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Abstract

A homogeneous polynomial p(z) is hyperbolic with respect to a given
vector d if the real polynomial ¢ — p(z + td) has all real roots for all
vectors z. We show that any symmetric convex function of these roots
is a convex function of #, generalizing a fundamental result of Garding.
Consequently we are able to prove a number of deep results about
hyperbolic polynomials with ease. In particular, our result subsumes
von Neumann’s characterization of unitarily invariant matrix norms,
and Davis’s characterization of convex functions of the eigenvalues of
Hermitian matrices. We then develop various convex-analytic tools
for such symmetric functions, of interest in interior-point methods for
optimization problems posed over related cones.
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1 Introduction

A famous result of von Neumann [35] states that for any symmetric gauge ¢
on R™ the function

(1) ZeM" —g(a(2))

is a norm (and so in particular is convex). By a symmetric gauge we mean
a norm which is invariant under sign changes and permutations of its argu-
ments. For any matrix Z in M™, the space of n x n real matrices, the vector
0(Z) has components the singular values of Z arranged in decreasing order.
Rather less well-known is a parallel result of Davis [5] stating that for any
symmetric convex function f on R™ the function

(2) Z € 5" — f(M2))

i1s convex. Here, for any matrix Z in S™, the space of n X n real symmetric
matrices, the vector A(Z) has components the eigenvalues of Z, arranged in
decreasing order.

Norms of the form (1) are important in matrix approximation [14]. Analo-
gously, functions of the form (2) are fundamental in eigenvalue optimization
and semidefinite programming [23]. In both areas there is an attractive du-
ality theory: the Fenchel conjugate of the function (2) is described elegantly
by the formula (f o A)* = f* o A [19], and von Neumann showed a parallel
result for the norm (1).

The analogies between these two families of results are not accidental. The
paper [20] develops an axiomatic framework subsuming both models. At
a more sophisticated level, both convexity results follow quickly from the
Kostant convexity theorem in semisimple Lie theory [21].

The work we describe in this current paper also concerns the above type of
convexity result, but with a very different and remarkably simple approach.



To illustrate the key idea, consider the determinant as a function on S™. This
function i1s a homogeneous polynomial which is hyperbolic with respect to the
identity matrix I: that is, the real polynomial

t € R det(Z — t)

has all real roots, namely the eigenvalues A;(Z). The properties of such poly-
nomials play a significant role in the partial differential equations literature
(see for example [13])), but we use just one, central result, due to Garding
[8]: the largest root A;(-) is always a convex function.

Working from Garding’s result, we show, just like Davis’s theorem, that any
symmetric convex function of the roots A;(-) is convex. The richness of the
class of hyperbolic polynomials then allows us to derive many elegant (and
often classical) inequalities in a unified fashion. Examples include beautiful
properties of the elementary symmetric functions. One particular hyperbolic
polynomial leads us back to the singular value example.

Associated with any hyperbolic polynomial comes a closed convex hyperbol-
tcity cone which, with the above notation, we can write

{Z:\(Z) >0 Vil.

For example, in the symmetric matrix case this is simply the cone of positive
semidefinite matrices. Giler has shown how optimization problems over such
cones are good candidates for interior point algorithms analogous to the
dramatically successful techniques current in semidefinite programming [10].
In part with that aim in mind, we develop an attractive duality theory and
convex-analytic tools for symmetric convex functions of the roots associated
with general hyperbolic polynomials.

Notation

We write R, (resp. R7) for the set {u € R™ :u; > 0,Vi} (resp. {u € R™:
w; > 0,Yi}. The closure (resp. boundary, convex hull, linear span) of a set
S is denoted clS (resp. bd S, conv S, spanS). A cone is a nonempty set
that contains every nonnegative multiple of all its members; it thus always
contains 0. If v € R™, then wu is the vector v with its coordinates arranged
decreasingly; also, U, := {uy : v € U}, for every subset U of R™. The
transpose of a matrix (or vector) A is denoted AT. The identity matrix or
map is written /. Suppose Y is an arbitrary Euclidean space with inner



product (-,-) and h : Y — [—o0,+00] is convex, then h* (resp. Oh, Vh,
dom h) stands for the Fenchel conjugate (resp. subdifferential map, gradient
map, domain) of h. (Rockafellar’s monograph [33] is the standard reference
for these notions from convex analysis.) Higher order derivatives are denoted
by Vh. If U C X, then the positive polar cone is U® := {z € X : (z,U) >
0}. If A is a linear operator between Euclidean spaces, then its conjugate is
written A*. The range of a map X is denoted by ran A. Finally, if A, B are
two subsets of X, then d(A, B) :=inf || A — B|| is the distance between A and
B.

2 Tools

We assume throughout the paper that

X 1is a finite-dimensional real vector space.

This section contains a selection of important facts on hyperbolic polynomials
from Garding’s fundamental work [8], and a deep inequality on elementary
symmetric functions.

Hyperbolic polynomials and eigenvalues

Definition 2.1 (homogeneous polynomial) Suppose p is a nonconstant
polynomial on X and m is a positive integer. Then p is homogeneous of
degree m, if p(tz) = t"p(z), for all ¢t € R and every = € X.

Definition 2.2 (hyperbolic polynomial) Suppose that p is a homoge-
neous polynomial of degree m on X and d € X with p(d) # 0. Then p
is hyperbolic with respect to d, if the polynomial ¢ — p(z + td) (where ¢ is a
scalar) has only real zeros, for every z € X.

Definition 2.3 (“eigenvalues and trace”) Suppose p is hyperbolic with
respect to d € X of degree m. Then for every z € X, we can write

ple+ #d) = pla) [+ Ao

=1



and assume without loss of generality that Aj(z) > As(z) > -+ > An(2).
The corresponding map X — RP : z = (Ai(2),... , Au(2)) is denoted by A
and called the eigenvalue map (with respect to p and d). We say that A;(z)
is the i*® largest eigenvalue of © (with respect to p and d) and define the sum
of the k largest eigenvalues by oj 1= Ele A, for every 1 < k < m. The
function o,, is called the trace.

The eigenvalues {A;(z)} are thus the roots of the polynomial ¢ — p(z — td).
It follows readily that the trace oy, is linear (see also the paragraph following

Fact 2.19).

Unless stated otherwise, we assume throughout the paper that

p is a hyperbolic polynomial of degree m with respect to d,
with eigenvalue map A and oy := Ele Ak

for every 1 < k < m. The notions “eigenvalues” and “trace” are well-
motivated by the the following example.

The Hermitian matrices. Let X be the real vector space of the m x m
Hermitian matrices and p := det. Then p is hyperbolic of degree m with
respect to d := I and XA maps € X to its eigenvalues, arranged decreasingly.
Thus for every 1 < k < m, the function oy is indeed the sum of the k largest
eigenvalues and o, is the (ordinary) trace.

As we go, we will point out what some of the results become in the important
case of the Hermitian matrices. Details and further examples are provided
in Section 7.

We now introduce the notion of isomorphic triples, which will simplify the
analysis of homogeneous polynomials in Section 7 considerably.

Definition 2.4 Suppose p (resp. ¢) is a homogeneous polynomial on X
(resp. Y) and d € X (resp. e € Y). If there exists a linear one-to-one map
$ from X onto Y with p = go ® and $(d) = e, then we say that the triple
(X, p,d) is isomorphic to (Y, q,e) (by ®), and we write (X, p,d) ~ (Y, ¢, d).

It is clear that the binary operation ~ defines an equivalence relation on all
triples. The following basic properties are easy to verify.

Proposition 2.5 Suppose (X, p,d) is isomorphic to (Y, ¢, e) by ®. Then:



(1) The degrees of p and ¢ coincide.

(ii) p is hyperbolic with respect to d if and only if ¢ is hyperbolic with
respect to e.

(iii) If p (resp. ¢) is hyperbolic with respect to d (resp. e) with correspond-
ing eigenvalue map A (resp. ), then A = po ®.

Many examples of hyperbolic polynomials can be obtained as described be-
low.

Proposition 2.6
(1) If g is hyperbolic with respect to the same d, then so is pq.

(ii) If m > 1, then q(z) := %p(:l? + td)‘t:o = (Vp(:n)) (d) is hyperbolic with
respect to d.

(i) IfY is a subspace of X and d € Y, then the restriction p|y is hyperbolic
with respect to d.

Proof. (i) is elementary. (ii) essentially follows from Rolle’s Theorem; see
also [8, Lemma 1]. (iii) is obvious. W

The technique of Proposition 2.6.(ii) has a higher order analog; see Fact 2.19
below.

Given a hyperbolic polynomial on R", we can construct a related one on
R™ ! as follows.

Proposition 2.7 Suppose p is hyperbolic with respect to d € R™ with eigen-
value map A. Assume that d; # 0 and define ¢ on R"! by

q(y1, - s Yn-1) = pW1s - S Yn-1, Todn).

