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Abstract

Real valued function, F (X), on a symmetric matrix argument are
called spectral if F (UT XU) = F (X) for every orthogonal matrix U
and X ∈ domF . We are interested in a description of the higher order
derivatives (when they exists) of F with respect to X. Formulae for
the gradient and the Hessian of F are given in [7] and [11]. In this work
we present common features of these two formulae, that are preserved
in the higher order derivatives.
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1 Introduction

Spectral functions, are real valued functions on a symmetric matrix argument
invariant under conjugation by orthogonal matrices. More precisely, F :
Sn → R is spectral if

F (UT XU) = F (X),
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for all X ∈ dom F and U ∈ On — the orthogonal group on Rn. By restricting
F to the subspace of diagonal matrices, it is not difficult to see that spectral
functions can be represented as the composition

F = f ◦ λ,

where f : Rn → R is a symmetric function (f(Px) = f(x) for any permu-
tation matrix P and vector x), and λ : Sn → Rn is the eigenvalue map:
λ(X) = (λ1(X), ..., λn(X)) — the vector of eigenvalues of X. We assume
throughout that,

λ1(X) ≥ · · · ≥ λn(X).

The study of spectral functions generalizes the study of the individual
eigenvalues of a symmetric matrix since if we let

φk(x) : Rn → R,

φk(x) := the kth largest element of {x1, ..., xn}

then, φk(x) is symmetric and

λk(X) = (φk ◦ λ)(X).

Various differential properties of eigenvalues have been studied for a long
time. They find a lot of applications in areas ranging from matrix perturba-
tion theory [17], and eigenvalue optimization [10], [9], to quantum mechanics
[4]. The Taylor directional expansion (when it exists) of the eigenvalues of
symmetric matrices depending on one scalar parameter is described in the
monograph by Kato [3]. This naturally raises the questions about the dif-
ferentiability properties of the more general spectral functions. Many such
questions have already been investigated in the literature and the answer to
most of them follows the same pattern: f ◦ λ has a property at the matrix
X if, and only if, f has the same property at the vector λ(X). In this way,
properties of the function f ◦λ on Sn are reduced to properties of the simpler
function f on Rn.

Some of the properties of f ◦ λ at (or around) a matrix X that hold if,
and only if, f has the same property at (or around) the vector λ(X) are:

(i) F is lower semicontinuous at X if, and only if, f is at λ(X), [6].

(ii) F is lower semicontinuous and convex if, and only if, f is, [2], [6].
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(iii) The symmetric function corresponding to the Fenchel conjugate of F
is the Fenchel conjugate of f , [14], [6]. (A similar statement holds for
the recession function of F , [14].)

(iv) F is pointed, has good asymptotic behaviour or is a barrier function
on the set λ−1(C) if, and only if, f is such on C, [14].

(v) F is Lipschitz around X if, and only if, f is such around λ(X), [7]

(vi) F is (continuously) differentiable at X if, and only if, f is at λ(X), [7].

(vii) F is strictly differentiable at X if, and only if, f is at λ(X), [7], [8].

(viii) ∇(f ◦ λ) is semismooth at X if, and only if, ∇f is at λ(X), [13].

(ix) If f is l.s.c. and convex then, F is twice epi-differentiable at X relatively
to Ω if, and only if, f is twice epi-differentiable at λ(X) relative to λ(Ω),
[18], where Ω is an arbitrary epi-gradient.

(x) F has a quadratic expansion at X if, and only if, f has a quadratic
expansion at λ(X), [12].

(xi) F is twice (continuously) differentiable at X if, and only if, f is twice
(continuously) differentiable at λ(X), [11].

(xii) F ∈ C∞ at X ⇔ f ∈ C∞ at λ(X), [1].

(xiii) F is analytic at X if, and only if, f is at λ(X), [19].

(xiv) F is a polynomial of the entries of X if, and only if, f is a polyno-
mial. This is a consequence of the Chevalley Restriction Theorem, [20,
p. 143].

There are of course exceptions to that pattern. For example, f being
directionally differentiable at λ(X) does not imply that f ◦ λ is such at X,
see [7].

Formulae for the gradient and the Hessian of the spectral function F
given in terms of the derivatives of the symmetric function f were derived in
[7] and [11]. In order to reproduce them here we need a bit more notation.
For any vector x in Rn, denote by Diag x the diagonal matrix with vector
x on the main diagonal, and denote by diag : Mn → Rn its dual operator
defined by diag (X) = (x11, ..., xnn). Recall that the Hadamard product of
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two matrices A = [Aij] and B = [Bij] of the same dimensions is the matrix
A ◦B = [AijBij]. Thus we have

∇(f ◦ λ)(X) = V
(
Diag∇f(λ(X))

)
V T , and(1)

∇2(f ◦ λ)(X)[H1, H2] = ∇2f(λ(X))[diag H̃1, diag H̃2]+(2)

+ 〈A(λ(X)), H̃1 ◦ H̃2〉,
where V is any orthogonal matrix such that X = V

(
Diag λ(X)

)
V T is the

ordered spectral decomposition of X; H̃i = V T HiV for i = 1, 2, and x ∈
Rn → A(x) is a matrix valued map that is continuous if ∇2f(x) is.

