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Abstract
In this paper we are interested in the higher-order derivatives of functions of the eigenvalues

of symmetric matrices with respect to the matrix argument. We describe the formula for the
k-th derivative of such functions in two general cases.

The first case concerns the derivatives of the composition of an arbitrary (not necessarily
symmetric) k-times differentiable function with the eigenvalues of symmetric matrices at a
symmetric matrix with distinct eigenvalues.

The second case describes the derivatives of the composition of a k-times differentiable
separable symmetric function with the eigenvalues of symmetric matrices at an arbitrary sym-
metric matrix. We show that the formula significantly simplifies when the separable symmetric
function is k-times continuously differentiable.

As an application of the developed techniques, we re-derive the formula for the Hessian of
a general spectral function at an arbitrary symmetric matrix. The new tools lead to a shorter,
cleaner derivation than the original one in [16].

To make the exposition as self contained as possible, we have included the necessary back-
ground results and definitions. The proofs of the intermediate technical results are collected
in the appendices.

Keywords: spectral function, differentiable, twice differentiable, higher-order derivative, eigenvalue
optimization, symmetric function, perturbation theory, tensor analysis, Hadamard product.
Mathematics Subject Classification (2000): primary: 49R50; 47A75, secondary: 15A18;
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1 Introduction

We say that a real-valued function F of a real symmetric matrix argument is spectral if

F (UXUT ) = F (X)
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for every real symmetric matrix X in its domain and every orthogonal matrix U . That is, F (X) =
F (Y ) if X and Y are symmetric and if X is similar to Y . The restriction of F to the subspace of
diagonal matrices defines a function f(x) = F (Diag x) on a vector argument x ∈ Rn. It is easy to
see that the function f : Rn → R is symmetric, that is, has the property

f(x) = f(Px) for any permutation matrix P and any x in the domain of f,

and in addition, F (X) = (f ◦ λ)(X), in which the eigenvalue map λ(X) = (λ1(X), ..., λn(X)) is the
vector of eigenvalues of X ordered in nonincreasing order.

One of the main questions in the theory of spectral functions is what smoothness properties of
the symmetric function f are inherited by F . The difficulties arise from the fact that the eigenvalue
map λ(X) is continuous but not always differentiable with respect to X. In domains, where λ(X) is
differentiable, it is difficult to organize the differentiation process so that one arrives at an elegant
formula for the higher-order derivatives of (f ◦ λ)(X).

An important subclass of spectral functions is obtained when f(x) = g(x1)+· · ·+g(xn) for some
function g of one real variable. We call such symmetric functions separable; their corresponding
spectral functions are called separable spectral functions.

In [12] an explicit formulae for the gradient of the spectral function F in terms of the derivatives
of the symmetric function f was given:

∇(f ◦ λ)(X) = V
(
Diag∇f(λ(X))

)
V T ,(1)

where V is any orthogonal matrix such that X = V
(
Diag λ(X)

)
V T is the ordered spectral decom-

position of X. In [16] a formula for the Hessian of F was given, whose structure appeared quite
different from the one for the gradient. Calculating the third and higher-order derivatives of F
becomes unmanageable without an appropriate language for describing them.

In this work we generalize the work in [12] and [16] by proving, in two general cases, the
following formula for the k-th derivative of a spectral function

(2) ∇k(f ◦ λ)(X) = V
( ∑

σ∈P k

Diag σAσ(λ(X))
)
V T ,

where again X = V (Diag λ(X))V T . The sum is taken over all permutations on k elements, which
are a convenient tool for enumerating the maps Aσ(x). The precise meanings of the operators Diag σ

and the conjugation by the orthogonal matrix V are explained in the next section; see (6) and (9)
respectively. The maps Aσ(x) depend only on the partial derivatives of f(x), up to order k, and do
not depend on the eigenvalues. Thus, it is easy to see how the higher-order derivatives depend on
the eigenvalue map λ(X). Formula (2) depends on the eigenvalues only through the compositions
Aσ(λ(X)) and the conjugation by the orthogonal matrix V .

We show that (2) holds in two general cases. It holds when f is a k-times (continuously)
differentiable function, not necessarily symmetric, and X is a matrix with distinct eigenvalues. It
also holds when f is a k-times (continuously) differentiable separable symmetric function and X is
an arbitrary symmetric matrix. We give an easy recipe for computing the maps Aσ(x) in these two
cases.
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Our results for separable spectral functions imply those of [5] and [4] for one-parameter families
of symmetric matrices; see also the monographs [8] and [9]. Our results also generalize and extend
those in [20] when the considerations there are restricted to the space of symmetric matrices.
(Notice that the gradients of separable spectral functions, see (1), are the functions considered in
[20] when restricted to the space of symmetric matrices.) For example, Theorem 4.1 in [20] assumes
that the function f is k-times continuously differentiable to conclude that (f ◦ λ)(X(t)) is k-times
differentiable, where X(t) is a k-times differentiable path of symmetric matrices depending on the
scalar parameter t. In Theorem 6.1 we only assume that f is k-times differentiable and obtain that
(f◦λ)(X) is k-times differentiable with respect to the free symmetric matrix variable X. In that case,
one can obtain the derivatives of (f ◦λ)(X(t)) by using the Chain Rule. Finally, Theorem 6.9 shows
that if f is k-times continuously differentiable then (f ◦λ)(X) is k-times continuously differentiable
with respect to the variable X.

In addition, we show that if f is a k-times continuously differentiable, separable symmetric
function, (2) can be significantly simplified. In that case, if σ1 and σ2 are two permutations on k
elements with one cycle in their cycle decomposition then Aσ1(x) = Aσ2(x) and these maps allow a
simple determinant description. If σ has more than one cycle, then Aσ(x) ≡ 0.

In Section 7, we re-derive the formula for the Hessian of a general spectral function at an
arbitrary symmetric matrix. The techniques developed here lead to a shorter, more streamlined
derivation than the original derivation in [16].

The language that we use, based on the generalized Hadamard product, allows us to differ-
entiate (2) just as one would expect: writing the differential quotient and taking the limit as the
perturbation goes to zero. This gives a clear view of where the different pieces in the differential
come from and gives the process a routine Calculus-like flavour.

In the next section, we give the necessary notation, definitions, and background results to
facilitate the reading of this work. The proofs of the technical tools are in the appendices.

2 Notation and background results

By Rn we denote the standard n-dimensional Euclidean space of n-tuples of real numbers with
standard inner product and norm. By Sn, On, and P n we denote the sets of all n×n real symmetric,
orthogonal, and permutation matrices, respectively. By Mn we denote the real Euclidean space of
all n×n matrices with inner product 〈X, Y 〉 = tr (XY T ) and corresponding norm ‖X‖ =

√
〈X,X〉.

For A ∈ Sn, λ(A) = (λ1(A), ..., λn(A)) is the vector of its eigenvalues ordered in nonincreasing order:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

By Nk we denote the set {1, 2, ..., k}. For any vector x in Rn, Diag x denotes the diagonal matrix
with the vector x on the main diagonal, and diag : Mn → Rn denotes its adjoint operator, defined
by diag (X) = (x11, ..., xnn). By Rn

↓ we denote the cone of all vectors x in Rn such that x1 ≥ x2 ≥
· · · ≥ xn. Denote the standard orthonormal basis in Rn by e1, e2, ..., en. For a permutation matrix
P ∈ P n we say that σ : Nn → Nn is its corresponding permutation map if for any h ∈ Rn we
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have Ph = (hσ(1), ..., hσ(n))
T , that is, P T ei = eσ(i) for all i = 1, ..., n. The symbol δij denotes the

Kroneker delta. It is equal to one if i = j and zero otherwise.
Any vector µ ∈ Rn defines a partition of Nn into disjoint blocks, where integers i and j are in

the same block if and only if µi = µj. In general, the blocks that µ determines need not contain
consecutive integers. We agree that the block containing the integer 1 is the first block, I1, the
block containing the smallest integer that is not in I1 is the second block, I2, and so on. By r we
denote the number of blocks in the partition. For any two integers, i, j ∈ Nn we say that they are
equivalent (with respect to µ) and write i ∼ j (or i ∼µ j) if µi = µj, that is, if they are in the same
block. Two k-indexes (i1, ..., ik) and (j1, ..., jk) are called equivalent if il ∼ jl for all l = 1, 2, ..., k,
and we write (i1, ..., ik) ∼ (j1, ..., jk) (or (i1, ..., ik) ∼µ (j1, ..., jk)).

A k-tensor on a linear space is a real-valued function of k arguments from the linear space, that
is linear in each argument separately. Denote the set of all k-tensors on Rn by T k,n. The value of
the k-tensor at (h1, ..., hk) is denoted by T [h1, ..., hk]. For any (i1, ..., ik), a k-tuple of integers from
Nn, we denote by T i1...ik the value T [ei1 , ..., eik ]. Matrices from Mn are viewed as 2-tensors on Rn,
with respect to the fixed basis, and for an M ∈ Mn we have M ij = M [ei, ej] := 〈ei,Mej〉.

The next elementary lemma motivates the following definitions. It is a simple application of
the chain rule to the equality f(µ) = f(Pµ).

Lemma 2.1 Let f : Rn → R be a symmetric function, k times differentiable at the point µ ∈ Rn,
and let P be a permutation matrix such that Pµ = µ. Then

(i) ∇f(µ) = P T∇f(µ),

(ii) ∇2f(µ) = P T∇2f(µ)P , and in general

(iii) ∇sf(µ)[h1, ..., hs] = ∇sf(µ)[Ph1, ..., Phs], for any h1, ..., hs ∈ Rn, and s ∈ Nk.

Definition 2.2 A tensor T ∈ T k,n is called symmetric if for any permutation σ on Nk it satisfies

T [hσ(1), ..., hσ(k)] = T [h1, ..., hk],

for any h1, ..., hk ∈ Rn.

Definition 2.3 (i) Given a vector µ ∈ Rn, a tensor T ∈ T k,n is called point-symmetric with
respect to µ if for any permutation P ∈ P n such that Pµ = µ we have

T [Ph1, ..., Phk] = T [h1, ..., hk],

for any h1, ..., hk ∈ Rn.

(ii) A k-tensor-valued map µ ∈ Rn → F(µ) ∈ T k,n is point-symmetric if for every µ ∈ Rn and
every permutation matrix P ∈ P n we have

F(Pµ)[Ph1, ..., Phk] = F(µ)[h1, ..., hk],

for any h1, ..., hk ∈ Rn.
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Note that if the map µ ∈ Rn → F(µ) ∈ T k,n is point-symmetric then the tensor F(µ) is
point-symmetric with respect to µ, for every µ ∈ Rn.

Definition 2.4 (i) A tensor T ∈ T k,n is called block-constant with respect to µ if T i1...ik = T j1...jk

whenever (i1, ..., ik) ∼µ (j1, ..., jk).

(ii) A k-tensor-valued map µ ∈ Rn → F(µ) ∈ T k,n is block-constant if F(µ) is block-constant with
respect to µ for every µ ∈ Rn.

Every block-constant with respect to µ tensor is point-symmetric with respect to µ. By
Lemma 2.1, for any differentiable symmetric function f : Rn → R the mapping µ ∈ Rn → ∇f(µ) ∈
Rn is a point-symmetric, block-constant, 1-tensor-valued mapping. In general, for every s ∈ Nk

the mapping (when exists) µ ∈ Rn → ∇sf(µ) is a point-symmetric, s-tensor-valued map, and if
continuous, then the tensor ∇sf(µ) is also symmetric.

By T [h] we denote the (k − 1)-tensor on Rn given by T [·, ..., ·, h].

Lemma 2.5 If a k-tensor-valued map µ ∈ Rn → T (µ) ∈ T k,n is point-symmetric and differentiable,
then its derivative µ ∈ Rn → ∇T (µ) ∈ T k+1,n is a point-symmetric map.

Proof. We use the first-order Taylor expansion formula. Let {vm} be a sequence of vectors in Rn

approaching zero such that vm/‖vm‖ approaches h as m →∞.

T (µ + vm)[h1, ..., hk] = T (µ)[h1, ..., hk] +∇T (µ)[h1, ..., hk, vm] + o(‖vm‖).
On the other hand, for any permutation P we have

T (µ + vm)[h1, ..., hk] = T (Pµ + Pvm)[Ph1, ..., Phk]

= T (Pµ)[Ph1, ..., Phk] +∇T (Pµ)[Ph1, ..., Phk, Pvm] + o(‖Pvm‖)
= T (µ)[h1, ..., hk] +∇T (Pµ)[Ph1, ..., Phk, Pvm] + o(‖vm‖).

Subtracting the two equalities, dividing by ‖vm‖ and letting m go to infinity, we get

∇T (Pµ)[Ph1, ..., Phk, Ph] = T (µ)[h1, ..., hk, h].

Since the vectors h1,...,hk, and h are arbitrary, the result follows. ¥

For a fixed vector µ ∈ Rn, which is to be understood from the context, we define a linear
operation on matrices: M ∈ Mn → Min ∈ Mn, as follows

M ij
in =

{
M ij, if i ∼µ j
0, otherwise,

(3)

and

(4) Mout = M −Min.
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2.1 Generalized Hadamard product

In this section we quote briefly several definitions and results from [21] that are crucial for the
development in this work. Recall that the Hadamard product of two matrices H1 = [H ij

1 ] and
H = [H ij

2 ] of the same size is the matrix of their element-wise product H1 ◦ H2 = [H ij
1 H ij

2 ]. The
standard basis on the space Mn is given by the set {Hpq ∈ Mn |H ij

pq = δipδjq for all i, j ∈ Nn},
where δij is the Kronecker delta function, equal to one if i = j, and zero otherwise.

For each permutation σ on Nk, we define σ-Hadamard product between k matrices to be a
k-tensor on Rn as follows. Given any k basic matrices Hp1q1 , Hp2q2 ,...,Hpkqk

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk
)i1i2...ik =

{
1, if is = ps = qσ(s),∀s = 1, ..., k
0, otherwise.

Extend this product to a multi-linear map on k matrix arguments:

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik = H

i1iσ−1(1)

1 · · ·H ikiσ−1(k)

k .(5)

For example, when k = 1 there is just one permutation on N1, namely the identity σ = (1), and
◦
(1)

H = diag H. When k = 2 there are two permutations on N2: the identity (1)(2) and the
transposition (12). The two corresponding σ-Hadamard products between two matrices are

H1 ◦(1)(2) H2 = (diag H1)(diag H2)
T ,

H1 ◦(12) H2 = H1 ◦HT
2 .