Then ¢ is hyperbolic with respect to e := (di,...,d,_1) and its eigenvalue
map p satisfies p(yr,... ,¥n-1) = AMY1,- -+ s Yn—1, Z_i»d”)‘
Proof. Straightforward. H

The following property of the eigenvalues is well-known ([8, Equation (2)])
and easily verified.



Fact 2.8 For all ,s € R and every 1 <: < m:

rAi(z) + s, if > 0;

FAm+1-i(%) + s, otherwise.

Ai(re + sd) = {

It follows that the eigenvalue map A is positively homogeneous (A(tx) = tA(x),
for all ¢ > 0 and every ¢ € X) and continuous (the zeros of a polynomial
are continuous with respect to the coefficients; see, for instance, [32, Ap-
pendix A]).

Garding showed that the largest eigenvalue map is sublinear, that is, posi-
tively homogeneous and convex.

Theorem 2.9 (Garding) The largest eigenvalue map A; is sublinear.
Proof. Positive homogeneity follows from Fact 2.8. Now Garding showed

that A, is concave [8, Theorem 2|, which is equivalent to the convexity of
A1, since Aj(—z) = —Ap(z), for every z € X. W

The Hermitian matrices (continued). It is well-known that the largest eigen-
value map is convex in this case; see, for instance, [12].

Hyperbolicity cone

Definition 2.10 (hyperbolicity cone) The hyperbolicity cone of p with
respect to d, written C(d) or C(p, d), is the set {x € X : p(x+td) # 0,Vt > 0}.

Fact 2.11 C(d) = {z € X : A(z) > 0}. Hence C(d) is an open convex cone
that contains d with closure c1C(d) = {x € X : A, (z) > 0}. If ¢ € C(d),
then p is hyperbolic with respect to ¢ and C(c) = C(d).

Proof. See Garding’s [8, Section 2]. W

Remark 2.12 Note that A,,(z) > 0 if and only if A;(—z) < 0 by Fact 2.8.
Hence Garding’s result (Theorem 2.9) implies the convexity of C'(d). In fact,

C(d) is a convex cone precisely because A; is a convex function.

To see why convexity of C(d) yields convexity of A;, fix z and y in X and
observe that  — A, (z)d and y — A, (y)d both belong to c1C(d). By as-
sumption, (z 4+ y) — (An(2) + An(y)) € clC(d). On the other hand, the
smallest ¢ such that (z + y) + ¢d belongs to clC(d) is —An(z + y). Alto-
gether, A\, (2) + A (y) < Am(z +y) and the concavity of A, (or convexity of
A1) follows.



Definition 2.13 (complete hyperbolic polynomial) p is complete if
{z € X : A(z) =0} ={0}.

The following result, which follows easily from Proposition 2.5.(iii), considers
the concepts just introduced for isomorphic triples.

Proposition 2.14 Suppose (X, p,d) is isomorphic to (Y, ¢, e) by ®. Then:

(i) C(g,e) = 2(C(p,d)).

(ii) p is complete if and only if ¢ is.

Fact 2.15 Suppose p is hyperbolic with respect to d, with corresponding
eigenvalue map A and hyperbolicity cone C(d). Then

{teX AMe)=0}={zecX :2+C(d)=C(d)}
={z e X :p(txr+y)=ply),Vy € X,Vt € R}.

Consequently, {z € X : A(z) = 0} = 1 C(d) N (—clC(d)).

Proof. See Garding’s [8, Section 3]. The “Consequently” part follows readily
from the displayed equation and the openness of C(d). W

It is always possible to find a restriction of p that is complete: indeed, d ¢
{z € X : X(z) = 0}; consequently, if Y is any subspace of X which contains
d and is algebraically complemented to {# € X : A(z) = 0}, then pl|y is
hyperbolic with respect to d (Proposition 2.6.(iii)) and complete.

Example 2.16 We let X = R", p(z) = > . z; and d = (1,1,...,1) in X.
Then p is hyperbolic with respect to d of degree m = 1 and A(z) = £ >

It follows that p is complete only when n = 1. !

k3

7=1 x]

The Hermitian matrices (continued). The hyperbolicity cone of p = det with
respect to d = I is the set of all positive definite matrices. The polynomial
p = det is complete, since every nonzero Hermitian matrix has at least one
nonzero eigenvalue.



Elementary symmetric functions

Definition 2.17 (symmetric function) A function f on R™is symmetric,
if f(u) = f(un@)), for all permutations 7 of {1,... ,m} and every u € R™.

Definition 2.18 (elementary symmetric functions) For any given in-
teger k = 1,2,... ,m, the map By : R™ = R :u— >, . Hle w;, 18
called the k* elementary symmetric function on R™. We also set Ej := 1.

Fact 2.19 For every # € X and all ¢ € R,

o+ td) = p(d) [T+ (o)) = p(d) Y Bi(A ()™

and for every 0 < i < m,

PAENE) = oVl )

m—1 times

If 1 <v < m, then E; o A is hyperbolic with respect to d of degree <.

Proof. The first displayed equation is elementary while the second displayed
equation is a consequence of Taylor’s Theorem. The “If” part follows by
employing Proposition 2.6.(ii) repeatedly. W

Fact 2.19 gives a very transparent proof of the linearity of trace: indeed,
om = E10)is a homogeneous (hyperbolic) polynomial of degree 1 and hence
linear.

We also note that the elementary symmetric functions themselves are hyper-

bolic:

Example 2.20 Let X = R™ and d = (1,1,...,1) € R™. Then for every
1 < k < m, the k** elementary symmetric function Ej, is hyperbolic of degree
k with respect to d.

Proof. Let p := E,,. It is straightforward to check that E,, is hyperbolic
of degree m with respect to d with corresponding eigenvalue map A(z) = ;.
Since each Ej, is symmetric, the result now follows from Fact 2.19. N



An inequality in elementary symmetric functions

The following inequality was discovered independently by McLeod [29] and
by Bullen and Marcus [3, Theorem 3.

Fact 2.21 (McLeod, 1959; Bullen and Marcus, 1961) Suppose 1 < k <1 <
m and u,v € RT,. Set ¢ := (El/El_k)l/k. Then

g(u +v) > q(u) + q(v),

unless u and v are proportional or k = [ = 1, in which case we have equality.

Bullen and Marcus’s proof relies on an inequality by Marcus and Lopes ([25,
Theorem 1], which is the case k = 1 in Fact 2.21. (Proofs can also be found
in [1, Theorem 1.16], [4, Section V.4], and [31, Section VL.5].)

We record two interesting consequences of Fact 2.21.

Corollary 2.22 (Marcus and Lopes’s [25, Theorem 2]) The function —EN™

is sublinear on R, and it vanishes on bd R’

Proof. Set k =1 = m in Fact 2.21 and use continuity. H

Recall that a function h is called logarithmically convez, if log oh is convex.
The function ¢ in Fact 2.21 is concave (“strictly modulo rays”), which yields
logarithmic and strict convexity of 1/¢:

Proposition 2.23 Suppose ¢ is a function defined on R7',. Consider the
following properties:

(1) the range of ¢ is contained in (0, +o0);

(ii) g(ru) = rq(u), for all » > 0 and every v € R
(i) g(u +v) > q(u) + q(v), for all u,v € R} ;
(iv) if w,v € RT, with ¢(u 4+ v) = q(u) + g(v), then v = pu, for some p > 0.
Suppose ¢ satisfies (i)—(iii). Then 1/q is logarithmically convex. If further-
more (iv) holds, then 1/q is strictly convex.

mo.

++7

Proof. (i)—(iii) implies that ¢ is a concave function with range in (0, +o0).
It follows that In og is concave (since ln is increasing and concave). Hence
—Inoq is convex; equivalently, 1/q is logarithmically convex. Now assume

that (iv) holds as well and fix u,v € R7, with l/q(%u + %v) = %ﬁ + %ﬁ

10



It suffices to show that « = v. Because ¢ is concave on R, and r +— 1/7 is
convex on (0,+00), we estimate

1 1 11 11 1

L) 1 Lq(0) ~ qCut To)  Zq(w) 29(0) ~ Tq(u) + q(o)

Hence equality holds throughout and so v = pu, for some p > 0. The

equalites imply ﬁ = (1 + %), which yields p = 1. Thus v = v and

therefore 1/q is strictly convex. W

Corollary 2.24 Suppose 1 < k <1 < m. Then the function (E;_/E;)** is
symmetric, positively homogeneous, and logarithmically convex. Moreover,
the function is strictly convex on R’ unless / = 1 and m > 2.

Proof. Positive homogeneity and symmetry are clear. Log convexity follows
by combining Proposition 2.23 and Fact 2.21; this even yields strict convexity
unless k =1 =1. But if & = [ = 1, then the function becomes 1/ 71" w;,
which is strictly convex exactly when m =1. W

3 Convexity

Sublinearity of the sum of the largest eigenvalues

Theorem 3.1 Suppose ¢ is a homogeneous symmetric polynomial of degree
n on R™, hyperbolic with respect to e :== (1,1,... ,1) € R™, with eigenvalue
map p. Then

goA

1s a hyperbolic polynomial of degree n with respect to d and its eigenvalue
map is g o A.

