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Abstract

In 1988, Simon Fitzpatrick defined a new convex function FA — nowadays called the Fitzpatrick
function — associated with a monotone operator A, and similarly a monotone operator Gf

associated with a convex function f .
This paper deals with two different aspects of Fitzpatrick functions. In the first half, we

consider the Fitzpatrick function of the subdifferential of a proper, lower semicontinuous, and
convex function. A refinement of the classical Fenchel-Young inequality is derived and conditions
for equality are investigated. The results are illustrated by several examples.

In the second half, we study the problem, originally posed by Fitzpatrick, of determining
when A = GFA

. Fitzpatrick proved that this identity is satisfied whenever A is a maximal
monotone; however, he also observed that it can hold even in the absence of maximal mono-
tonicity. We propose a new condition sufficient for this identity, formulated in terms of the
polarity notions introduced recently by Mart́ınez-Legaz and Svaiter. Moreover, on the real line,
this condition is also necessary and it corresponds to the connectedness of A.
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1 The subdifferential case: Introduction

Throughout the first half of this paper, we assume that X is a real reflexive Banach space, with
norm ‖ · ‖, with dual space X∗, and with duality product p = 〈·|·〉. Recall that an operator
A : X → 2X∗

, which we identify entirely with its graph in X ×X∗ in the second half of this paper,
is monotone, if

(∀(x, x∗) ∈ A)(∀(y, y∗) ∈ A) 〈x− y|x∗ − y∗〉 ≥ 0. (1.1)

If a monotone operator A possesses no proper extension that is still monotone, then A said to
be maximal monotone. The prime example of a maximal monotone operator is the subdifferential
operator ∂f of a proper, lower semicontinuous, and convex function f (see [11]). For background
material on monotone operators and convex analysis, we refer the reader to [12], [13], [15], and
[18]. The notation we employ is standard. The projector (resp. normal cone operator, indicator
function, distance function) for a given nonempty closed convex set C in X is denoted by PC (resp.
by NC , by ιC , by dC).

In 1988, Simon Fitzpatrick (see [6, Definition 3.1]) investigated the following function which has
been utilized recently in [3], [8], [9], [17], and [16].

Definition 1.1 (Fitzpatrick function) The Fitzpatrick function associated with an operator
A : X → 2X∗

is defined by

FA : X ×X∗ → ]−∞,+∞] : (y, y∗) 7→ sup
(x,x∗)∈A

(

〈y|x∗〉+ 〈x|y∗〉 − 〈x|x∗〉
)

(1.2)

= 〈y|y∗〉 − inf
(x,x∗)∈A

〈y − x|y∗ − x∗〉 . (1.3)

Observe that (X × X∗)∗ = X∗ × X and define R : X × X∗ → X∗ × X : (x, x∗) 7→ (x∗, x). This
operator is useful in the formulation of some basic properties of the Fitzpatrick function.

Fact 1.2 Let A : X → 2X∗
be monotone, and let (x, x∗) ∈ X ×X∗. Then the following is true.

(i) FA is convex, lower semicontinuous, and proper.

(ii) FA = (ιA + p)∗ ◦R.

(iii) FA ≤ F ∗
A ◦R ≤ p + ιA, with equality throughout at points in A.

(iv) FA−1 ◦R = FA.

Proof. See [6, Proposition 4.1 and Proposition 4.2]. �

The first objective of this paper is to study the Fitzpatrick function F∂f of the subdifferential
operator of a convex, lower semicontinuous, and proper function f . The function F∂f is particularly
interesting because it allows the following refinement of the classical Fenchel-Young inequality:

(∀x ∈ X)(∀x∗ ∈ X∗) 〈x|x∗〉 ≤ F∂f (x, x∗) ≤ f(x) + f∗(x∗). (1.4)

2



This part of the paper is organized as follows. In Section 2, the inequalities (1.4) are derived, the
domain of F∂f is located as precisely as possible, and the question when equalities occur in (1.4)
is investigated. These results are illustrated in Section 3, where numerous examples are presented.
Section 4 provides a natural upper bound for the Fitzpatrick function of a sum of two monotone
operators. This section concludes our work on Fitzpatrick functions of subdifferentials.

The remaining sections 5–8 deal with a problem by Simon Fitzpatrick; we refer the reader to
Section 5 for a more detailed introduction to the second half of this paper.

2 The subdifferential case: Refined Fenchel-Young inequality

Proposition 2.1 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then for
all (y, y∗) ∈ X ×X∗, we have

〈y|y∗〉 ≤ F∂f (y, y∗) ≤ f(y) + f∗(y∗) ≤ F ∗
∂f (y∗, y) ≤ 〈y|y∗〉+ ι∂f (y, y∗). (2.1)

In particular, dom f × dom f∗ ⊂ dom F∂f . If (y, y∗) ∈ (dom ∂f)× (dom ∂f∗) satisfies F∂f (y, y∗) =
f(y)+f∗(y∗) and

(

(xn, x∗
n)

)

n∈N
is a sequence in ∂f such that 〈xn|y∗〉+〈y|x∗

n〉−〈xn|x∗
n〉 → F∂f (y, y∗),

then
f(xn)− 〈xn|y∗〉 → min

x∈X

(

f(x)− 〈x|y∗〉
)

= −f∗(y∗) (2.2)

and
f∗(x∗

n)− 〈y|x∗
n〉 → min

x∗∈X∗

(

f∗(x∗)− 〈y|x∗〉
)

= −f(y); (2.3)

furthermore, the minimizers in (2.2) and (2.3) are ∂f∗(y∗) and ∂f(y), respectively.

Proof. The first inequality of (2.1) is equivalent to inf(x,x∗)∈∂f 〈y − x|y∗ − x∗〉 ≤ 0, which is true
because ∂f is maximal monotone (see [11] or [18, Theorem 3.1.11]). Let

(

(xn, x∗
n)

)

n∈N
be a sequence

in ∂f such that 〈y|x∗
n〉+ 〈xn|y∗〉 − 〈xn|x∗〉 → F∂f (y, y∗). Then

F∂f (y, y∗)← 〈y|x∗
n〉+ 〈xn|y∗〉 − 〈xn|x∗

n〉 = 〈y − xn|x∗
n〉+ 〈xn|y∗〉 (2.4)

≤ f(y)− f(xn) + 〈xn|y∗〉 ≤ f(y) + f∗(y∗). (2.5)

This verifies the second inequality of (2.1) and it implies that dom f × dom f∗ ⊂ dom F∂f . Taking
the conjugate of this second inequality yields the third inequality of (2.1). The fourth inequality
of (2.1) is clear since (p + ι∂f )∗(y∗, y) = F∂f (y, y∗) (see Fact 1.2(ii)).

Now let (y, y∗) ∈ (dom ∂f)×(dom ∂f∗) be such that F∂f (y, y∗) = f(y)+f∗(y∗). Then (2.4)–(2.5)
imply that 〈xn|y∗〉 − f(xn)→ f∗(y∗). Hence (2.2) holds and an analogous argument verifies (2.3).
The result concerning the minimizers follows from convex calculus. �

Remark 2.2 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper, and let
(y, y∗) ∈ dom F∂f .
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(i) Parts of Proposition 2.1 were already proved in Fitzpatrick’s original paper: [6, Corollaries 3.9
and 3.13] imply that p ≤ F∂f and that conv dom∂f × conv dom ∂f∗ ⊂ dom F∂f . This last
inclusion is a consequence of Proposition 2.1 since dom ∂f ⊂ dom f , dom ∂f∗ ⊂ dom f∗, and
both dom f and dom f∗ are convex.

(ii) It is well known that equality in the Fenchel-Young inequality

〈y|y∗〉 ≤ f(y) + f∗(y∗) (2.6)

holds precisely on the graph of ∂f , i.e.,

〈y|y∗〉 = f(y) + f∗(y∗) if and only if (y, y∗) ∈ ∂f. (2.7)

Proposition 2.1 yields
〈y|y∗〉 ≤ F∂f (y, y∗) ≤ f(y) + f∗(y∗). (2.8)

These inequalities provide a refinement of the Fenchel-Young inequality (2.6).

(iii) It is natural to inquire when equality occurs in either of the inequalities (2.8). Fitzpatrick’s
[6, Corollary 3.9] provides a complete solution for the left-hand inequality: indeed, since ∂f
is maximal monotone, his result states that

〈y|y∗〉 = F∂f (y, y∗) if and only if (y, y∗) ∈ ∂f. (2.9)

(iv) The problem of characterizing which points in domF∂f satisfy

F∂f (y, y∗)
?
= f(y) + f∗(y∗) (2.10)

is interesting as it does not appear to have a simple solution (see Theorem 2.3 and Exam-
ple 3.1). However, we note the implication

(y, y∗) ∈ ∂f ⇒ F∂f (y, y∗)=f(y) + f∗(y∗); (2.11)

indeed, if (y, y∗) ∈ ∂f , then 〈y|y∗〉 = f(y) + f∗(y∗) (see (2.7)) and the identity now follows
from (2.8). Theorem 2.3 below shows that if f is “sufficiently nice”, then it is precisely the
points in ∂f that satisfy (2.10).

