



Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.53923499 0.5040873 -5.03729193 4.721644e-07

x2 1.16691417 0.6172375 1.89054329 5.868534e-02

y1 -0.06616152 0.6937560 -0.09536712 9.240232e-01

The resulting GLM model may be summarized as follows. The total
fatalities per month, yt, are Poisson distributed with mean µt, where
µ̂t = exp{β̂0 + β̂1xt + β̂2yt−1}, β̂0

.
= −2.54, β̂1

.
= 1.17, and β̂2

.
= −0.07. There is

no evidence of lagged dependence but the intervention effect, β2 is
significant with p < 0.10.

We verified the standard deviation estimates of the parameters by using
a non-parametric bootstrap with 1000 bootstrap samples. This
computation takes less than 10 seconds on most current PC’s. Table 1,
produced directly from the R output using the package xtable, compares
the asymptotic and bootstrap standard deviations. As seen from the table
the agreement between the two methods is reasonably good.

(Intercept) x2 y1
asymptotic 0.50 0.62 0.69

bootstrap 0.49 0.66 0.75

Table 1: Comparison of asymptotic and bootstrap estimates of the standard deviations in
the GLM time series regression

Hidden Markov models provide another time series generalization of
Poisson and binomial GLM models (Zucchini and MacDonald, 2009).

5. Nonlinear time series models

Volatility models including the GARCH family of models are one of the
newest types on nonlinear time series models. Nonlinear regression models
can sometimes be applied to time series. GLM models provide an extension
of linear models that is useful for modeling logistic and count time series
(Kedem and Fokianos, 2002). Ritz and Streibig (2008) provides an overview
of nonlinear regression models using R. Loess regression in R provides a
flexible nonparametric regression approach to handling up to three inputs.
Using generalized additive models (GAM), many more inputs could be
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accommodated (Wood, 2006). Two packages, earth (Milborrow, 2011) and
mda (Hastie and Tibshirani, 2011) implement MARS or multiadaptive
regression splines (Friedman, 1991). Lewis and Stevens (1991) reported
that MARS regression produced better out-of-sample forecasts for the the
annual sunspot series than competing nonlinear models. In the remainder
of the section we discuss tests for nonlinearity and two popular approaches
to modeling and forecasting nonlinear time series, threshold autoregression,
and neural net.

5.1. Tests for nonlinear time series

One approach is to fit a suitable ARIMA or other linear time series
model and then apply the usual Ljung-Box portmanteau test to the squares
of the residuals. McLeod and Li (1983) suggested this as a general test for
nonlinearity. The built-in function Box.test() provides a convenient
function for performing this test. Two tests (Teraesvirta et al., 1993; Lee
et al., 1993) for neglected nonlinearity that are based on neural nets are
implemented in tseries (Trapletti, 2011) as functions terasvirta.test()

and white.test(). The Keenan test for nonlinearity (Keenan, 1985) is
available in TSA (Chan, 2011) and is discussed in the textbook by Cryer
and Chan (2008).

5.2. Threshold models

Threshold autoregression (TAR) provides a general flexible family for
nonlinear time series modeling that has proved useful in many applications.
This approach is well suited to time series with stochastic cyclic effects such
as exhibited in the annual sunspots or lynx time series. The model equation
for a two-regime TAR model may be written,

yt = φ1,0 + φ1,1yt−1 + . . . + φ1,pyt−p

+ I(yt−d > r){φ2,0 + φ2,1yt−1 + . . . + φ2,pyt−p} + σat (5)

where I(yt−d > r) indicates if yt−d > r the result is 1 and otherwise it is 0.
The parameter d is the delay parameter and r is the threshold. There are
separate autoregression parameters for each regime. This model may be
estimated by least squares or more generally using conditional maximum
likelihood.
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A TAR model for the predator time series in Figure 18 is described in the
book by Cryer and Chan (2008). The package TSA (Chan, 2011) provides
illustrative datasets from the book (Cryer and Chan, 2008) as well as the
function tar() for fitting two regime TAR models, methods functions
predict() and tsdiag(), and functions tar.skelton() and tar.sim().
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Figure 18: Number of prey individuals (Didinium natsutum) per ml measured every twelve
hours over a period of 35 days.

TAR and related models are also discussed by Tsay (2010) and some R
scripts are provided as well the companion package FinTS (Graves, 2011)
that includes data sets from the book. Figure 19 shows monthly U.S.
unemployment. Tsay (2010, Example 4.2) fits the two regime TAR model,

yt = 0.083yt−2 + 0.158yt−3 + 0.0118yt−4 − 0.180yt−12 + a1,t if yt−1 ≤ 0.01,
= 0.421yt−2 + 0.239yt−3 − 0.127yt−12 + a2,t if yt−1 > 0.01,

where yt is the differenced unemployment series. The estimated standard
deviations of a2,t and a2,t were 0.180 and 0.217. Tsay (2010) remarks that
the TAR provides more insight into the time-varying dynamics of the
unemployment rate than the ARIMA.
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Figure 19: U.S. civilian unemployment rate, seasonally adjusted, January 1948 to March
2004.
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5.3. Neural Nets