Proof. For simplicity, write p for go .

Step 1: p is a polynomial on X.

Since ¢(y) is a symmetric polynomial on R™, it is (by, e.g., [16, Proposi-
tion V.2.20.(i1)]) a polynomial in Ei(y),..., En(y). On the other hand, by
Fact 2.19, E; o A 1s hyperbolic with respect to d of degree 7, for 1 <1z < m.
Altogether, p(z) = q(A(z)) is a polynomial on X.

11



Step 2: p is homogeneous of degree n.

Since ¢ is symmetric and homogeneous, and in view of Fact 2.8, we obtain
p(tx) = q(A(te)) = t"p(x), for all t € R and every z € X.

Step 3: p(d) # 0.

Again using Fact 2.8, we have p(d) = q(A(d)) = q(e) # 0.

Step 4: p is hyperbolic with respect to d.

Using once more Fact 2.8, we write for every z € X and all ¢t € R:

k3

Pz +td) = q(A(= + td)) = q(A(z) + te) t+ g (A u

k:l

The next example is easy to check.

Example 3.2 Fix 1 <k <m,set e:=(1,1,...,1) € R™, and let

q(u) = H Z i,

1<8 <t <<t < =1

Then g 1s a homogeneous symmetric polynomial on R™ of degree (Z‘), hy-
perbolic with respect to e, and its eigenvalues are {% Ele w, 11 <1 <1y <

- < i, < m}. In particular, the largest eigenvalue of ¢ is the sum of the k&
largest components of .

We now present our main result, the generalization of Theorem 2.9: the sum
of the largest eigenvalues is sublinear. This readily implies local Lipschitzness
of each eigenvalue map (see also [36]).

Corollary 3.3 For every 1 < k < m, the function o is sublinear and A, is
locally Lipschitz.

Proof. Fix 1 <k < m, define q as in Example 3.2, and consider p := gqo .
By Theorem 3.1 and Example 3.2, the largest eigenvalue of p is equal to
%O'k(:l?). Now Theorem 2.9 yields the sublinearity of o3. Finally, recall that
every convex function is locally Lipschitz ([33, Theorem 10.4]), hence so is
each a;. So A; is locally Lipschitz. If & > 2, then Ay = o — 03_1 1s — as the

difference of two locally Lipschitz functions — locally Lipschitz, too. W

The Hermitian matrices (continued). Here it is well known that the sum
of the k largest eigenvalues is a convex function and that the k*® largest
eigenvalue map is locally Lipschitz; see, for instance, [12].

12



Remark 3.4 Consider the polynomial p constructed in the proof of Corol-
lary 3.3 in the context of the Hermitian matrices. Then

m

(~1)(Ep( — £1) = det(t] — Ay(x),

where Ay (z) denotes the k' additive compound of z. (See [28, Section 19.F]
for more on compound matrices.)

Corollary 3.5 The function w? A(+) is sublinear, for every w € R

Proof. Write wl) = Do WA = WO + Ef:ll(wl — w;41)0; and then
apply Corollary 3.3. N
Note that we can rewrite Corollary 3.5 quite artificially as wT(A(z + y) —

Alz)) < wf)\(y), for all z,y € X and w € R}".
It would be interesting to find out about the following generalization:

Open Problem 3.6 (Lidskii’s theorem) Decide whether or not
wl (Mz +y) — Mz)) < wf)\(y), for all z,y € X and w € R™.

If this condition is satisfied, then we say that Lidskii’s theorem holds for the
triple (X, p, d).

The condition means that the vector A(y) “majorizes” the vector A(z +y) —
A(z), for all z,y € X; see [28, Proposition 4.B.8]. (The interested reader is
referred to [28] for further information on majorization.)

The Hermitian matrices (continued). Lidskii’s theorem does hold for the
Hermitians. A recent and very complete reference is Bhatia’s [2]; see also
[22] for a new proof rooted in nonsmooth analysis.

In Section 7, we point out that Lidskii’s theorem holds valid for all our
examples. It will be convenient to have the following simple result ready:

Proposition 3.7 Suppose (X, p,d) is isomorphic to (Y, ¢, e). Then Lidskii’s
theorem holds for (X, p, d) if and only if it does for (Y, q,¢€).

Proof. Immediate from Proposition 2.5.(iii). W

13



Convexity of composition

Fact 3.8 Suppose f : R™ — [—o0, +00] is convex and symmetric. Suppose
further u,v € R and u — v € (RT)®. Then f(u) > f(v). Moreover: if f is
strictly convex on conv {ux() : 7 is a permutation of {1,... ,m}} and u # v,

then f(u) > f(v).

Proof. Imitate the proof of [20, Theorem 3.3] and consider [20, Example 7.1].
See also [28, 3.C.2.c on page 68]. W

Theorem 3.9 (convexity) Suppose z,y € X, a € (0,1), and f : R™ —
[—00, +00] is convex and symmetric. Then

FAM(ax + (1 - a)y)) < flar(z) + (1 — a)A(y))

and hence the composition fo A is convex. If f is strictly convex and aA(z)+
(1 - a)My) # Maw + (1 - a)y), then F(\az + (1 — a)y)) < flar(z)+ (1 -
a)A(y))-

Proof. (See also [20, Proof of Theorem 4.3].) Fix an arbitrary w € R
Set u := aA(z) + (1 — a@)A(y) and v := A(az + (1 — a)y). Then both
u and v belong to R". By Corollary 3.5, wT X is convex on X. Therefore,
wI A az+(1—a)y) < awTA(z)+ (1 —a)wT Xy); equivalently, w? (v —v) > 0.
It follows that w —v € (R7")®. By Fact 3.8, f(u) > f(v), which is the second
displayed statement. The convexity of f o A follows. Finally, the “If” part is
implied by the above and the “Moreover” part of Fact 3.8. N

The Hermitian matrices (continued). In this case, the convexity of the com-
position is attributed to Davis [5]; see also [19, Corollary 2.7].

Another consequence is Garding’s inequality; see [10, Lemma 3.1].

Corollary 3.10 (Garding’s inequality) Suppose p(d) > 0. Then func-
tion z + —(p(z))}/™ is sublinear on the hyperbolicity cone C(d), and it
vanishes on its boundary.

Proof. By Corollary 2.22, the function —EN™ is sublinear and symmet-
ric on R. Hence, by Theorem 3.9, the function 2 —(Epm(A(x))Y™ is
sublinear on {x € X : A(z) > 0} = clC(d). The result follows, since
p(z) = p(d)En(A()), for every z € X. N

The Hermitian matrices (continued). Corollary 3.10 implies the Minkowski
Determinant Theorem: '{’/det(:n +y) > Vdetx 4+ {/dety, whenever z,y €

X are positive semi-definite.

14



Corollary 3.11 Suppose z,y € X. Then:
) 1M+ )l < M) + M)l
@) 176+ )l — IA@IP — AW < 20A), Alw)).
Moreover, equality holds in (i) or (ii) if and only if A(z + y) = A(z) + A(y).

Proof. (i): Let w := Az +y) € RP". Then, using Corollary 3.5 and the

Cauchy-Schwarz inequality in R™, we estimate
[A(z +y)lI* = WAz +y) < wh(Mz) + Ay))
< [Jwll[[[Az) + M)l = Az + y)[IA(z) + Ayl
The inequality follows. The condition for equality follows from the condition

for equality in the Cauchy-Schwarz inequality.
(ii): The condition is equivalent to (i). W

4 Making X Euclidean
Definition 4.1 Define || - || : X — [0,+00) :  — ||[A(2)]| and
() X x X = R:(z,y) —~ 3z +yl|* — 3z —y]%

Theorem 4.2 Suppose p is complete. Then X equipped with (-,-) is a
Euclidean space with induced norm || - ||.

Proof. We lave la]” = [A(#)? = S22, M(e)? = (Bu(A(w))? — 2Bs(A(w))
Facts 2.8 and 2.19 imply that || - [|? is a homogeneous polynomial of degree
2 on X. Since || - || > 0 and p is complete, the result now follows from the
Polarization Identity. W

Remark 4.3 The Euclidean norm || - || defined in Definition 4.1 is precisely
the Hessian norm used in interior point methods and thus well-motivated.
To see this, assume that p is complete and recall that the hyperbolic barrier
function is defined by F(z) := —In(p(z)). The Hessian norm at z is then
given by

[2]lg := V*F(d)[z, ].
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For t positive and sufficiently small, we have p(te+d) = p(d) [[;—, (1 +tAi(z))
and hence (after taking logarithms)

m

F(d+te) = F(d) = > In(1+tAi(x)).

=1

Expand the left (resp. right) side of this equation into a Taylor (resp.
log) series. Then compare coefficients of ¢* to conclude V?F(d)[z,z]/2! =
|A()]|?>/2. Thus || -|la = || - ||. Further information can be found in [10]; see,
in particular, [10, equation 16].