Theorem 2.3 Suppose that f : X → R and f∗ : X∗ → R are both Fréchet differentiable and convex,
and that (y, y∗) ∈ X ×X∗. Then F∇f (y, y∗) = f(y) + f∗(y∗) if and only if y∗ = ∇f(y).

Proof. Observe that dom F∇f = X×X∗ by Proposition 2.1. If y∗ = ∇f(y), then F∇f (y, y∗)=f(y)+
f∗(y∗) by (2.11). Conversely, let us assume that (xn)n∈N is a sequence in X such that

〈y|∇f(xn)〉+ 〈xn|y∗〉 − 〈xn|∇f(xn)〉 → F∇f (y, y∗) = f(y) + f∗(y∗). (2.12)

The limit statements (2.2) and (2.3) of Proposition 2.1 combined with [18, Theorem 3.9.1] yield

xn → ∇f∗(y∗) and ∇f(xn)→ y∗. (2.13)

Now (2.12) and (2.13) result in 〈y|y∗〉 = f(y) + f∗(y∗). Therefore, y∗ = ∇f(y). �
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Theorem 2.4 Let X be finite-dimensional, let both f : X → R and f∗ : X∗ → R be convex, and
suppose that (y, y∗) ∈ X×X∗. Then F∂f (y, y∗)=f(y)+f∗(y∗) if and only if there exists (z, z∗) ∈ ∂f
such that F∂f (y, y∗) = 〈y|z∗〉+ 〈z|y∗〉 − 〈z|z∗〉, (y, z∗) ∈ ∂f , and (z, y∗) ∈ ∂f .

Proof. Suppose first that there exists (z, z∗) ∈ ∂f such that F∂f (y, y∗) = 〈y|z∗〉 + 〈z|y∗〉 − 〈z|z∗〉,
(y, z∗) ∈ ∂f , and (z, y∗) ∈ ∂f . Using (2.1), we obtain

F∂f (y, y∗) = 〈y|z∗〉+ 〈z|y∗〉 − 〈z|z∗〉 (2.14)

= f(y) + f∗(z∗) + f(z) + f∗(y∗)− 〈z|z∗〉 (2.15)

≥ f(y) + f∗(y∗) (2.16)

≥ F∂f (y, y∗). (2.17)

Conversely, let
(

(xn, x∗
n)

)

n∈N
be a sequence in ∂f such that

〈xn|y∗〉+ 〈y|x∗
n〉 − 〈xn|x∗

n〉 → F∂f (y, y∗) = f(y) + f∗(y∗). (2.18)

By Proposition 2.1, the sequences (xn)n∈N and (x∗
n)n∈N are minimizing for the objective functions

f − 〈·|y∗〉 and f∗ − 〈y|·〉, which have minimizers ∂f∗(y∗) and ∂f(y), respectively. Both sets of
minimizers are nonempty and compact, because X is finite-dimensional and the functions f and
f∗ have full domains. Therefore, by [5, Proposition I.37], the two corresponding optimization
problems are well posed in the generalized sense [5, Section I.6], which implies that both minimizing
sequences (xn)n∈N and (x∗

n)n∈N possess subsequences converging to corresponding minimizers. After
relabeling, if necessary, we assume that xn → z ∈ ∂f∗(y∗) and that x∗

n → z∗ ∈ ∂f(y). We deduce
that (z, y∗) ∈ ∂f and that (y, z∗) ∈ ∂f . Since

(

(xn, x∗
n)

)

n∈N
lies in ∂f , taking the limit shows that

(z, z∗) ∈ ∂f . Furthermore, taking limits in (2.18) yields 〈z|y∗〉+ 〈y|z∗〉 − 〈z|z∗〉 = F∂f (y, y∗). �

Remark 2.5 Suppose that X is finite-dimensional, that both f : X → R and f∗ : R are convex and
differentiable, and that (y, y∗) ∈ X ×X∗ satisfies F∇f (y, y∗) = f(y) + f∗(y∗). Then Theorem 2.4
guarantees the existence of z ∈ X such that F∇f (y, y∗) = 〈z|y∗〉 + 〈y|∇f(z)〉 − 〈z|∇f(z)〉 and
∇f(y) = ∇f(z). Note that f is strictly convex since f∗ is differentiable. Thus y = z and f(y) +
f∗(y∗) = F∇f (y, y∗) = 〈y|y∗〉. Therefore, y∗ = ∇f(y), which is also a consequence of Theorem 2.3.

We now turn to the following result, which is useful for computing the Fitzpatrick function of a
subdifferential as it almost precisely locates the domain.

Theorem 2.6 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then

dom f × dom f∗ ⊂ dom F∂f ⊂ dom f × dom f∗. (2.19)

Proof. The first inclusion of (2.19) follows from Proposition 2.1. Now set C = dom f and suppose
that y ∈ X r C. A result due to Simons (see [14, Lemma 2.(c)] or [18, Theorem 3.1.9(iii)]) implies
that for every η ∈ ]inf f(X),+∞[ = ]inf f(X), f(y)[, there exists (xη, x

∗
η) ∈ ∂f such that

Lη = sup
x∈Xr{y}

η − f(x)

‖y − x‖ ≤ 2
〈y − xη|x∗

η〉
‖y − xη‖

. (2.20)
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Let us fix momentarily x0 ∈ dom f and let us agree upon that limits taken in this proof correspond
to letting η tend to +∞. Then x0 6= y and Lη ≥ (η − f(x0))/‖x0 − y‖ → +∞. Thus

〈y − xη|x∗
η〉 ≥ 1

2Lη‖y − xη‖ ≥ 1
2LηdC(y)→ +∞. (2.21)

It follows that, for every y∗ ∈ X∗,

F∂f (y, y∗) ≥ 〈y|x∗
η〉+ 〈xη|y∗〉 − 〈xη |x∗

η〉 (2.22)

= 〈y − xη|x∗
η〉+ 〈xη − y|y∗〉+ 〈y|y∗〉 (2.23)

≥ 1
2Lη‖y − xη‖ − ‖y∗‖‖xη − y‖+ 〈y|y∗〉 (2.24)

≥
(

1
2Lη − ‖y∗‖

)

dC(y) + 〈y|y∗〉 (2.25)

→ +∞. (2.26)

Thus (y, y∗) ∈
(

(X r C)×X∗
)

r dom F∂f and hence

dom F∂f ⊂ dom f ×X∗. (2.27)

Applying this line of thought to f∗ rather than f , and recalling that F∂f∗ ◦R = F(∂f)−1 ◦R = F∂f

(see Fact 1.2(iv)), we deduce that

dom F∂f ⊂ X × dom f∗. (2.28)

Altogether, dom F∂f ⊂ dom f × dom f∗. �

Remark 2.7 Remark 3.2(ii) and Remark 3.5(ii) below show that it is impossible to improve the
lower and upper bound of Theorem 2.6, respectively.

3 The subdifferential case: Examples

Recall that NC = ∂ιC denotes the normal cone operator.

Example 3.1 (indicator function) Suppose that X is a real Hilbert space and that C is a
nonempty closed convex set in X. Then FNC

: X ×X → ]−∞,+∞] : (y, y∗) 7→ ιC(y) + ι∗C(y∗).

Proof. Fix (y, y∗) ∈ X ×X. Then

FNC
(y, y∗) = sup

x∈C, x∗∈NC(x)

(

〈x|y∗〉+ 〈y|x∗〉 − 〈x|x∗〉
)

(3.1)

= sup
x∈C

(

〈x|y∗〉+ sup 〈y − x|NC(x)〉
)

. (3.2)

If y ∈ C = dom ιC , then (∀x ∈ C) sup 〈y − x|NC(x)〉 = 0 and hence FNC
(y, y∗) = supx∈C 〈x|y∗〉 =

ι∗C(y∗) = ιC(y)+ι∗C(y∗). Now assume that y 6∈ C. Then PCy ∈ C and z = y−PCy ∈ NC(PCy)r{0}.
Hence sup 〈y − PCy|NC(PCy)〉 ≥ supρ∈[0,+∞[ 〈z|ρz〉 = +∞ = ιC(y). Therefore, FNC

(y, y∗) =
ιC(y) + ι∗C(y∗) in all cases. �
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Remark 3.2

(i) Example 3.1 provides a function for which (2.10) holds everywhere on X × X∗. This is in
stark contrast to Theorem 2.3, which states that a “sufficiently nice” function f satisfies this
identity only where it has to, namely on the graph of ∇f .

(ii) Now suppose that in X = R2, the set C is the epigraph of the function R → R : ρ 7→ 1
2 |ρ|2.

Then dom ι∗C = ranNC =
{

(ξ1, ξ2) ∈ X | ξ2 < 0
}

∪ {(0, 0)}, which is a set that is not closed.
Hence dom FNC

= dom ιC × dom ι∗C is also not closed. Therefore,

dom f × dom f∗ = dom F∂f $ dom f × dom f∗ (3.3)

can occur in Theorem 2.6.