In [11] a conjecture was made that F is k-times (continuously) differ-
entiable at X if, and only if, f is such at λ(X). When that happens, a
natural issue is to find a practical description of the kth derivative of F and
an efficient way to compute it. In addition, explicit formulae for the first
kth derivatives of F generalize the terms in the kth order Taylor directional
expansion (when it exists) of the individual eigenvalues, given in [3].

This work aims to generalize some common features in Formulae (1) and
(2), that are preserved in the higher order derivatives of f ◦λ. The language
we present simplifies the description of the higher order derivatives of spectral
functions and offers a systematic way for evaluating them, when those deriva-
tives are viewed as multi-linear functions on the space of symmetric matrices.
In Section 2 we introduce a multi-linear map on the space of square matrices,
that generalizes the Hadamard product between two matrices. In Section 4
we present its multi-linear dual operator that generalizes the Diag operator.
The connections with the derivatives of spectral functions are pointed out
throughout.

The current paper is the first of three. In [15] we formulate calculus-type
rules for the interaction between that generalization of the Hadamard product
and the eigenvalues of symmetric matrices. Then in [16] we describe how to
compute the higher order derivatives of spectral functions in two general
cases. For example, we show that Conjecture 4.1 holds for the derivatives
of any function (non necessarily symmetric) of the eigenvalues of symmetric
matrices, at a matrix X with distinct eigenvalues. And second, we show that
it holds for the derivatives of separable spectral functions at an arbitrary
symmetric matrix X. (Separable spectral functions are those arising from
symmetric functions f(x) = g(x1) + · · · + g(xn) for some function g on a
scalar argument.) The computation of the maps Aσ(x) (see Equation (16)
below) in these two cases is particularly simple.
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2 Generalizations of the Hadamard product

By {Hpq : 1 ≤ p, q ≤ n} we denote the standard basis of the space Mn of all
n × n real matrices. That is, the matrices Hpq are such that (Hpq)

ij is 1 if
(i, j) = (p, q), and 0 otherwise.

The Hadamard product, H1 ◦H2, between two matrices H1 and H2 from
Mn is a matrix valued function on two matrix arguments, linear in each
argument separately. Thus, it is uniquely determined by its values on the
pairs of basic matrices (Hp1q1 , Hp2q2). On such basic pairs the Hadamard
product is defined as:

(Hp1q1 ◦Hp2q2)
ij =

{
1, if i = p1 = p2 and j = q1 = q2,
0, otherwise.

Analogous object is obtained if a cross Hadamard product is defined as follows

(Hp1q1 ◦(12) Hp2q2)
ij :=

{
1, if i = p1 = q2 and j = p2 = q1,
0, otherwise,

and then, extended to a bilinear function on Mn × Mn. The Hadamard
product and the cross Hadamard product are essentially the same:

Hp1q1 ◦(12) Hp2q2 = Hp1q1 ◦HT
p2q2

= Hp1q1 ◦Hq2p2 .

These observations can be generalized in the following way. Denote by N
the set of all natural numbers and by Nk the set {1, 2, ..., k}. A k-tensor on
Rn is a real-valued map on Rn × · · · × Rn (k-times) linear in each argument
separately. When a basis in Rn is fixed, a k-tensor can be viewed as an
n× · · · × n (k-times) “block” of numbers. We index the elements of a tensor
in a similar way we index the entries of a matrix, thus by T i1...ik we denote
the (i1, ..., ik)-th entry of T . The space of all k-tensors on Rn will be denoted
by T k,n. The set of all permutations on Nk as well as the set of all n × n
permutation matrices will be denoted by P k. (It will be clear from the context
which one we mean.)

Definition 2.1 For a fixed permutation σ on Nk, define the σ-Hadamard
product between k basic matrices, Hp1q1 , Hp2q2 ,...,Hpkqk

, to be a k-tensor on
Rn as follows:

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk
)i1i2...ik =

{
1, if is = ps = qσ(s),∀s = 1, ..., k,
0, otherwise.
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Now, extend this product to a k-tensor valued map on k matrix arguments,
linear in each of them separately.

Another way to write the above definition is using the Kronecker delta
symbol. Recall that δij is equal to 1 if i = j, and 0 otherwise. Thus,

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk
)i1i2...ik = δi1p1δi1qσ(1)

· · · δikpk
δikqσ(k)

(3)
= δi1p1δp1qσ(1)

· · · δikpk
δpkqσ(k)

.

The next lemma gives the formula for the general entry of the σ-Hadamard
product between arbitrary matrices.

Lemma 2.2 The σ-Hadamard product of arbitrary matrices is given by

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik = H

i1iσ−1(1)

1 · · ·H ikiσ−1(k)

k

= H
iσ(1)i1

σ(1) · · ·H iσ(k)ik
σ(k) .