The norm constructed above has the pleasant property that any isomorphism
to another triple is actually an isometry:

Proposition 4.4 Suppose pis complete and the triple (X, p, d) is isomorphic
to the triple (Y, ¢, e) by ®. Then @ is an isometry from X onto Y.

Proof. Denote the eigenvalue map of p (resp. ¢) by A (resp. u). Using
Proposition 2.5.(iii) and the definitions of the norms in X and Y, we have

for every z € X: |[z]| = [[AM=@)]| = [lp(@(2))|| = [[@(2)]. ™

Proposition 4.5 (sharpened Cauchy-Schwarz) Suppose p is complete.
Then

(z,y) < (M=), Ay)) < l=llllyll, ~ for all z,y € X.

Proof. By the Cauchy-Schwarz inequality in R™ and Corollary 3.11.(ii),

2(M(2), A(y)) = 1A= + ) I = [IM@) 1P = M@ = [z +ylI* = l=l* = |lyl[* =
2(z,y). N

The Hermitian matrices (continued). The inner product on the Hermitian
matrices is precisely what one would expect: (z,y) = trace (zy). The sharp-
ening of the Cauchy-Schwarz inequality is due to von Neumann; see [19,
Theorem 2.2] and the discussion therein.

We can now refine Theorem 3.9.
Theorem 4.6 (strict convexity) Suppose p is complete and f : R™ —

[—00, +00] is strictly convex and symmetric. Then the composition f o A is
strictly convex on X.
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Proof. Fix a € (0,1), z,y € X and set 8 := 1 — a. Suppose that (f o
AN(az+ Py) = a(foA)(z)+B(foA)(y). We have to show that z = y. Using

Theorem 3.9 and convexity of f, we estimate

a(f o) (z) + B(f o M)(y) = (f o M)(az + Py)
flaA(z) + BA(y))
a(f o X)(z) +B(f o A)(y);

hence equality must hold throughout. By strict convexity of f, we conclude
that A(z) = A(y). We also know that aX(z)+BA(y) = A(ax+By) (otherwise,
Theorem 3.9 would imply that the first displayed inequality is strict, which
is a contradiction). Thus A(z) = A(y) = aX(z) + BA(y) = A(azx + Sy). Since

A is norm preserving, we obtain ||z|| = ||y|| = ||az + By]|. But || - || is induced
I

<
<

by an inner product, whence || - ||? is strictly convex. Therefore, x = y and

the proof is complete. W

We now demonstrate how Theorem 4.6 can be used to recover a recent re-
sult by Krylov (see [17, Theorem 6.4.(ii)]). Our proof appears to be more
transparent than Krylov’s.

Corollary 4.7 Suppose p(d) > 0. Then each of the following functions is
convex on the hyperbolicity cone C(d):

Em_lo)\ Em_lo)\
E, o\’ E,o\

—Inp, In

If p is complete, then each of these functions is strictly convex.

Proof. Define first f(u) := —Inp(d) — > " Inwu; on R7, and F(z) :=
—Ilnp(z) on C(d). Then f is strictly convex and symmetric. Since p(z) =
p(d)E(A(z)), we have F' = f o A It follows that F' is convex (by The-
orem 3.9), even strictly if p is complete (by Theorem 4.6). This proves
the result for the first function. Now let f := In(E,_1/E,) on R, and

F:=In % on C(d). Then f is strictly convex by Corollary 2.24. By
Theorem 3.9 (resp. Theorem 4.6), F' is convex (resp. strictly convex, if p is
complete). This yields the statement for the second function. Finally observe
that the third function is obtained by taking the exponential of the second

function. But this operation preserves (strict) convexity. W
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Krylov’s result is closely related to parts of Giiler’s very recent work on hy-
perbolic barrier functions. We now give a simple proof of Giiler’s [10, Theo-
rem 6.1]. The functions F' and g below play a crucial role in interior point
method, as they allow the construction of long-step interior-point methods
using the hyperbolic barrier function F.

Corollary 4.8 Suppose p(d) > 0 and ¢ belongs to the hyperbolicity cone
C := C(d). Define

F:C—-R:z— —ln(p(z)) and ¢g:C > R:z— —(VF(z))(c).

Then F and g are convex on C. If p is complete, then both F' and g are
strictly convex.

Proof. The statement on F is already contained in Corollary 4.7. Now let
@ be the eigenvalue map corresponding to ¢. Then, by Fact 2.19, p(z) =

P(¢) Eun(p(2)) and (Vp(2))(€) = p(¢) s (p(x)). Thus

1 B (p(2))
g(x) = Vp(@))(c) = :
ol =T )
Now argue as for the second function in the proof of Corollary 4.7. W

The Hermitian matrices (continued). The statement on F corresponds to
strict convexity of the function # — —In det(z) on the cone of positive semi-
definite Hermitian matrices; this result is due to Fan [6].

Remark 4.9 It is worthwhile to point out that Krylov [17] and Giiler derive
their results from hyperbolic function theory whereas we here “piggyback”
on inequalities in elementary symmetric functions. The latter approach is
far more elementary.

We already pointed out that the trace o, is linear. With the notation intro-
duced in Definition 4.1, we can express this more elegantly.

Proposition 4.10 (trace) o,,(z) = (d,z), for every z € X.

Proof. Fixz € X. By Fact 2.8, ||z+d|]* = Y. (Mi(z£d))* = D (Ai(z) £
1)? = ||z]|* £ 20 (z) + m. So 4(z,d) = ||z + d||* — |z — d||* = 4o,,(z). N
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5 Convex calculus

Definition 5.1 (isometric hyperbolic polynomial) We say p is isomet-
ric (with respect to d), if for all y,z € X, there exists & € X such that

A(z) = Az) and Az +y) = A=) + A(y).
Isometricity depends only on equivalence classes of triples:

Proposition 5.2 Suppose (X, p,d) is isomorphic to (Y, ¢, e). Then p is iso-
metric if and only if ¢ is.

Proof. Immediate from Proposition 2.5.(iii). W

It is clear that if p is isometric, then ran A is a closed convex cone contained
in R7". The next example shows that the range of A may be nonconvex in
general.

Example 5.3 (a hyperbolic polynomial that is not isometric) If the
polynomial p(z) = z;zsx3 is defined on X = span {(1, 1,1),(3,1, 0)}, then p
is hyperbolic of degree m = 3 with respect to d = (1,1,1). Hence A(z) = x,
and p is complete. It follows that for all a, 3 € R,

a(1,1,1) +A(3,1,0), if §>0;

A(a(1,1,1) +4(3,1,0)) = {a(l 1,1) + 4(0,1,3), otherwise.

Since A(3,1,0) + A(—3,—1,0) = (3,0,—3) & ran A, the set ran A is a closed

noNCcoONver cone in Ri. In particular, p is not isometric.

Unless stated otherwise, we assume from now on that

p is complete, with corresponding inner product (-,-) and norm || - ||.

We chose the name “isometric” because of the equivalent condition (iii) in
the following proposition.

Proposition 5.4 The following are equivalent:

(1) p is isometric.
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(i) maxy.(e)=u(z,y) = (v, A(y)), for all w € ran X and every y € X.
(i) d(u, A(y)) = d(A~!(u),y), for all w € ran A and every y € X.

Proof. “(i)=(ii)”: fix u € ran A and y € X. If z € X with A(z) = u,
then (z,y) < (u,A(y)) by Proposition 4.5. Since u € ran A, there exists
z € X such that A\(z) = u. By isometricity of p, there exists z € X such
that A(z) = w and A(z + y) = A(z) + A(y). Now Corollary 3.11.(ii) and its
condition for equality implies that (z,y) = (u, A(y)) and (ii) follows.
“(ii)=-(ili)”: fix v € ran A and y € X. If # € X with A(z) = u, then (by
Proposition 45) [[u — A = [l + lyl1* — 2\(), Aw)) < JlolF + o1l —
2(z,y) = ||z — y||* and hence d(u, A(y)) < d(A~(u),y). Equality follows if
we pick Z € X such that A(Z) = v and (Z,y) = (u, A(y)).

“(i1)=(1)": fix y,z € X. Set u := A(z). Note that d(A~!(u),y) is attained,
since the closed set {# € X : A(z) = wu} is contained in {& € X : |jz|| =
|||}, which is compact. So pick # € X with A(z) = v = A(z) and ||v —
A(y)|| = & — y||. Squaring and simplifying yields (A(z), A(y)) = (z,y). Now
Corollary 3.11.(ii) and its condition for equality yields A(z+y) = A(z)+ A(y).

Hence p is isometric. W

The Hermitian matrices (continued). Here ran A = RT and p = det is
isometric (we will discuss this in Section 6).