Let T be an arbitrary k-tensor on Rn and let σ be a permutation on Nk. Let Diag σT be the
2k-tensor on Rn defined by

(Diag σT )
i1...ik
j1...jk =

{
T i1...ik , if is = jσ(s),∀s = 1, ..., k
0, otherwise.

(6)

When k = 1 we have Diag (1)x = Diag x for any x ∈ Rn. Any 2k-tensor T on Rn can be viewed
naturally as a k-tensor on the linear space of 2-tensors in the following way

(7) T [H1, ..., Hk] :=
n∑

p1,q1=1

· · ·
n∑

pk,qk=1

T
p1...pk
q1...qk Hp1q1

1 · · ·Hpkqk

k .

It can be shown that the right-hand side of (7) is invariant under orthonormal changes of the basis
in Rn. If T is a 2k-tensor on Rn and H ∈ Mn then by T [H] we denote the 2(k − 1)-tensor on Rn

defined by

(8) (T [H])
i1...ik−1
j1...jk−1 :=

n,n∑
p,q=1

T
i1...ik−1p
j1...jk−1qHpq.
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Define dot product between two tensors in T k,n in the usual way

〈T1, T2〉 =
n∑

p1,...,pk=1

T p1...pk
1 T p1...pk

2 ,

and corresponding norm ‖T‖ =
√
〈T, T 〉. We define an action (called conjugation) of the orthogonal

group On on the space of all k-tensors on Rn. For any k-tensor, T , and U ∈ On this action is denoted
by UTUT ∈ T k,n:

(9) (UTUT )i1...ik =
n∑

p1=1

· · ·
n∑

pk=1

(
T p1...pkU i1p1 · · ·U ikpk

)
.

It is not difficult to show that this action is norm preserving and associative. That is ‖V XV T‖ =
‖X‖ and V (UTUT )V T = (V U)T (V U)T for all U, V ∈ On, see [21].

The Diag σ operator, the σ-Hadamard product, and conjugation by an orthogonal matrix are
connected by the following multi-linear duality relation, see [21].

Theorem 2.6 For any k-tensor T ∈ T k,n, any matrices H1,...,Hk, any orthogonal matrix V , and
any permutation σ in P k we have

(10) 〈T, H̃1 ◦σ · · · ◦σ H̃k〉 =
(
V (Diag σT )V T

)
[H1, ..., Hk],

where H̃i = V T HiV , i = 1, ..., k.

We also need the following two lemmas from [21].

Lemma 2.7 Let T be a k-tensor on Rn, and H be a matrix in Mn. Let Hi1j1,...,Hik−1jk−1
be basic

matrices in Mn, and let σ be a permutation on Nk. Then the following identities hold.

(i) If σ−1(k) = k, then

〈T, Hi1j1 ◦σ · · · ◦σ Hik−1jk−1
◦σ H〉 =

( k−1∏
t=1

δitjσ(t)

) n∑
t=1

T i1...ik−1tH tt.

(ii) If σ−1(k) = l, where l 6= k, then

〈T, Hi1j1 ◦σ · · · ◦σ Hik−1jk−1
◦σ H〉 =

( k−1∏
t=1
t6=l

δitjσ(t)

)
T i1...ik−1jσ(k)Hjσ(k)iσ−1(k) .

Lemma 2.8 Let T be any 2k-tensor on Rn, V ∈ On, and let H be any matrix. Then

V (T [V T HV ])V T = (V TV T )[H].
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2.2 Operations with tensors

For a fixed vector µ ∈ Rn and any l ∈ Nk define the linear map

T ∈ T k,n → T
(l)
out ∈ T k+1,n,

as follows:

(11)
(
T

(l)
out

)i1...ikik+1 =





0, if il ∼µ ik+1

T i1...il−1ik+1il+1...ik − T i1...il−1ilil+1...ik

µik+1
− µil

, if il 6∼µ ik+1.

Notice that if T is a block-constant tensor with respect to µ, then so is T
(l)
out for each l ∈ Nk. If

x ∈ Rn → T (x) ∈ T k,n is a k-tensor-valued map, then x ∈ Rn → T (x)
(l)
out ∈ T k+1,n is a (k + 1)-

tensor-valued map, defined, for each x, by (11) with µ := x. The easy-to-check claim that these
maps are linear means that for any two tensors T1, T2 ∈ T k,n and α, β ∈ R we have

(12) (αT1 + βT2)
(l)
out = α(T1)

(l)
out + β(T2)

(l)
out, for all l = 1, ..., k.

One can iterate this definition: on the space T k+1,n define k + 1 linear maps into T k+2,n, and
so on. A good enumerating tool to keep track of that chain process are the permutations on Nk,
Nk+1, and so on. We make that more clear in the following paragraph.

Given a permutation σ on Nk we can naturally view it as a permutation on Nk+1 fixing the last
element. Let τl be the transposition (l, k + 1), for all l = 1, ..., k, k + 1. Define k + 1 permutations,
σ

(l)
, on Nk+1, as follows:

(13) σ
(l)

= στl, for l = 1, ..., k, k + 1.

Informally speaking, given the cycle decomposition of σ, we obtain σ
(l)

, for each l = 1, ..., k, by
inserting the element k + 1 immediately after the element l, and when l = k + 1, the permutation
σ

(k+1)
fixes the element k + 1. Notice that σ−1

(l)
(k + 1) = l for all l, and that the map

(14) (σ, l) ∈ P k × Nk+1 → σ
(l)
∈ P k+1,

is one-to-one and onto.
We are now ready to formulate the next theorem. It is the first Calculus-type rule that we

need for differentiating spectral functions. It is proved in Appendix B.

Theorem 2.9 Let {Mm}∞m=1 be a sequence of symmetric matrices converging to 0, such that the
normalized sequence Mm/‖Mm‖ converges to M . Let µ be in Rn

↓ and Um → U ∈ On be a sequence
of orthogonal matrices such that

Diag µ + Mm = Um

(
Diag λ(Diag µ + Mm)

)
UT

m, for all m = 1, 2, ....

Then for any block-constant k-tensor T on Rn, and any permutation σ on Nk we have

(15) lim
m→∞

Um(Diag σT )UT
m −Diag σT

‖Mm‖ =
k∑

l=1

(
Diag

σ
(l)T

(l)
out

)
[M ].
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Next, for a fixed vector µ ∈ Rn and any l ∈ Nk define the linear map

T ∈ T k,n → T
(l)
in ∈ T k+1,n,

as follows:

(16)
(
T

(l)
in

)i1...ikik+1 =

{
T i1...il−1ik+1il+1...ik , if il ∼µ ik+1

0, if il 6∼µ ik+1.

Notice that if T is a block-constant tensor with respect to µ, then so is T
(l)
in for each l = 1, ..., k.

If x ∈ Rn → T (x) ∈ T k,n is a k-tensor-valued map, then x ∈ Rn → T (x)
(l)
in ∈ T k+1,n is a (k + 1)-

tensor-valued map defined, for each x, by (16) with µ := x. It is easy to check that these maps are
linear, that is, for any two tensors T1, T2 ∈ T k,n and α, β ∈ R we have

(αT1 + βT2)
(l)
in = α(T1)

(l)
in + β(T2)

(l)
in , for all l = 1, ..., k.

Finally, for any T ∈ T k,n and any l ∈ Nk define T τl ∈ T k+1,n as follows:

(17)
(
T τl

)i1...ikik+1 =

{
T i1...il−1ilil+1...ik , if il = ik+1

0, if il 6= ik+1.

In other words, T τl is a (k +1)-tensor with entries off the “hyper plane” il = ik+1 equal to zero. On
the “hyper plane” il = ik+1 we place the original tensor T .

Notice that when vector µ has distinct coordinates then il ∼µ ik+1 if and only if il = ik+1 and

therefore T
(l)
in = T τl for every l ∈ Nk.

The next theorem is the second and last Calculus-type rule that we need. It is proved in
Appendix B.

Theorem 2.10 Fix a vector µ ∈ Rn. Let U ∈ On be a block-diagonal (with respect to µ) orthogonal
matrix and let σ be a permutation on Nk. Let M be an arbitrary symmetric matrix, and let h ∈ Rn

be a vector, such that UT MinU = Diag h. Then

(i) for any block-constant (k + 1)-tensor T on Rn

U
(
Diag σ(T [h])

)
UT =

(
Diag

σ
(k+1)T

)
[M ];

(ii) for any block-constant k-tensor T on Rn

U
(
Diag σ(T τl [h])

)
UT =

(
Diag

σ
(l)T

(l)
in

)
[M ], for all l = 1, ..., k,

where the permutations σ
(l)

, for l ∈ Nk, are defined by (13).
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3 Several standing assumptions

Suppose f : Rn → R is a k-times differentiable symmetric function. For any integer s ∈ [1, k), in
order to obtain the (s + 1)-th derivative ∇s+1(f ◦ λ)(X) of the composition f ◦ λ, we differentiate
∇s(f ◦λ)(X) and use the tensorial language presented in Section 2 to simplify the calculation. More
precisely, for each σ ∈ P s we define a s-tensor-valued map Aσ : Rn → T s,n, depending only on the
function f and its partial derivatives, such that

(18) ∇s(f ◦ λ)(X) = V
( ∑

σ∈P s

Diag σAσ(λ(X))
)
V T ,

where X = V (Diag λ(X))V T .
By [21, Section 5] it is enough to prove (18) only in the case when X is ordered diagonal matrix.

That is, X = Diag µ for some vector µ ∈ Rn
↓ .

That (18) holds when s = 1 was shown in [12], see also Subsection 5.2 below.
Let {Mm}∞m=1 be any sequence of symmetric matrices converging to 0. In order to show that

lim
m→∞

∇s(f ◦ λ)(X + Mm)−∇s(f ◦ λ)(X)−∇s+1(f ◦ λ)(X)[Mm]

‖Mm‖ = 0, for s = 1, ..., k − 1

we may assume without loss of generality that Mm/‖Mm‖ converges to a symmetric matrix M .
Thus, we assume throughout that {Mm}∞m=1 is any sequence of symmetric matrices converging to
0 with Mm/‖Mm‖ converging to matrix M ∈ Sn and show inductively that

(19) lim
m→∞

∇s(f ◦ λ)(X + Mm)−∇s(f ◦ λ)(X)

‖Mm‖ = ∇s+1(f ◦ λ)(X)[M ], for s = 1, ..., k − 1.

Finally, throughout the rest by {Um}∞m=1 we denote a sequence of orthogonal matrices in On,
converging to U ∈ On and such that

(20) Diag µ + Mm = Um

(
Diag λ(Diag µ + Mm)

)
UT

m, for all m = 1, 2, ....

The next lemma is a simple combination of [13, Lemma 5.10] and [6, Theorem 3.12].

Lemma 3.1 For any µ ∈ Rn
↓ and any sequence of symmetric matrices Mm → 0 we have that

(21) λ(Diag µ + Mm)T = µT +
(
λ(XT

1 MmX1)
T , ..., λ(XT

r MmXr)
T
)T

+ o(‖Mm‖),

where Xl := [ei | i ∈ Il], for all l = 1, ..., r.

We denote

(22) hm :=
(
λ(XT

1 MmX1)
T , ..., λ(XT

r MmXr)
T
)T

.
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Since Mm/‖Mm‖ converges to M as m goes to infinity and the eigenvalues are continuous functions,
we define

(23) h := lim
m→∞

hm

‖Mm‖ =
(
λ(XT

1 MX1)
T , ..., λ(XT

r MXr)
T
)T

.

We reserve the symbols hm and h to denote the above two vectors throughout the paper. With this
notation Lemma 3.1 says that

(24) λ(Diag µ + Mm)T = µT + hm + o(‖Mm‖).
Taking the limit in (20) as m goes to infinity we see, by Theorem 8.1, that U is block-diagonal

with respect to µ and

(25) UT MinU = Diag h,

where Min is defined by (3).

4 Analyticity of isolated eigenvalues

Let A be in Sn and suppose that the j-th largest eigenvalue is isolated, that is

λj−1(A) > λj(A) > λj+1(A).

The goal of this section is to give two justifications of the known fact that λj(·) is an analytic
function in a neighbourhood of A. We call a function of several real variables analytic at a point
if in a neighbourhood of this point it has an power series expansion. The corresponding complex
variable notion is called holomorphic.

The first justification below is from [23, Theorem 2.1].

Theorem 4.1 Suppose A ∈ Sn and f : Rn → R is analytic at λ(A). Suppose f(Px) = f(x) for
every permutation matrix P for which Pλ(A) = λ(A). Then f ◦ λ is analytic at A.

To see how this theorem implies the analyticity of λj(·) take

(26) f(x1, ..., xn) = the jth largest element of {x1, ..., xn}.
The function f is a piece-wise affine function. Moreover, for any x ∈ Rn in a neighbourhood of the
vector λ(A) it is given by

f(x) = xj.

Thus, f is analytic in that neighbourhood. Next, f is a symmetric function and thus by definition
f(Px) = f(x) for every x ∈ Rn and every permutation matrix P . Therefore by the theorem
λj = f ◦ λ is an analytic function.

For the second justification we use the following result from [1]. (In the theorem below, λi(X)
denotes an arbitrary eigenvalue of a matrix X, not necessarily the i-th largest one.)
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Theorem 4.2 (Arnold 1971) Suppose that A ∈ Cn×n has q eigenvalues λ1(A), ..., λq(A) (count-
ing multiplicities) in an open set Ω ⊂ C, and the remaining n − q eigenvalues are not in the
closure of Ω. Then there is a neighbourhood ∆ of A and holomorphic mappings S : ∆ → Cq×q and
T : ∆ → C(n−q)×(n−q) such that for all X ∈ ∆

X is similar to

(
S(X) 0

0 T (X)

)
,

and S(A) has eigenvalues λ1(A), ..., λq(A).

To deduce the result we need, since the jth largest eigenvalue is isolated, we can find an open
set Ω ⊂ C, such that only that eigenvalue is in Ω and the remaining n− 1 are not in the closure of
Ω. By the theorem, there is a neighbourhood ∆ of A and holomorphic mapping S : ∆ → C such
that S(X) is equal to the jth largest eigenvalue of X for all X in ∆.