Example 3.3 (norm) Suppose X is a real Hilbert space and let f = ‖ · ‖. Then

F∂f : X ×X∗ → ]−∞,+∞] : (y, y∗) 7→ f(y) + f∗(y∗) =

{

‖y‖, if ‖y∗‖ ≤ 1;

+∞, otherwise.
(3.4)

Proof. Let g = f∗, i.e., g is the indicator function of the unit ball, and let (y, y∗) ∈ X × X.
Then Fact 1.2(iv) and Example 3.1 yield F∂f (y, y∗) =

(

F(∂f)−1 ◦ R
)

(y, y∗) =
(

F∂g ◦ R
)

(y, y∗) =
F∂g(y

∗, y) = g(y∗) + g(y) = f(y) + f(y∗). �

The logarithmic barrier, − ln, is a classical function in convex analysis and optimization. It
admits simple formulae for the corresponding Fitzpatrick function and its conjugate.

Example 3.4 (negative logarithm) Suppose X = R and let

f : X → ]−∞,+∞] : ρ 7→
{

+∞, if ρ ≤ 0;

− ln(ρ), if ρ > 0.
(3.5)

Then

F∂f : R× R→ R : (ρ, ρ∗) 7→
{

1− 2
√

ρ(−ρ∗), if ρ ≥ 0 and ρ∗ ≤ 0;

+∞, otherwise.
(3.6)

Moreover,

F ∗
∂f : R×R→ R : (ρ∗, ρ) 7→

{

−1, if ρ∗ ≤ −1/ρ < 0;

+∞, otherwise.
(3.7)

Proof. It is well known that f∗ : ρ∗ 7→ −1 + f(−ρ∗). Consequently, Theorem 2.6 implies that
]0,+∞[ × ]−∞, 0[ ⊂ dom F∂f ⊂ [0,+∞[ × ]−∞, 0]. Thus let us fix (ρ, ρ∗) ∈ [0,+∞[ × ]−∞, 0].
Then

F∂f (ρ, ρ∗) = sup
ξ>0

(

ξρ∗ + ρ(−1/ξ)− ξ(−1/ξ)
)

= 1 + sup
ξ>0

(

ξρ∗ − ρ/ξ
)

. (3.8)

Considering three cases (namely, ρ = 0, ρ∗ = 0, and ρρ∗ 6= 0) and some calculus yield (3.6). After
some further calculus, one arrives at (3.7). �
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Remark 3.5

(i) In the setting of Example 3.4, the refined Fenchel-Young inequality (2.8) is equivalent to

(∀ρ ≥ 0)(∀σ ≥ 0) − ρσ ≤ 1− 2
√

ρσ ≤ − ln(ρ)− 1− ln(σ), (3.9)

which is, in turn, equivalent to (∀τ ≥ 0) −τ ≤ 1− 2
√

τ ≤ −1− ln(τ).

(ii) Furthermore, Example 3.4 shows that

dom f × dom f∗ $ dom F∂f = dom f × dom f∗ (3.10)

can occur in Theorem 2.6.

The negative entropy is an important function in various branches of mathematical sciences;
however, its corresponding Fitzpatrick appears to be relatively involved.

Example 3.6 (negative entropy) Suppose that X = R and let

f : X → ]−∞,+∞] : ρ 7→











+∞, if ρ < 0;

0, if ρ = 0;

ρ ln(ρ)− ρ, if ρ > 0.

(3.11)

Denote the inverse of the function [0,+∞[ → [0,+∞[ : ρ → ρeρ by W . The function W is known
as the Lambert W function; see [4] for further information. Then

F∂f : (ρ, ρ∗) 7→











+∞, if ρ < 0;

exp(ρ∗ − 1), if ρ = 0;

ρρ∗ + ρ
(

W (κ) + 1
W (κ) − 2

)

, if ρ > 0 and κ = ρe1−ρ∗ .

(3.12)

Proof. Note that dom f = [0,+∞[ and that dom f∗ = R, since f∗ = exp. Since both domains are
closed, Theorem 2.6 implies that

dom F∂f = [0,+∞[× R. (3.13)

This establishes the first case in (3.12). Recall that ∂f(ξ) = Ø, if ξ ≤ 0; ∂f(ξ) = {ln(ξ)}, if ξ > 0.
Thus, letting (ρ, ρ∗) ∈ [0,+∞[× R, we obtain

F∂f (ρ, ρ∗) = sup
ξ>0

(

ρ ln(ξ) + ρ∗ξ − ξ ln(ξ)
)

. (3.14)

If ρ = 0, then F∂f (0, ρ∗) = f∗(ρ∗ − 1) = exp(ρ∗ − 1) and thus the second case in (3.12) is verified.
Suppose that ρ > 0. Then the (strictly concave) function we supremize over in (3.14) has unique
maximizer which must be a critical point, i.e., it satisfies

ρ

ξ
+ ρ∗ − 1− ln(ξ) = 0. (3.15)
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We now show that
ζ = eρ∗−1+W (ρe1−ρ∗). (3.16)

satisfies (3.15). Using the definition of ζ for (3.17)&(3.19) and the definition of W for (3.18), we
indeed obtain

ln(ζ) = ρ∗ − 1 + W (ρe1−ρ∗) (3.17)

= ρ∗ − 1 +
ρe1−ρ∗

eW (ρe1−ρ∗)
(3.18)

= ρ∗ − 1 +
ρe1−ρ∗

ζe1−ρ∗
(3.19)

= ρ∗ − 1 +
ρ

ζ
. (3.20)

Letting κ = ρe1−ρ∗ , we observe that

eρ∗−1+W (κ) =
eρ∗−1

W (κ)
W (κ)eW (κ) =

eρ∗−1

W (κ)
κ =

eρ∗−1

W (κ)
ρe1−ρ∗ =

ρ

W (κ)
. (3.21)

Therefore,

F∂f (ρ, ρ∗) = ρ
(

ρ∗ − 1 + W (κ)
)

+ ρ∗eρ∗−1+W (κ) − eρ∗−1+W (κ)
(

ρ∗ − 1 + W (κ)
)

(3.22)

= ρ
(

ρ∗ − 1 + W (κ)
)

+ eρ∗−1+W (κ)
(

1−W (κ)
)

(3.23)

= ρ
(

ρ∗ − 1 + W (κ)
)

+
ρ

W (κ)

(

1−W (κ)
)

(3.24)

= ρρ∗ + ρ
(

W (κ) +
1

W (κ)
− 2

)

, (3.25)

which completes the proof. �

The discussion of a quadratic function requires some preliminary work.

Proposition 3.7 Let X be a real Hilbert space and let A : X → X be continuous, positive semidef-
inite, linear, and symmetric. Define qA : X → R : x 7→ 1

2 〈x|Ax〉. Then

(i) ∇qA = A.

(ii) q∗A ◦ A = qA.

(iii) ranA ⊂ dom q∗A ⊂ ran A.

(iv) If ran A is closed and A† denotes the Moore-Penrose inverse of A (see [7] for further infor-
mation), then dom q∗A = ran A and q∗A|ran A = qA† |ran A.
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Proof. (i) and (ii): See, e.g., [2, Theorem 3.6.(i)]. (iii): (See also [1, Proposition 12.3.6(iii)].) Since
dom qA = X, it is clear from (ii) that ran A ⊂ dom q∗A. Now let x∗ ∈ dom q∗A, define g : X →
R : x 7→ qA(x)−〈x|x∗〉, and observe that q∗A(x∗) = − infx∈X g(x). Hence g is bounded below. Using
(i) and a well known consequence of Ekeland’s variational principle (see, e.g., [18, Corollary 1.4.3]),
we deduce that there exists a sequence (xn)n∈N such that ∇g(xn) = ∇qA(xn)−x∗ = Axn−x∗ → 0.
Therefore, x∗ ∈ ran A. (iv) Suppose that ran A is closed. Then (iii) implies that dom q∗A = ran A.
Now let y ∈ ran A, say y = Ax. On the one hand, (ii) yields q∗A(y) = q∗A(Ax) = qA(x) = 1

2 〈x|Ax〉.
On the other hand, using standard properties of the Moore-Penrose inverse [7], we deduce that
qA†(y) = 1

2 〈y|A†y〉 = 1
2 〈Ax|A†Ax〉 = 1

2 〈x|AA†Ax〉 = 1
2 〈x|Ax〉. Altogether, q∗A(y) = qA†(y). �

Example 3.8 (quadratic function) Suppose X is a real Hilbert space, let A : X → X be a
continuous positive semidefinite linear symmetric operator with closed range, and define qA : X →
R : x 7→ 1

2 〈x|Ax〉. Then

FA : X ×X → ]−∞,+∞] : (y, y∗) 7→ 2q∗A
(

1
2y∗ + 1

2Ay
)

(3.26)

and hence dom FA = X × ranA. Furthermore:

(i) If A is a bijection, then FA : X ×X → ]−∞,+∞] : (y, y∗) 7→ 1
4 〈y + A−1y∗|y∗ + Ay〉.