Feed-forward neural networks provide another nonlinear generalization of
the autoregression model that has been demonstrated to work well in
suitable applications (Faraway and Chatfield, 1998; Hornik and Leisch,
2001; Kajitani et al., 2005). Modeling and forecasting are easily done using
nnet (Ripley, 2011). A feed-forward neural net that generalizes the linear
autoregressive model of order p may be written,

yt = fo

a +

p∑
i=1

Ωixi +

H∑
j=1

w j f

α j +

p∑
i=1

ωi, jxt−i


 , (6)

where ŷt is the predicted time series at time t and yt−1, . . . , yt−p are the lagged
inputs, fo is the activation function for the output node, f is the activation
function for each of the H hidden nodes, ωi, j are the p weights along the
connection for the j-th hidden node, Ωi is the weight in the skip-layer
connection, and a is the bias connection. There are m(1 + H(p + 2))
unknown parameters that must be estimated. The hyperparameter H, the
number of hidden nodes, is determined by a type of cross-validation and is
discussed by Faraway and Chatfield (1998); Hornik and Leisch (2001);
Kajitani et al. (2005) in the time series context. The activation functions f
and fo are often chosen to be logistic, `(x) = 1/(1 + e−x). A schematic
illustration for p = 2 and H = 2 is shown in Figure 20. Feed-forward neural
nets may be generalized for multivariate time series.

Hastie et al. (2009) pointed out that the feed-forward neural net defined
in eqn. (6) is mathematically equivalent to the projection pursuit regression
model. The net defined in eqn. (6) as well as the one illustrated in Figure
20 has just one hidden layer with p and p = 2 nodes, respectively. These
nets may be generalized to accommodate more than one hidden layer and
such nets provide additional flexibility. Ripley (1996) shows that
asymptotically for a suitable number of hidden nodes, H, and a large
enough training sample, the feed-forward neural net with one hidden layer
can approximate any continuous mapping between the inputs and outputs.

6. Unit-root tests

Financial and economic time series such as macro/micro series, stock
prices, interest rates and many more, often exhibit nonstationary wandering

31



input hidden output

yt-2

yt-1

1

yt

Figure 20: A nonlinear version of the AR(2) using the feedforward neural net. This neural
net has one hidden layer that is comprised of two hidden nodes. All input nodes have
skip-layer connections that connect the input directly with the output.

behavior. Often this type of nonstationarity is easily corrected by
differencing and the series is said to have a unit root. Such series are
sometimes called homogeneous nonstationary or difference-stationary.
Pretesting for a unit root is useful in ARIMA modeling and in cointegration
modeling. Since actual time series may also exhibit other departures from
the stationary Gaussian ARMA, many other types of unit-root tests have
been developed that are appropriate under various other assumptions (Said
and Dickey, 1984; Phillips and Perron, 1988; Elliott et al., 1996;
Kwiatkowski et al., 1992). State-of-the-art testing for unit roots requires a
full model building approach that includes taking into account not only
possible general autocorrelation effects but also stochastic and deterministic
drift components. An incorrect conclusion may be reached if these effects
are not taken into account. Such state-of-the-art tests are implemented in
the R packages fUnitRoots (Wuertz et al., 2009b) and urca (Pfaff, 2010a).

6.1. Overview of the urca package

The urca (Pfaff, 2010a) package offers a comprehensive and unified
approach to unit root testing that is fully discussed in the book Pfaff
(2006). The textbook by Enders (2010) also provides an excellent overview
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of the state-of-the-art in unit root testing. A useful flowchart for using the
urca package to test for unit roots is given by Pfaff (2006, Chapter 5).

Three regressions with autocorrelated AR(p) errors are considered for
the unit root problem,

∆Zt = β0 + β1t + γZt−1 +

p−1∑
i=1

δi∆Zt−i + et (7)

∆Zt = β0 + γZt−1 +

p−1∑
i=1

δi∆Zt−i + et, (8)

∆Zt = γZt−1 +

p−1∑
i=1

δi∆Zt−i + et, (9)

corresponding respectively to a unit root:

1. with drift term plus deterministic trend,

2. random walk with drift,

3. pure random walk.

The test for unit root corresponds to an upper-tail test of H0 : γ = 0. The
parameters β0 and β1 correspond to the drift constant and the deterministic
time trend respectively. When p = 1, the test reduces to the standard
Dickey-Fuller test. To perform the unit-root test, the correct model needs
to be identified and the parameters need to be estimated.

The order of the autoregression is estimated using the AIC or BIC. For
all three models, the unit-root test is equivalent to testing H0 : γ = 0 is

τi =
φ̂ − 1
SE(φ̂)

, i = 1, 2, 3,

where i denotes the model (9), (8), or (7) respectively. The distribution of
τi has been obtained by Monte-Carlo simulation or by response surface
regression methods (MacKinnon, 1996).

If τ3 is insignificant, so that H0 : γ = 0 is not rejected, the nonstandard
F−statistics Φ3 and Φ2 are evaluated using the extra-sum-of-squares
principle to test the null hypotheses H0 : (β0, β1, γ) = (β0, 0, 0) and
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H0 : (β0, β1, γ) = (0, 0, 0) respectively. That is, to test whether the
deterministic time trend term is needed in the regression model (eqn 7).

If τ2 is insignificant, so that H0 : γ = 0 is not rejected, the nonstandard
F−statistic Φ1 is evaluated using the extra-sum-of-squares principle to test
the hypotheses H0 : (β0, γ) = (0, 0). That is, to test whether the regression
model has a drift term.