If A is a real symmetric matrix, then the intersection of ∆ with Sn is a neighbourhood of A in
Sn. Let S̃(X) denote the restriction of S(X) to ∆∩Sn. Clearly, S̃(X) is a holomorphic, real-valued
function. Therefore, the coefficients in the power series expansion of S̃(X) must be real numbers.
Thus, the jth largest eigenvalue is a real analytic function in the neighbourhood ∆ ∩ Sn or A.

All these considerations make the following observation clear.

Theorem 4.3 Suppose that A ∈ Sn has distinct eigenvalues and f : Rn → R is k-times (continu-
ously) differentiable in a neighbourhood of λ(A). Then f ◦λ is k-times (continuously) differentiable
in a neighbourhood of A.

5 The kth derivative of functions of eigenvalues at a matrix

with distinct eigenvalues

Let f : Rn → R be an arbitrary k-times (continuously) differentiable function. In this section,
we do not assume that f is a symmetric function. Our goal is to derive a formula for the kth

derivative of f ◦ λ on the set of symmetric matrices with distinct eigenvalues. The set {x ∈
Rn | xi 6= xj for every i 6= j} is dense open set in Rn. Similarly the set of symmetric matrices with
distinct eigenvalues is a dense open set in Sn. (For a simple, convex analysis proof of the last fact,
see [19, Corollary 1.6].)

One can obtain the k-th derivative of f ◦ λ at a matrix with distinct eigenvalues by applying
the Chain Rule to the composition F = f ◦ λ. For example, the following formulae are the first
three derivatives of F , (see [2, Section X.4]) for any symmetric matrices H1, H2, H3:

∇F (X)[H1] = ∇f(λ(x))[∇λ(x)[H1]],

∇2F (x)[H1, H2] = ∇2f(λ(x))[∇λ(x)[H1],∇λ(x)[H2]] +∇f(λ(x))[∇2λ(x)[H1, H2]],

∇3F (x)[H1, H2, H3] = ∇3f(λ(x))[∇λ(x)[H1],∇λ(x)[H2],∇λ(x)[H3]]

+∇2f(λ(x))[∇λ(x)[H1],∇2λ(x)[H2, H3]]
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+∇2f(λ(x))[∇λ(x)[H2],∇2λ(x)[H1, H3]]

+∇2f(λ(x))[∇λ(x)[H3],∇2λ(x)[H1, H2]]

+∇f(λ(x))[∇3λ(x)[H1, H2, H3]].

This approach to the k-derivative requires every derivative of λ up to the kth. Even if one
knows all these derivatives it is not clear how the resulting expression can be simplified. Our goal
in this section is to derive a formula for the kth derivative of f ◦ λ that doesn’t require explicit
knowledge of the derivatives of λ. Of course the latter can be obtained as a particular case since if
f is defined by (26) then λj = f ◦ λ.

Fix a vector µ ∈ Rn
↓ with distinct coordinates. Since µ has distinct entries, every block in the

partition that it defines has exactly one element. This means that for any j, i ∈ Nn, i ∼ j ⇔ i = j,
and that makes any tensor block-constant. In particular, for the matrices Xl, defined in Lemma 3.1,
we have Xl = [el], l = 1, ..., n. This implies that hm = diag Mm and that h = diag M . Notice how

the definition of T
(l)
out, given in (11), changes:

(27)
(
T

(l)
out

)i1...ikik+1 =

{
0, if il = ik+1

T i1...il−1ik+1il+1...ik−T i1...il−1ilil+1...ik

µik+1
−µil

, if il 6= ik+1.

We derive (18) by induction on the order of the derivative.

5.1 Description of the kth derivative

Let f : Rn → R be k-times (continuously) differentiable function defined on the set

Ω := {x ∈ Rn |xi 6= xj for every i 6= j}.
For every natural s ∈ Nk and every permutation σ ∈ P s we define an s-tensor-valued map Ãσ :
Ω ⊂ Rn → T s,n inductively, as follows. For s = 1 and σ = (1) we define

Ã(1)(x) := ∇f(x).

Assuming that the the maps Ãσ(x) have been defined for each σ ∈ P s where the integer s is in
[1, k) we define

Ãσ
(l)

(x) := (Ãσ(x))
(l)
out, for all l ∈ Ns, and

(28)
Ãσ

(s+1)
(x) := ∇Ãσ(x).

We are now ready to formulate the first main result of this work

Theorem 5.1 Let X be a symmetric matrix with distinct eigenvalues. Let f be a function defined
on a neighbourhood of the vector λ(X). Then the spectral function F = f ◦ λ is k-times (continu-
ously) differentiable at X if and only if f is k-times (continuously) differentiable at λ(X). Moreover,
the formula for the k-th derivative of F at X is given by

(29) ∇kF (X) = V
( ∑

σ∈P k

Diag σÃσ(λ(X))
)
V T ,

13



where V is any orthogonal matrix such that X = V
(
Diag λ(X)

)
V T .

The proof proceeds by induction and is presented in the next two subsections.

5.2 Proof of Theorem 5.1: the gradient

Using (24) we compute

lim
m→∞

(f ◦ λ)(Diag µ + Mm)− (f ◦ λ)(Diag µ)

‖Mm‖ = lim
m→∞

f(µ + hm + o(‖Mm‖))− f(µ)

‖Mm‖
= lim

m→∞
f(µ) +∇f(µ)[hm] + o(‖Mm‖)− f(µ)

‖Mm‖
= ∇f(µ)[h]

= 〈∇f(µ), diag M〉
=

(
Diag∇f(µ)

)
[M ].

This shows that ∇(f ◦ λ)(Diag µ) = Diag (1)∇f(µ). One can see now that

(30) ∇(f ◦ λ)(X) = V
(
Diag (1)∇f(λ(X))

)
V T = V

( ∑

σ∈P 1

Diag σÃσ(λ(X))
)
V T ,

where X = V (Diag λ(X))V T and Ã(1)(x) = ∇f(x). Trivially, if f is k-times (continuously) differ-

entiable, then Ã(1)(x) = ∇f(x) is (k − 1)-times (continuously) differentiable.
If the eigenvalues of X are not distinct and f is a symmetric function, the calculation of the

gradient of f ◦ λ is almost identical and leads to the same final formula. Indeed, using (25), we get

∇f(µ)[h] = 〈∇f(µ), diag (UT MinU)〉 =
(
U(Diag∇f(µ))UT

)
[M ] =

(
Diag∇f(µ)

)
[M ].

In the last equality we used that U is block-diagonal, orthogonal and the fact that f is symmetric
implies that vector ∇f(µ) is block-constant, see Lemma 2.1 (i).

5.3 Proof of Theorem 5.1: the induction step

Suppose now that for some 1 ≤ s < k

∇s(f ◦ λ)(X) = V
( ∑

σ∈P s

Diag σÃσ(λ(X))
)
V T ,

where X = V (Diag λ(X))V T . Suppose also that for every σ ∈ P s, the s-tensor-valued map Ãσ :
Rn → T s,n, is (k − s)-times (continuously) differentiable.

Using (24), we differentiate ∇s(f ◦ λ) at the matrix Diag µ:

∇s+1(f ◦ λ)(Diag µ)[M ]
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= lim
m→∞

∇s(f ◦ λ)(Diag µ + Mm)−∇s(f ◦ λ)(Diag µ)

‖Mm‖

= lim
m→∞

Um

( ∑
σ∈P s Diag σÃσ(λ(Diag µ + Mm))

)
UT

m −
∑

σ∈P s Diag σÃσ(µ)

‖Mm‖

= lim
m→∞

∑
σ∈P s

(
Um

(
Diag σÃσ(λ(Diag µ + Mm))

)
UT

m −Diag σÃσ(µ)
)

‖Mm‖

= lim
m→∞

∑
σ∈P s

(
Um

(
Diag σÃσ(µ + hm + o(‖Mm‖))

)
UT

m −Diag σÃσ(µ)
)

‖Mm‖

= lim
m→∞

∑
σ∈P s

(
Um

(
Diag σ

(Ãσ(µ) +∇Ãσ(µ)[hm] + o(‖Mm‖)
))

UT
m −Diag σÃσ(µ)

)

‖Mm‖

= lim
m→∞

∑
σ∈P s

Um

(
Diag σÃσ(µ)

)
UT

m −Diag σÃσ(µ)

‖Mm‖ +
∑
σ∈P s

U
(
Diag σ

(∇Ãσ(µ)[h]
))

UT .

By Theorem 2.9, since for every σ ∈ P s the tensor Ãσ(µ) is block-constant, we have

lim
m→∞

Um

(
Diag σÃσ(µ)

)
UT

m −Diag σÃσ(µ)

‖Mm‖ =
s∑

l=1

(
Diag

σ
(l) (Ãσ(µ))

(l)
out

)
[M ]

=
s∑

l=1

(
Diag

σ
(l) Ãσ

(l)
(µ)

)
[M ].

By Theorem 2.10, since for every σ ∈ P s ∇Ãσ(µ) is a block-constant (s + 1)-tensor, we have

U
(
Diag σ

(∇Ãσ(µ)[h]
))

UT =
(
Diag

σ
(s+1)∇Ãσ(µ)

)
[M ] =

(
Diag

σ
(s+1) Ãσ

(s+1)
(µ)

)
[M ].

Putting everything together we conclude that for every symmetric matrix M :

∇s+1(f ◦ λ)(Diag µ)[M ] =
( ∑

σ∈P s

l∈Ns+1

Diag
σ
(l) Ãσ

(l)
(µ)

)
[M ].

Notice the parameters of the summation in the above formula and recall that (14) is a one-to-one
and onto map. Thus, the comments in Section 3 show that

∇s+1(f ◦ λ)(X) = V
( ∑

σ∈P s+1

Diag σÃσ(λ(X))
)
V T ,

where X = V (Diag λ(X))V T .
Finally, we show that the (s + 1)-tensor-valued maps Ãσ

(l)
(·) are at least (k − s − 1)-times

(continuously) differentiable. This is clear when l = s + 1 and σ ∈ P s, since Ãσ(·) is (k − s)-times
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(continuously) differentiable for every σ ∈ P s. For the rest of the maps this is also easy to see. Every
entry in Ãσ

(l)
is the difference of two entries of Ãσ divided by a quantity that never becomes zero

over the set Ω. This shows that over the set Ω, Ãσ
(l)

(·) is (k− s)-times (continuously) differentiable

for every σ ∈ P s and every l ∈ Ns.
This is the end of the proof of Theorem 5.1.

6 The kth derivative of separable spectral functions

In this section we show that (18) holds at an arbitrary symmetric matrix X (not necessarily with
distinct eigenvalues) for the class of separable spectral functions that we now describe.

Let g be a real-valued function on the real interval I, and let X be a symmetric matrix with
eigenvalues in I. Define the separable symmetric function

(31) f(x1, ..., xn) = g(x1) + · · ·+ g(xn)

and the corresponding separable spectral function

(32) F (X) = (f ◦ λ)(X).

Choose an orthogonal matrix V such that X = V (Diag λ(X))V T . Using (1) it is easy to see that if
g is differentiable at the points {λi(X) | i ∈ Nn} then so is F at X and

(33) ∇F (X) = V
(
Diag (g′(λ1(X)), ..., g′(λn(X)))

)
V T .

Separable spectral functions and their derivatives are of great importance for modern optimization,
for example [3], [11], [22]. For the role of general spectral functions see the two survey papers [14]
and [15].

The original interest in the class of matrix-valued functions (33) was started by Löner with his
paper [18], where he established the connection between the differentiability of g′ and the mono-
tonicity of the map (33) with respect to the semidefinite order. Later in [10], Löwner’s student
Kraus, investigated the conditions on g′ that make the map (33) convex with respect to the semid-
ifinite order. For more information, related and recent results one should refer to [2, Chapter V].
The matrix-valued maps (33) also arise as a particular case of the so called primary matrix func-
tions investigated extensively in [7, Chapter 6]. The first two derivatives of (33) can be found in [2,
Chapter V].

6.1 Description of the kth derivative

Let g : I → R be k-times differentiable. We begin by defining the function g[(1)](x) : I → R as

g[(1)](x) := g′(x).
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Next, define the symmetric function g[(12)](x, y) : I × I → R as

(34) g[(12)](x, y) :=





g′′(x), if x = y

g[(1)](x)− g[(1)](y)

x− y
, if x 6= y.

The integral representation g[(12)](x, y) =
∫ 1

0
g′′(y + t(x− y)) dt shows that g[(12)](x, y) is as smooth,

in both arguments, as g′′.
Denote by P̃ s the set of all permutations from P s that have one cycle in their cycle decompo-

sition. Clearly |P̃ s| = (s− 1)!. Notice that for every σ ∈ P̃ s and every l ∈ Ns we have σ
(l)
∈ P̃ s+1.

Moreover, as σ varies over P̃ s and l varies over Ns, the permutation σ
(l)

varies over P̃ s+1 in a
one-to-one and onto fashion.

Suppose that for every σ ∈ P̃ s, where 1 ≤ s < k, we have defined the function g[σ](x1, ..., xs)
on the set I × I × · · · × I, s-times, and suppose that these functions are as smooth as g(s) (the s-th

derivative of g). For every σ ∈ P̃ s and every l ∈ Ns we define the function g
[σ

(l)
]
(x1, ..., xs, xs+1) as

follows:

(35) g
[σ

(l)
]
(x1, ..., xs+1) :=





∇lg
[σ](x1, ..., xs), if xl = xs+1

g[σ](x1, ..., xl, ..., xs)− g[σ](x1, ..., xs+1, ..., xs)

xl − xs+1

, if xl 6= xs+1,

where in the second case of the definition, both xl and xs+1 are in l-th position, and ∇l denotes the
partial derivative with respect to the l-th argument. Using the integral formula

g
[σ

(l)
]
(x1, ..., xs+1) =

∫ 1

0

∇lg
[σ](x1, ..., xl−1, xs+1 + t(xl − xs+1), xl+1, ..., xs) dt,

for every l ∈ Ns, we see that g
[σ

(l)
]
(x1, ..., xs+1) is as smooth as g(s+1), the (s + 1)-th derivative of g.

We continue inductively in this way until we define the functions {g[σ](x1, ..., xk) |σ ∈ P̃ k}.
Finally, for every s ∈ Nk and every σ ∈ P̃ s, we define a s-tensor-valued map

Aσ : Rn → T s,n, by
(36) (Aσ(x)

)i1...is
:= g[σ](xi1 , ..., xis).