(ii) If A is positive definite and (y, y∗) ∈ dom FA, then FA(y, y∗) = qA(y)+ q∗A(y∗) precisely when
y∗ = Ay.

Proof. Fix (y, y∗) ∈ X ×X. Then (3.26) is verified by

FA(y, y∗) = sup
x∈X

(

〈x|y∗〉+ 〈y|Ax〉 − 〈x|Ax〉
)

(3.27)

= sup
x∈X

(

〈x|y∗ + Ay〉 − 2qA(x)
)

(3.28)

= 2 sup
x∈X

(

〈x|12y∗ + 1
2Ay〉 − qA(x)

)

(3.29)

= 2q∗A
(

1
2y∗ + 1

2Ay
)

. (3.30)

As dom q∗A = ran A according to Proposition 3.7(iii), we deduce that domFA = X × ranA.
(i): Now assume that A is also a bijection. Then (3.27)–(3.30) and Proposition 3.7(iv) result in

FA(y, y∗) = 2q∗A
(

1
2y∗ + 1

2Ay
)

= 2qA−1

(

1
2y∗ + 1

2Ay
)

= 1
4 〈y

∗ + Ay|A−1y∗ + y〉 . (3.31)

(ii): Finally, assume that A is positive definite, that (y, y∗) ∈ domFA = X × ranA, say y∗ = Az,
and that FA(y, y∗) = qA(y) + q∗A(y∗). Using Proposition 3.7(ii) and (3.26), we deduce that

qA(y) + qA(z) = qA(y) + q∗A(Az) = qA(y) + q∗A(y∗) = FA(y, y∗) = FA(y,Az) (3.32)

= 2q∗A
(

1
2Az + 1

2Ay
)

= 2q∗A
(

A(1
2z + 1

2y)
)

= 2qA

(

1
2z + 1

2y
)

(3.33)

= 〈12z + 1
2y|12Az + 1

2Ay〉 . (3.34)
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Thus

2 〈y|Ay〉+ 2 〈z|Az〉 = 〈z + y|Az + Ay〉 = 〈z|Az〉+ 〈z|Ay〉+ 〈y|Az〉+ 〈y|Ay〉 ; (3.35)

equivalently,
0 = 〈y − z|Ay −Az〉 = 〈y − z|A(y − z)〉 . (3.36)

Since A is positive definite, we conclude that y = z. Therefore, y∗ = Az = Ay. �

Remark 3.9 Example 3.8(ii) illustrates that positive definite quadratic functions are similarly
“nice” in the sense that among the points (y, y∗) ∈ dom FA = X × ran A, only the ones on the
graph of A have the property that FA(y, y∗) = qA(y) + q∗A(y∗). See also Remark 2.2(iv) and
Theorem 2.3.

Example 3.10 (energy) Suppose that X is a real Hilbert space and that j : X → R : x 7→ 1
2‖x‖2

is the energy. Then ∇j = Id and

FId : X ×X → R : (y, y∗) 7→ 1
4‖y + y∗‖2. (3.37)

Proof. This is a direct consequence of Example 3.8(i). �

Remark 3.11 In the setting of Example 3.10, let (y, y∗) ∈ X × X. We further compute that
F ∗

Id(y∗, y) = ‖y‖2 = ‖y∗‖2, if y = y∗; FId(y∗, y) = +∞, otherwise. Thus FId(y, y∗) = 1
2 〈y|y∗〉 +

1
2

(

j(y) + j∗(y∗)
)

and F ∗
Id(y∗, y) = 1

2

(

j(y) + j∗(y∗)
)

+ 1
2

(

〈y|y∗〉 + ιId(y, y∗)
)

. In this case, the
Fitzpatrick function and its Fenchel conjugate are exactly the averages of the neighboring functions
in the chain of inequalities (2.1). (This is false in general; see, e.g., Example 3.4.)

Our next goal is to compute the Fitzpatrick function for the subdifferential of the sum of the
energy and the indicator function. This requires some preparation.

Proposition 3.12 Suppose that X is a real Hilbert space, that j = 1
2‖ · ‖2 is the energy function,

and that C is a nonempty closed convex set in X. Let z ∈ X. Then (j+ιC)∗(z) = 〈z|PCz〉−j(PCz).
In particular, the following is true.

(i) If C is a nonempty closed convex cone, then (j + ιC)∗(z) = 1
2‖PCz‖2.

(ii) If C is the closed unit ball, then (j + ιC)∗(z) =

{

1
2‖z‖2, if ‖z‖ ≤ 1;

‖z‖ − 1
2 , otherwise.

Proof. By definition of the Fenchel conjugate, we have

(j + ιC)∗(z) = sup
x∈X

(

〈x|z〉 − j(x) − ιC(x)
)

= − inf
x∈X

(

〈x|−z〉+ j(x) + ιC(x)
)

. (3.38)

A point x ∈ X attains the supremum if and only if it is a critical point, i.e., 0 ∈ −z + x + NC(x),
which in turn shows that x = PCz. We deduce that (j + ιC)∗(z) = 〈z|PCz〉 − j(PCz). (i): If C is
a nonempty closed convex cone, then 〈PCz|z − PCz〉 = 0 and the formula follows. (ii): If C is the
closed unit ball, then use PCz = z, if z ∈ C; PCz = z/‖z‖, otherwise, to obtain the result. �
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Example 3.13 (energy plus indicator) Suppose that X is a real Hilbert space, that j = 1
2‖ ·‖2

is the energy function, and that C is a nonempty closed convex set in X. Let f = j + ιC , and let
(y, y∗) ∈ X ×X. Then

F∂f (y, y∗) = ιC(y) + 2(j + ιC)∗
(

1
2y + 1

2y∗
)

(3.39)

= ιC(y) + 1
4‖y + y∗‖2 −

(

1
4‖ · ‖

2 + ι∗C
)∗(1

2y + 1
2y∗

)

(3.40)

= ιC(y) + 〈PC(1
2y + 1

2y∗)|y + y∗ − PC(1
2y + 1

2y∗)〉 . (3.41)

This simplifies in the following particular cases.

(i) If C is a nonempty closed convex cone, then F∂f (y, y∗) = ιC(y) + ‖PC(1
2y + 1

2y∗)‖2.

(ii) If C is the closed unit ball, then F∂f (y, y∗) = ιC(y) +

{

1
4‖y + y∗‖2, if ‖y + y∗‖ ≤ 2;

‖y + y∗‖ − 1, otherwise.

Moreover, in the general case, we have F∂f (y, y∗) = f(y) + f∗(y∗) ∈ R if and only if (y, y∗) ∈ ∂f .

Proof. Since ∂f = Id+NC , we note that

F∂f (y, y∗) = sup
x∈C

(

〈x|y∗〉+ 〈x|y − x〉+ sup 〈y − x|NC(x)〉
)

. (3.42)

If y ∈ C, then supx∈C〈y − x,NC(x)〉 = 0. If y 6∈ C, then PCy ∈ C and sup 〈y − PCy|NC(PCy)〉 =
+∞ (because y − PCy ∈ NC(PCy) r {0} and NC(PCy) is a cone), which implies that F∂f (y, y∗) =
+∞. Thus, for the remainder of this proof, we assume that

y ∈ C. (3.43)

Then (3.42) simplifies to

F∂f (y, y∗) = sup
x∈C

(

〈x|y∗ + y〉 − ‖x‖2
)

= 2 sup
x∈C

(

〈x|12y∗ + 1
2y〉 − j(x)

)

(3.44)

= 2 sup
x∈X

(

〈x|12y∗ + 1
2y〉 −

(

j + ιC)(x)
)

= 2(j + ιC)∗
(

1
2y∗ + 1

2y
)

. (3.45)

This verifies (3.39). Observe that
(

1
2(1

2j + ι∗C)∗
)∗

= 1
2

(

1
2j + ι∗C

)

(2·) = j + ι∗C , which, after taking
the Fenchel conjugate, results in 1

2(1
2j + ι∗C)∗ = (j + ι∗C)∗. This and the Moreau decomposition [10,

Section 7] yield j = (j�ιC) + (j�ι∗C) = (j + ι∗C)∗ + (j + ιC)∗ = 1
2(1

2j + ι∗C)∗ + (j + ιC)∗, where here
and elsewhere “�” denotes infimal convolution. Hence

2(j + ιC)∗ = 2j − (1
2j + ι∗C)∗. (3.46)

Now (3.45) and (3.46) imply (3.40). Furthermore, (3.41) is obtained from (3.39) and Proposi-
tion 3.12. Items (i) and (ii) follow from their counterparts in Proposition 3.12 and from (3.39).
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Set z = 1
2y + 1

2y∗. Using (3.43), (3.44)–(3.45), Proposition 3.12, and some re-arranging, we
deduce that

f(y) + f∗(y∗)− F∂f (y, y∗) = j(y) + 〈y∗|PCy∗〉 − j(PCy∗)− 〈PCz|2z − PCz〉 (3.47)

= j(y − PCz) +
(

j(y∗ − PCz)− j(y∗ − PCy∗)
)

(3.48)

≥ 0. (3.49)

Furthermore, equality holds in (3.49) if and only if

y = PCz and PCz = PCy∗. (3.50)

Altogether, we see that

f(y) + f∗(y∗) = F∂f (y, y∗)⇔ equality holds in (3.49)⇔ (3.50) is true (3.51)

⇔ PCy∗ = y ⇔ y∗ ∈ P−1
C y ⇔ y∗ ∈ (Id +NC)y (3.52)

⇔ y∗ ∈ ∂f(y), (3.53)

which completes the proof. �

Remark 3.14

(i) The “Moreover” part in Example 3.13 shows that j + ιC is as “nice” as quadratic functions
(see Remark 3.9) or the smooth functions of Theorem 2.3 (see also Remark 2.2(iv)).