Proof. Let σ be a permutation on Nk and let H1,...,Hk be arbitrary
matrices. Since the product is linear in each argument separately, we compute

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

Hp1q1

1 · · ·Hpkqk

k (Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk
)i1i2...ik

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

Hp1q1

1 · · ·Hpkqk

k δi1p1δi1qσ(1)
· · · δikpk

δikqσ(k)

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

Hp1q1

1 · · ·Hpkqk

k δi1p1δiσ−1(1)q1 · · · δikpk
δiσ−1(k)qk

= H
i1iσ−1(1)

1 · · ·H ikiσ−1(k)

k

= H
iσ(1)i1

σ(1) · · ·H iσ(k)ik
σ(k) . ¥

Corollary 2.3 When the first k − 1 of the matrices involved in the product
are basic we get

(Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H)i1i2...ik
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=





H ikik

( k−1∏
s=1

δispsδisqσ(s)

)
, if k = σ−1(k)

H iσ(l)il
(
δilpl

δikqσ(k)

)( k−1∏
s=1
s6=l

δispsδisqσ(s)

)
, if l := σ−1(k) 6= k.

Proof. Suppose first that l := σ−1(k) 6= k. Using the result of the previous
lemma we calculate

(Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H)i1i2...ik = H

i1iσ−1(1)
p1q1 · · ·H ik−1iσ−1(k−1)

pk−1qk−1 H ikiσ−1(k)

= δi1p1δiσ−1(1)q1 · · · δik−1pk−1
δiσ−1(k−1)qk−1

H ikiσ−1(k)

= δi1p1δi1qσ(1)
· · · δil−1pl−1

δil−1qσ(l−1)
H iσ(l)ilδil+1pl+1

δil+1qσ(l+1)
· · ·

· · · δik−1pk−1
δik−1qσ(k−1)

(
δilpl

δikqσ(k)

)
.

The case l = k follows as well. ¥

The above corollary can be easily modified when the matrix H is in
arbitrary position in the product.

We often represent a permutation by its cycle decomposition. For exam-
ple, (123)(45) is the permutation on N5 that maps 1 to 2, 2 to 3, 3 to 1, in
addition to 4 to 5 and 5 to 4.

Example 2.4 We already saw that, when k = 2 and σ = (12) the σ-
Hadamard product is essentially the ordinary Hadamard product:

H1 ◦(12) H2 = H1 ◦HT
2 .

If we restrict our attention to the space of symmetric matrices then, the two
products coincide. In the case when σ = (1)(2) we get

H1 ◦(1)(2) H2 = (diag H1)(diag H2)
T .

Example 2.5 In the case k = 1, there is one permutation, σ = (1), on the
elements of the set N1 and the σ-Hadamard product corresponding to it is a
vector valued linear map:

(◦σHp1q1)
i1 =

{
1, if i1 = p1 = q1

0, otherwise
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= (diag Hq1p1)
i1 .

Extending by linearity we get

◦σH = diag H.

The standard scalar product between any two k-tensors, T1, and T2 is
given by:

〈T1, T2〉 =

n,...,n∑
i1,...,ik=1

T i1...ik
1 T i1...ik

2 .

Lemma 2.6 Let T be a k-tensor on Rn, and H be a matrix in Mn. Let
Hp1q1,...,Hpk−1qk−1

be basic matrices in Mn, and let σ be a permutation on
Nk. Then, the following identities hold.

(i) If σ−1(k) = k then,

〈T, Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉 =

( k−1∏
t=1

δptqσ(t)

) n∑
t=1

T p1...pk−1tH tt.

(ii) If σ−1(k) = l, where l 6= k then,

〈T, Hp1q1 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉 =

( k−1∏
t=1
t 6=l

δptqσ(t)

)
T p1...pk−1qσ(k)Hqσ(k)pσ−1(k) .

Proof. Using the definitions and observation (3), we calculate.

〈T,Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ H〉

=

n,n∑
pk,qk=1

Hpkqk〈T,Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ Hpkqk

〉

=

n,n∑
pk,qk=1

Hpkqk

n,...,n∑
i1,...,ik=1

T i1...ik(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpk−1qk−1
◦σ Hpkqk

)i1...ik

=

n,n∑
pk,qk=1

Hpkqk

n,...,n∑
i1,...,ik=1

T i1...ikδi1p1δp1qσ(1)
· · · δikpk

δpkqσ(k)

=

n,n∑
pk,qk=1

HpkqkT p1...pkδp1qσ(1)
· · · δpkqσ(k)

.

The result follows easily by considering the two cases separately. ¥
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3 A partial order on P k and a property of the

σ-Hadamard product

Given two permutations σ, µ on Nk, we say that σ refines µ if for every
s ∈ Nk there is an r ∈ Nk such that

{σl(s) : l = 1, 2, ...} ⊆ {µl(r) : l = 1, 2, ...},
where σl(s) = σ(σ(· · · (σ(s)) · · · ) - l times. Informally, σ refines µ if the
elements of every cycle of σ are contained in a cycle of µ, thus, the cycles of
σ partition the cycles of µ. If σ refines µ we denote it by

µ ¹ σ.

The refinement relationship is a pre-order on P k (it is reflexive, transitive,
but not antisymmetric). With respect to this pre-order, the identity permu-
tation is the biggest element (that is, bigger than any one else) and every
permutation with only one cycle is a smallest element (that is, it is smaller
than any other element).

There is a natural map between the set P k and the diagonal subspaces of
Rk, given as follows:

D(σ) = {x ∈ Rk : xs = xσ(s) ∀s ∈ Nk}.
This map is onto but is not one-to-one since, for example, when k = 3
D((123)) = D((132)) = {x ∈ R3 : x1 = x2 = x3}. The image of the identity
permutation is Rk. The following relationship helps to visualize the partial
order on P k

µ ¹ σ ⇔ D(µ) ⊆ D(σ).