Clearly, if (i1, ..., is) ∼x (j1, ..., js), then
(Aσ(x)

)i1...is
=

(Aσ(x)
)j1...js

, which shows that (36) defines

a block-constant map, moreover, it is as smooth as g(s) for every s ∈ Nk.
We are now ready to formulate the second main result of this work.

Theorem 6.1 Let g be a k-times differentiable function defined on an interval I. Let X be a
symmetric matrix with eigenvalues in the interval I, and let V be an orthogonal matrix such that
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X = V (Diag λ(X))V T . Then the separable spectral function F defined by (31) and (32) is k-times
differentiable at X, and its k-th derivative is

(37) ∇kF (X) = V
( ∑

σ∈P k

Diag σAσ(λ(X))
)
V T ,

where Aσ(x) ≡ 0 if σ 6∈ P̃ k.

The proof is given in the next subsection. We proceed by induction — consecutively differen-
tiating F (X). The base case for the induction is clear. Indeed, if k = 1 then (37) reduces to the
formula for the gradient (33).

6.2 Proof of Theorem 6.1: the induction step

Suppose that g : I → R is k-times differentiable and the formula for the s-th derivative (1 ≤ s < k)
of F at the matrix X is given by

∇sF (X) = V
( ∑

σ∈P s

Diag σAσ(λ(X))
)
V T = V

( ∑

σ∈P̃ s

Diag σAσ(λ(X))
)
V T .

For each σ ∈ P s, the s-tensor-valued map Aσ : R → T s,n is (k − s)-times differentiable. Recall
Section 3 for the simplifying assumptions and notation that we use below. We now differentiate:

∇(s+1)F (Diag µ)[M ] = lim
m→∞

∇sF (Diag µ + Mm)−∇sF (Diag µ)

‖Mm‖

= lim
m→∞

Um

( ∑
σ∈P̃ s Diag σAσ(λ(Diag µ + Mm))

)
UT

m −
∑

σ∈P̃ s Diag σAσ(µ)

‖Mm‖

= lim
m→∞

Um

( ∑
σ∈P̃ s Diag σAσ(µ + hm + o(‖Mm‖))

)
UT

m −
∑

σ∈P̃ s Diag σAσ(µ)

‖Mm‖

= lim
m→∞

Um

( ∑
σ∈P̃ s Diag σ

(Aσ(µ) +∇Aσ(µ)[hm] + o(‖Mm‖)
))

UT
m −

∑
σ∈P̃ k Diag σAσ(µ)

‖Mm‖

= lim
m→∞

Um

( ∑
σ∈P̃ s Diag σAσ(µ)

)
UT

m −
∑

σ∈P̃ s Diag σAσ(µ)

‖Mm‖ + U
( ∑

σ∈P̃ s

Diag σ
(∇Aσ(µ)[h]

))
UT .

Using Theorem 2.9, we wrap up the first summand in the last expression:

lim
m→∞

Um

( ∑
σ∈P̃ s Diag σAσ(µ)

)
UT

m −
∑

σ∈P̃ s Diag σAσ(µ)

‖Mm‖ =
∑

σ∈P̃ s

l∈Ns

(
Diag

σ
(l) (Aσ(µ))

(l)
out

)
[M ].(38)

18



Next, we focus our attention on the gradient ∇Aσ(µ). Using the definition, (36), and the Chain
Rule, we get

∇[
(Aσ(µ))i1...is

]
=

s∑

l=1

∇lg
[σ](µi1 , ..., µis)e

il =
s∑

l=1

g
[σ

(l)
]
(µi1 , ..., µis , µil)e

il ,(39)

where for the second equality we used (35). For convenience, for every σ ∈ P̃ s and every l ∈ Ns, we
define the map

T l
σ : Rn → T s,n, by

(40)
(T l

σ(µ))i1...is := g
[σ

(l)
]
(µi1 , ..., µis , µil).

Notice that each one of these maps is block-constant.

Lemma 6.2 The gradient of Aσ(µ) can be decomposed as

(41) ∇Aσ(µ) =
s∑

l=1

(
T l

σ(µ)
)τl ,

where the “lifting”
(
T l

σ(µ)
)τl is defined by (17).

Proof. Fix a multi index (i1, ..., is). By definition of the gradient ∇Aσ(µ) we have

∇[
(Aσ(µ))i1...is

]
=

(
(∇Aσ(µ))i1...is,1, (∇Aσ(µ))i1...is,2, ..., (∇Aσ(µ))i1...is,n

)T
.

We compute the p-th entry in the last vector. On one hand, using (39), we get:

(∇Aσ(µ))i1...is,p =
s∑

l=1
il=p

g
[σ

(l)
]
(µi1 , ..., µis , µil).

On the other, using (17) and (40), we evaluate the right-hand side of (41):

( s∑

l=1

(
T l

σ(µ)
)τl

)i1...is,p

=
s∑

l=1

((
T l

σ(µ)
)τl

)i1...is,p

=
s∑

l=1

(
T l

σ(µ)
)i1...is

δilp

=
s∑

l=1
il=p

(
T l

σ(µ)
)i1...is

=
s∑

l=1
il=p

g
[σ

(l)
]
(µi1 , ..., µis , µil).
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The lemma follows. ¥

Using (41) we return to the second term left from the differentiation of ∇sF (X):

U
( ∑

σ∈P̃ s

Diag σ
(∇Aσ(µ)[h]

))
UT = U

( ∑

σ∈P̃ s

Diag σ
(( s∑

l=1

(
T l

σ(µ)
)τl

)
[h]

))
UT

= U
( ∑

σ∈P̃ s

s∑

l=1

Diag σ((T l
σ(µ))τl [h])

)
UT

=
∑

σ∈P̃ s

l∈Ns

U
(
Diag σ((T l

σ(µ))τl [h])
)
UT

=
∑

σ∈P̃ s

l∈Ns

(
Diag

σ
(l) (T l

σ(µ))
(l)
in

)
[M ],(42)

where in the last equality we used Theorem 2.10. Putting (38) and (42) together we obtain

∇(s+1)F (Diag µ)[M ] =
∑

σ∈P̃ s

l∈Ns

(
Diag

σ
(l) (Aσ(µ))

(l)
out

)
[M ] +

∑

σ∈P̃ s

l∈Ns

(
Diag

σ
(l) (T l

σ(µ))
(l)
in

)
[M ].

We group the two sums into one and notice that since M is an arbitrary symmetric matrix we can
remove it from both sides of the equation:

∇(s+1)F (Diag µ) =
∑

σ∈P̃ s

l∈Ns

Diag
σ
(l)

(
(Aσ(µ))

(l)
out + (T l

σ(µ))
(l)
in

)
.

This already shows that ∇sF (Diag µ) is differentiable. We show now that ∇(s+1)F (Diag µ) has
the form (37). This last step is the subject of the next lemma.

Lemma 6.3 For every σ ∈ P̃ s and every l ∈ Ns we have

(43) Aσ
(l)

(µ) =
(
T l

σ(µ)
)(l)

in
+

(Aσ(µ)
)(l)

out
.

Proof. Fix a number l ∈ Ns and a multi index (i1, ..., is, is+1). We consider two cases depending
on whether µis+1 equals µil .

Case I. Suppose il ∼µ is+1. Using (36) and (35) the entry on the left-hand side of (43)
corresponding to the multi index (i1, ..., is, is+1) is

(Aσ
(l)

(µ)
)i1...isis+1 = g

[σ
(l)

]
(µi1 , ..., µis , µis+1) = ∇lg

[σ](µi1 , ..., µis).

On the other hand, the right-hand side evaluates to

((
T l

σ(µ)
)(l)

in
+

(Aσ(µ)
)(l)

out

)i1...isis+1 =
((

T l
σ(µ)

)(l)

in

)i1...isis+1 +
((Aσ(µ)

)(l)

out

)i1...isis+1
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=
((

T l
σ(µ)

)(l)

in

)i1...isis+1 + 0

=
(
T l

σ(µ)
)i1...is

= g
[σ

(l)
]
(µi1 , ..., µis , µil)

= ∇lg
[σ](µi1 , ..., µis),

where in the third equality we used (16) and the fact that Tl(µ) is block-constant.
Case II. Suppose il 6∼µ is+1. Using (36) and (35) the entry on the left-hand side corresponding

to the multi index (i1, ..., is, is+1) is

(Aσ
(l)

(µ)
)i1...isis+1 = g

[σ
(l)

]
(µi1 , ..., µis , µis+1)

=
g[σ](µi1 , ..., µil , ..., µis)− g[σ](µi1 , ..., µis+1 , ..., µis)

µil − µis+1

,

where both µil and µis+1 are in the l-th position. On the other hand, the right-hand side evaluates
to

((
T l

σ(µ)
)(l)

in
+

(Aσ(µ)
)(l)

out

)i1...isis+1 =
((

T l
σ(µ)

)(l)

in

)i1...isis+1 +
((Aσ(µ)

)(l)

out

)i1...isis+1

= 0 +
((Aσ(µ)

)(l)

out

)i1...isis+1

=

(Aσ(µ)
)i1...il−1is+1il+1...is − (Aσ(µ)

)i1...il−1ilil+1...is

µis+1 − µil

=
g[σ](µi1 , ..., µis+1 , ..., µis)− g[σ](µi1 , ..., µil , ..., µis)

µis+1 − µil

.

In both cases, the two sides are equal. ¥

This concludes the inductive step and the proof of Theorem 6.1.
The two separate developments in Section 5 and Section 6 have to be reconciled in their common

case. This is done by the following theorem proved in Appendix C.

Theorem 6.4 Suppose that matrix X has distinct eigenvalues, and the spectral function is separable
and k-times differentiable at X. Then the two formulae for the k-th derivative of the spectral function
at X, namely, the one given in Theorem 5.1 where the operators Ãσ are defined by the inductive
equations (28), and the one in Theorem 6.1 where the operators Aσ are defined by equations (36),
are the same. More precisely we have

∑
σ∈P s

Diag σÃσ(x) =
∑
σ∈P s

Diag σAσ(x), for every s = 1, 2, ..., k,

where x = λ(X).

It is worth presenting a particular case of Theorem 6.1. More specializations of Theorem 6.1,
in the case when g is Ck, are given in Subsubsection 6.3.1.
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Corollary 6.5 Let g be twice differentiable in I and let X be a symmetric matrix with all eigen-
values in I, such that X = V (Diag λ(X))V T for some orthogonal matrix V . Then

(44) ∇2F (X) = V
(
Diag (12)A(12)(λ(X))

)
V T ,

where A(12)(·) is defined by

Aij
(12)(x) =





g′′(xi), if xi = xj

g′(xi)− g′(xj)

xi − xj

, if xi 6= xj.

Using approximation techniques, it was shown in [2, Theorem V.3.3] that for any two symmetric
matrices H1 and H2

(45) ∇2F (X)[H1, H2] = 〈V (A(12)(λ(X)) ◦ (V T H1V )
)
V T , H2〉,

where ‘◦’ stands for the usual Hadamard product. For completeness we now show that (44) is the
same as (45). This is the content of the next proposition.

Proposition 6.6 For any n× n matrix A, any orthogonal V , and any symmetric H1 and H2, we
have the equality

(
V (Diag (12)A)V T

)
[H1, H2] = 〈V (

A ◦ (V T H1V )
)
V T , H2〉,

where ‘◦’ stands for the ordinary Hadamard product.

Proof. We develop the two sides of the stated equality and compare the results. By Theorem 2.6,
the left-hand side is equal to

V
(
Diag (12)A

)
V T [H1, H2] = 〈A, H̃1 ◦(12) H̃2〉.

On the other hand

〈V (
A ◦ (V T H1V )

)
V T , H2〉 = 〈A ◦ H̃1, H̃2〉 = 〈A, H̃1 ◦ H̃2〉.

Finally one can check directly from the definitions that H̃1 ◦(12) H̃2 = H̃1 ◦ H̃T
2 = H̃1 ◦ H̃2, using the

symmetry of H̃2. ¥
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6.3 Ck separable spectral functions

Theorem 6.1 holds for every k-times differentiable functions g. If in addition g is k-times contin-
uously differentiable, then (37) can be significantly simplified. That is what we describe in this
section. In particular, we show three properties of the functions g[σ](x1, ..., xs), for every 1 ≤ s ≤ k
and every σ ∈ P̃ s. First, we express g[σ](x1, ..., xs) as a ratio of two determinants whenever the
numbers x1,...,xs are distinct. Second, as a consequence of the determinant formula, it will become
evident that g[σ](x1, ..., xs) is a symmetric function of its s arguments. Finally, third, we show that
g[σ1](x1, ..., xs) = g[σ2](x1, ..., xs) for all σ1 and σ2 in P̃ s. Thus, all tensors {Aσ(x) |σ ∈ P̃ k}, in
(37) are equal to each other, but are lifted onto different k-dimensional “diagonal planes” in the
2k-dimensional tensor.

Recall the Vandermonde determinant:

V (x1, ..., xs) :=

∣∣∣∣∣∣∣∣∣

xs−1
1 xs−1

2 · · · xs−1
s

...
...

. . .
...

x1 x2 · · · xs

1 1 · · · 1

∣∣∣∣∣∣∣∣∣
=

∏
j<i

(xj − xi),

and for any y ∈ Rs consider its variation:

V
(y1, ..., ys
x1, ..., xs

)
:=

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · ys

xs−2
1 xs−2

2 · · · xs−2
s

...
...

. . .
...

x1 x2 · · · xs

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

,

with the agreement that when s = 1: V (x1) = 1 and V
(y1
x1

)
= y1.

Lemma 6.7 For any vector (x1, ..., xs, xs+1) with distinct coordinates, any y ∈ Rs+1, and l ∈ Ns

(46)
V

(y1, ..., ys
x1, ..., xs

)

V (x1, ..., xs)
−

V
(y1, ..., yl−1, ys+1, yl+1, ..., ys
x1, ..., xl−1, xs+1, xl+1, ..., xs

)

V (x1, ..., xl−1, xs+1, xl+1, ..., xs)
= (xl − xs+1)

V
(y1, ..., yl, ys+1, yl+1, ..., ys
x1, ..., xl, xs+1, xl+1, ..., xs

)

V (x1, ..., xl, xs+1, xl+1, ..., xs)
.

Proof. When s = 1 the lemma is easy to check directly, indeed:

V
(y1
x1

)

V (x1)
− V

(y2
x2

)

V (x2)
= (x1 − x2)

V
(y1, y2
x1, x2

)

V (x1, x2)
.