If H0 : γ = 0 is not rejected in the final selected model, we conclude that
the series has a unit root.

These steps may be repeated after differencing the series to test if
further differencing is needed.

6.1.1. Illustrative example

As an example, consider the U.S. real GNP from 1909 to 1970 in billions
of U.S. dollars. From Figure 21, we that the strong upward trend. Since the
trend does not appear to follow a straight line, a difference-stationary time
series model is suggested. This data set is available as nporg in the urca
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Figure 21: Real U.S. GNP for 1909-1970.

package. We set the maximum lag to 4 and use the BIC to select the
optimum number of lags. The code snippet is shown below,
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R >require("urca")

R >data(nporg)

R >gnp <- na.omit(nporg[, "gnp.r"])

R >summary(ur.df(y = gnp, lags = 4, type = "trend",

+ selectlags = "BIC"))

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression trend

Call:

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

Residuals:

Min 1Q Median 3Q Max

-47.149 -9.212 0.819 11.031 23.924

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.89983 4.55369 -0.417 0.67821

z.lag.1 -0.05322 0.03592 -1.481 0.14441

tt 0.74962 0.36373 2.061 0.04423 *

z.diff.lag 0.39082 0.13449 2.906 0.00533 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.19 on 53 degrees of freedom

Multiple R-squared: 0.2727, Adjusted R-squared: 0.2316

F-statistic: 6.625 on 3 and 53 DF, p-value: 0.0006958

Value of test-statistic is: -1.4814 3.8049 2.7942

Critical values for test statistics:

1pct 5pct 10pct
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tau3 -4.04 -3.45 -3.15

phi2 6.50 4.88 4.16

phi3 8.73 6.49 5.47

The above R script fit the full model in eqn. (7) with p = 4 and used the
BIC to select the final model with p = 1. Notice that all test statistics are
displayed using the summary method.

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression trend

Call:

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

Residuals:

Min 1Q Median 3Q Max

-47.374 -8.963 1.783 10.810 22.794

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.33082 4.02521 -0.082 0.93479

z.lag.1 -0.04319 0.03302 -1.308 0.19623

tt 0.61691 0.31739 1.944 0.05697 .

z.diff.lag 0.39020 0.13173 2.962 0.00448 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.88 on 56 degrees of freedom

Multiple R-squared: 0.2684, Adjusted R-squared: 0.2292

F-statistic: 6.847 on 3 and 56 DF, p-value: 0.0005192

Value of test-statistic is: -1.308 3.7538 2.6755
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Critical values for test statistics:

1pct 5pct 10pct

tau3 -4.04 -3.45 -3.15

phi2 6.50 4.88 4.16

phi3 8.73 6.49 5.47

When Sweave (Leisch, 2002) is used, Table 2 may be obtained directly from
the output produced in R. Figure 22 shows the graphical model diagnostics.

Table 2: Regression with constant and trend for the U.S. real GNP data starting at 1909
until 1970.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.331 4.025 -0.082 0.935

z.lag.1 -0.043 0.033 -1.308 0.196
tt 0.617 0.317 1.944 0.057

z.diff.lag 0.390 0.132 2.962 0.004
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Figure 22: Residual diagnostic of U.S. real GNP data from 1909 to 1970.
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The τ3 statistic for the null hypothesis γ = 0 is −1.308 and its
corresponding critical values at levels 1%, 5%, and 10% with 62 observations
are given in Table 3 as −4.04,−3.45, and −3.15 respectively. At these levels
we can’t reject the null hypothesis that γ = 0 and so we conclude that there
is a unit root. Instead of comparing the test statistic value with the critical

Table 3: Critical values for test statistics for drift and trend case eqn. ( efADFtest1).

1pct 5pct 10pct
tau3 -4.04 -3.45 -3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47

ones, one can use the MacKinnon’s p-value determined from response
surface regression methodology (MacKinnon, 1996). The function
punitroot() is available in urca. In the present example, the p-value is
0.88 and it corresponds to the τ3 statistic value confirming that the unit
root hypothesis cannot be rejected as in the code snippet below,

R >punitroot(result1.ADF@teststat[1], N = length(gnp),

+ trend = "ct", statistic = "t")

[1] 0.8767738

The F−statistic Φ3 is used to test whether the deterministic time trend
term is needed in the regression model provided that the model has a drift
term. The test statistic has a value of 2.68. From Table 3, the critical
values of Φ3 at levels 1%, 5%, and 10% with 62 observations are 8.73, 6.49,
and 5.47. We conclude that the null hypothesis is not rejected and a trend
term is not needed. Thus we proceed to the next step and estimate the
regression parameters in eqn. (8) with a drift term.

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Test regression drift

38



Call:

lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)

Residuals:

Min 1Q Median 3Q Max

-47.468 -9.719 0.235 10.587 25.192

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.42944 4.01643 0.356 0.7232

z.lag.1 0.01600 0.01307 1.225 0.2257

z.diff.lag 0.36819 0.13440 2.739 0.0082 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.24 on 57 degrees of freedom

Multiple R-squared: 0.219, Adjusted R-squared: 0.1916

F-statistic: 7.993 on 2 and 57 DF, p-value: 0.0008714

Value of test-statistic is: 1.2247 3.5679

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.51 -2.89 -2.58

phi1 6.70 4.71 3.86

The τ2 statistic for the null hypothesis γ = 0 is 1.22474 and its
corresponding critical values at levels 1%, 5%, and 10% are given in Table 5
as −3.51,−2.89, and −2.58 respectively. From this analysis we conclude that
the series behaves like a random walk with a drift constant term. The next
question is whether further differencing might be needed. So we simply
repeat the unit root modeling and testing using the differenced series as
input.