Given a permutation µ ∈ P k and a tensor T ∈ T k,n, we denote by Pµ(T )
the tensor in T k,n defined by

(Pµ(T ))i1...ik =

{
T i1...ik , if is = iµ(s), ∀s ∈ Nk

0, otherwise.

Informally, the tensor Pµ(T ) preserves the entries of T lying on the “sub-
space” D(µ) of T and replaces the rest of the entries with zeros.

Next is the main result of this section. It describes exactly when one can
“transfer” diagonal “subspaces” of T between different σ-Hadamard prod-
ucts.
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Theorem 3.1 Let σ1, σ2, and µ be three permutations on Nk. Then, the
identity

(4) 〈Pµ(T ), H1 ◦σ1 · · · ◦σ1 Hk〉 = 〈Pµ(T ), H1 ◦σ2 · · · ◦σ2 Hk〉

holds for any matrices H1,...,Hk, and any tensor T in T k,n if, and only if,
µ ¹ σ−1

2 ◦ σ1.

Proof. Since both sides are linear in each of the matrices H1,..,Hk sepa-
rately, it is enough to prove the theorem when these matrices are basic. In
other words, we show that

〈Pµ(T ), Hp1q1 ◦σ1 · · · ◦σ1 Hpkqk
〉 = 〈Pµ(T ), Hp1q1 ◦σ2 · · · ◦σ2 Hpkqk

〉,

for any indexes p1,...,pk, q1,...,qk, and any T ∈ T k,n if, and only if, µ ¹ σ−1
2 ◦σ1.

Direct calculation gives:

〈Pµ(T ), Hp1q1 ◦σ1 · · · ◦σ1 Hpkqk
〉

=

n,...,n∑
i1,...,ik=1

(Pµ(T ))i1...ik(Hp1q1 ◦σ1 · · · ◦σ1 Hpkqk
)i1...ik

=

n,...,n∑
i1,...,ik=1

(Pµ(T ))i1...ikH
i1i

σ−1
1 (1)

p1q1 · · ·H
iki

σ−1
1 (k)

pkqk

=

n,...,n∑
i1,...,ik=1

(Pµ(T ))i1...ikδi1p1δi1qσ1(1)
· · · δikpk

δikqσ1(k)

= (Pµ(T ))p1...pkδp1qσ1(1)
· · · δpkqσ1(k)

.

The last expression is equal to T p1...pk when ps = pµ(s) = qσ1(s) for all s ∈ Nk,
and is equal to 0 otherwise.

Analogously, the right-hand side of (4) is

〈Pµ(T ), Hp1q1 ◦σ2 · · · ◦σ2 Hpkqk
〉 = (Pµ(T ))p1...pkδp1qσ2(1)

· · · δpkqσ2(k)
,

which is equal to T p1...pk when ps = pµ(s) = qσ2(s) for all s ∈ Nk, and is equal
to 0 otherwise.

Suppose that µ ¹ σ−1
2 ◦ σ1. We consider three cases.

If there is an s0 such that ps0 6= pµ(s0) then, both sides of (4) are zero and
the equality is trivial.
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If ps = pµ(s) for all s ∈ Nk but for some s0 we have that ps0 6= qσ1(s0)

then, it is not possible to have ps = qσ2(s) for all s ∈ Nk. Indeed, suppose
on the contrary that ps = qσ2(s) for all s ∈ Nk. Letting r = σ2(s) we get
pσ−1

2 (r) = qr for every r ∈ Nk. Therefore pσ−1
2 (σ1(s)) = qσ1(s) for every s ∈ Nk

and in particular pσ−1
2 (σ1(s0)) = qσ1(s0) 6= ps0 . But µ ¹ σ−1

2 ◦ σ1 implies that

σ−1
2 (σ1(s0)) and s0 belong to the same cycle of µ, that is µl(s0) = σ−1

2 (σ1(s0))
for some l ∈ N. By the assumption in this case we have that ps0 = pµl(s0) for
every l, a contradiction. Thus, for some s1 ∈ Nk we have ps1 6= qσ2(s1) and
again both sides of (4) are equal to zero.

Suppose finally that ps = pµ(s) = qσ1(s) for all s ∈ Nk. Then, the left-hand
side of (4) is equal to T p1...pk . We are done if we show that ps = qσ2(s) for
every s ∈ Nk. Suppose this is not true, that is, for some s0, ps0 6= qσ2(s0).
Then, for r0 = σ2(s0) we have pσ−1

2 (r0) 6= qr0 , and for s1 = σ−1
1 (r0) we have

pσ−1
2 (σ1(s1)) 6= qσ1(s1). The condition µ ¹ σ−1

2 ◦ σ1 implies that σ−1
2 (σ1(s1))

and s1 belong to the same cycle of µ and we reach a contradiction as in the
previous case.