For the rest of the proof we assume s ≥ 2. Consider both sides of the above identity as a multivariate
polynomial (of degree one) in the variables y1, ..., ys, ys+1. We show that the coefficients in front of
yk on both sides are equal for all k ∈ Ns+1. Notice first that

V (x1, ..., xl−1, xs+1, xl+1, ..., xs) = (−1)s−lV (x1, ..., xl−1, xl+1, ..., xs, xs+1),

23



V
(y1, ..., yl−1, ys+1, yl+1, ..., ys
x1, ..., xl−1, xs+1, xl+1, ..., xs

) = (−1)s−lV
( y1, ..., yl−1, yl+1, ..., ys, ys+1
x1, ..., xl−1, xl+1, ..., xs, xs+1

).

We consider four cases according to the position of the index k in the partition Ns+1 = {1, ..., l −
1} ∪ {l} ∪ {l + 1, ...., s} ∪ {s + 1}. (In all product formulae below, it is assumed that the index
j < i. This condition is omitted for typographical reasons. Also a circumflex above a multiple in a
product denotes that the multiple is missing.) First, let k ∈ {1, ..., l − 1}. The coefficient of yk in
the left-hand side of (46) is equal to

(−1)k+1

∏
i,j∈Ns+1\{k,s+1}(xj − xi)∏
i,j∈Ns+1\{s+1}(xj − xi)

− (−1)k+1

∏
i,j∈Ns+1\{k,l}(xj − xi)∏
i,j∈Ns+1\{l}(xj − xi)

=
(−1)k+1

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs)

− (−1)k+1

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · ̂(xk − xl) · · · (xk − xs+1)

=
(−1)k+1

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · ̂(xk − xl) · · · (xk − xs)

(
1

xk − xl

− 1

xk − xs+1

)

=
(−1)k+1(xl − xs+1)

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs+1)

= (−1)k+1(xl − xs+1)

∏
i,j∈Ns+1\{k}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is the coefficient of yk in the right-hand side of (46).
Suppose now, k = l. Then the coefficient of yk in the left-hand side of (46) is equal to

(−1)l+1

∏
i,j∈Ns+1\{l,s+1}(xj − xi)∏
i,j∈Ns+1\{s+1}(xj − xi)

− 0 =
(−1)l+1

(x1 − xl) · · · (xl−1 − xl)(xl − xl+1) · · · (xl − xs)

=
(−1)l+1(xl − xs+1)

(x1 − xl) · · · (xl−1 − xl)(xl − xl+1) · · · (xl − xs+1)

= (−1)l+1(xl − xs+1)

∏
i,j∈Ns+1\{l}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is the corresponding coefficient in the right-hand side of (46).
When k ∈ {l + 1, ..., s}, the coefficient of yk on the left-hand side of (46) is:

(−1)k+1

∏
i,j∈Ns+1\{k,s+1}(xj − xi)∏
i,j∈Ns+1\{s+1}(xj − xi)

− (−1)k

∏
i,j∈Ns+1\{k,l}(xj − xi)∏
i,j∈Ns+1\{l}(xj − xi)

=
(−1)k+1

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs)

24



− (−1)k

(x1 − xk) · · · ̂(xl − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs+1)

=
(−1)k+1

(x1 − xk) · · · ̂(xl − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs)

(
1

xl − xk

+
1

xk − xs+1

)

=
(−1)k+1(xl − xs+1)

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs+1)

= (−1)k+1(xl − xs+1)

∏
i,j∈Ns+1\{k}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is the coefficient of yk on the right-hand side.
Finally, when k = s + 1 the coefficient of ys+1 on the left-hand side of (46) is

0− (−1)l+1(−1)s−l

∏
i,j∈Ns+1\{l,s+1}(xj − xi)∏

i,j∈Ns+1\{l}(xj − xi)
=

(−1)s+2

(x1 − xs+1) · · · ̂(xl − xs+1) · · · (xs − xs+1)

=
(−1)s+2(xl − xs+1)

(x1 − xs+1) · · · (xs − xs+1)

= (−1)s+2(xl − xs+1)

∏
i,j∈Ns+1\{s+1}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is again the coefficient of ys+1 on the right. ¥

Theorem 6.8 Suppose g ∈ Ck(I). Then for every permutation σ ∈ P̃ s, where 1 ≤ s ≤ k, and
every vector (x1, ..., xs) with distinct coordinates, we have the formula

(47) g[σ](x1, ..., xs) =
V

(
g′(x1), ..., g

′(xs)
x1, ..., xs

)

V (x1, ..., xs)
.

In particular, g[σ](x1, ..., xs) is a symmetric function.

Proof. The proof is by induction on s. When s = 1, then from the definitions we have

g[(1)](x1) = g′(x1) =
V

(
g′(x1)

x1

)

V (x1)
.

Suppose (47) holds for s, where 1 ≤ s < k. Let (x1, ..., xs, xs+1) be a vector with distinct coordinates
and let y = (g′(x1), ..., g

′(xs), g
′(xs+1)). Fix a permutation σ ∈ P̃ s and an index l ∈ Ns. Using (35)

together with Lemma 6.7 and the induction hypothesis we get

g
[σ

(l)
]
(x1, ..., xs, xs+1) =

g[σ](x1, ..., xs)− g[σ](x1, ..., xl−1, xs+1, xl+1, ..., xs)

xl − xs+1
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=
1

(xl − xs+1)

(
V

(y1, ..., ys
x1, ..., xs

)

V (x1, ..., xs)
−

V
( y1, ..., yl−1, ys+1, yl+1, ..., ys
x1, ..., xl−1, xs+1, xl+1, ..., xs

)

V (x1, ..., xl−1, xs+1, xl+1, ..., xs)

)

=
V

( y1, ..., yl, ys+1, yl+1, ..., ys
x1, ..., xl, xs+1, xl+1, ..., xs

)

V (x1, ..., xl, xs+1, xl+1, ..., xs)

=
V

(y1, ..., ys+1
x1, ..., xs+1

)

V (x1, ..., xs+1)
.

Since P̃ s+1 = {σ
(l)
| σ ∈ P̃ s, l ∈ Ns} the induction step is completed. Finally, since g[σ](x1, ..., xs) is

continuous, (47) shows that it is symmetric everywhere on its domain. ¥

We can now significantly simplify Theorem 6.1. Define the k-tensor-valued map

A : Rn → T k,n, by
(48)

(A(x)
)i1...ik :=

V
(
g′(xi1), ..., g

′(xik)
xi1 , ..., xik

)

V (xi1 , ..., xik)
.

Technically, this definition is good only when the numbers xi1 , ..., xik are distinct, but Lemma 6.8
shows that it can be extended continuously everywhere. Clearly, if (i1, ..., ik+1) ∼x (j1, ..., jk+1), then(A(x)

)i1...ik+1 =
(A(x)

)j1...jk+1 , which shows that (48) defines a block-constant map. Moreover, A(x)
is a symmetric tensor, continuous with respect to x.

Theorem 6.9 Let g be a Ck function defined on an interval I. Let X be a symmetric matrix with
eigenvalues in the interval I, and let V be an orthogonal matrix such that X = V (Diag λ(X))V T .
Then the separable spectral function F defined by (31) and (32) is k-times continuously differentiable
at X, and its k-th derivative is

(49) ∇kF (X) = V
( ∑

σ∈P̃ k

Diag σA(λ(X))
)
V T ,

where A(x) is defined by (48). (P̃ k is the set of all permutations from P k with exactly one cycle in
their cycle decomposition.)

For most practical applications of derivatives, it is important to know what is the result when
they are viewed as multi-linear maps and applied to vectors from the underlying space.

The last part of this subsection is devoted to the representations of the formula for the k-th
derivative at X of a Ck separable spectral function, applied at k symmetric matrices.

6.3.1 The derivatives as multi-linear operators

The next corollary is a specialization of Theorem 6.9 to the case when k = 3. It should be compared
with [2, Formula (V.22)]. One should keep in mind that we are differentiating separable spectral
functions, whose gradients are the class of functions considered in [2, Chapter V].
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Corollary 6.10 For g ∈ C3(I) and any n× n symmetric matrices H1, H2, H3 we have

∇3F (X)[H1, H2, H3] = 2

n,n,n∑
p1,p2,p3=1

A(λ(X))p1p2p3H̃p1p2

1 H̃p2p3

2 H̃p3p1

3 ,

where X = V (Diag λ(X))V T , and H̃i = V T HiV for i = 1, 2, 3.

Proof. Without loss of generality suppose that X = Diag µ for some µ ∈ Rn
↓ . Then

∇3F (Diag µ)[H1, H2, H3] =
( ∑

σ∈P̃ 3

Diag σA(µ)
)
[H1, H2, H3]

=
∑

σ∈P̃ 3

〈A(µ), H1 ◦σ H2 ◦σ H3〉

= 〈A(µ), H1 ◦(123) H2 ◦(123) H3〉+ 〈A(µ), H1 ◦(132) H2 ◦(132) H3〉

=

n,n,n∑
q1,q2,q3=1

A(µ)q1q2q3Hq1q3

1 Hq2q1

2 Hq3q2

3 +

n,n,n∑
p1,p2,p3=1

A(µ)p1p2p3Hp1p2

1 Hp2p3

2 Hp3p1

3 .

After re-parametrization of the first sum (q1 = p2, q2 = p3, q3 = p1), using the fact that A(µ) is a
symmetric tensor, and that matrices H1, H2, H3 are symmetric, we continue

=

n,n,n∑
p1,p2,p3=1

(A(µ)p2p3p1 +A(µ)p1p2p3)Hp1p2

1 Hp2p3

2 Hp3p1

3 = 2

n,n,n∑
p1,p2,p3=1

A(µ)p1p2p3Hp1p2

1 Hp2p3

2 Hp3p1

3 ,

which is what we wanted to show. ¥

In the general case when H1,...,Hk are distinct symmetric matrices, we cannot simplify the
formula for ∇kF (X)[H1, ..., Hk] much more than the example in Corollary 6.10.

To show that we can do at least that much, let σ and θ be in P̃ k, that is, permutations in P k

with one cycle in their cycle decomposition. Suppose that σ = θ−1, that A is a symmetric k-tensor
on Rn, and that H1,...,Hk are distinct symmetric matrices. Then, re-parameterizing the sum

n,...,n∑
q1,...,qk=1

Aq1...qkH
q1qσ−1(1)

1 · · ·Hqkqσ−1(k)

k

according to the substitutions qi = pσ(i) for i = 1, 2, ..., k we get the sum

n,...,n∑
p1,...,pk=1

Apσ(1)...pσ(k)H
pσ(1)p1

1 · · ·Hpσ(k)pk

k =

n,...,n∑
p1,...,pk=1

Ap1...pkH
pσ(1)p1

1 · · ·Hpσ(k)pk

k

=

n,...,n∑
p1,...,pk=1

Ap1...pkH
p1pθ−1(1)

1 · · ·Hpkpθ−1(k)

k .
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In the first equality above we used the fact that A is a symmetric tensor, while in the second we
used that Hi is a symmetric matrix for i = 1, 2, ..., k.

We summarize the last paragraph in the following theorem.

Theorem 6.11 Let P̃ k
0 be a subset of P̃ k, k ≥ 3, such that if σ ∈ P̃ k

0 then σ−1 6∈ P̃ k
0 .

For g ∈ Ck(I) and any n× n symmetric matrices H1,...,Hk we have

∇kF (X)[H1, ..., Hk] = 2
∑

σ∈P̃ k
0

n,...,n∑
p1,...,pk=1

A(λ(X))p1...pkH̃
p1pσ(1)

1 · · · H̃pkpσ(k)

k ,(50)

where X = V (Diag λ(X))V T , and H̃i = V T HiV for i = 1, 2, ..., k.

If, in the above theorem, all matrices H1,...,Hk are the same then Formula (50) can be simplified
even more.

Theorem 6.12 For g ∈ Ck(I) and any n× n symmetric matrix H

∇kF (X)[H, ..., H] = (k − 1)!

n,...,n∑
p1,...,pk=1

A(λ(X))p1...pkH̃p1p2H̃p2p3 · · · H̃pkp1 ,(51)

where X = V (Diag λ(X))V T , and H̃ = V T HV .

Proof. Let H be any n× n symmetric matrix. Using formulae (49), (10), and (5) we find

∇kF (X)[H, ..., H] = V
( ∑

σ∈P̃ k

Diag σA(λ(X))
)
V T [H, ..., H]

=
∑

σ∈P̃ k

〈A(λ(X)), H̃ ◦σ H̃ ◦σ · · · ◦σ H̃〉

=
∑

σ∈P̃ k

n,...,n∑
p1,...,pk=1

A(λ(X))p1...pkH̃p1pσ−1(1) · · · H̃pkpσ−1(k) .

Let σ ∈ P̃ k be any permutation with one cycle in its cycle decomposition. In order to prove the
result we are going to show that

n,...,n∑
q1,...,qk=1

A(λ(X))q1...qkH̃q1qσ−1(1) · · · H̃qkqσ−1(k) =

n,...,n∑
p1,...,pk=1

A(λ(X))p1...pkH̃p1p2H̃p2p3 · · · H̃pkp1 .(52)

In order to do that we find a re-parametrization (that is, we change the order of summation) of
the right-hand side sum that will give the left-hand side sum. Since σ has one cycle in its cycle
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decomposition, the map i ∈ Nk 7→ σ−i(1) ∈ Nk is a permutation as well. Change the order of
summation in the right-hand side of (52) according to the rule

pi := qσ−i(1) for all i = 1, 2, ..., k.

Notice that we have pi+1 = qσ−(i+1)(1) = qσ−1(σ−i(1)). The product H̃p1p2H̃p2p3 · · · H̃pkp1 after the
substitution goes into the product

H̃qσ−1(1)qσ−2(1)H̃qσ−2(1)qσ−3(1) · · ·H̃q
σ−k(1)

qσ−1(1)

= H̃qσ−1(1)qσ−1(σ−1(1))H̃qσ−2(1)qσ−1(σ−2(1)) · · · H̃q
σ−k(1)

q
σ−1(σ−k(1))

= H̃q1qσ−1(1)H̃q2qσ−1(2) · · · H̃qkqσ−1(k) .