(ii) Refinements (2.8) of the Fenchel-Young inequality in the context of Example 3.13 arise for
various choices of C; e.g., if C is a nonempty closed convex cone in X, then Example 3.13(i)
yields

(∀c ∈ C)(∀z ∈ X) 〈c|z〉 ≤ 1
4‖PC(c + z)‖2 ≤ 1

2‖c‖
2 + 1

2‖PCz‖2. (3.54)

Example 3.15 Suppose that X is a real Hilbert space, that j = 1
2‖ · ‖2 is the energy function, and

that C is a nonempty closed convex set in X. Let f = j − 1
2d2

C , and let (y, y∗) ∈ X × X. Then
∇f = PC and

FPC
(y, y∗) = ιC(y∗) + 〈PC(1

2y + 1
2y∗)|y + y∗ − PC(1

2y + 1
2y∗)〉 , (3.55)

which simplifies in the following particular cases.

(i) If C is a nonempty closed convex cone, then FPC
(y, y∗) = ιC(y∗) + ‖PC(1

2y + 1
2y∗)‖2.

(ii) If C is the closed unit ball, then FPC
(y, y∗) = ιC(y∗) +

{

1
4‖y + y∗‖2, if ‖y + y∗‖ ≤ 2;

‖y + y∗‖ − 1, otherwise.

Proof. This is an immediate consequence of Example 3.13 because PC = (Id +NC)−1. �
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Remark 3.16 Suppose that X is a real Hilbert space and that K is a nonempty closed convex
cone in X, with polar cone K	. Let us show that

F ∗
PK

: X ×X → ]−∞,+∞] : (y∗, y) 7→ ιK(y∗) + ‖y∗‖2 + ιK	(y − y∗). (3.56)

Fix (y∗, y) ∈ X ×X. If y∗ 6∈ K, then F ∗
PK

(y∗, y) = +∞ since domFPK
= X ×K by Example 3.15

and since F ∗
PK

(y∗, y) ≥ FPK
(y, y∗) by Fact 1.2(iii). So assume that y∗ ∈ K. Then x ∈ X is a

critical point for the optimization problem

sup
x∈X

(

〈x|y∗〉 − 1
4‖PK(x + x∗)‖2

)

= sup
x∈X

(

〈x|y∗〉 − 1
2

1
2d2

K	(x + x∗)
)

(3.57)

if and only if y∗ = PK

(

1
2x+1

2x∗
)

because∇1
2d2

K	 = Id−PK	 = PK . It follows that if x ∈ X is such a
critical point, then supx∈X

(

〈x|y∗〉− 1
4‖PK(x+x∗)‖2

)

= 〈x|y∗〉−‖y∗‖2 = 2 〈12x + 1
2x∗|y∗〉−〈x∗|y∗〉−

‖y∗‖2 = 2 〈y∗|y∗〉 − 〈x∗|y∗〉 − ‖y∗‖2 = ‖y∗‖2 − 〈x∗|y∗〉. Using this, (3.57), and Example 3.15(i), we
deduce that

F ∗
PK

(y∗, y) = sup
x∗∈X

(

〈y|x∗〉 − ιK(x∗) + sup
x∈X

(

〈x|y∗〉 − 1
4‖PK(x + x∗)‖2

))

(3.58)

= sup
x∗∈X

(

〈y|x∗〉 − ιK(x∗) + ‖y∗‖2 − 〈y∗|x∗〉
)

(3.59)

= ‖y∗‖2 + sup
x∗∈X

(

〈y − y∗|x∗〉 − ιK(x∗)
)

(3.60)

= ‖y∗‖2 + ιK	(y − y∗). (3.61)

This verifies (3.56). As an illustration, suppose that K = X. Then PK = Id, K	 = {0} and (3.56)
becomes F ∗

Id(y∗, y) = ‖y∗‖2 + ι{0}(y − y∗), a formula consistent with Remark 3.11.

We conclude this section with an example of a Fitzpatrick function on the real line that allows
an explicit description.

Example 3.17 Suppose X = R and let f = 1
3 | · |3. Then f ′ : R→ R : ρ→ ρ|ρ| and

Ff ′ : (ρ, ρ∗) 7→ max
{

α(ρ, ρ∗), α(−ρ,−ρ∗)
}

, (3.62)

where α(ρ, ρ∗) = maxξ≥0

(

− ξ3 + ρξ2 + ρ∗ξ
)

.

Remark 3.18 Let α be as in Example 3.17, let (ρ, ρ∗) ∈ R2, and set ξ = 1
3

(

ρ +
√

ρ2 + 3ρ∗
)

. A
careful discussion shows that

α(ρ, ρ∗) =











0, if ρ ≤ 0 and ρ∗ ≤ 0;

0, if ρ > 0 and ρ∗ ≤ −1
4ρ2;

−ξ3 + ρξ2 + ρ∗ξ > 0, otherwise.

(3.63)
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4 The Fitzpatrick function of a sum

Let A and B be two monotone operators from X to 2X∗
. Fitzpatrick’s [6, Problem 5.4] asks to

characterize FA+B . This problem does not appear to have a simple solution. Nonetheless, an upper
bound is available and we illustrate it by utilizing some of the examples of Section 3.

Definition 4.1 For two given monotone operators A and B from X to 2X∗
, we define Φ{A,B} by

Φ{A,B} : X ×X∗ → ]−∞,+∞] : (y, y∗) 7→
(

FA(y, ·)�FB(y, ·)
)

(y∗). (4.1)

Proposition 4.2 Suppose that A and B are two monotone operators from X to 2X∗
. Then

FA+B ≤ Φ{A,B}. (4.2)

Proof. Let (y, y∗) ∈ X ×X∗ and (x, x∗) ∈ (A + B), say x∗ = a∗ + b∗, where a∗ ∈ Ax and b∗ ∈ Bx.
Also, write y∗ = u∗ + v∗, where {u∗, v∗} ⊂ X∗. Then

〈x|y∗〉+ 〈y|x∗〉 − 〈x|x∗〉 (4.3)

= 〈x|u∗ + v∗〉+ 〈y|a∗ + b∗〉 − 〈x|a∗ + b∗〉 (4.4)

=
(

〈x|u∗〉+ 〈y|a∗〉 − 〈x|a∗〉
)

+
(

〈x|v∗〉+ 〈y|b∗〉 − 〈x|b∗〉
)

(4.5)

≤ FA(y, u∗) + FB(y, v∗). (4.6)

Supremizing over (x, x∗) ∈ A+B results in FA+B(y, y∗) ≤ FA(y, u∗)+FB(y, v∗). In turn, infimizing
over u∗ + v∗ = y∗ verifies (4.2). �

Remark 4.3 The upper bound Φ{A,B} provided in Proposition 4.2 is sometimes — but not always
— tight as the remainder of this paper shows. It would be interesting to characterize the pairs of
monotone operators (A,B) that satisfy the identity FA+B = Φ{A,B}.

Example 4.4 Suppose that X is a real Hilbert space and that C and D are two closed convex
sets in X such that the constraint qualification C ∩ int D 6= Ø holds. Then FNC+ND

= Φ{NC ,ND}.