To prove the opposite direction of the theorem, suppose that

(5) (Pµ(T ))p1...pkδp1qσ1(1)
· · · δpkqσ1(k)

= (Pµ(T ))p1...pkδp1qσ2(1)
· · · δpkqσ2(k)

,

for every choice of the indexes p1,...,pk and q1,...,qk and every T . Take T to
be such that T i1...ik 6= 0 for every choice of the indexes i1, ..., ik satisfying
is = iµ(s) for every s ∈ Nk. Suppose that µ � σ−1

2 ◦ σ1. This means that
there is a number s0 ∈ Nk such that σ−1

2 (σ1(s0)) and s0 are not in the same
cycle of µ. Choose the indexes p1,...,pk and q1,...,qk so that ps = pµ(s) and
ps = qσ1(s), for every s ∈ Nk. Moreover, choose the indexes p1,...,pk so that
if s, r ∈ Nk are not in the same cycle of µ then, ps 6= pr. This in particular
means that

(6) pσ−1
2 (σ1(s0))

6= ps0 .

With those choices, the left-hand side of (5) is equal to T p1...pk 6= 0. We reach
a contradiction by showing that for some r0, pr0 6= qσ2(r0) implying that the
right-hand side of (5) is zero. Suppose on the contrary that pr = qσ2(r) for
every r ∈ Nk. Then, pσ−1

2 (σ1(s)) = qσ1(s) = ps, for every s ∈ Nk, contradicting

(6). We are done. ¥

Notice that if µ ¹ ν then, for arbitrary permutation σ in P k we have

µ ¹ ν−1 = (σ ◦ ν)−1 ◦ σ.
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This observation leads to the next corollary.

Corollary 3.2 Suppose µ and ν are permutations in P k such that µ ¹ ν.
Then, for an arbitrary permutation σ ∈ P k, any matrices H1,...,Hk, and a
tensor T in T k,n we have the identity:

〈Pµ(T ), H1 ◦σ · · · ◦σ Hk〉 = 〈Pµ(T ), H1 ◦σ◦ν · · · ◦σ◦ν Hk〉.

In particular, the result holds when ν = µ or ν = µ−1.

It is useful to see explicitly the conclusions of the above theorem when
k ≤ 3. We summarize them in the next corollary.

Corollary 3.3 For any T ∈ T 2,n and any two matrices H1 and H2 we have

〈P
(12)

(T ), H1 ◦(1)(2) H2〉 = 〈P
(12)

(T ), H1 ◦(12) H2〉.

For any T ∈ T 3,n and any three matrices H1, H2, and H3 we have

〈P
(13)

(T ), H1 ◦(132) H2 ◦(132) H3〉 = 〈P
(13)

(T ), H1 ◦(12)(3) H2 ◦(12)(3) H3〉,
〈P

(23)
(T ), H1 ◦(123) H2 ◦(123) H3〉 = 〈P

(23)
(T ), H1 ◦(12)(3) H2 ◦(12)(3) H3〉,

and

〈P
(13)

(T ), H1 ◦(13)(2) H2 ◦(13)(2) H3〉 = 〈P
(13)

(T ), H1 ◦(1)(2)(3) H2 ◦(1)(2)(3) H3〉,
〈P

(23)
(T ), H1 ◦(1)(23) H2 ◦(1)(23) H3〉 = 〈P

(23)
(T ), H1 ◦(1)(2)(3) H2 ◦(1)(2)(3) H3〉.

Finally, for any two permutations σ1, σ2 on N3 we have

〈P
(123)

(T ), H1 ◦σ1 H2 ◦σ1 H3〉 = 〈P
(123)

(T ), H1 ◦σ2 H2 ◦σ2 H3〉.

Example 3.4 Let us have another look at Formula (1) for the first derivative
of a spectral function at X. Let X = V (Diag λ(X))V T and Ẽ = V T EV ,
where E is a symmetric matrix. Using the definitions and notation in the
previous subsection we have:

∇(f ◦ λ)(X)[E] = 〈V (
Diag∇f(µ)

)
V T , E〉

= 〈∇f(µ), diag Ẽ〉
= 〈∇f(µ), ◦

(1)
Ẽ〉.
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Example 3.5 Let X be a symmetric matrix with ordered spectral decom-
position X = V (Diag λ(X))V T . Take two symmetric matrices E1 and E2

and let Ẽi = V T EiV for i = 1, 2. As we saw in the examples in Section 2 we
have:

E1 ◦(1)(2) E2 = (diag E1)(diag E2)
T and E1 ◦(12) E2 = E1 ◦ E2.,

Then, Formula (2) for the Hessian of the spectral function f ◦ λ becomes:

∇2(f ◦ λ)(X)[E1, E2] = ∇2f(λ(X))[diag Ẽ1, diag Ẽ2] + 〈A(λ(X)), Ẽ1 ◦ Ẽ2〉
= 〈∇2f(λ(X)), Ẽ1 ◦(1)(2) Ẽ2〉+ 〈A(λ(X)), Ẽ1 ◦(12) Ẽ2〉.

These examples support the following conjecture, describing the struc-
ture of the higher-order derivatives of spectral functions. (More instances
of when the conjecture holds are given after its equivalent reformulation in
Conjecture 4.1.)

Conjecture 3.1 The spectral function f ◦λ is k times (continuously) differ-
entiable at X if, and only if, f(x) is k times (continuously) differentiable at
the vector λ(X). Moreover, there are k-tensor valued maps Aσ : Rn → T k,n,
σ ∈ P k, depending only on the symmetric function f , such that for any
symmetric matrices E1,...,Ek we have

(7) ∇k(f ◦ λ)(X)[E1, ..., Ek] =
∑

σ∈P k

〈Aσ(λ(X)), Ẽ1 ◦σ · · · ◦σ Ẽk〉,

where X = V (Diag λ(X))V T and Ẽi = V T EiV , for i = 1, .., k.