The last equality follows by a reordering of the product since the indexes {σ−1(1), σ−2(1), ..., σ−k(1)}
are a permutation of the indexes {1, 2, ..., k}. Finally we have

A(λ(X))p1...pk = A(λ(X))qθ−1(1)...qθ−k(1) = A(λ(X))q1...qk ,

since A(λ(X)) is a symmetric tensor and the indexes {σ−1(1), σ−2(1), ..., σ−k(1)} are a permutation
of the indexes {1, 2, ..., k}. ¥

7 The Hessian of a general spectral function

In this section we calculate the formula for the Hessian of a general spectral functions at an arbitrary
symmetric matrix. The formula was first obtained in [16] but the insight for it came from [17].
Below, as another application of the tools developed so far, we derive it again. The approach it
more streamlined and clearly shows where the different pieces of the Hessian come from.

7.1 Two matrix-valued maps

Let f : Rn → R be a symmetric twice (continuously) differentiable function. Let A(1)(2) : Rn → Mn

be defined by

A(1)(2)(x) = ∇2f(x),

and let A(12) : Rn → Mn be defined entry-wise by

Ai1i2
(12) (x) =





0, if i1 = i2

f ′′i1i1
(x)− f ′′i1i2

(x), if i1 ∼x i2 and i1 6= i2

f ′i2(x)− f ′i1(x)

xi2 − xi1

, if i1 6∼x i2.

Several of the properties of A(12)(x) are easily seen from the following integral representation.
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Lemma 7.1 If f is a C2 function, then for every i1, i2 ∈ Nn we have

Ai1i2
(12) (x) =

∫ 1

0

f ′′i1i1
(. . . , xi1 + t(xi2 − xi1), . . . , xi2 + t(xi1 − xi2), . . .)−

f ′′i1i2
(. . . , xi1 + t(xi2 − xi1), . . . , xi2 + t(xi1 − xi2), . . .)dt,

where the first displayed argument is in position i1 and the second is in position i2. The missing
arguments are the corresponding entries of x, unchanged.

Proof. The first case, when i1 = i2 is immediate. In the second, il ∼x i2 implies that xi1 = xi2

and the integrand doesn’t depend on t. In the third case, i1 6∼x i2, using the Fundamental Theorem
of Calculus, the integral is equal to:

1

xi2 − xi1

∫ 1

0

∂

∂t
f ′i1

(
..., xi1 + t(xi2 − xi1), ..., xi2 + t(xi1 − xi2), ...

)
dt

=
f ′i1(..., xi2 , ..., xi1 , ...)− f ′i1

(
..., xi1 , ..., xi2 , ...

)

xi2 − xi1

=
f ′i2(..., xi1 , ..., xi2 , ...)− f ′i1

(
..., xi1 , ..., xi2 , ...

)

xi2 − xi1

= Ai1i2
(12) (x).

In the second equality we used that x 7→ ∇f(x) is a point-symmetric map. ¥

Lemma 7.2 If f(x) is twice (continuously) differentiable, then both A(1)(2)(x) and A(12)(x) are point-
symmetric maps.

Proof. The fact that x 7→ A(1)(2)(x) is a point-symmetric map is Lemma 2.5. This implies that
if i1 ∼x j1, then f ′′i1i1

(x) = f ′′j1j1
(µ). Also, if i1 ∼x j1 and i2 ∼x j2 with i1 6= i2 and j1 6= j2, then

f ′′i1i2
(x) = f ′′j1j2

(x). The fact that x 7→ ∇f(x) is a point-symmetric map implies that if i1 ∼x j1,
then f ′i1(x) = f ′j1(x). Now it is easy to see that x 7→ A(12)(x) is a point-symmetric map as well. ¥

It is easy to see, using Lemma 7.1, that if f(x) is twice continuously differentiable function,
then A(1)(2)(x) and A(12)(x) are symmetric matrices, continuous in x.

7.2 f ◦ λ is twice (continuously) differentiable if and only if f is

We now show that f ◦ λ is twice (continuously) differentiable at X if and only if f is such at λ(X).
The ‘only if’ direction can be seen by restricting f ◦ λ to the subspace of diagonal matrices. Below,
we show the ‘if’ direction. Without loss of generality, assume that X = Diag µ, for some µ ∈ Rn

↓ ,
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that Mm/‖Mm‖ converges to M as m goes to infinity, and that (20) holds. Using (30) together
with (24) we compute:

∇2(f ◦ λ)(Diag µ)[M ] = lim
m→∞

∇(f ◦ λ)(Diag µ + Mm)−∇(f ◦ λ)(Diag µ)

‖Mm‖

= lim
m→∞

Um

(
Diag (1)∇f(λ(Diag µ + Mm))

)
UT

m −Diag (1)∇f(µ)

‖Mm‖

= lim
m→∞

Um

(
Diag (1)∇f(µ + hm + o(‖Mm‖))

)
UT

m −Diag (1)∇f(µ)

‖Mm‖

= lim
m→∞

Um

(
Diag (1)(∇f(µ) +∇2f(µ)[hm] + o(‖Mm‖))

)
UT

m −Diag (1)∇f(µ)

‖Mm‖

= lim
m→∞

Um

(
Diag (1)(∇f(µ))

)
UT

m −Diag (1)∇f(µ)

‖Mm‖ + U
(
Diag (1)(∇2f(µ)[h])

)
UT .(53)

For brevity let T = ∇f(µ), let A(1)(2) = A(1)(2)(µ), and let A(12) = A(12)(µ). Using Corollary 2.9

lim
m→∞

Um

(
Diag (1)T

)
UT

m −Diag (1)T

‖Mm‖ =
(
Diag (12)T (1)

out

)
[M ].(54)

By Lemma 2.1 part (ii), there is a vector b block-constant with respect to µ such that the matrix
A(1)(2)−Diag b is also block-constant with respect to µ. Then by Corollary 2.10, applied with k = 1,

U
(
Diag (1)(∇2f(µ)[h])

)
UT = U

(
Diag (1)((A(1)(2) −Diag b + Diag b)[h])

)
UT

= U
(
Diag (1)((A(1)(2) −Diag b)[h])

)
UT + U

(
Diag (1)((Diag b)[h])

)
UT

=
(
Diag (1)(2)(A(1)(2) −Diag b)

)
[M ] +

(
Diag (12)b(1)

in

)
[M ].(55)

This shows that f ◦ λ is twice differentiable.
To prove that f ◦λ is twice continuously differentiable we need to reorganize the pieces. Direct

verification shows that the sum A(1)(2) + A(12) is a block-constant matrix. Then vector b can be
chosen in such a way that, in addition, A(12) + Diag b is a block-constant constant matrix, and

(56) A(12) + Diag b = T (1)

out + b
(1)
in .

Putting (53), (54), (55), and (56) together we obtain:

∇2(f ◦ λ)(Diag µ) = Diag (12)T (1)

out + Diag (1)(2)(A(1)(2) −Diag b) + Diag (12)b(1)

in

= Diag (1)(2)(A(1)(2) −Diag b) + Diag (12)(A(12) + Diag b)

= Diag (1)(2)A(1)(2) + Diag (12)A(12).

In the last equality we used the fact that Diag (1)(2)(Diag b) = Diag (12)(Diag b), which can be verified
directly. The formula for the Hessian of f ◦ λ at an arbitrary X, can now be derived routinely:

(57) ∇2(f ◦ λ)(X) = V
(
Diag (1)(2)A(1)(2)(λ(X)) + Diag (12)A(12)(λ(X))

)
V T ,

where X = V (Diag λ(X))V T .
Finally, when f is C2 both A(1)(2)(x) and A(12)(x) are continuous and by [21, Proposition 6.2]

∇2(f ◦ λ)(X) is continuous as well.
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8 Appendix A: A refinement of a perturbation result for

eigenvectors

The main tool in the derivation of the formula for the Hessian in [16] was Lemma 2.4. The statement
of that lemma was broken down into nine parts, and that lead to the consideration of variety of
cases when deriving the Hessian. For the higher-order derivatives such case studies would quickly
become unmanageable. That is why the goal of this appendix is to transform Lemma 2.4 from [16]
into a form more suitable for computations. Consult with Section 3 for the relevant notation.

Recall that any vector µ ∈ Rn defines a partition of Nn into disjoint blocks, where integers i
and j are in the same block if and only if µi = µj. By r we denote the number of blocks in the
partition. By ιl we denote the largest integer in Il for all l = 1, ..., r.

Theorem 8.1 Let {Mm}∞m=1 be a sequence of symmetric matrices converging to 0, such that the
normalized sequence Mm/‖Mm‖ converges to M . Let µ be in Rn

↓ and let Um → U ∈ On be a
sequence of orthogonal matrices such that

Diag µ + Mm = Um

(
Diag λ(Diag µ + Mm)

)
UT

m, for all m = 1, 2, ....

Then:

(i) The orthogonal matrix U has the form

U =




V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vr


 ,

where Vl is an orthogonal matrix with dimensions |Il| × |Il| for all l.

(ii) The following identity holds

(58) UT MinU = Diag h,

(iii) For any indexes i ∈ Il, j ∈ Is, and t ∈ {1, ..., r} we have the (strong) first-order expansion

(59)
∑
p∈It

U ip
mU jp

m = δijδlt +
δlt − δst

µi − µj

M ij‖Mm‖+ o(‖Mm‖),

with the understanding that the fraction is zero whenever δlt = δst no matter what the denom-
inator is.

Proof. This lemma, with some modifications, is essentially Lemma 2.4 in [16]. Indeed, Part (i)
is [16, Lemma 2.4 Part (i)]. The equality in Part (ii) is an aggregate version of Parts (iv) and (vii)
from Lemma 2.4 in [16]. To prove Part (iii) we consider several cases.
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Case 1. If i = j ∈ Il and t = l, then (59) becomes
∑
p∈Il

(
U ip

m

)2
= 1 + o(‖Mm‖), which is exactly

Part (ii), Lemma 2.4 in [16].

Case 2. If i = j ∈ Il and t 6= l, then (59) becomes
∑
p∈It

(
U ip

m

)2
= o(‖Mm‖), which is a consequence

of Part (iii), Lemma 2.4 in [16].

Case 3. If i 6= j ∈ Il and t = l, then (59) becomes
∑
p∈Il

U ip
mU jp

m = o(‖Mm‖), which is exactly

Part (vi), Lemma 2.4 in [16].

Case 4. If i 6= j ∈ Il and t 6= l, then (59) becomes
∑
p∈It

U ip
mU jp

m = o(‖Mm‖), which is a consequence

of Part (v), Lemma 2.4 in [16].

Case 5. If i ∈ Il, j ∈ Is, with l 6= s 6= t 6= l, then (59) becomes
∑
p∈It

U ip
mU jp

m = o(‖Mm‖), which is a

consequence of Part (viii), Lemma 2.4 in [16].

Case 6. If i ∈ Il, j ∈ Is, with l 6= s and t = l, then (59) becomes

∑
p∈It

U ip
mU jp

m =
1

µi − µj

M ij‖Mm‖+ o(‖Mm‖),

which we prove in Case 7.

Case 7. If i ∈ Il, j ∈ Is, with l 6= s and t = s, then (59) becomes

∑
p∈It

U ip
mU jp

m = − 1

µi − µj

M ij‖Mm‖+ o(‖Mm‖).

We now show that the expressions in both Case 6 and Case 7 are valid. Recall that Part (ix)
from Lemma 2.4 in [16] says that in case when i ∈ Il, j ∈ Is with l 6= s, we have

(60) lim
m→∞

(
µιl

∑
p∈Il

U ip
mU jp

m

‖Mm‖ + µιs

∑
p∈Is

U ip
mU jp

m

‖Mm‖
)

= M ij.

Introduce the notation

βl
m :=

∑
p∈Il

U ip
mU jp

m

‖Mm‖ , for all l = 1, 2, ..., r,

and notice that
r∑

l=1

βl
m = 0, for all m,
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because Um is an orthogonal matrix and the numerator of the last sum is the product of its
i-th and j-th row. Next, by Case 5 we have

lim
m→∞

∑

t 6=l,s

βt
m = 0,

so
lim

m→∞
(βl

m + βs
m) = 0.

For arbitrary reals a and b we compute

(aβl
m + bβs

m)− a− b

µιl − µιs

(
µιlβ

l
m + µιsβ

s
m

)
= (βl

m + βs
m)

bµιl − aµιs

µιl − µιs

→ 0,

as m →∞. Using (60), this shows that

lim
m→∞

(aβl
m + bβs

m) =
a− b

µιl − µιs

M ij.

When (a, b) = (1, 0) we obtain Case 6, and when (a, b) = (0, 1) we obtain Case 7. ¥

9 Appendix B: Tensor analysis

The aim of this appendix is to provide the proofs of Theorems 2.9 and 2.10.
Recall that any vector µ ∈ Rn defines a partition of Nn into disjoint blocks, where integers i

and j are in the same block if and only if µi = µj. By r we denote the number of blocks in the
partition. By ιl we denote the largest integer in Il for all l = 1, ..., r.

Theorem 9.1 Let {Mm}∞m=1 be a sequence of symmetric matrices converging to 0, such that the
normalized sequence Mm/‖Mm‖ converges to M . Let µ be in Rn

↓ and Um → U ∈ On be a sequence
of orthogonal matrices such that

Diag µ + Mm = Um

(
Diag λ(Diag µ + Mm)

)
UT

m, for all m = 1, 2, ....

Then for every block-constant k-tensor T on Rn, any matrices H1,...,Hk, and any permutation σ
on Nk we have

(61) lim
m→∞

(Um(Diag σT )UT
m −Diag σT

‖Mm‖
)
[H1, ..., Hk] =

k∑

l=1

(
Diag

σ
(l)T

(l)
out

)
[H1, ..., Hk, Mout],

where Mout is the symmetric matrix of off-diagonal blocks of M as defined by (4).
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Proof. The idea of the proof is to evaluate separately the expressions on both sides of (61) and
compare the results. Notice that both sides of (61) are linear in each argument Hs. That is why
it is enough to prove the result when Hs, for s = 1, ..., k, is an arbitrary matrix, Hisjs , from the
standard basis on Mn. In that case notice that

(
Um(Diag σT )UT

m −Diag σT
)
[Hi1j1 , ..., Hikjk

] = (Um(Diag σT )UT
m)

i1...ik
j1...jk − (Diag σT )

i1...ik
j1...jk .(62)

Using the definition of the conjugate action and the fact that T is block-constant, we develop the
first term on the right-hand side of the equality sign in (62):

(Um(Diag σT )UT
m)

i1...ik
j1...jk =

n,...,n∑
pη ,qη=1
η=1,...,k

(Diag σT )
p1...pk
q1...qk

k∏
ν=1

U iνpν
m U jνqν

m

=

n,...,n∑
pη=1

η=1,...,k

T p1...pk

k∏
ν=1

U iνpν
m U

jνpσ−1(ν)
m

=

n,...,n∑
pη=1

η=1,...,k

T p1...pk

k∏
ν=1

U iνpν
m U

jσ(ν)pν

m

=

r,...,r∑
tη=1

η=1,...,k

T ιt1 ...ιtk

k∏
ν=1

( ∑
pν∈Itν

U iνpν
m U

jσ(ν)pν

m

)
.