The τ3 statistic equals to −4.35. From Table 6, we reject the null
hypothesis at 1% and assume that no further differencing is needed.

39



Table 4: Regression with drift constant for the U.S. real GNP data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.42944 4.01643 0.35590 0.72323

z.lag.1 0.01600 0.01307 1.22474 0.22571
z.diff.lag 0.36819 0.13440 2.73943 0.00820

Table 5: Dickey-Fuller critical values for test statistics with drift case.

1pct 5pct 10pct
tau2 -3.51 -2.89 -2.58
phi1 6.70 4.71 3.86

6.2. Covariate augmented tests

The CADFtest package (Lupi, 2011) implements Hansen’s covariate
augmented Dickey-Fuller test (Hansen, 1995) by including stationary
covariates in the model equations,

a(L)∆Zt = β0 + β1t + γZt−1 + b(L)′∆Xt + et (10)

a(L)∆Zt = β0 + γZt−1 + b(L)′∆Xt + et, (11)

a(L)∆Zt = γZt−1 + b(L)′∆Xt + et. (12)

where a(L) = 1 − a1L + . . . + apLp and b(L)′ = bq2 L−q2 + . . . + bq1 Lq1 . If the
main function CADFtest() is applied without any stationary covariates, the
ordinary ADF test is performed. In the illustrative example below, taken
from the CADFtest() online documentation, the augmented test strongly
rejects the unit root hypothesis, with a p-value less than 2%. On the other
hand, with the covariate, the test produces a p-value of about 9%. This is
shown in the the R session below,

R >require(CADFtest)

R >data(npext, package = "urca")

R >npext$unemrate <- exp(npext$unemploy)

R >L <- ts(npext, start = 1860)

R >D <- diff(L)

R >S <- window(ts.intersect(L, D), start = 1909)
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Table 6: Critical values for test statistics testing for second differences.

1pct 5pct 10pct
tau3 -4.04 -3.45 -3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47

R >CADFtest(L.gnpperca ~ D.unemrate, data = S, max.lag.y = 3,

+ kernel = "Parzen", prewhite = FALSE)

CADF test

data: L.gnpperca ~ D.unemrate

CADF(3,0,0) = -3.413, rho2 = 0.064, p-value =

0.001729

alternative hypothesis: true delta is less than 0

sample estimates:

delta

-0.08720302

7. Cointegration and VAR models

In the simplest case, two time series that are both difference-stationary
are said to be cointegrated when a linear combination of them is stationary.
Some classic examples (Engle and Granger, 1987) of bivariate cointegrated
series include:

� consumption and income

� wages and prices

� short and long term interest rates

Further examples are given in most time series textbooks with an
emphasis on economic or financial series (Enders, 2010; Chan, 2010; Tsay,
2010; Lütkepohl, 2005; Hamilton, 1994; Banerjee et al., 1993).
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A cointegration analysis requires careful use of the methods discussed in
these books since spurious relationships can easily be found when working
with difference-stationary series (Granger and Newbold, 1974). Most
financial and economic time series are not cointegrated. Cointegration
implies a deep relationship between the series that is often of theoretical
interest in economics. When a cointegrating relationship exists between two
series, Granger causality must exist as well (Pfaff, 2006). The vars package
(Pfaff, 2010b) for vector autoregressive modeling is described in the book
(Pfaff, 2006) and article (Pfaff, 2008). This package, along with its
companion package urca (Pfaff, 2010a), provides state-of-the-art methods
for cointegration analysis and modeling stationary and nonstationary
multivariate time series.

Full support for modeling, forecasting and analysis tools are provided for
the vector autoregressive time series model (VAR), structural VAR (SVAR)
and structural vector error-correction models (SVEC). The VAR (p)
stationary model for a k-dimensional time series, {yt}

yt = δdt +Φ1yt−1 + . . . +Φpyt−p + et, (13)

where δ,Φ` = (φi j,`)k×k are coefficient matrices, dt is a matrix containing a
constant term, linear trend, seasonal indicators or exogenous variables, and
εt ∼ N(0, Ik). Using the vars package, the VAR model is estimated using
OLS. The basic VAR model, without the covariates dt, may also be
estimated using the R core function ar(). In the case of the SVAR model,

Ayt = δdt +Φ1yt−1 + . . . +Φpyt−p + Bet, (14)

where A, and B are k × k matrices. With the structural models, further
restrictions are needed on the parameters and after the model has been
uniquely specified, it is estimated by maximum likelihood. The SVEC
model is useful for modeling non-stationary multivariate time series and is
an essential tool in cointegration analysis. The basic error correction model,
VEC, may be written,

∇yt = Πyt + Γ1∇yt−1 + . . . + ∇Γpyt−p+1 + et, (15)

where ∇ is the first-differencing operator and Π and Γ`, ` = 1, . . . , p − 1 are
parameters. As with the VAR model, the VEC model may be generalized
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to the SVEC model with coefficient matrices A and/or B. A cointegration
relationship exists provided that 0 < rank Π < p. When rank Π = 0, a VAR
model with the first differences may be used and when Π is of full rank, a
stationary VAR model of order p is appropriate. The vars package includes
functions for model fitting, model selection and diagnostic checking as well
as forecasting with VAR, SVAR and SVEC models. Cointegration tests and
analysis are provided in the urca. In addition to the two-step method of
Engle and Granger (1987), tests based on the method of Phillips and
Ouliaris (1990) and the likelihood method (Johansen, 1995) are
implemented in the urca package. Illustrative examples of how to use the
software for multivariate modeling and cointegration analysis are discussed
in the book, paper and packages of Pfaff (2006, 2008, 2010b).