The left-hand side of Formula (7) is the k-th derivative of the spectral
function evaluated at the matrices E1, ..., Ek while on the right side these
matrices are conjugated by V and “jumbled” into the σ-Hadamard products
Ẽ1 ◦σ · · · ◦σ Ẽk. Our goal in the next section is to identify more clearly the
multi-linear operator on the right-hand side of (7) acting on the matrices
E1, ..., Ek.

4 The Diag σ operator

Recall that the adjoint of the linear operator Diag : Rn → Mn is the operator
diag : Mn → Rn. That is, we have the identity

(8) 〈Diag x,H〉 = 〈x, diag H〉,

13



for any vector x and any matrix H. It is also easy to verify that for any
vector x, matrix H, and orthogonal matrix U we have

〈U(Diag x)UT , H〉 = 〈x, diag (UT HU)〉 = 〈x, ◦
(1)

(UT HU)〉,(9)

where the last equality is trivial from Example 2.5.
In this section we generalize Equations (8) and (9) for an arbitrary k-

tensor in place of x and an arbitrary σ-Hadamard product in place of ◦
(1)

.
Let T be an arbitrary k-tensor on Rn and let σ be a permutation on Nk.

We define Diag σT to be a 2k-tensor on Rn in the following way

(Diag σT )
i1...ik
j1...jk =

{
T i1...ik , if is = jσ(s), ∀s ∈ Nk

0, otherwise.

Informally speaking, viewing tensors as cubes placed at the origin of the
positive orthant of a Euclidean space and its indices as coordinates, then the
operator Diag σT lifts T onto the k-dimensional diagonal plane defined by

{(x, y) ∈ Rk × Rk |xs = yσ(s), for all s ∈ Nk}.

Notice that this map between the permutations on Nk and k-dimensional
diagonal subspaces of Rk × Rk is one-to-one.

When k = 1 and σ = (1), the definition of Diag σT coincides with the
definition of the Diag operator in Equation (8). An equivalent way to define
Diag σT useful for calculations is:

(Diag σT )
i1...ik
j1...jk = T i1...ikδi1jσ(1)

· · · δikjσ(k)
.

We now consider an action, call it conjugation, of the group, On, of all
n × n orthogonal matrices on the space of all k-tensors on Rn. For any k-
tensor T , and U ∈ On this action will be denoted by UTUT , and defined
by:

(10) (UTUT )i1...ik =
n∑

p1=1

· · ·
n∑

pk=1

(
T p1...pkU i1p1 · · ·U ikpk

)
.

When k = 1, this is exactly the action of On on Rn, and when k = 2 the
definition coincides with the conjugate action of On on the space of n × n
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square matrices. In general, it is not difficult to see that it is possible to
order the entries of T ∈ T k,n into a vector vec (T ) ∈ Rnk

such that

(11) UTUT = vec −1
(
(⊗kU)vec (T )

)
,

where ⊗kU is the k-th tensor power of U and vec −1 is the inverse of the
linear operation vec . The fact that ⊗kU is an orthogonal matrix whenever
U is, the well known identity (⊗kV )(⊗kU) = ⊗k(V U), and (11) show the
following lemma.

Lemma 4.1 The conjugate action is associative and norm preserving. That
is, for any k-tensor, T , on Rn and any two orthogonal matrices U , V in On

V (UTUT )V T = (V U)T (V U)T ,

and
‖UTUT‖ = ‖T‖.

Any 2k-tensor, T , on Rn can naturally be viewed as a k-tensor on the
space Mn in the following way. Let H1,...,Hk be any n× n matrices then,

T [H1, ..., Hk] :=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

T
p1...pk
q1...qk Hp1q1

1 · · ·Hpkqk

k .

Let P be an n×n permutation matrix and σ its corresponding permuta-
tion on Nn, that is, P T ei = eσ(i) for all i = 1, ..., n, where {ei | i = 1, ..., n} is
the standard basis in Rn. The action of P on the tensors is what one expects
it to be:

(PTP T )i1...ik =
n∑

p1=1

· · ·
n∑

pk=1

(
T p1...pk

k∏
ν=1

P iνpν

)
= T σ(i1)...σ(ik).

The conjugation by an orthogonal matrix is defined on tensors on Rn of
any dimension. The next lemma shows that the conjugation by a permutation
matrix commutes with the lifting operation Diag µ, for any permutation µ.

Lemma 4.2 For any permutation µ on Nk, any permutation matrix P in
P n and any k-tensor T on Rn, we have

P (Diag µT )P T = Diag µ(PTP T ).
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Proof. Let σ be the permutation on Nn corresponding to P . Fix any multi
index (i1...ik

j1...jk
). We begin calculating the right-hand side entry corresponding

to that index. In the third equality below, we use the fact that σ is a one-
to-one map.