Theorem 5.5 (Fenchel conjugacy) Suppose that f : R™ — (—o0, +00]
is symmetric. Then (foA)* < f*o . If p is isometric and f(Panru) < f(u),
for every w € (dom f), then (foA)* = f*o A

Proof. Fix an arbitrary y € X. Then, using Proposition 4.5, symmetry
of f, and the Hardy-Littlewood-Pélya inequality (see [11, Section 10.2]), the
inequality follows from

F(Ay)) = sup{ (w, Ay } = sup{ (w, Ay f(u)}

u€ER™ uERm

> sup  max {(w,y) — f(A(x))} Zzg§{<w,y> —(foN(=)}

u€ran A T Az)=u

= (foX)(y).

Now assume that p is isometric and f(Pranat) < f(u), for every u € (dom f),.
Fix momentarily an arbitrary u € Ri" Then, on the one hand, f(Pranru) <
f(u) (if w € (dom f),, then the inequality follows by assumptions; otherwise,

20



the inequality is trivial). Since ran A is a closed convex cone that contains
A(y) + Pranau, a well-known property of projections yields on the other hand
(w — Pranxu, A(y)) < 0. Altogether, (u,A(y)) — f(u) < (Pranrt, A(y)) —
f(Pranau). Therefore, using Proposition 5.4,

FAy) = sup {(A(y),u) — f(u)} < sup {(Ay), o) — F(u')}

=sup{(y.2) — fA@)} = (foA)(y). ®

The assumption that f(Prnat) < f(u), for every w € (dom f), is important:
in Section 7, we present an isometric hyperbolic polynomial and a convex
symmetric function f with (f o A\)* # f*o A.

Corollary 5.6 Suppose p is isometric and f : R™ — (—o0, +00] is symmet-
ric. Suppose one of the following conditions holds:

(1) (dom f); C ranA.
(ii) ran A = R

(iii) f is convex and Ppnau € conv{ur; : « permutes {1,... ,m}}, for
every u € (dom f),.

Then (foA)* = f*o A
Proof. (i) is clear from Theorem 5.5. (ii) is implied by (i). (iii): fix
w € (dom f); and write Pnru = Y., p;u’, where each p; is nonnegative,

3. pi = 1, and each u’ is some permutation of u. By convexity and symmetry
of f, we conclude f(Panru) < f(u). Apply again Theorem 5.5. W

Theorem 5.7 (subgradients) Suppose p is isometric, ran A = R7*, and
f:R™ — (—o00,+00] is convex and symmetric. Let z,y € X. Then

y € 0(foA)(z) if and only if My) € 9f(A(z)) and (z,y) = (A(z), A(y)).
Consequently, )\[a(f 0 )\)(:13)] = 0f(A(z)).

Proof. Since ran A = R, we have (Corollary 5.6.(ii)) (fo A)* = f*o A. In
view of Proposition 4.5, the following equivalences hold true: y € 9(foX)(z)

& (FoX)(x)+(foN)(y) = (z,y) & f(Ax)) + F(My)) = (A(=), My)) and

21



(0,) = (@) AW)) & Aly) € DF((z)) and {z,y) =

sequently”: Clearly, by the above, )\[ (f o A)( ] C 9f(A(z)). Conversely,

pick v € 0f(A(z)). Then f(A(z))+ f*(v) = (v,A(z)). By the assumption

that ran A = R™ and Proposition 5.4.(ii), (v, A(z)) = (y, ), for some y with
{

Aly) = v. Hence (foA)(z) + (foA)*(y) = (y,z) and so y € I(f o A)(=),
which implies v = A(y) € )\[ (foX)(z )] [ |

The Hermitian matrices (continued). Theorem 5.7 corresponds to [19, The-

(z,y) = (Mz),A(y)). “Con-

orem 3.2].

Corollary 5.8 (differentiability) Suppose p is isometric, ran A = RT*, and
f:R™ = (—o00,+00] is convex and symmetric. Let z,y € X. Then fo A
is differentiable at  and y = V(f o A)(2) if and ounly if f is differentiable at

A(z) and {y" € X : A(y) = VF(A@)), (2, ¢') = (M@), My )} = {y}-
Proof. Clear from Theorem 5.7. N

Corollary 5.9 (variational description of o) Let p be isometric, and
suppose ran A = RT". Let 1 <k < m. Then for every z € X,

) = 20o Y

and Jop(z) = {y € X : (z,y) = on(x), Ay) = 0, om(y) = k, i (y) < 1}

Proof. Define f(u) := max; <., Ele w;,. Then f is symmetric and
convex on R™ and f* is the indicator function of {u € R™ : > . u; =
kand each 0 < w; < 1}. Now o, = f o A and so Corollary 5.6 yields
of = f"oX Thus y € dop(z) & « € Ooj(y) & (z,y) = on(z), My) > 0,
om(y) =k,and M(y)<1. N

The Hermitian matrices (continued). Corollary 5.9 is a direct generalization
of the variational formulations due to Rayleigh and Ky Fan; see [12, Section 2]
for more details.

6 Diagonalization

We uphold the assumption that

p is complete, with corresponding inner product (-,-) and norm || - ||.
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Definition 6.1 (invariance group) Let £ = £(X) be the (general) linear
group on X (with composition), endowed with the natural topology of point-
wise convergence, and let O = O(X) := {4 € L(X) : A* = A7'} be the

orthogonal group. We define the invariance group by
G=G(p):={AcL:A0A=]A}.

Since A(z) = A(y) precisely when p(z +td) = p(y+td) (equality as polynomi-
als in t), it follows that A € G if and only if A € £ and p(z+td) = p(Az+td),
for all ¢ € R and every = € X.

Proposition 6.2 G is a closed subgroup of O.

Proof. Elementary. W

The Hermitian matrices (continued). The invariance group G contains all
unitary similarity transformations = +— w*zu for Hermitian z and unitary u.
(This actually describes the entire invariance group; see Section 7 below.)

Definition 6.3 (diagonalizability) We say that p allows diagonalization
(with respect to d), if there is some linear isometry A from spanran A to X
such that

for every € X, there exists A € G with z = AAX(z).

We refer to A as a diagonalizing map (of p with respect to d).

It follows readily that Ao Ao A = A

The Hermitian matrices (continued). The polynomial p = det allows diag-
onalization and a diagonalizing map is A := Diag, which sends a vector in
R™ to the corresponding diagonal matrix.

Proposition 6.4 Suppose (X, p,d) is isomorphic to (Y, q,e) by ® and let p
be the eigenvalue map corresponding to ¢. Then:

(1) L(Y)® = ¢L(X) and G(q)® = 2G(p).

(ii) Suppose A is a diagonalizing map of p, z € X, y = ®z, and A € G(p)
with « = AAA(z). Then ®A is a diagonalizing map of ¢, PAP* € G(q),
and y = (BAT) (BA)u(y).
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(iii) p allows diagonalization if and only if ¢ does.

Proof. Denote the eigenvalue map of g by p and recall that A = p o
¢ (Proposition 2.5.(iii)) and that ® is a surjective isometry from X to Y
(Proposition 4.4). Hence ®* = &' and (i) follows. (ii): Apply ® to both
sides of @ = AAX(z) and use (i). (iii) follows from (ii) by symmetry. W

Theorem 6.5 If p allows diagonalization, then it is isometric.

Proof. Let A be a diagonalizing map, fix y € X and u € ran A, say u = A(z),
for some z € X. Obtain A € G such that y = AAX(y). Set ¢ := AAN(z).
Then A(z) = w and (z,y) = (AAX(z), AAX(y)) = (u,A(y)). Therefore, by

Proposition 5.4, p is isometric. W

Theorem 6.6 Suppose p allows diagonalization and let A be a diagonalizing
map. Let z,y € X. Then (z,y) = (A(z),A(y)) if and ounly if there exists
A € G such that simultaneously # = AAA(z) and y = AAA(y).

Proof. <" (A(x), A(y)) = (AAN(x), AAX(y)) = {z.y).
“=7: Pick A € G such that  + y = AAX(z + y). Then (A(z), A(z + y)) =
(AAX(z), AAX(z + y)) = (AAX(z),z + y). Using this and Proposition 4.5,

we estimate
lz — AAX(2)|)* = ||z ]|* + [[AAX(2)||* — 2(z, AAX(x))

= 2||z||” — 2(z +y, AAX(z)) + 2(y, AAX(z))
= 2)jz[|* — 2(\(z), Mz +y)) + 2{y, AAX(z))
<2||z]]” - 2(z, 2 +y) + 2(A(y), A(z))
= 2||z||” — 2z, +y) + 2(y, z)
= 0.

Hence z = AAX(z). By symmetry, y = AAX(y). W

The Hermitian matrices (continued). Theorem 6.6 becomes a classic criterion
for simultaneous ordered spectral decomposition due to Theobald [34].