8. GARCH time series

Volatility refers to the random and autocorrelated changes in variance
exhibited by many financial time series. The GARCH family of models
(Engle, 1982; Bollerslev, 1986) capture quite well volatility clustering as
well as the thick-tailed distributions often found with financial time series
such as stock returns and foreign exchange rates. The GARCH family of
models is discussed in more detail in textbooks dealing with financial time
series (Enders, 2010; Chan, 2010; Tsay, 2010; Cryer and Chan, 2008;
Shumway and Stoffer, 2011; Hamilton, 1994).

A GARCH(p, q) sequence at, t = . . . ,−1, 0, 1, . . . is of the form

at = σtεt

and

σ2
t = α0 +

p∑
i=1

α ja2
t−i +

q∑
j=1

β jσ
2
t− j,

where α0 > 0, αi ≥ 0, 1 ≤ i ≤ p, β j ≥ 0, 1 ≤ j ≤ q are parameters. The
errors εt are assumed to be independent and identically distributed from a
parametric distribution such as normal, generalized error distribution
(GED), Student-t or skewed variations of these distributions. While ARMA
models deal with nonconstant conditional expectation, GARCH models
handle non-constant conditional variance. Sometimes those two models are
combined to form the ARMA/GARCH family of models. A comprehensive
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account of these models is also given in the book by Zivot and Wang
(2006). This book also serves as the documentation for the well-known
S-Plus add-on module, Finmetrics. Many of the methods provided by
Finmetrics for GARCH and related models are now available with the
fGARCH package (Wuertz et al., 2009a). In the following, we give a brief
discussion of the use of fGARCH for simulation, fitting and inferences. The
principal functions in this package include garchSpec, garchSim, and
garchFit and related methods functions. The fGarch package allows for a
variety of distributional assumptions for the error sequence εt. As an
illustrative example, we simulate a GARCH(1,1) with α0 = 10−6, α1 = 0.2,
and β1 = 0.7 and with a skewed GED distribution with skewness coefficient
1.25 and shape parameter 4.8. The simulated series is shown in Figure 23.

R> require("fGarch")

R> spec <- garchSpec(model = list(omega = 1e-06, alpha = 0.2,

+ beta = 0.7, skew = 1.25, shape = 4.8), cond.dist = "sged")

R> x <- garchSim(spec, n = 1000)
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Figure 23: Simulated GARCH(1, 1) with α0 = 10−6, α1 = 0.2, β1 = 0.7.

To fit the above simulated data with GARCH(1,1) we could use,

R> out <- garchFit(~garch(1, 1), data = x, trace = FALSE)
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Some of the inferences that can be carried out by using the summary()

function, include the Jarque-Bera and Shapiro-Wilk normality tests, various
Ljung-Box white noise tests, and ARCH effect tests.

As a further illustration, we fit an ARMA/GARCH model to the U.S.
inflation (Bollerslev, 1986). We used the GNP deflator for 1947-01-01 to
2010-04-01. There were n = 254 observations which are denoted by
zt, t = 1, . . . , n. Then the inflation rate may be estimated by the logarithmic
difference, rt = log(zt) − log(zt−1). The following ARMA/GARCH model was
fit using the function garchFit() in fGarch,
rt = 0.103 + 0.369rt−1 + 0.223rt−2 + 0.248rt−3 + εt, and
σ2

t = 0.004 + 0.269ε2
t−1 + 0.716σ2

t−1. Figure 24 shows time series plots for rt

and σt. The tseries (Trapletti, 2011) can also fit GARCH models but
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Figure 24: Inflation rate, rt, and volatility, σt.

fGarch provides a more comprehensive approach.

9. Wavelet methods in time series analysis

Consider a time series of dyadic length, zt, t = 1, . . . , n, where n = 2J. The
discrete wavelet transformation (DWT) decomposes the time series into J
wavelet coefficients vectors, W j, j = 0, . . . , J − 1 each of length
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n j = 2J− j, j = 1, . . . , J plus a scaling coefficient VJ. Each wavelet coefficient is
constructed as a difference of two weighted averages each of length λ j = 2 j−1.
Like the discrete Fourier transformation, the DWT provides an orthonormal
decomposition, W =WZ, where W ′ = (W ′