Proof. Let (y, y∗) ∈ X × X. Using Example 3.1 for (4.9)&(4.13) and the constraint qualification
for (4.11)&(4.14) (see, e.g., [18, Theorem 2.8.7]), we obtain

Φ{NC ,ND}(y, y∗) =
(

FNC
(y, ·)�FND

(y, ·)
)

(y∗) (4.7)

= inf
u∗+v∗=y∗

FNC
(y, u∗) + FND

(y, v∗) (4.8)

= inf
u∗+v∗=y∗

(

ιC(y) + ι∗C(u∗) + ιD(y) + ι∗D(v∗)
)

(4.9)

= ιC(y) + ιD(y) +
(

ι∗C�ι∗D
)

(y∗) (4.10)

= ιC∩D(y) +
(

ιD + ιD)∗(y∗) (4.11)

= ιC∩D(y) + ι∗C∩D(y∗) (4.12)

= FNC∩D
(y, y∗) (4.13)

= FNC+ND
(y, y∗). (4.14)
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Therefore, FNC+ND
= Φ{NC ,ND}. �

Example 4.5 Suppose that X is a real Hilbert space and that C is a nonempty closed convex set
in X. Then FId +NC

= Φ{Id,NC}

Proof. This is a continuation of Example 3.13, the notation of which we borrow here. Let (y, y∗) ∈
X ×X. Example 3.10 and Example 3.1 imply

Φ{Id,NC}(y, y∗) =
(

FId(y, · )�FNC
(y, · )

)

(y∗) (4.15)

= inf
u∗+v∗=y∗

(

FId(y, u∗) + FNC
(y, v∗)

)

(4.16)

= inf
u∗+v∗=y∗

(

1
4‖u

∗ + y‖2 + ιC(y) + ι∗C(v∗)
)

. (4.17)

Furthermore,

inf
u∗+v∗=y∗

(

1
4‖u

∗ + y‖2 + ι∗C(v∗)
)

(4.18)

= inf
z∗

(

1
4‖(y + y∗)− z∗‖2 + ι∗C(z∗)

)

(4.19)

= inf
z∗

(

1
4

(

‖y + y∗‖2 − 2 〈y + y∗|z∗〉+ ‖z∗‖2
)

+ ι∗C(z∗)
)

(4.20)

= 1
4‖y + y∗‖2 + inf

z∗

(

− 〈12 (y + y∗)|z∗〉+ 1
4‖z

∗‖2 + ι∗C(z∗)
)

(4.21)

= 1
4‖y + y∗‖2 − sup

z∗

(

〈12 (y + y∗)|z∗〉 −
(

1
4‖ · ‖

2 + ι∗C
)

(z∗)
)

(4.22)

= 1
4‖y + y∗‖2 −

(

1
4‖ · ‖

2 + ι∗C
)∗(1

2y + 1
2y∗

)

. (4.23)

Combining (4.15)–(4.17), (4.18)–(4.23), and (3.39)–(3.40) results in

Φ{Id,NC}(y, y∗) = inf
u∗+v∗=y∗

(

1
4‖u

∗ + y‖2 + ιC(y) + ι∗C(v∗)
)

(4.24)

= ιC(y) + 1
4‖y + y∗‖2 −

(

1
4‖ · ‖

2 + ι∗C
)∗(1

2y + 1
2y∗

)

(4.25)

= FId +NC
(y, y∗). (4.26)

Therefore, FId +NC
= Φ{Id,NC}. �

Example 4.6 Suppose that X is a real Hilbert space and that K is a closed subspace of X. Then
FId = FPK+P

K⊥
= Φ{PK ,P

K⊥}.

Proof. Let (y, y∗) ∈ X ×X. Example 3.15(i) and Example 3.10 imply

Φ{PK ,P
K⊥}(y, y∗) (4.27)

=
(

FPK
(y, ·)�FP

K⊥
(y, ·)

)

(y∗) = inf
z∗∈X

(

FPK
(y, z∗) + FP

K⊥
(y, y∗ − z∗)

)

(4.28)

= inf
z∗∈X

(

ιK(z∗) + 1
4‖PK(y + z∗)‖2 + ιK⊥(y∗ − z∗) + 1

4‖PK⊥(y + y∗ − z∗)‖2
)

(4.29)

= 1
4‖PK(y + PKy∗)‖2 + 1

4‖PK⊥(y + PK⊥y∗)‖2 = 1
4

(

‖PK(y + y∗)‖2 + ‖PK⊥(y + y∗)‖2
)

(4.30)

= 1
4‖y + y∗‖2 = FId(y, y∗) = FPK+P

K⊥
(y, y∗). (4.31)
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Therefore, the proof is complete. �

Our last result shows that the conclusion of Example 4.6 may fail if we work with cones rather
than subspaces.

Example 4.7 Suppose that X = R and that K = [0,+∞[. Then FPK+P−K
= FId 6= Φ{PK ,P−K}.

Proof. It is clear that FPK+P−K
= FId. Now consider the point (−1, 1) ∈ R2. By Example 3.10,

FId(−1, 1) = 1
4 | − 1 + 1|2 = 0. (4.32)

Utilizing Example 3.15, we obtain on the other hand

Φ{PK ,P−K}(−1, 1) = inf
ρ∈R

(

ιK(ρ) + 1
4 |PK(−1 + ρ)|2 + ι−K(1− ρ) + 1

4 |P−K(−1 + 1− ρ)|2
)

(4.33)

= 1
4 inf

ρ≥1

(

|PK(ρ− 1)|2 + |P−K(−ρ)|2
)

(4.34)

= 1
4 inf

ρ≥1

(

|ρ− 1|2 + |ρ|2
)

(4.35)

= 1
4 . (4.36)

Altogether, (4.32) and (4.33)–(4.36) imply that FId 6= Φ{PK ,P−K}. �

5 Fitzpatrick’s problem: Introduction

From now on, we assume that X is a Euclidean space. In contrast to the previous sections, we shall
emphasize the view point that monotone operators can be identified with their graphs, which we
refer to as monotone sets. Definition 1.1 introduces the Fitzpatrick function associated with some
underlying (usually) monotone set. In a somewhat “dual” spirit, Fitzpatrick also introduced a set,
defined in terms of an underlying function.

Definition 5.1 Let f : X ×X∗ → ]−∞,+∞] be convex. Then the Fitzpatrick set associated with
f is

Gf :=
{

(x, x∗) ∈ X ×X∗ | (x∗, x) ∈ ∂f(x, x∗)
}

. (5.1)

Since Gf ⊂ X ×X∗, we may identify Gf with an operator from X to 2X∗
, as Fitzpatrick did origi-

nally (see [6, Definition 2.1]). In [6, Section 3], Fitzpatrick studied properties of the “composition”
GF and derived the following fundamental result.

Fact 5.2 Let A be a nonempty monotone subset of X ×X∗. Then

A ⊂ GFA
. (5.2)

Moreover,
A = GFA

, whenever A is maximal monotone. (5.3)
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Proof. This is a restatement of [6, Corollary 3.5]. �

Fact 5.2 shows that every maximal monotone A is a “fixed point” of the composition GF .
However, Fitzpatrick also observed that this composition may have fixed points that are very
far from being maximal monotone. Indeed, A = {(0, 0)} has these properties; see [6, Example
following Corollary 3.5]. Fitzpatrick’s [6, Problem 5.2] specifically asks to characterize monotone
sets A for which A = GFA

.

The second objective of this paper is to provide a sufficient condition for this fixed point problem.
This condition, which is formulated in terms of the polar of a monotone set introduced recently
by Mart́ınez-Legaz and Svaiter [8], is also necessary when X = R. In fact, on the real line the
condition requires that A be a nonempty connected monotone set. Maximal monotone operators
and singletons are the two extreme cases of this condition in the sense that they are as large and
as small as possible.

The remainder of the paper is organized as follows. In Section 6, we review and derive results
that shall make the proofs in later sections more transparent. Section 7 contains the new sufficient
condition for Fitzpatrick’s fixed point problem. We then assume that X = R. This particular
setting allows us to show in Section 8 that the new sufficient condition is not only equivalent to
connectedness but also necessary.

6 Fitzpatrick’s problem: Auxiliary results

The following three results will be useful later.

Fact 6.1 Let A be a maximal monotone subset of X ×X∗ and set RA := (Id +A)−1. Then the
Minty parameterization

M : X → A : x 7→
(

RAx, (Id−RA)x
)

(6.1)

of A is bijective and continuous in both directions.

Proof. See, e.g., [13, Theorem 12.15]. �

Proposition 6.2 Let A be a nonempty monotone subset of X ×X∗ and define

A : X ×X∗ → 2A : (x, x∗) 7→
{

(a, a∗) ∈ A | FA(x, x∗) = 〈x|a∗〉+ 〈a|x∗〉 − 〈a|a∗〉
}

. (6.2)

Let (x, x∗) ∈ X ×X∗. Then

conv
{

(a∗, a) | (a, a∗) ∈ A(x, x∗)
}

⊂ ∂FA(x, x∗). (6.3)

Moreover,

conv
{

(a∗, a) | (a, a∗) ∈ A(x, x∗)
}

= ∂FA(x, x∗), whenever A is compact. (6.4)
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Proof. Let us define, for every (a, a∗) ∈ A,

f(a,a∗) : X ×X∗ → R : (y, y∗) 7→ 〈y|a∗〉+ 〈a|y∗〉 − 〈a|a∗〉 . (6.5)

The mapping A→ R : (a, a∗) 7→ f(a,a∗)(y, y∗) is continuous, for every (y, y∗) ∈ X ×X∗. Moreover,
each f(a,a∗) is linear, hence convex and differentiable on X ×X∗, with gradient

∇f(a,a∗)(x, x∗) = (a∗, a). (6.6)

The inclusion (6.3) is well known (and easy to verify). When A is compact, the desired identity
(6.4) follows from the Ioffe-Tikhomirov theorem; see, e.g., [18, Theorem 2.4.18]. �

Proposition 6.3 Let f : Z → ]−∞,+∞] be convex and (x, x∗) ∈ X ×X∗. Then (x, x∗) ∈ Gf if
and only if 1

2f(x, x∗) + 1
2f∗(x∗, x) = 〈x|x∗〉.