Corollary 6.7 Suppose p allows diagonalization and let A be a diagonal-
izing map. Suppose further ran A = RT, and f : R™ — (—oo,+oo] is
convex and symmetric. Let z,y € X. Then y € 9(f o A)(z) if and only
if AMy) € 0f(AM(z)) and there exists A € G such that z = AAA(z) and
y = AAX(y). Hence 9(f o A)(z) = {AATf(A(z)) : © = AAX(z)}. Conse-
quently, f o A is differentiable at z if and only if f is differentiable at A(z).
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Proof. Combine Theorem 5.7 with Theorem 6.5 and Theorem 6.6. “Con-
sequently”: if f o A is differentiable at « and @ = AAA(z), for some A € G,
then AAJf(A(z)) is singleton. Hence f is differentiable at A(x). Conversely,
assume that f is differentiable at A(z). Then each element in the convex set
I(f o A)(z) has the same norm, namely ||V f(A(z))||. This can only happen

when the set is a singleton and hence f o A must be differentiable at z. B

The Hermitian matrices (conclusion). Corollary 6.7 recovers results recently
established by Lewis, see [19, Section 3.

We conclude by connecting the present framework to Lewis’s framework of
normal decomposition systems [20]:

Theorem 6.8 (normal decomposition system) Suppose p allows diag-
onalization, and let A be a diagonalizing map. Set v := Ao A. Then X is a
Euclidean space, G is a closed subgroup of O, and ~ is a selfmap of X. Also:

(1) v(Az) = y(z), for every z € X and all A € G.
(ii) For every point € X, there exists an operator A € G with & = Avy(z).
(iii) For all @,y € X, the inequality (z,y) < (y(z),v(y)) holds.

In other words, (X,G,v) is a normal decomposition system.

Proof. Ouly (iii) is not immediately clear. Suppose z,y € X. Then, using
Proposition 4.5 and the fact that A is an isometry, we estimate (z,y) <

(Al2); My)) = (AX(z), AA(y)) = (71(2),7(y)). W

7 Examples

7.1 R"

Consider the vector space

the polynomial

and the direction



Then p is hyperbolic and complete with eigenvalue map
Az) = z).

The induced norm and inner product in X are just the standard Euclidean
ones in R™. The invariance group G is the set of all linear transformations of
the form

G = {(21,%2, ... %0) = (Tr(1)s Tr(2)s ---» Tr(n)) | 7 is @ permutation}.

Clearly G is isomorphic to the symmetric group 5,. We have ranA = R}
and so we can choose a diagonalizing map A : spanran A — X to be
the identity map. Hence, by Theorem 6.5, p is isometric. In this case the
sharpened Cauchy-Schwarz inequality (Proposition 4.5) reduces to the well-
known Hardy-Littlewood-Pélya inequality (see [11, Chapter X]).

T T
Ty < xy)

and Theorem 6.6 shows equality holds if and only if the vectors # and y can
be simultaneously ordered with the same permutation. Since ranA = R?,
Corollary 5.6 shows that for every symmetric function f : R™ — (—o0, + 0]
we have

(foX) = ffol.
Also Lidskii’s Theorem holds, because A(z) is the ordered set of eigenvalues
of the symmetric matrix Diag(z) (see [2, page 69]).

7.2 Hermitian matrices

In this section we summarize the example we have followed throughout the
paper. Counsider the vector space H"™ (of n x n Hermitians matrices), and
denote the ordered eigenvalues of a matrix « € H™ by 5\1(:13) > 5\2(:13) >
> S\n(:n) In the case of Hermitian matrices, the Frobenius [14, page 291]

norm can be defined by ||z||F = HS\(:B)H, where the last norm is the standard
Euclidean norm in R™. Let
X = H",
the polynomial be
p(z) = det z,
and the direction be
d=1.
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Then p is hyperbolic and complete with eigenvalue map
Az) = Ax).

The induced norm and inner product in X are given by
l* = [l=|l7
(x,y) = tray.

The invariance group G consists of all linear transformations on X that pre-
serve the eigenvalues of every # € X. Then from [27, Theorem 4] it follows
that

G = {z — v zu, x — v zTu|wunitary}.
Clearly we have ranA = R7. We can choose a diagonalizing map
A : spanran A — X to be

A((z1, 22, ...,2,)) = Diag (21,22, ..., 2,).

Hence, by Theorem 6.5, p is isometric. In this case the sharpened Cauchy-
Schwarz inequality (Proposition 4.5) reduces to Fan’s inequality:

trzTy < Mz)"A(y)

and Theorem 6.6 shows equality holds if and only if the matrices = and y
can be simultaneously unitarily diagonalized (with eigenvalues in decreasing
order), which is due to Theobald. Since ranA = R7, Corollary 5.6 implies
that for every symmetric function f : R" — (—o0, +00] we have

(fod) = f oA

It is well known that Lidskii’s theorem holds in this case (see[2, Section
I11.4]).

Note that there is an entirely analogous example on the space of n by n real
symmetric matrices.

7.3 Singular values

Counsider the vector space M, ., (of n by m real matrices). We assume m < n
and denote the singular values of a matrix @ in M, ,, by o1(z) > oa(z) >
. 2 0m(z). The Frobenius norm [14, page 291 & page 421] is defined by
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|z||r = ||lo(x)||, where the last norm is the standard Euclidean norm in R™,
and o(z) = (o1(x), 02(2), ..., 0m(z)). Now consider the vector space

X =M, xR,
the polynomial
p(z, ) = det (a’,, — xTz) (x € My, € R),

and the direction

d=(0,1).
Then p is hyperbolic and complete with eigenvalue map
)\(JB, Oé) = (a + 0-1(:17)7 a+ 0‘2(:13), ey 00— 0‘2(:13), o — 0‘1(213))-
The induced norm and inner product are given by

(2, a)||* = 2ma® 4 2||z|| %,
((z,a),(z,0)) = 2maf + 2tr :BTy,

for (z,a) and (y,0) in X. It is not difficult to see that if T € G then
T(z,a) = (T:B, «), where T is a linear operator on M, preserving all sin-
gular values. Then from the main theorem in [26] or in [24], it follows that
the invariance group G is:

G— {(z,a) — (uzv,a)|u,v orthogonal}, (m<n)
| (=, @) = (uzv, ), (z,a) — (uzTv,a)|u,v orthogonal}, (m=n)

The span of ranA decomposes as a direct sum:
span ran A = Re+ {s € R*" | s9p_i11 = —8;, Vi},

where the vector ¢ € R*™ has all components 1, and then we can choose a
diagonalizing map A: span ran A — X to be

A(ae+ s) = (Diag(sy, 2, ..., Sm), @),

where (Diag(s1, $2,...,8m))i; = $; if ¢ = j and 0 otherwise. Hence, by The-
orem 6.5, p is isometric. Notice that in this case the sharpened Cauchy-
Schwarz inequality (Proposition 4.5) reduces to

tr :BTy < a(w)Ta(y),

28



and Theorem 6.6 shows equality holds if and only if z and y have a simul-
taneous ‘ordered’ singular value decomposition (that is, there are unitary
matrices  and v such that = w(Diag o(x))v and y = w(Diag o(y))v ). This
is the classical result known as ‘von Neumann’s Lemma’ (see for example [15,
page 182]).

Note that when m = 1 we get the Lorentz Cone example which is discussed
below. An analogous example can be obtained by considering the vector
space X = C,,,,, x R.

*k %

We now show that for some functions in the singular value case we have
(foA)* # f*o A Consider the symmetric function

flu) = 11;12}; u;.

Then >
ffN 0, Y vi=1,v>0
filv) = { 400, else

Now let m = 2. Then ran = {ae + (8,7v,—7,—0)|8 > v > 0}. Let
v = 3(3,1,1,—1) € ran A\. Let y € X be such that A(y) = It is
straightforward to check that (A(2),A(y)) = Ai(z) Vz € X. It follows from

the sharpened Cauchy-Schwarz inequality (Proposition 4.5) that (z,y) <
A1(z) Vz € X. Then

(f o N (y) = Xily) = sup{{z.) — M (=)} = 0.

zeX
On the other hand clearly
(7o M)(y) = f*(v) = +oo.

*k %

In this subsection we show Lidskii’s theorem holds for this example. So we
want to show that for all (z,a), (y,3) € X

w? Az +y,a+ B) = Mz, a)) < wf)\(y,ﬁ) Yw € R*™,
This is equivalent to

w' ((o(z +y), (—o(z+y))y) — (o(z), (=0 (2)))) < w(o(y). (~o(y))).
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for all w € R?*". Now assume n = m and let A be the eigenvalue map
(ordered decreasingly) in H*™. But we have (see [14, Theorem 7.3.7 |)

A(£g>:(vﬁzn)

so the above inequality is equivalent to

(Al Th ) (e b)) =i (e h).

for all w in R?™, which is true by Lidskii’s Theorem in H?™. Hence Lidskii’s
theorem holds when n = m.