1, . . . ,W
′
J−1,V

′
J−1), Z = (z1, . . . , zn)′

and W is an orthonormal matrix. In practice, the DWT is not computed
using matrix multiplication but much more efficiently using filtering and
downsampling (Percival and Walden, 2000, Ch 4). The resulting algorithm
is known as the pyramid algorithm and computationally it is even more
efficient than the fast Fourier transform. Applying the operations in reverse
order yields the inverse DWT. Sometimes a partial transformation is done,
producing the wavelet coefficient vectors W j, j = 0, . . . , J0, where J0 < J − 1.
In this case, the scaling coefficients are in the vector, VJ0 of length 2J−J0 .
The wavelet coefficients are associated with changes in the time series over
the scale λ j = 2 j−1 while the scaling coefficients, VJ0 , are associated with the
average level on scale τ = 2J0 . The maximum overlap DWT or MODWT
omits the downsampling. The MODWT has many advantages over the
DWT (Percival and Walden, 2000, Ch 5) even though it does not provide
an orthogonal decomposition. Percival and Walden (2000) provide an
extensive treatment of wavelet methods for time series research with many
interesting scientific time series. Gençay et al. (2002) follows a similar
approach to wavelets as given by Percival and Walden (2000) but with an
emphasis on financial and economic applications.

All important methods as well as all datasets discussed in the books by
Percival and Walden (2000); Gençay et al. (2002) are available in the R
packages waveslim (Whitcher, 2010) and wmtsa (Constantine and Percival,
2010). Nason (2008) provides a general introduction to wavelet methods in
statistics, including smoothing and multiscale time series analysis. R scripts
are used extensively in his book and all figures in the book (Nason, 2008)
may be reproduced using R scripts available in the wavethresh R package
(Nason, 2010).

Figure 25 shows the denoised annual Nile riverflows (Hipel and McLeod,
1994) using the universal threshold with hard thresholding and Haar
wavelets. Hipel and McLeod (1994); Hipel et al. (1975) fit a step
intervention analysis time series model with AR(1) noise. Physical reasons
as well as cumsum analysis were presented (Hipel and McLeod, 1994,
§19.2.4) to suggest 1903 as the start of intervention that was due to the
operation of the Aswan dam. The fitted step intervention is represented by
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the three line segments while the denoised flows are represented by the
jagged curve. The points show actual observed flows. Figure 25 suggests
the intervention actually may have started a few years prior to 1903. The
computations for Figure 25 were done using the functions modwt(),
universal.thresh.modwt() and imodwt() in the package waveslim.
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Figure 25: Mean annual Nile flow, October to September, Aswan.

An estimate of the wavelet variance, σ̂2(λ j) is obtained based on the
variance of the wavelet coefficients in an MODWT transformation at scale
λ j = 2 j−1. The wavelet variance is closely related to the power spectral
density function and

σ̂2(λ j) ≈ 2

2/λ j∫
1/λ j

p( f )d f .

The wavelet variance decomposition for the annual sunspot numbers,
sunspot.year in R is shown in Figure 26. This figure was produced using
the wavVar function in wmtsa and the associated plot method. The 95%
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confidence intervals are shown in Figure 26. The wavelet variances
correspond to changes over 1, 2, 4, 8 and 16 years.
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Figure 26: Wavelet variance, yearly sunspot numbers, 1700-1988.

Multiresolution analysis (MRA) is another widely useful wavelet method
for time series analysis. The MRA decomposition works best with the
MODWT. The mra function in waveslim was used to produce the
decomposition of an electrocardiogram time series that is shown in Figure
27. The la8 or least-asymmetric filter with half-length 8 was used (Percival
and Walden, 2000, p. 109). A similar plot is given by Percival and Walden
(2000, Figure 184).
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10. Stochastic differential equations (SDE)

A SDE is comprised of a differential equation that includes a stochastic
process, the simplest example being Brownian motion. Geometrical
Brownian motion is often used to describe stock market prices. This SDE
may be written, dP(t) = P(t)µ dt + P(t)σ dW(t) where P(t) is the price at time
t and the parameters µ > 0 and σ > 0 are the drift and diffusion
parameters. The Gaussian white noise term, W(t), may be considered the
derivative of Brownian motion. This SDE may also be written,
d log(P(t)) = µ dt +σ dW(t), so we see that P(t) > 0 and log(P(t)) is Brownian
motion.

More complicated SDE’s may involve more complex drift and volatility
functions. The book (Iacus, 2008) provides an intuitive and informal
introduction to SDE and could be used in an introductory course on SDE.
Only SDE’s with Gaussian white noise are considered. The accompanying
R package (Iacus, 2009) provides R scripts for all figures in the book (Iacus,
2008) as well as functions for simulation and statistical inference with SDE.

An important area of application is in financial mathematics where
option values or risk assessments are often driven by SDE systems. Usually
Monte Carlo simulation is the only way to find approximate solutions. The
main class of SDE considered by this package is a diffusion process of the
following form,

dX(t) = b(t, X(t)) dt + σ(t, X(t)) dW(t) (16)

with some initial condition X(0), where W(t) is a standard Brownian
motion. According to Itô formula, (16) can be represented as

X(t) = X(0) +

∫ t

0
b(u, X(u)) du +

∫ t

0
σ(u, X(u)) dW(u).