Proof. Using the definition of the duality product on the product space X ×X∗, we have

(x, x∗) ∈ Gf ⇔ (x∗, x) ∈ ∂f(x, x∗) (6.7)

⇔ f(x, x∗) + f∗(x∗, x) = 〈(x, x∗)|(x∗, x)〉 (6.8)

⇔ 1
2f(x, x∗) + 1

2f∗(x∗, x) = 〈x|x∗〉 , (6.9)

which completes the proof. �

We now turn to recent notions and results by Mart́ınez-Legaz and Svaiter [8].

Definition 6.4 Let A be a nonempty monotone subset of X ×X∗. Then A is said to be repre-
sentable, if there exists a lower semicontinuous convex function hA : X → ]−∞,+∞] such that

hA ≥ p and A =
{

(x, x∗) ∈ X ×X∗ | hA(x, x∗) = 〈x|x∗〉
}

. (6.10)

The representable closure of A is the intersection of all monotone extensions of A which are rep-
resentable.

Definition 6.5 Let A be a nonempty subset of X ×X∗. Then the polar (in the sense of Mart́ınez-
Legaz and Svaiter) is given by

Aµ :=
{

(x, x∗) ∈ X ×X∗ | inf
(a,a∗)∈A

〈x− a|x∗ − a∗〉 ≥ 0
}

. (6.11)

Moreover, A is said to be µ-closed whenever A coincides with its bipolar Aµµ := (Aµ)µ.

It follows from Definition 6.5 that
Aµ is closed; (6.12)

in particular, every µ-closed set is closed. Furthermore, Definition 1.1 (see also [8, equation (22)])
implies that

Aµ =
{

(x, x∗) ∈ X ×X∗ | FA(x, x∗) ≤ p(x, x∗)
}

. (6.13)
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An application of Zorn’s Lemma (see also [8, Proposition 22]) shows that

Aµ =
⋃

{

B ⊂ X ×X∗ | A ⊂ B and B is maximal monotone
}

, (6.14)

which yields (see also [8, Proposition 21])

Aµ = A, whenever A is maximal monotone. (6.15)

See [8] for further properties of these new notions. We shall utilize the main result of Mart́ınez-
Legaz and Svaiter in the following form.

Fact 6.6 Let A be a nonempty monotone subset of X ×X∗. Then A is representable if and only
if A is µ-closed, in which case

A =
⋂

{

B ⊂ X ×X∗ | A ⊂ B and B is maximal monotone
}

. (6.16)

Proof. This follows from [8, Theorem 31, Corollary 32, and Corollary 33]. �

Corollary 6.7 Let f : X ×X∗ → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then
Gf is representable, monotone, µ-closed, and hence closed.

Proof. Letting hGf
: X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ 1

2f(x, x∗) + 1
2f∗(x∗, x), we see that the

conclusion follows from Proposition 6.3, Definition 6.4, Fact 6.6, and (6.12). �

Remark 6.8 Corollary 6.7 and Fact 5.2 imply that every maximal monotone set is representable.
The representation is achieved by the corresponding Fitzpatrick function, which is in fact the
(pointwise) infimum of all such representations; see [6, Theorem 3.10].

The next result states that the Fitzpatrick function is blind to taking the µ-closure.

Proposition 6.9 Let A be a nonempty monotone subset of X ×X∗. Then FA = FAµµ .

Proof. By [8, Corollary 14], we have (ιA + p)∗∗ = (ιAµµ + p)∗∗. Taking the Fenchel conjugate yields
(ιA + p)∗ = (ιAµµ + p)∗. In turn, using Fact 1.2(ii), we conclude that FA = FAµµ . �

Proposition 6.10 Let A be a nonempty monotone subset of X ×X∗ such that A = GFA
. Then

A is µ-closed and hence closed.

Proof. Corollary 6.7 implies that GFA
is µ-closed. Hence A is µ-closed and thus closed (by [8,

Proposition 8] or by (6.12)). �

Remark 6.11 Closed monotone subsets of X ×X∗ may fail to be µ-closed. Indeed,

B :=
(

]−∞, 0]× {−1}
)

∪
(

[0,+∞[× {+1}
)

(6.17)

is a closed monotone subset of R2, yet Bµµ \B = {0} × ]−1,+1[ 6= Ø.
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7 Fitzpatrick’s problem: A sufficient condition

The goal of this section is to derive a new condition sufficient for the identity A = GFA
. We shall

build on the next two results.

Proposition 7.1 Let A be a nonempty monotone subset of X ×X∗. Then GFA
⊂ Aµ.

Proof. By Fact 5.2, A ⊂ GFA
. Corollary 6.7 implies that GFA

is monotone. Altogether, using
(6.14), we conclude that GFA

⊂ Aµ. �

Proposition 7.2 Let A be a nonempty monotone subset of X ×X∗. Then GFA
⊂ convA.

Proof. We argue by contradiction and thus assume the existence of some (x, x∗) ∈ GFA
\ convA.

Then
(x∗, x) ∈ ∂FA(x, x∗), (7.1)

and the separation theorem yields (y, y∗) ∈ X ×X∗ and ε > 0 such that

〈(x, x∗)|(y∗, y)〉 ≥ 2ε + sup
(a,a∗)∈A

〈(a, a∗)|(y∗, y)〉 . (7.2)

Using (7.1), we see that

FA(x + y, x∗ + y∗) ≥ FA(x, x∗) + 〈(y, y∗)|(x∗, x)〉 . (7.3)

Thus, upon recalling the definition of FA(x + y, x∗ + y∗), there must exist (b, b∗) ∈ A such that

〈x + y|b∗〉+ 〈b|x∗ + y∗〉 − 〈b|b∗〉 ≥ −ε + FA(x, x∗) + 〈(x, x∗)|(y∗, y)〉 . (7.4)

This and (7.2) show that

FA(x, x∗) ≤ 〈x + y|b∗〉+ 〈b|x∗ + y∗〉 − 〈b|b∗〉+ ε− 〈(x, x∗)|(y∗, y)〉 (7.5)

≤ 〈x + y|b∗〉+ 〈b|x∗ + y∗〉 − 〈b|b∗〉 − ε− sup
(a,a∗)∈A

〈(a, a∗)|(y∗, y)〉 (7.6)

≤ 〈x + y|b∗〉+ 〈b|x∗ + y∗〉 − 〈b|b∗〉 − ε− 〈(b, b∗)|(y∗, y)〉 (7.7)

= 〈x|b∗〉+ 〈b|x∗〉 − 〈b|b∗〉 − ε (7.8)

≤ FA(x, x∗)− ε, (7.9)

which is absurd since (x, x∗) ∈ dom ∂FA ⊂ dom FA. �

Corollary 7.3 Let A be a nonempty monotone subset of X ×X∗. Then

GFA
⊂ Aµ ∩ convA. (7.10)

Proof. Combine Proposition 7.1 with Proposition 7.2. �

We are now ready for the main result of this section.
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Theorem 7.4 Let A be a nonempty monotone subset of X ×X∗ such that A = Aµ∩ convA. Then
GFA

= A.

Proof. Fact 5.2 and Corollary 7.3 imply

A ⊂ GFA
⊂ Aµ ∩ convA. (7.11)

Since A = Aµ ∩ convA, it now follows from (7.11) that A = GFA
. �

Remark 7.5 Let us provide some examples of monotone operators A for which A = GFA
, by

means of satisfying the assumption in Theorem 7.4.

(i) A is maximal monotone (by (6.15)).

(ii) A is a nonempty subset of X ×X∗ that is closed, convex, and monotone.

(iii) A is a singleton. (This is a special case of (ii).)

Conditions (i)&(iii) were already pointed out by Fitzpatrick; see [6, Section 3]. Theorem 7.4 remains
true when X is a reflexive Banach space, as a second glance at its proof reveals.

8 Fitzpatrick’s problem and connectedness when X = R

Throughout this section, we assume that X = R and that X ×X∗ = R× R is partially ordered by
the nonnegative orthant R2

+ := [0,+∞[× [0,+∞[. Given (x, x∗) and (y, y∗) in R× R, we thus write
(x, x∗) � (y, y∗) if (y−x, y∗−x∗) ∈ R2

+, and (x, x∗) � (y, y∗) if (x, x∗) � (y, y∗) and (x, x∗) 6= (y, y∗).

Proposition 8.1 Let A be a nonempty monotone subset of R× R. Then there exists a subset S
of R and an order-preserving parameterization M : S → A that is bijective and continuous in both
directions.