Putting everything together, we see that to evaluate the limit on the left-hand side of (61) we have
to compute

lim
m→∞

r,...,r∑
t1,...,tk=1

T ιt1 ...ιtk

k∏
ν=1

( ∑
pν∈Itν

U iνpν
m U

jσ(ν)pν

m

)
− (Diag σT )

i1...ik
j1...jk

‖Mm‖ .(63)

Assume that il ∈ Ivl
and jσ(l) ∈ Isl

for all l = 1, ..., k. We investigate several possibilities.
Suppose first that among the pairs

(64) (i1, jσ(1)), (i2, jσ(2)), ..., (ik, jσ(k))

at least two have nonequal entries. Without loss of generality we may assume they are (i1, jσ(1))
and (i2, jσ(2)), that is, i1 6= jσ(1) and i2 6= jσ(2). Using (59), for any t1, t2 we observe that:

lim
m→∞

1

‖Mm‖
( ∑

p1∈It1

U i1p1
m U

jσ(1)p1
m

)( ∑
p2∈It2

U i2p2
m U

jσ(2)p2
m

)
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= lim
m→∞

1

‖Mm‖
(
δi1jσ(1)

δv1t1 +
δv1t1 − δs1t1

µi1 − µjσ(1)

M i1jσ(1)‖Mm‖+ o(‖Mm‖)
)
×

(
δi2jσ(2)

δv2t2 +
δv2t2 − δs2t2

µi2 − µjσ(2)

M i2jσ(2)‖Mm‖+ o(‖Mm‖)
)

= lim
m→∞

1

‖Mm‖
(δv1t1 − δs1t1

µi1 − µjσ(1)

M i1jσ(1)‖Mm‖+ o(‖Mm‖)
)(δv2t2 − δs2t2

µi2 − µjσ(2)

M i2jσ(2)‖Mm‖+ o(‖Mm‖)
)

= 0.

Since in this case by definition (Diag σT )
i1...ik
j1...jk = 0 we see that (63) in zero.

Suppose now, that exactly one pair has unequal entries and let it be (il, jσ(l)). We consider two
subcases depending on whether or not il and jσ(l) are in the same block.

If both il and jσ(l) are in one block, that is vl = sl, then using (59), for arbitrary t, we obtain:

lim
m→∞

1

‖Mm‖
( ∑

p∈It

U ilp
m U

jσ(l)p
m

)
= lim

m→∞
1

‖Mm‖
(
δiljσ(l)

δvlt +
δvlt − δslt

µil − µjσ(l)

M iljσ(l)‖Mm‖+ o(‖Mm‖)
)

= lim
m→∞

o(‖Mm‖)
‖Mm‖

= 0.

In this subcase we again have (Diag σT )
i1...ik
j1...jk = 0, thus (63) is equal to zero.

If il and jσ(l) are in different blocks, vl 6= sl, then (Diag σT )
i1...ik
j1...jk = 0 and by (59) we obtain:

lim
m→∞

1

‖Mm‖
( r,...,r∑

t1,...,tk=1

T ιt1 ...ιtk

k∏
ν=1

( ∑
pν∈Itν

U iνpν
m U

jσ(ν)pν

m

))
=

lim
m→∞

1

‖Mm‖
( r,...,r∑

t1,...,tk=1

T ιt1 ...ιtk

k∏
ν=1

(
δiνjσ(ν)

δvνtν +
δvνtν − δsνtν

µiν − µjσ(ν)

M iνjσ(ν)‖Mm‖+ o(‖Mm‖)
))

.(65)

We show that the limit of at most two terms of the big sum in (65) may be non-zero. Indeed,
summands corresponding to k-tuples (t1, ..., tk) with tl 6∈ {vl, sl} converge to zero, because δiljσ(l)

= 0,
δvltl = δsltl = 0, and therefore

δiljσ(l)
δvltl +

δvltl − δsltl

µil − µjσ(l)

M iljσ(l)‖Mm‖+ o(‖Mm‖) = o(‖Mm‖).

Similarly, summands corresponding to k-tuples (t1, ..., tk) with tν 6= vν for some ν 6= l converge to
zero, since then δvνtν = δsνtν = 0 (recall that vν = sν for all ν 6= l). Thus, there are two summands
with possible nonzero limit. The first corresponding to the k-tuple (v1, ..., vl−1, vl, vl+1, ..., vk) and the
second corresponding to the k-tuple (v1, ..., vl−1, sl, vl+1, ..., vk). Notice finally that if tν = vν(= sν)
for some ν 6= l, then

δiνjσ(ν)
δvνtν +

δvνtν − δsνtν

µiν − µjσ(ν)

M iνjσ(ν)‖Mm‖+ o(‖Mm‖) = 1 + o(‖Mm‖),
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since iν = jσ(ν) for ν 6= l. Thus, the limit of the summand in (65) corresponding to the k-tuple
(v1, ..., vl−1, vl, vl+1, ..., vk) is equal to

lim
m→∞

T ιv1 ...ιvl−1
ιvl

ιvl+1
...ιvk

‖Mm‖
(
δiljσ(l)

δvlvl
+

δvlvl
− δslvl

µil − µjσ(l)

M iljσ(l)‖Mm‖+ o(‖Mm‖)
)(

1 + o(‖Mm‖)
)

=
T ιv1 ...ιvl−1

ιvl
ιvl+1

...ιvk

µil − µjσ(l)

M iljσ(l) ,

while, analogously, the limit corresponding to the k-tuple (v1, ..., vl−1, sl, vl+1, ..., vk) is equal to

−T ιv1 ...ιvl−1
ιsl

ιvl+1
...ιvk

µil − µjσ(l)

M iljσ(l) .

Putting these two limits together we see that (65), and therefore (63), is equal to

T ιv1 ...ιvl−1
ιvl

ιvl+1
...ιvk − T ιv1 ...ιvl−1

ιsl
ιvl+1

...ιvk

µil − µjσ(l)

M iljσ(l) =
T i1...il−1ilil+1...ik − T i1...il−1jσ(l)il+1...ik

µil − µjσ(l)

M iljσ(l)

=
T i1...il−1ilil+1...ik − T i1...il−1jσ(l)il+1...ik

µil − µjσ(l)

M
iljσ(l)

out .

The first equality follows from the block-constant structure of T and the second from the premise
in this case that il and jσ(l) are in different blocks.

Consider now the last case when iν = jσ(ν) for all ν = 1, ..., k. Using (59) one can see that
the only summand that may have non-zero limit in the sum in the numerator of (63) is the one
corresponding to the multi-index (t1, ..., tk) = (v1, ..., vk). Thus, using the block-constant structure
of T (recall that iν ∈ Ivν for all ν = 1, ..., k), (63) is equal to

lim
m→∞

1

‖Mm‖
(
T i1...ik(1 + o(‖Mm‖))− T i1...ik

)
= 0.

With that we finished calculating (63).
We now compute the right-hand side of (61) and compare with the results above. Suppose that

σ(l) = m, then by the definition of σ
(l)

we have σ−1
(l)

(m) = k + 1, σ−1
(l)

(k + 1) = l, and for any integer

i ∈ Nk+1\{m, k+1} we have σ−1
(l)

(i) = σ−1(i). Analogously, we have σ
(l)

(l) = k+1, σ
(l)

(k+1) = σ(l),

and for any integer i ∈ Nk+1\{l, k + 1} we have σ
(l)

(i) = σ(i).
Below we use the standard notation that a circumflex above a term in a product means that

the term is omitted. Since σ−1
(l)

(k +1) = l 6= k +1 we use the second part of Lemma 2.7 to compute:

k∑

l=1

(
Diag

σ
(l)T

(l)
out

)
[Hi1j1 , ..., Hikjk

, Mout] =
k∑

l=1

〈T (l)
out, Hi1j1 ◦σ

(l)
· · · ◦σ

(l)
Hikjk

◦σ
(l)

Mout〉

=
k∑

l=1

(
T

(l)
out

)i1...ikjσ
(l)

(k+1)
(
δi1jσ

(l)
(1)
· · · δ̂iljσ

(l)
(l)
· · · δikjσ

(l)
(k)

)
M

j
σ
(l)

(k+1)
i
σ−1
(l)

(k+1)

out
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=
k∑

l=1

(
T

(l)
out

)i1...ikjσ(l)
(
δi1jσ

(l)
(1)
· · · δ̂iljσ

(l)
(l)
· · · δikjσ

(l)
(k)

)
M

jσ(l)il
out

=
k∑

l=1

(
T

(l)
out

)i1...ikjσ(l)
(
δi1jσ(1)

· · · δ̂iljσ(l)
· · · δikjσ(k)

)
M

jσ(l)il
out .

The last equality holds because we changed the missing multiple, under the circumflex, (for each
fixed l) while keeping the present multiples the same. It is clear now that if at least two of the pairs
(i1, jσ(1)), (i2, jσ(2)), ..., (ik, jσ(k)) have different entries, then the last sum is zero. Let now exactly
one of the pairs have unequal entries, say il 6= jσ(l), then the sum is equal to

(66)
(
T

(l)
out

)i1...ikjσ(l)
(
δi1jσ(1)

· · · δ̂iljσ(l)
· · · δikjσ(k)

)
M

jσ(l)il
out .

If il and jσ(l) are in the same block, then
(
T

(l)
out

)i1...ikjσ(l) = 0 by the definition of T
(l)
out. If il and jσ(l)

are not in the same block, then (66) is equal to

(
T

(l)
out

)i1...ikjσ(l)M
jσ(l)il
out =

T i1...il−1ilil+1...ik − T i1...il−1jσ(l)il+1...ik

µil − µjσ(l)

M
iljσ(l)

out ,

because M is a symmetric matrix. Finally, if iν = jσ(ν) for all ν = 1, ..., k, then again
(
T

(l)
out

)i1...ikjσ(l) =
0 for all l. These outcomes are equal to the results in the corresponding cases in the first part of
the proof, the theorem follows. ¥

Proposition 9.2 Let T be any k + 1-tensor on Rn, let x be any vector in Rn, let V be any n× n
orthogonal matrix, and let σ be any permutation on Nk. Then

V
(
Diag σ(T [x])

)
V T =

(
V (Diag

σ
(k+1)T )V T

)
[V (Diag x)V T ].

Proof. Let Hi1j1 ,...,Hikjk
be any k basic matrices. Recall that σ

(k+1)
(i) = σ(i) for all i ∈ Nk and

σ
(k+1)

(k + 1) = k + 1. Using Theorem 2.6 twice, we compute

(
V

(
Diag σ(T [x])

)
V T

)i1...ik
j1...jk =

(
V

(
Diag σ(T [x])

)
V T

)
[Hi1j1 , ..., Hikjk

]

= 〈T [x], H̃i1j1 ◦σ ... ◦σ H̃ikjk
〉

=

n,...,n∑
p1,...,pk=1

(T [x])p1...pkH̃
p1pσ−1(1)

i1j1
· · · H̃pkpσ−1(k)

ikjk

=

n,...,n∑
p1,...,pk,pk+1=1

T p1...pk+1xpk+1H̃
p1pσ−1(1)

i1j1
· · · H̃pkpσ−1(k)

ikjk

=

n,...,n∑
p1,...,pk,pk+1=1

T p1...pk+1H̃
p1p

σ−1
(k+1)

(1)

i1j1
· · · H̃

pkp
σ−1
(k+1)

(k)

ikjk
(Diag x)

pk+1p
σ−1
(k+1)

(k+1)
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= 〈T, H̃i1j1 ◦σ
(k+1)

... ◦σ
(k+1)

H̃ikjk
◦σ

(k+1)
Diag x〉

=
(
V (Diag

σ
(k+1)T )V T

)
[Hi1j1 , ..., Hikjk

, V (Diag x)V T ]

=
((

V (Diag
σ
(k+1)T )V T

)
[V (Diag x)V T ]

)i1...ik
j1...jk .

Since these equalities hold for all indexes i1,...,ik and j1,...,jk we are done. ¥

The next lemma says that for any block-constant tensor T , Diag σT is invariant under conju-
gations with a block-diagonal orthogonal matrix.

Lemma 9.3 Let T be a block-constant k-tensor on Rn and let U ∈ On be a block-diagonal matrix
(both with respect to the same partitioning of Nn). Then for any permutation σ in Nk

U(Diag σT )UT = Diag σT.

Proof. Let {I1,...,Ir} be the partitioning of the integers Nn that determines the block structure.
Notice that U ipU jp = 0 whenever i 6∼ j or i 6∼ p, and that

∑
p∈Is

U ipU jp = δij whenever i ∈ Is.
Let (i1, ..., ik) be an arbitrary multi index and suppose that il ∈ Ivl

for l = 1, ..., k. We expand the
left-hand side of the identity:

(
U(Diag σT )UT

)i1...ik
j1...jk =

n,...,n∑
ps,qs=1
s=1,...,k

(Diag σT )
p1...pk
q1...qk U i1p1U j1q1 · · ·U ikpkU jkqk

=

n,...,n∑
p1,...,pk=1

T p1...pkU i1p1U j1pσ−1(1) · · ·U ikpkU jkpσ−1(k)

=

n,...,n∑
p1,...,pk=1

T p1...pkU i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk

=

r,...,r∑
t1,...,tk=1

T ιt1 ...ιtk
∑

pl∈Itl
l=1,...,k

U i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk

= T ιv1 ...ιvk

∑
pl∈Ivl

l=1,...,k

U i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk

= T ιv1 ...ιvk δi1jσ(1)
· · · δikjσ(k)

= T i1...ikδi1jσ(1)
· · · δikjσ(k)

=
(
Diag σT

)i1...ik
j1...jk .