Under some regular conditions on the drift b(·, ·) and diffusion σ2(·, ·), (16)
has either a unique strong or weak solution. In practice, the class of SDE
given by (16) is too large. The following diffusion process covers many
well-known and widely used stochastic processes, including Vasicek (VAS),
Ornstein-Uhlenbeck (OU), Black-Scholes-Merton (BS) or geometric
Brownian motion, and Cox-Ingersoll-Ross (CIR),

dP(t) = P(t)µ dt + P(t)σ dW(t)dX(t) = b(X(t)) dt + σ(X(t)) dW(t). (17)
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The main function is sde.sim() and it has extensive options for the general
diffusion process (17) or more specific processes. The function DBridge()

provides another general purpose function for simulating diffusion bridges.
Simple to use functions for simulating a Brownian bridge and geometric
Brownian motion, BBridge() and GBM(), are also provided. Using
sde.sim(), we simulate ten replications of Brownian motions each starting
at the X(0) = 0 and comprised of 1000 steps. The results are displayed in
Figure 28.
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Figure 28: Ten Brownian motions.

A more complex SDE,

dX(t) = (5 − 11x + 6x2 − x3)dt + dW(t)

with X(0) = 5 is simulated using three different algorithms and using two
different step-sizes ∆ = 0.1 and ∆ = 0.25. For the smaller step size ∆ = 0.1,
Figure 29 suggests all three algorithms work about equally well. But only
the Shoji-Ozaki algorithm appears to work with the larger step size
∆ = 0.25.

In addition to simulation, the sde package provides functions for
parametric and nonparametric estimation: EULERloglik(), ksmooth(),
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Figure 29: Simulations of dX(t) = (5−11x+6x2−x3)dt+dW(t) using three different algorithms
and two different step sizes.

SIMloglik(), and simple.ef(). Approximation of conditional density
X(t)|X(t0) = x0 at point x0 of a diffusion process is available with the
functions: dcElerian(), dcEuler(), dcKessler(), dcozaki(), dcShoji(),
and dcSim().

11. Conclusion

There are many more packages available for time series than discussed in
this article and many of these are briefly described in the CRAN Task
Views.10 In particular, see task views for Econometrics, Finance and
TimeSeries. We have selected those packages that might be of most
general interest, that have been most widely used and that we are most
familiar with. The reader should note that the packages published on
CRAN, including those in the task views, need only obey formatting rules
and not produce computer errors. There is no endorsement that packages
available on CRAN produce correct or useful results. On the other hand,

10http://cran.r-project.org/web/views/
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packages discussed in the Journal of Statistical Software or published by
major publishers such as Springer-Verlag or Chapman & Hall/CRC have
been carefully reviewed for correctness and quality.

Researchers wishing to increase the impact of their work should consider
implementing their methods in R and making it available as a package on
CRAN. Developing R packages is discussed in the online publication by R
Development Core Team (2011) and from a broader perspective by
Chambers (2008).
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12. Appendix

12.1. datasets

Dataset name Description
AirPassengers monthly airline passengers, 1949-1960
BJsales sales data with leading indicator
BOD biochemical oxygen demand
EuStockMarkets daily close price, European stocks, 1991-1998
LakeHuron level of Lake Huron 1875-1972
Nile flow of the river Nile
UKDriverDeaths road casualties, Great Britain 1969-84
UKgas UK quarterly gas consumption
USAccDeaths accidental deaths in the US 1973-1978
USPersonalExpenditure personal expenditure data
WWWusage internet usage per minute
WorldPhones the world’s telephones
airmiles passenger miles, US airlines, 1937-1960
austres quarterly time series, Australian residents
co2 mauna loa atmospheric co2 concentration
UKLungDeaths monthly deaths from lung diseases in the UK
freeny Freeny’s revenue data
longley Longley’s economic regression data
lynx annual Canadian lynx trappings 1821-1934
nhtemp average yearly temperatures in New Haven
nottem monthly temperature, Nottingham, 1920-39
sunspot.month monthly sunspot data, 1749-1997
sunspot.year yearly sunspot data, 1700-1988
sunspots monthly sunspot numbers, 1749-1983
treering yearly treering data, -6000-1979
uspop populations recorded by the US census

Table 7: datasets time series data.
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12.2. stats

Function Purpose
embed matrix containing lagged values
lag lagged values
ts create a time series object
ts.intersect intersection, multivariate series by
ts.union union, multivariate series by union
time extract time from a ts-object
cycle extract seasonal times from a ts-object
frequency sampling interval
window select subset of time series

Table 8: stats utilities for ts-objects. These functions are useful for creating and manipu-
lating univariate and multivariate time series.

Function Purpose
acf acf, pacf
ccf cross-correlation
cpgram Bartlett’s cumulate periodogram test
lag.plot alternative time series plot
fft fast Fourier transform
convolve convolution via fft
filter moving-average/autoregressive filtering
spectrum spectral density estimation
toeplitz Toeplitz matrix

Table 9: stats autocorrelation and spectral analysis functions.
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Function Purpose
arima, arima0 fit ARIMA
ar fit AR
KalmanLike loglikelihood, univariate state-space model
KalmanRun KF filtering
KalmanSmooth KF smoothing
KalmanForecast KF forecasting
makeARIMA ARIMA to KF
PP.test Phillips-Perron unit root test
tsdiag diagnostic checks
ARMAacf theoretical ACF of ARMA
acf2AR fit AR to ACF
Box.test Box-Pierce or Ljung-Box test
diff, diffinv difference or inverse
ARMAtoMA MA expansion for ARMA
arima.sim simulate ARIMA
HoltWinters Holt-Winters filtering
StructTS Kalman filter modeling

Table 10: stats functions for time series models. In addition many of these function have
predict and residuals methods.