Proof. In view of Fact 6.1, we let S be the range of Id+A and M be the Minty parameterization of
any maximal monotone extension of A. Resolvents on the real line are increasing, and A is (totally)
ordered as a subset of R× R; see [13, Exercise 12.9]. �

Definition 8.2 Let (x, x∗) and (y, y∗) belong to R× R such that (x, x∗) � (y, y∗). Then the box
with diagonal delimited by these points is defined by

box
(

(x, x∗), (y, y∗)
)

= conv
{

(x, x∗), (x, y∗), (y, x∗), (y, y∗)
}

. (8.1)

We allow the box to degenerate to a line segment which happens precisely when the line segment
[

(x, x∗), (y, y∗)
]

is parallel to either coordinate axis.
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Proposition 8.3 Let A be a nonempty closed monotone subset of R× R that is not connected.
Then there are two points (a, a∗) and (b, b∗) in A such that (a, a∗) � (b, b∗),

A ∩ box
(

(a, a∗), (b, b∗)
)

=
{

(a, a∗), (b, b∗)
}

, (8.2)

and hence
box

(

(a, a∗), (b, b∗)
)

⊂ Aµ. (8.3)

Proof. Since A is not connected, it contains two points (c, c∗) and (d, d∗) belonging to distinct
connected components of A. By monotonicity of A, we assume (without loss of generality) that
(c, c∗) � (d, d∗). Now let S and M be as in Proposition 8.1 so that there exist γ and δ in S such that
γ < δ and (c, c∗) = M(γ) and (d, d∗) = M(δ). Moreover, S is closed but not connected, and γ and
δ belong to distinct connected components of S. Since [γ, δ] 6⊂ S, there exists ρ ∈ ]γ, δ[ ∩ (R \ S).
Now let ]α, β[ be the largest open interval in R \ S that contains ρ. Then γ ≤ α < ρ < β ≤ δ
and S ∩ [α, β] = {α, β}. Therefore, by Proposition 8.1, the points defined by (a, a∗) := M(α) and
(b, b∗) := M(β) satisfy (8.2), and this in turn implies (8.3). �

Theorem 8.4 Let A be a nonempty closed monotone subset of R× R. Then

A = Aµ ∩ convA ⇔ A is connected. (8.4)

Proof. We shall argue geometrically, exploiting the correspondence between monotone subset of
R× R and subsets of increasing curves; see Proposition 8.1 and [13, Exercise 12.9].

“⇒”: Suppose to the contrary that A is not connected. With the help of Proposition 8.3, we see
that there exist two points (a, a∗) and (b, b∗) in A such that

(a, a∗) � (b, b∗), (8.5)

A ∩ box
(

(a, a∗), (b, b∗)
)

=
{

(a, a∗), (b, b∗)
}

, (8.6)

and
conv

{

(a, a∗), (b, b∗)
}

⊂ box
(

(a, a∗), (b, b∗)
)

⊂ Aµ. (8.7)

But this implies

conv
{

(a, a∗), (b, b∗)
}

⊂
(

Aµ ∩ convA
)

∩ box
(

(a, a∗), (b, b∗)
)

= A ∩ box
(

(a, a∗), (b, b∗)
)

, (8.8)

which contradicts (8.5)–(8.6).

“⇐”: The inclusion
A ⊂ Aµ ∩ convA (8.9)

is always true, since A is monotone. Now let M and S be as in Proposition 8.1. By assumption,
S is connected and closed, i.e., a closed (possibly unbounded) interval. Using Proposition 8.1, we
define in [−∞,+∞]× [−∞,+∞] the two pairs

(a, a∗) := lim
S3s→inf S

M(s) and (b, b∗) := lim
S3s→supS

M(s). (8.10)
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We now consider cases.

Case 1: (a, a∗) ∈ R2 and (b, b∗) ∈ R2. Then both (a, a∗) and (b, b∗) belong to A, and

Aµ = A ∪
(

(a, a∗)− R2
+

)

∪
(

(b, b∗) + R2
+

)

. (8.11)

Moreover, convA ⊂
(

(a, a∗) + R2
+

)

∩
(

(b, b∗)− R2
+

)

. Altogether, Aµ ∩ convA ⊂ A.

Case 2: (a, a∗) 6∈ R2 and (b, b∗) ∈ R2. Then (b, b∗) ∈ A, Aµ = A ∪
(

(b, b∗) + R2
+

)

, and convA ⊂
(b, b∗)− R2

+. Thus Aµ ∩ convA ⊂ A.

Case 3: (a, a∗) ∈ R2 and (b, b∗) 6∈ R2. This is analogous to Case 2.

Case 4: (a, a∗) 6∈ R2 and (b, b∗) 6∈ R2. Then Aµ = A and thus Aµ ∩ convA = A. �

Remark 8.5 Theorem 8.4 is false in higher-dimensional spaces. Indeed, Example 8.9 below pro-
vides a nonempty closed monotone subset A of X ×X∗ that is connected but for which A 6= GFA

and hence (by Theorem 7.4) A 6= Aµ ∩ convA.

Theorem 8.6 Let A be a nonempty monotone subset of R× R such that A = GFA
. Then A is

closed and connected.

Proof. By Proposition 6.10, A is closed. Assume to the contrary that A is not connected. Now
Proposition 8.3 yields two points (a, a∗) and (b, b∗) in A such that

(a, a∗) � (b, b∗) (8.12)

and
A ∩ box

(

(a, a∗), (b, b∗)
)

=
{

(a, a∗), (b, b∗)
}

. (8.13)

Since A is monotone, we have

A ⊂
(

(a, a∗)−R2
+

)

∪
(

(b, b∗) + R2
+

)

. (8.14)

Now let (m,m∗) be the midpoint of the box, i.e.,

(m,m∗) := 1
2 (a, a∗) + 1

2 (b, b∗), (8.15)

and let (r, r∗) ∈ R2
+. Then 0 ≤ 2rr∗ + (b− a)r∗ + r(b∗ − a∗), which is equivalent to

m(b∗ + r∗) + (b + r)m∗ − (b + r)(b∗ + r∗) ≤ 1
2ab∗ + 1

2ba∗ (8.16)

and also to
m(a∗ − r∗) + (a− r)m∗ − (a− r)(a∗ − r∗) ≤ 1

2ab∗ + 1
2ba∗. (8.17)

Since (r, r∗) ∈ R2
+ was chosen arbitrarily, we see that Definition 1.1, (8.14), (8.16), and (8.17) imply

FA(m,m∗) = sup
(c,c∗)∈A

(

mc∗ + cm∗ − cc∗
)

≤ 1
2ab∗ + 1

2ba∗. (8.18)

24



Moreover, (8.15) results in

ma∗ + am∗ − aa∗ = 1
2ab∗ + 1

2ba∗ = mb∗ + bm∗ − bb∗. (8.19)

Utilizing Proposition 6.2 and its notation, we obtain from (8.18) and (8.19) that

{

(a, a∗), (b, b∗)
}

⊂ A(m,m∗); (8.20)

consequently,
(m∗,m) ∈ ∂FA(m,m∗). (8.21)

By Definition 5.1,
(m,m∗) ∈ GFA

. (8.22)

On the other hand, (8.12), (8.13), and (8.15) imply

(m,m∗) 6∈ A. (8.23)

Altogether, (8.22) and (8.23) result in (m,m∗) ∈ GFA
\ A, which contradicts our assumption that

A = GFA
. �

We are now in a position to completely settle Fitzpatrick’s problem when X = R.

Corollary 8.7 Let A be a nonempty monotone subset of R× R. Then the following are equivalent:

(i) A = GFA
.

(ii) A is closed and connected.

(iii) A = Aµ ∩ convA.

Proof. “(i)⇒(ii)”: Theorem 8.6. “(ii)⇒(iii)”: Theorem 8.4. “(iii)⇒(i)”: Theorem 7.4. �

In view of Theorem 7.4 and Corollary 8.7, it is natural to raise the following question.

Open Problem 8.8 The identity A = Aµ ∩ convA is a sufficient condition for the fixed point
equation A = GFA

. When is it also necessary?

We conclude with an example that illustrates the failure of Corollary 8.7 in R2 × R2.

Example 8.9 Let X := R2 and identify X ×X∗ with R4 via (x, x∗) =
(

(x1, x2), (x
∗
1, x

∗
2)

)

7→
(x1, x2, x

∗
1, x

∗
2). Denote the standard unit vectors in R4 by e1, e2, e3, e4, and then set a1 := e1 + e3,

a2 := e1 + e3 + e4, a3 := e1 + e2 + e4, a4 := −e1 + e2 + e4, a5 := −e1 − e3 + e4, and a6 := −e1 − e3.
Now define a piecewise linear path from a1 to a6 by

A :=
⋃

i∈{1,2,3,4,5}

[ai, ai+1]. (8.24)
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Clearly, A is closed and connected. By discussing cases, it is readily checked that A is monotone.
Therefore,

A is a nonempty closed connected monotone subset of X ×X∗. (8.25)

Direct computation from the definition shows that FA(0, 0) = −1. Proposition 6.2 and its notation
now imply that {a1, a6} ⊂ A(0, 0). Since (0, 0) ∈ [a1, a6], we conclude (0, 0) ∈ ∂FA(0, 0) and thus

(0, 0) ∈ GFA
. (8.26)

On the other hand, (0, 0) 6∈ A by definition of A. Altogether,

A 6= GFA
. (8.27)

Combining (8.25) and (8.27) now shows that Corollary 8.7 cannot hold in this setting.
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