(
P (Diag µT )P T

)i1...ik
j1...jk =

(
Diag µT

)σ(i1)...σ(ik)
σ(j1)...σ(jk)

= T σ(i1)...σ(ik)δσ(i1)σ(jµ(1)) · · · δσ(ik)σ(jµ(k))

= T σ(i1)...σ(ik)δi1jµ(1)
· · · δikjµ(k)

= (PTP T )i1...ikδi1jµ(1)
· · · δikjµ(k)

=
(
Diag µ(PTP T )

)i1...ik
j1...jk . ¥

These preparations lead to the following generalization to Equation (9).
(When, k = 1 and σ = (1) we obtain exactly Equation (9).)

Theorem 4.3 For any k-tensor T on Rn, any matrices H1,...,Hk in Mn,
any orthogonal matrix U in On, and any permutation σ on Nk we have the
identity

(12) 〈T, H̃1 ◦σ · · · ◦σ H̃k〉 =
(
U(Diag σT )UT

)
[H1, ..., Hk],

where H̃i = UT HiU , for all i = 1, 2, ..., k.

Proof. Since both sides are linear in each argument separately, it is enough
to show that the equality holds for k-tuples (Hi1j1 , ..., Hikjk

) of basic matrices.
Using Lemma 2.2 and the fact that H̃pq

ij = U ipU jq, we develop the left-
hand side of Equation (12):

〈T, H̃i1j1 ◦σ · · · ◦σ H̃ikjk
〉 =

n,...,n∑
p1,...,pk=1

T p1...pkH̃
p1pσ−1(1)

i1j1
· · · H̃pkpσ−1(k)

ikjk

=

n,...,n∑
p1,...,pk=1

T p1...pkU i1p1U j1pσ−1(1) · · ·U ikpkU jkpσ−1(k) .

On the other hand, using the definitions we calculate that the right-hand
side is:

(U(Diag σT )UT )[Hi1j1 , ..., Hikjk
] =
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=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

(
(U(Diag σT )UT )

p1...pk
q1...qk Hp1q1

i1j1
· · ·Hpkqk

ikjk

)

= (U(Diag σT )UT )
i1...ik
j1...jk

=

n,n∑
p1,q1=1

· · ·
n,n∑

pk,qk=1

(
(Diag σT )

p1...pk
q1...qk

k∏
ν=1

U iνpνU jνqν

)

=
n∑

p1=1

· · ·
n∑

pk=1

(
T p1...pk

k∏
ν=1

U iνpνU jνpσ−1(ν)

)
.

This shows that the both sides are equal. ¥

Corollary 4.4 For any k-tensor T , any matrices H1,...,Hk, and any per-
mutation σ on Nk, we have the identity

(13) 〈T, H1 ◦σ ... ◦σ Hk〉 = (Diag σT )[H1, ..., Hk].

If in Corollary 4.4 we substitute the matrices H1,...,Hk with H̃1,...,H̃k and
we use Theorem 4.3, we obtain the next result.

Corollary 4.5 For any k-tensor T , orthogonal matrix U ∈ On, permutation
σ on Nk, and any matrices H1,...,Hk we have the identity

(14) (Diag σT )[H̃1, ..., H̃k] =
(
U(Diag σT )UT

)
[H1, ..., Hk].

If in Corollary 4.4 we take σ to be the identity permutation then, we get
the next corollary, which generalizes Equation (8).

Corollary 4.6 For any k-tensor T , any matrices H1,...,Hk we have the iden-
tity

(15) T [diag H1, ..., diag Hk] = (Diag (id)T )[H1, ..., Hk].

We conclude this section with a second look at the first two derivatives
of spectral functions.

Example 4.7 As we saw in Example 3.4, the first derivative of the spectral
function f ◦ λ at the point X = V (Diag λ(X))V T , applied to the symmetric
matrix E is given by the formula

∇(f◦λ)(X)[E] = 〈V (
Diag∇f(λ(X))

)
V T , E〉 = V

(
Diag (1)∇f(λ(X))

)
V T [E].
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The usefulness of the notation becomes more evident below.

Example 4.8 Let X be a symmetric matrix with ordered spectral decom-
position X = V (Diag λ(X))V T . Take two symmetric matrices E1 and E2

and let Ẽi = V T EiV for i = 1, 2. As we saw in Example 3.4, the Hessian
of the spectral function f ◦ λ at the point X = V (Diag λ(X))V T , applied to
the symmetric matrices E1 and E2 is given by the formula

∇2(f ◦ λ)(X)[E1, E2] = 〈∇2f(λ(X)), Ẽ1 ◦(1)(2) Ẽ2〉+ 〈A(λ(X)), Ẽ1 ◦(12) Ẽ2〉.

With the notation introduced in this section we can rewrite it as

∇2(f ◦ λ)(X)[E1, E2] =
(
V

(
Diag (1)(2)∇2f(λ(X))

)
V T

)
[E1, E2]

+
(
V

(
Diag (12)A(λ(X))

)
V T

)
[E1, E2].

Or, in other words

∇2(f ◦ λ)(X) = V
(
Diag (1)(2)∇2f(λ(X)) + Diag (12)A(λ(X))

)
V T .

Finally, we express Conjecture 3.1 in the new language.