Function Purpose
filter moving-average/autoregressive filtering
tsSmooth smooth from StuctTS object
stl seasonal-trend-loess decomposition
decompose seasonal decomposition, moving-average filters

Table 11: stats smoothing and filtering.
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12.3. tseries

Function Purpose
adf.test augmented Dickey-Fuller test
bds.test Breusch-Godfrey test
garch fit GARCH models to time series
get.hist.quote download historical finance data
jarque.bera.test Jarque-Bera test
kpss.test KPSS test for stationarity
quadmap quadratic map (logistic equation)
runs.test runs test
terasvirta.test Teraesvirta neural network test for nonlinearity
tsbootstrap bootstrap for general stationary data
white.test White neural network test for nonlinearity

Table 12: tseries functions.

Dataset name Description
bev Beveridge wheat price index, 1500-1869
camp Mount Campito, treering data, -3435-1969
ice.river Icelandic river Data
NelPlo Nelson-Plosser macroeconomic time series
nino sea surface temperature, El Niño indices
tcm monthly yields on treasury securities
tcmd daily yields on treasury securities
USeconomic U.S. economic variables

Table 13: tseries time series data.
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12.4. Forecast

Function Purpose
accuracy() accuracy measures of forecast
BoxCox, invBoxCox() Box-Cox transformation
decompose() improved version of decompose()
dm.test() Diebold-Mariano test compares the forecast accuracy
forecast() generic function with various methods
monthdays() number of days in seasonal series
na.interp() interpolate missing values
naive(), snaive() ARIMA(0,1,0) forecast and seasonal version
seasadj() seasonally adjusted series
seasonaldummy() create matrix of seasonal indicator variables
seasonplot() season plot

Table 14: General purpose utility functions.

Function Purpose
arfima automatic ARFIMA
Arima improved version of arima()
arima.errors removes regression component
auto.arima automatic ARIMA modeling
ndiffs use unit root test to determine differencing
tsdisplay() display with time series plot, ACF, PACF, etc.

Table 15: ARIMA functions.
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Function Purpose
croston exponential forecasting for intermittent series
ets exponential smoothing state space model
logLik.ets loglikelihood for ets object
naive(), snaive() ARIMA(0,1,0) forecast and seasonal version
rwf() random walk forecast with possible drifts
ses(), holt(), hw() exponential forecasting methods
simulate.ets() simulation method for ets object
sindexf seasonal index, future periods
splinef forecast using splines
thetaf forecast using theta method
tslm() lm()-like function using trend and seasonal

Table 16: Exponential smoothing and other time series modeling functions.

12.5. ltsa

Function Purpose
DHSimulate simulate using Davies-Harte method
DLLoglikelihood exact concentrated log-likelihood
DLResiduals standardized prediction residuals
DLSimulate simulate using DL recursion
SimGLP simulate general linear process
TrenchInverse Toeplitz matrix inverse
ToeplitzInverseUpdate updates the inverse
TrenchMean exact MLE for mean
TrenchForecast exact forecast and variance

Table 17: Main functions in ltsa.
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12.6. FitAR

Function Purpose
PacfPlot partial autocorrelation plot
SelectModel AIC/BIC selection
TimeSeriesPlot time series plot

Table 18: FitAR model selection functions.

Function Purpose
FitAR exact mle for AR(p)/subset ARzeta
FitARLS LS for AR(p)/subset ARphi
GetFitAR fast exact mle for AR(p)/subset ARzeta
GetFitARLS fast LS for AR(p) and subset ARphi
GetARMeanMLE exact mean MLE in AR
AR1Est exact MLE for mean-zero AR(1)

Table 19: FitAR estimation functions.

Function Purpose
Boot generic parametric bootstrap
Boot.FitAR method for FitAR
Boot.ts method for ts
LjungBox Ljung-Box portmanteau test
LBQPlot plot Ljung-Box test results
RacfPlot residual acf plot
JarqueBeraTest test for normality

Table 20: FitAR diagnostic check functions.
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Function Purpose
AcfPlot general purpose correlation plotting
ARSdf AR spectral density via FFT
ARToMA impulse coefficients
ARToPacf transform AR to PACF
BackcastResidualsAR compute residuals using backforecasting
cts concantenate time series
InformationMatrixAR Fisher information matrix AR
InformationMatrixARp Fisher information matrix subset case, ARp
InformationMatrixARz Fisher information matrix subset case, ARz
InvertibleQ test if invertible or stationary-casual
PacfDL compute PACF from ACF using DL recursions
PacfToAR transform PACF to AR
sdfplot generic spectral density plot
sdfplot.FitAR method for class FitAR
sdfplot.Arima method for class Arima
sdfplot.ar method for class ar
sdfplot.ts method for class ts
sdfplot.numeric method for class numeric
SimulateGaussianAR simulate Gaussian AR
Readts input time series
TacvfAR theoretical autocovariances AR
TacvfMA theoretical autocovariances MA
VarianceRacfAR variance of residual acf, AR
VarianceRacfARp variance of residual acf, subset case, ARp
VarianceRacfARz variance of residual acf, subset case, ARz

Table 21: FitAR miscellaneous functions.
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