7.4 Absolute reordering

Consider the vector space

X =R"xR
Let the polynomial be

and the direction be

d = (0,1).
Then p is hyperbolic and complete with eigenvalue map
Az, a) = ([z]), (=[z]))) + ae,

where |z| = (|z41|, |22], ..., |2n|), and e = (1,1,...,1) € R*" If ||z||» denotes
the standard Euclidean norm in R™, then the induced norm and inner product
in X are given by

(. )]l = 2l[w[l; + 2na’,

<(x70‘)7(y7/3)> 2zn:w@yl—|—2naﬁ

=1

The invariance group G is

G = {(z,a) = (Pyz,a) | Py is a signed permutation matrix},
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where a signed permutation matrix has only one nonzero entry in each row
and column which is either +1 or —1. The span of ranA decomposes as a
direct sum:

span ran A = Re4 {s € Ri" | Son—iy1 = —8i, Vi}.
We can choose a diagonalizing map A: span ran A — X to be
Alae+s) = ((81,82,...,8n), Q).

Hence, by Theorem 6.5, p is isometric. In this case the sharpened Cauchy-
Schwarz inequality (Proposition 4.5) reduces to the well-known inequality
(see [20, section 7))

ey < le|]lyl,
and Theorem 6.6 shows equality holds if and only if the vectors # and y can
be simultaneously ordered with the same signed permutation.
Note that the similarities with the previous example are not accidental. It
corresponds to the subspace (Diag R™) x R of M, ,, x R. So we can immedi-
ately see that for some functions f we have (f o A)* # f* o A. Also because
|z|, = o(Diag(z)), one sees, from the corresponding part in the previous
example, that Lidskii’s Theorem holds.

7.5 Lorentz cone

Let the vector space be

X =R"
and the polynomial be

po) = T Ar = 4l —af ol

where A = Diag(1,—1,—1,...,—1) € M, (n X n real matrices). Let the
direction be

d=(dy,ds,....,d,) € X such that &> > dj +---+d>.

Then p is hyperbolic and complete with eigenvalue map

A(z) = (TAd—I-F sTAd — F)

p(d) p(d)
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where D(z) = (2T Ad)? — p(z)p(d) is the discriminant of p(z + td) considered
as a quadratic polynomial in ¢. (The fact that D(z) > 0 for each z, and so
that p(z) is hyperbolic, is the well-known Aczel inequality, see [30, p.57].)
The induced norm and inner product are given by

2(«" Ad)® — p(z)p(d)

|z||> = 2 5 , and
p(d)
(2. y) = 2T ADTAD — 22T Ay)p(d)
’ p(d)? ’

for z and y in X. Immediately from the definition the invariance group G is
G={B € M,|BT"AB = A and BT Ad = Ad}.

We now show that the mapping A : X — Ri is onto. Indeed, fix (¢1,ts) € R,
and let [ be an arbitrary, fixed nonzero vector from {d}* C X. (The reader
can easily verify that [ € {d}* if and only if ITAd = 0.) Set o := 3(t1 + t2),

and v := —% (%) I. Then we have A(ad + v) = (¢1,ts). Clearly then

span ran A = R2.

Above we have to make sure that p(l) < 0. Indeed, because the discriminant
of p(z) is always nonnegative we get that p(I) < 0. Suppose that p(l) = 0,
then this together with ITAd = 0, and d*Ad > 0 gives us the three rela-
tions: 12 = ITl; dily = d¥I; d*> > d¥d, where we have used the notation
T = (22,...,%,), and the dot product in the relations is the usual one in
R™1. Notice that [ # 0 or otherwise / = 0. Then from the Cauchy-Schwarz
inequality we get: |dil;|2 = |dT1|* < |dTd||IT1| < d?12, contradiction.

We can choose a diagonalizing map A: span ran A — X to be

U+ U p(d) (w1 — u,
A(ul,u2) = 9 d—|— p(l) 9 l,

where again, [ is an arbitrary, fixed, nonzero vector from {d}* C X. (The
reader can easily verify that Definition 6.3 of the map A is satisfied.) Hence,

by Theorem 6.5, p is isometric. Notice that in this case the sharpened
Cauchy-Schwarz inequality (Proposition 4.5) becomes

(2" Ad)(y" Ad) — (=" Ay)p(d) < +/D(x)D(y),
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and Theorem 6.6 gives the necessary and sufficient condition for equality.
Let f = (1,0,...,0) € R™ The fact that Lidskii’s Theorem holds for the
polynomial p(z) in the direction f is clear from the corresponding discussion
in section 7.3. For arbitrary direction, note that, by [7, pages 7-8], we have
that the hyperbolicity cone C(p,d) = {z € R"|2? > 22+ --- + 22} is homo-
geneous: that is, there is an orthogonal linear map U : R® — R” such that
1) p(Uz) = p(=z)

2y Ud=f.

Hence the triples (X, p,d) and (X,p, f) are isomorphic. So from Proposition
3.7 we see that Lidskii’s Theorem holds again.

*k %

We note that if Y is a subspace of H*® (for some positive integer s), d € Y
and d > 0, then ¢(y) = det y is a hyperbolic polynomial over Y with respect
to the direction d. Indeed ¢(y + td) = det (d) det (d_%yd_% +tI) and all the

. 1 1 . - .
eigenvalues of d”2yd™ 2 are real numbers because it is a hermitian matrix.
Triples of this type will be called standard hyperbolic triples.

Many of our examples are isomorphic to a standard hyperbolic triple. For
the example in section 7.1, consider the map ¢(z) = Diag(z). Then clearly
p(z) = det ¢(x). For the example in section 7.2 it is clear. The example
in section 7.3 is ‘almost’ isomorphic to a standard hyperbolic triple as well.
Indeed, consider the mapping ¢ : M, ., x R — H**™ defined by:

ey (55,

x ol,,

then o "p(x, a) = det ¢(z, a).

If we consider (a slight variation) the hyperbolic polynomial
p(z, a) = det(a®I — zz7)

with respect to d = (0,1), where again # € X = M,,, x R. Then the
mapping ¢ : M,,, x R — H*" defined by:

aly_m 0 0
(z,a) — 0 al, T
0 r ol,
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gives an isomorphism between (X, p, d) and a standard hyperbolic triple. The
fact that p(z, @) = det ®(z, a) follows from the identity:

alp_—m 0 0

det 0 al, =T =
0 r ol,
Licw O 0 al,_m 0 0 Iy O 0
det 0 L, 0 0 al, =T 0 I, —izT
0 —iw I, 0 z ol, 0 0 I,
al,_m 0 0
= det 0 al,, 0 = det(a’I, — wa).
0 0 al, —LezT

When « = 0 the conclusion of the above identity still holds, one just needs
to consider the two cases n = m and n < m separately.

In general though it is not true that every hyperbolic triple is isomorphic to
a standard hyperbolic triple: consider for example X = R?,

p(z) = o) —a] — ) — ) — i, d=(1,0,0,0,0).

Suppose there is a linear isomorphism ¢ : X — Y C H?, such that p(z) =
det ¢(z), and ¢(d) > 0.

Because p is homogeneous of degree 2 we have t?p(z) = p(tz) = det H(tz) =
det tp(x) = t* det ¢(x). Hence we see that s = 2.

Because ¢ is linear, there are vectors a, b, ¢, f € R® such that for every z € R®

we have . . .
B atr bte +icte
p(z) = det ( ble — icTe #Ta ) ‘
There is a nonzero vector z € R® such that o = 0, and z L span{a, b, c}. So
0 # —||z]|*> = p(z) = det p(z) = 0, a contradiction. Of course this example
doesn’t disprove the conjecture made in [18], which concerns polynomials in
only two variables.

7.6 The degree 2 case

In this section we show that every complete hyperbolic polynomial of degree
two 1s isometric. Let the vector space be

X =R"
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We will assume that p(x) is hyperbolic polynomial of degree two with respect
to a vector d. Without loss of generality, we write

pla) = a" Aa,

where A € H". Proposition 2.5 implies that if §: X — X is a nonsingular
linear transformation, then ¢(y) := p(Sy) is hyperbolic with respect to | =

S—1d.

Lemma 7.1 If p(z) = ' Az is hyperbolic, then p is complete if and only if
A is nonsingular.

Proof. Because of Fact 2.15, the linearity space of p(z) in our case is
{z € X : (tz+y)TA(tz +y) = yTAy, Yy € X,Vt € R} = {z € X :
eTAzt? 4 22T Ayt =0y € X, Vtc R} ={z € X : 2TAz = 0 and 2T Ay =
O0Vye X} ={z € X: Az =0} = {0} iff Ais nonsingular. W

Proposition 2.14 now says that if p(z) is a complete hyperbolic polynomial
with respect to d, and § : X — X is a nonsingular linear transformation,

then ¢(y) := p(Sy) is also a complete hyperbolic polynomial with respect to
[=874d.

Lemma 7.2 Let p(z) = zT Az be a complete, hyperbolic polynomial, with
respect to d of degree two. Then the symmetric matrix A is nonsingular and
has exactly (n—1) eigenvalues of one sign, and 1 eigenvalue with the opposite
sign.