The penultimate equality follows from the fact that T is block-constant. ¥

Given a block structure on Nn and any matrix M , by Min we denote the matrix with the same
diagonal blocks as M and the rest of the entries set to zero, as defined by (3).
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Theorem 9.4 Let U ∈ On be a block-diagonal orthogonal matrix. Let M be an arbitrary symmetric
matrix and let h ∈ Rn be a vector such that

(67) UT MinU = Diag h.

Let H1,...,Hk be arbitrary matrices and let σ be a permutation on Nk. Then

(i) for any block-constant (k + 1)-tensor T on Rn,

〈T [h], H̃1 ◦σ · · · ◦σ H̃k〉 = 〈T, H1 ◦σ
(k+1)

· · · ◦σ
(k+1)

Hk ◦σ
(k+1)

Min〉

(ii) for any block-constant k-tensor T on Rn

〈T τl [h], H̃1 ◦σ · · · ◦σ H̃k〉 = 〈T (l)
in , H1 ◦σ

(l)
· · · ◦σ

(l)
Hk ◦σ

(l)
Min〉, for all l = 1, ..., k,

where the permutations σ
(l)

for l = 1, ..., k, k + 1 are defined by (13), H̃i = UT HiU for i = 1, ..., k,
and the lifting T τl is defined by (17).

Proof. To see that the first identity holds we use Theorem 2.6, Proposition 9.2, (67), and
Lemma 9.3 in that order, as follows:

〈T [h], H̃1 ◦σ · · · ◦σ H̃k〉 =
(
U(Diag σT [h])UT

)
[H1, ..., Hk]

=
(
U(Diag

σ
(k+1)T )UT

)
[H1, ..., Hk, U(Diag h)UT ]

=
(
U(Diag

σ
(k+1)T )UT

)
[H1, ..., Hk,Min]

=
(
Diag

σ
(k+1)T

)
[H1, ..., Hk,Min]

= 〈T, H1 ◦σ
(k+1)

· · · ◦σ
(k+1)

Hk ◦σ
(k+1)

Min〉.

The last equality follows again from Theorem 2.6.
To show the second identity, it suffices to prove it for arbitrary basic matrices Hisjs s = 1, ..., k.

Fix k basic matrices Hi1j1 ,...,Hikjk
and suppose that il ∈ Ivl

for l = 1, ..., k. Then

〈T τl [h], H̃i1j1 ◦σ · · · ◦σ H̃ikjk
〉 =

(
U(Diag σT τl [h])UT

)
[Hi1j1 , ..., Hikjk

]

=
(
U(Diag σT τl [h])UT

)i1...ik
j1...jk

=

n,...,n∑
p1,...,pk=1
q1,...,qk=1

(Diag σT τl [h])
p1...pk
q1...qk U i1p1U j1q1 · · ·U ikpkU jkqk

=

n,...,n∑
p1,...,pk=1

(T τl [h])p1...pkU i1p1U j1pσ−1(1) · · ·U ikpkU jkpσ−1(k)

=

n,...,n∑
p1,...,pk=1

(T τl [h])p1...pkU i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk
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=

n,...,n∑
p1,...,pk=1

n∑
pk+1=1

(T τl)p1...pkpk+1hpk+1U i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk

=

n,...,n∑
p1,...,pk=1

T p1...pkhplU i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk

=

r,...,r∑
t1,...,tk=1

T ιt1 ...ιtk
∑

pη∈Itη

η=1,...,k

hplU i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk

= T ιv1 ...ιvk

∑
pl∈Ivl

l=1,...,k

hplU i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pk

= T ιv1 ...ιvk δi1jσ(1)
· · · δ̂iljσ(l)

· · · δikjσ(k)

∑
pl∈Ivl

hplU ilplU jσ(l)pl

= T i1...ikδi1jσ(1)
· · · δ̂iljσ(l)

· · · δikjσ(k)

∑
pl∈Ivl

hplU ilplU jσ(l)pl

= T i1...ikδi1jσ(1)
· · · δ̂iljσ(l)

· · · δikjσ(k)
M

iljσ(l)

in .

To evaluate the right-hand side of the identity, we use the second part of Lemma 2.7 since σ−1
(l)

(k +

1) = l 6= k + 1. Recall also that σ
(l)

(s) = σ(s) for s ∈ Nk+1\{l, k + 1} and σ
(l)

(k + 1) = σ(l) for all
l = 1, ..., k.

〈T (l)
in , Hi1j1 ◦σ

(l)
· · · ◦σ

(l)
Hikjk

◦σ
(l)

Min〉

=
(
T

(l)
in

)i1...ikjσ
(l)

(k+1)
δi1jσ

(l)
(1)
· · · δ̂iljσ

(l)
(l)
· · · δikjσ

(l)
(k)

M
jσ

(l)
(k+1)iσ−1

(l)
(k+1)

in

=
(
T

(l)
in

)i1...ikjσ(l)δi1jσ(1)
· · · δ̂iljk+1

· · · δikjσ(k)
M

jσ(l)il
in

= T i1...ikδi1jσ(1)
· · · δ̂iljk+1

· · · δikjσ(k)
M

jσ(l)il
in

= T i1...ikδi1jσ(1)
· · · δ̂iljk+1

· · · δikjσ(k)
M

iljσ(l)

in

= T i1...ikδi1jσ(1)
· · · δ̂iljσ(l)

· · · δikjσ(k)
M

iljσ(l)

in .

In the third equality above we used the fact that T is block-constant, plus the fact that M
jσ(l)il
in = 0

if jσ(l) 6∼ il. In the fourth we used the fact that M is a symmetric matrix. The last equality holds
because we changed the missing multiple, while keeping the present multiples the same. ¥

Proposition 9.5 Let U ∈ On be a block-diagonal orthogonal matrix, let H be an n×n matrix, and
let σ be an arbitrary permutation on Nk.

(i) If T is a (k + 1)-tensor such that for some fixed l ∈ Nk we have T p1...pl...pk+1 = 0 whenever
pl ∼ pk+1, then (

U(Diag
σ
(l)T )UT

)
[Hin] = 0.
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(ii) If T is a (k + 1)-tensor such that for some fixed l ∈ Nk we have T p1...pl...pk+1 = 0 whenever
pl 6∼ pk+1, then (

U(Diag
σ
(l)T )UT

)
[Hout] = 0.

(iii) If T is any (k + 1)-tensor, then

(
U(Diag

σ
(k+1)T )UT

)
[Hout] = 0.

Proof. Fix an index l in Nk. Let Hi1j1 ,...,Hikjk
be arbitrary basic matrices, and let H be an

arbitrary matrix. Using the definitions we compute:

(
U(Diag

σ
(l)T )UT

)
[Hi1j1 , ..., Hikjk

, H] =

n,n∑
ik+1,jk+1=1

(
U(Diag

σ
(l)T )UT

)i1...ik+1
j1...jk+1H ik+1jk+1

=

n,n∑
ik+1,jk+1=1

n,...,n∑
ps,qs=1

s=1,...,k+1

(Diag
σ
(l)T )

p1...pk+1
q1...qk+1U i1p1U j1q1 · · ·U ik+1pk+1U jk+1qk+1H ik+1jk+1

=

n,n∑
ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

T p1...pk+1U i1p1U
j1p

σ−1
(l)

(1) · · ·U ik+1pk+1U
jk+1p

σ−1
(l)

(k+1)
H ik+1jk+1

=

n,n∑
ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

T p1...pk+1U i1p1U
j
σ
(l)

(1)
p1 · · ·U ilplU

j
σ
(l)

(l)
pl · · ·U ik+1pk+1U

j
σ
(l)

(k+1)
pk+1

H ik+1jk+1

=

n,n∑
ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

T p1...pk+1U i1p1U jσ(1)p1 · · ·U ilplU jk+1pl · · ·U ik+1pk+1U jσ(l)pk+1H ik+1jk+1 .

Suppose now that T is a (k +1)-tensor with T p1...pl...pk+1 = 0 whenever pl ∼ pk+1 and that H = Hin.
Then H ik+1jk+1 6= 0 implies that ik+1 ∼ jk+1. In that case, by the fact that U is block-diagonal,
U jk+1plU ik+1pk+1 6= 0 implies that pl ∼ pk+1, which implies that T p1...pl...pk+1 = 0. Thus every
summand in the double sum above is zero.

In the second case, suppose T is a (k + 1)-tensor with T p1...pl...pk+1 = 0 whenever pl 6∼ pk+1

and H = Hout. Then H ik+1jk+1 6= 0 implies that ik+1 6∼ jk+1. In that case, by the fact that U is
block-diagonal, U jk+1plU ik+1pk+1 6= 0 implies that pl 6∼ pk+1, which implies that T p1...pl...pk+1 = 0. The
sum is zero.

In the third case, suppose that T is any (k + 1)-tensor and H = Hout. A calculation almost
identical to the one at the beginning of the proof (it differs only in the last step) shows that

(
U(Diag

σ
(k+1)T )UT

)
[Hi1j1 , ..., Hikjk

, H] =
n,n∑

ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

T p1...pk+1U i1p1U jσ(1)p1 · · ·U ikpkU jσ(k)pkU ik+1pk+1U jk+1pk+1H ik+1jk+1 .
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Then H ik+1jk+1 6= 0 implies that ik+1 6∼ jk+1. In that case, by the fact that U is block-diagonal,
U jk+1pk+1U ik+1pk+1 = 0. Again the sum is zero. ¥

We are finally ready to conclude the proofs of our main two analytical tools.

Proof of Theorem 2.9. A consequence of Theorem 9.1 and Proposition 9.5. ¥

Proof of Theorem 2.10. A consequence of Theorem 2.6, Theorem 9.4, Proposition 9.5, and the
fact that M = Min + Mout. ¥

If vector µ, defining the equivalence relation on Nn, has distinct coordinates, then every tensor
from T k,n is block-constant and the block-diagonal orthogonal matrices are precisely the signed
identity matrices (those with plus or minus one on the main diagonal and zeros everywhere else). In

this case we also have i ∼ j if and only if i = j and thus T
(l)
in = T τl . Moreover, since Proposition 9.5

holds for arbitrary matrices (symmetric or not), Theorem 2.10 becomes the next result, valid for
an arbitrary matrix H.

Corollary 9.6 Let σ be a permutation on Nk and let H be an arbitrary matrix. Then

(i) for any (k + 1)-tensor T on Rn,

Diag σ(T [diag H]) =
(
Diag

σ
(k+1)T

)
[H];

(ii) for any k-tensor T on Rn

Diag σ(T τl [diag H]) =
(
Diag

σ
(l)T τl

)
[H], for all l = 1, ..., k,

where the permutations σ
(l)

, for l ∈ Nk, are defined by (13).

10 Appendix C: Proof of Theorem 6.4

Let X ∈ Sn be a symmetric matrix with distinct eigenvalues, and let x = λ(X). The proof
of Theorem 6.4 is by induction on s. When s = 1 there is nothing to show since by definition
Ã

(1)
(x) = ∇f(x) = A

(1)
(x) for every x ∈ Rn. Suppose that for some integer s in [1, k) we have

∑
σ∈P s

Diag σÃσ(x) =
∑
σ∈P s

Diag σAσ(x),

for every x ∈ Rn with distinct coordinates.
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Recall that by definition the tensor Aσ(x) is equal to zero if the permutation σ has more than
one cycle in its cycle decomposition. Then using Lemma 6.3 we get

∑

σ∈P s+1

Diag σAσ(x) =
∑
σ∈P s

l∈Ns+1

Diag
σ
(l)Aσ

(l)
(x)

=
∑
σ∈P s

l∈Ns

Diag
σ
(l)Aσ

(l)
(x)

=
∑
σ∈P s

l∈Ns

Diag
σ
(l)

(
(Aσ(x))

(l)
out + (T l

σ(x))
(l)
in

)
.

Let M be an arbitrary symmetric matrix with norm one. Let {Mm}∞m=1 be a sequence of symmetric
matrices converging to zero and such that Mm/‖Mm‖ converges to M . Finally, let {Um}∞m=1 be a
sequence of orthogonal matrices such that

Diag x + Mm = Um

(
Diag λ(Diag x + Mm)

)
UT

m.

By taking a subsequence if necessary, we may assume that Um converges to U ∈ On when m goes
to infinity. Since the decomposition of the integers Nn into blocks is determined by the repeated
eigenvalues of the matrix X, and the later are all distinct, we have Min = Diag (diag M). (Moreover,
every tensor is block-constant.) Thus defining vector h ∈ Rn as in (23) we see that h = diag M
and by (25) we have UT MinU = Diag (diag M). Reversing the steps leading to (42) the induction
hypothesis, and then using the first part of Theorem 2.10, on the one hand we get

( ∑
σ∈P s

l∈Ns

Diag
σ
(l) (T l

σ(x))
(l)
in

)
[M ] = U

( ∑
σ∈P s

Diag σ
(∇Aσ(x)[h]

))
UT

= lim
t→0

U
( ∑

σ∈P s

Diag σ
(Aσ(x + th)−Aσ(x)

))
UT

= lim
t→0

U
( ∑

σ∈P s

Diag σ
(Ãσ(x + th)− Ãσ(x)

))
UT

= U
( ∑

σ∈P s

Diag σ
(∇Ãσ(x)[h]

))
UT

=
( ∑

σ∈P s

Diag
σ
(s+1)∇Ãσ(x)

)
[M ]

=
( ∑

σ∈P s

Diag
σ
(s+1) Ãσ

(s+1)
(x)

)
[M ].

In the last equality we used the second line from (28). On the other hand, using (15), the induction
hypothesis, and again (15) we have

( ∑
σ∈P s

l∈Ns

Diag
σ
(l) (Aσ(x))

(l)
out

)
[M ] = lim

m→∞
Um

( ∑
σ∈P s Diag σAσ(x)

)
UT

m −
∑

σ∈P s Diag σAσ(x)

‖Mm‖
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= lim
m→∞

Um

( ∑
σ∈P s Diag σÃσ(x)

)
UT

m −
∑

σ∈P s Diag σÃσ(x)

‖Mm‖
=

( ∑
σ∈P s

l∈Ns

Diag
σ
(l) (Ãσ(x))

(l)
out

)
[M ]

=
( ∑

σ∈P s

l∈Ns

Diag
σ
(l) Ãσ

(l)
(x)

)
[M ].

In the last equality we used the first line in (28). Thus we see that

( ∑

σ∈P s+1

Diag σAσ(x)
)
[M ] =

( ∑

σ∈P s+1

Diag σÃσ(x)
)
[M ],

and since M was arbitrary, we are done.
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