Conjecture 4.1 The spectral function f ◦λ is k times (continuously) differ-
entiable at X if, and only if, f(x) is k times (continuously) differentiable at
the vector λ(X). Moreover, there are k-tensor valued maps Aσ : Rn → T k,n,
σ ∈ P k, depending only on the symmetric function f , such that

(16) ∇k(f ◦ λ)(X) = V
( ∑

σ∈P k

Diag σAσ(λ(X))
)
V T ,

where X = V (Diag λ(X))V T .

Formula (16) says that the orthogonal matrix V in the ordered spectral
decomposition of X also “diagonalizes” the k-th derivative of f ◦ λ at X.
Moreover, the effect of the eigenvalues in the right-hand side of (16) can very
clearly be seen: only V and λ(X) depend on the eigenvalues. In addition, we
can easily evaluate the derivative, as a multi-linear function, at any k sym-
metric matrices, using Theorem 4.3 and the σ-Hadamard product. Finally,
there are precisely k! summands in the right-hand side of (16), this should
be compared with the classical Faà de Bruno formula [5, Lemma 1.3.1] for
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the k-th derivative of the composition of two (smooth) functions, in which
the number of summands in highly nontrivial.

In [16] we show that this conjecture holds for the derivatives of any
function (not necessarily symmetric) of the eigenvalues of symmetric ma-
trices, at a symmetric matrix X with distinct eigenvalues; as well as for the
derivatives of separable spectral functions at an arbitrary symmetric matrix
X. (Separable spectral functions are those arising from symmetric functions
f(x) = g(x1) + · · ·+ g(xn) for some function g on a scalar argument.) There
we also describe how, for every σ in P k, to compute the operators Aσ(x),
depending only on the symmetric function f(x).

5 Sufficient condition for Conjecture 4.1

Recall that Examples (4.7), and (4.8) show that Conjecture 4.1 holds for
k = 1 and k = 2. The next Theorem summarizes this section.

Theorem 5.1 Using the notation from Conjecture 4.1 we have.
• It is enough to establish Conjecture 4.1 only in the case when the X =

Diag x for some x ∈ Rn with x1 ≥ · · · ≥ xn.
• If the maps Aσ are continuous at λ(X) for all σ ∈ P k, then ∇k(f ◦ λ)

is continuous at X.

We begin with a simple lemma. For brevity, given a k-tensor, T , on Mn

by T [H] we denote the (k − 1)-tensor T [·, · · · , H].

Lemma 5.2 Let T be any 2k-tensor on Rn, U ∈ On, and let H be any
matrix. Then, the following identity holds.

U(T [H̃])UT = (UTUT )[H],

where H̃ = UT HU .

Proof. Since both sides are linear with respect to H, it is enough to prove
the identity only for basic matrices Hikjk

. By the definition of conjugation,
and using the fact that H̃pq

ikjk
= U ikpU jkq we obtain

(
U(T [H̃ikjk

])UT
)i1...ik−1

j1...jk−1
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=

n,...,n∑
ps,qs=1

s=1,...,k−1

(T [H̃ikjk
])

p1...pk−1
q1...qk−1U i1p1U j1q1 · · ·U ik−1pk−1U jk−1qk−1

=

n,...,n∑
ps,qs=1
s=1,...,k

T
p1...pk
q1...qk U i1p1U j1q1 · · ·U ikpkU jkqk

= (UTUT )
i1...ik
j1...jk

=
(
(UTUT )[Hikjk

]
)i1...ik−1

j1...jk−1 . ¥

We now establish the first part of Theorem 5.1. Suppose that Con-
jecture 4.1 holds for all derivatives of order less than k and for the k-th
derivative it holds only for ordered diagonal matrices. We show that the
conjecture holds for the k-th derivative at an arbitrary matrix. Indeed, let
X = V (Diag λ(X))V T , let E be arbitrary symmetric matrix and denote
Ẽ = V T EV . Then,

∇k−1F (X + E) = ∇k−1F
(
V (Diag λ(X) + Ẽ)V T

)

= V
(∇k−1F (Diag λ(X) + Ẽ)

)
V T

= V
(∇k−1F (Diag λ(X))

)
V T + V

(∇kF (Diag λ(X))[Ẽ]
)
V T + o(‖E‖)

= ∇k−1F (X) +
(
V (∇kF (Diag λ(X)))V T

)
[E] + o(‖E‖),

where in the last equality we used Lemma 5.2. This shows that ∇k−1F is
differentiable at X and that V (∇kF (Diag λ(X)))V T is the k-th derivative of
F at X.

The second part of Theorem 5.1 is the next proposition.

Proposition 5.3 Suppose the k-th derivative of the spectral function F =
f◦λ is given by Equation (16) for all X. If for every σ ∈ P k the tensor valued
map x ∈ Rn → Aσ(x) ∈ T k,n is continuous then, ∇kF (X) is continuous in
X, in other words F ∈ Ck.

Proof. Suppose that there is a sequence of symmetric matrices Xm ap-
proaching X and an ε > 0 such that

‖∇kF (Xm)−∇kF (X)‖ > ε, for all m.
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Let Xm = Vm(Diag λ(Xm))V T
m and suppose without loss of generality that

the orthogonal Vm approaches V (otherwise, take a subsequence.) By conti-
nuity of the eigenvalues, we have that X = V (Diag λ(X))V T and that λ(Xm)
approaches λ(X). Using the formula for the k-th derivative and the continu-
ity of the maps Aσ(x), the contradiction follows. ¥
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