Proof. The nonsingularity of A follows from the previous lemma. Now,
because p(x) is hyperbolic with respect to d, we have that the discriminant
of the quadratic function

t s (24 td)T A(z + td),

(dF Az)? — (dT Ad)(zT Az) is nonnegative Vz € X. This inequality implies two
things. First A cannot be positive definite because then the Cauchy-Schwarz
inequality for the scalar product defined by A contradicts the nonnegativity
of the discriminant. Similarly, A cannot be negative definite. Without loss
of generality we can assume that that d?Ad > 0, so for every z in the
(n — 1)-dimensional orthogonal complement (with respect to the usual inner
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product) of the vector Ad we have 0 > zT Az. This implies that A has at
least (n — 1) nonpositive eigenvalues, but none of them can be zero, so A
has (n —1) strictly negative eigenvalues. The last eigenvalue must be strictly
positive, because A cannot be negative semidefinite. The case d¥ Ad < 0 is
handled analogously. W

Now, Proposition 5.2 says that if p(z) is an isometric, complete hyperbolic
polynomial with respect to d, and S : X — X is a nonsingular linear trans-
formation, then ¢(y) := p(Sy) is also an isometric, complete, hyperbolic
polynomial with respect to [ = $~d.

Let p(z) = 2T Az be isometric with respect to d. Without loss of generality we
can assume that p(d) > 0. By Sylvester’s theorem in the linear algebra (see
for example [14], Theorem 4.5.8), there exists a nonsingular transformation
x = Sy of the variable  such that ¢(y) := p(Sy) has the form: ¢(y) =

Y3 — y2 — ---y2. Moreover, from the above, ¢(y) is hyperbolic with respect
to S~'d. Because the subsection about the Lorentz cone showed that q(y) =
y? —y2 — ... —y?2 is isometric with respect to any d in the hyperbolicity cone

of ¢, and C(q,1) = S™HC(p,d)) we answered the question about isometricity
for the whole class of hyperbolic polynomials of degree two.

7.7 Antisymmetric tensor powers

Cousider the function p(z) = det & on the vector space of n x n real sym-
metric (or Hermitian) matrices, and let ¢ = Ej, be the elementary symmetric
function of order k and pp(z) = Ep o A(z). We saw earlier that p; is a
hyperbolic polynomial with respect to the identity matrix . We have

pr(z) = Z det z[a]a] = tr (AFz),

a=(i1<ig<-<ig)

where z[a|a] is the principal submatrix obtained from @ by keeping its rows
and columns 7y, ..., 1, and the second equality above can be regarded as the
definition of the symbol tr (/\kw) For the first equality above one can see
[26], and justification for the use the the symbol tr (/\kx) can be found in
the explanations below. Now, from Corollary 3.10, Definition 2.10 and from
the fact that pp(z) = tr (/\kx) 1s a homogeneous hyperbolic polynomial, it
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follows immediately that

tr (A(z 4+ )" >t (AFa) T e (nFy) Y

when z,y are symmetric and positive definite. This is one of the main results

in [25].

*k %

We give some preliminary definitions and facts about tensor spaces, they can
be found in [9] and [2]. Let Eq,..., Ex be k copies of a given vector space E.
Counsider the free vector space C = C(E; x---x Ey,) over the set Ey x -+ - x E,.
Let N = N(E,..., Ei) be the subspace of C generated by the elements

(Z1,...,ay1 + Bya, ..., xp) — (@1, Y1, .oy @) — B(@1, - Y2y e oo, Th),

for all indexes ¢ and for all y;,y» € E; and ; € E;Vj # i. Denote by « the
canonical projection of C' onto the space G = C'/N and define a mapping

p: B x--x E,—C/N

by setting
o(x1,...,2) = w(T1,...,28).

We call the pair (G, ¢) a tensor product of E1, ..., E;, and we will denote

o(x1,...,2) by 1 ® - - ® @, - the tensor product of the vectors 1, ..., zy.
The vector space G is sometimes denoted by ®*E. The antisymmetric
tensor product of vectors ¢y,...,z;, € E is defined and denoted by

2y Ao Ay = (KR D loon) @+ @ Toghy,

o

where o runs over all permutations of the k indices and ¢, 1s £1, depending
on whether ¢ is an even or odd permutation. Clearly z; A --- Az € QYE.
The span of all antisymmetric tensors z; A --- A zj in ®*E is denoted by
A*E and is called the kth antisymmetric tensor product of E. If the
vector space E is an Euclidean space then A*E can also be made Euclidean
by defining inner product as follows

(T Ao Azt Ao Ay) = det(<$i7yj>)ff:17
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and extending it linearly to the whole space A*E (it is well defined!). If
the vector space E has dimension n and ey,...,e, is an orthonormal ba-
sis, then ez = ¢;; A-++ A ¢;, 1s an orthonormal basis of APE, where T €
{(t1, %2, .. .yi) |1 <43 < i < .-+ < i < n}. Moreover if we are given linear
operator A on E it can be extended in a unique way to a linear operation on
ARE by
A(xy A--- Neyp) = A(zr) A -+ N Alxy),

and extending it linearly to the whole space A*E (it is again well defined!).
The linear operator on A*E induced by A will be denoted by A*A.

7.8 Unitary invariant norms

In this section we derive a well known von Neumann’s theorem about unitary
invariant norms as a consequence of the convexity results in this paper.

In 1937, von Neumann [35] gave a famous characterization of unitary invari-
ant matrix norms (that is, norms f on C™*" satisfying f(uazv) = f(z) for
all unitary matrices v and v and matrices z in C™*™). His result states that
such norms are those functions of the form g o o, where the map

z € C"" — o(z) € R

has components the singular values o1(z) > o2(z) > ... > o,(z) of = (as-
suming m < n) and ¢ is a norm on R™, invariant under sign changes and
permutations of components. Proof of this can be found also in [14, Theorem

7.4.24].

For z € R™, let |z|, have components |z;| arranged in decreasing order.

Lemma 7.3 For z,y,w € R™, such that wy > wy > ... > w,, > 0, and
A € [0,1], we have

(w, Az + (1= A)yly) < (w, Alz]y + (1= A)yl)).
Proof.  Apply Theorem 2.4 and Example 7.2 from [20], with X = R™,

G =signed permutation matrices, y(z) = |z|;. W

Now define H : R*™ — R"™ by
H(u) = %(m + V3,03 + V4, ..., Van_1 + Van),

where v = |ul;.
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Lemma 7.4 For u,v € R?", 2 € R" such that z; > 2z, > ... > 2z, > 0, and
A € [0,1] we have

(z, HAu 4+ (1 = X)) < (z,AH(u) + (1 — A)H(v)).

Proof. Apply Lemma 7.3 with m = 2n and we;_1 = we; = 2;. M

Now suppose g : R™ — (—o0, +00] is convex and absolutely symmetric (that

is, g(z) = g(|x[}), Vz).

Lemma 7.5 g(H(Au + (1 —A)v)) < Ag(H(u)) + (1= N)g(H(v)).
Proof. Apply Theorem 3.3 from [20] to Lemma 7.4. H

Now define f : R2" i+ (—o0,+00] by f(u) = g(H(u)).

Lemma 7.6 The function f is absolutely symmetric and convex.

Proof. Notice that H(|u|;) = H(u). Consequently, f(|u|,) = g(H(|u|))) =
g(H(uw)) = f(u), Yu. So f is absolutely symmetric. The convexity follows
from Lemma 7.5. N

Theorem 7.7 (von Neumann) The function g o ¢ is convex.

Proof. Using Section 7.3 where X = M,,, x R, p(z, ) = det(a*I — zTz),
and d = (0, 1), we have that A(z,0) = (o1(2), ..., om(®), —om(z), .. al(w))
So H(A(z,0)) = o(z). Then finally g(o(z)) = f()\(:n 0)), Whlch because of

Theorem 3.9, 1s convex in z. M

References

[1] E.F. BECKENBACH and R. BELLMAN. Inequalities. Springer-Verlag,
1961.

[2] R. BHATIA. Matriz Analysis. Springer-Verlag, 1997.

[3] P. BULLEN and M. MARCUS. Symmetric means and matrix inequal-
ities. Proceedings of the American Mathematical Society, 12:285-290,
1961.

39



4]

[5]

[6]

[11]

[12]

[13]

[14]

[15]

[16]

P.S. BULLEN, D.S. MITRINOVIC, and P.M. VASIC. Means and their
inequalities. Mathematics and its applications. East European Series.

D. Reidel Publishing Company, Dordrecht, Holland, 1987.

C. DAVIS. All convex invariant functions of hermitian matrices. Archiv

der Mathematik, 8:276-278, 1957.

K. FAN. On a theorem of Weyl concerning eigenvalues of linear trans-
formations II. Proceedings of the National Academy of Sciences of the
United States of America, 36:31-35, 1950.

J. FARAUT and A. KORANYI. Analysis on symmetric cones. Oxford
University Press, 1994.

L. GARDING. An inequality for hyperpolic polynomials. Journal of
Mathematics and Mechanics, 8(6):957-965, 1959.

W. H. GREUB. Multilinear Algebra. Springer-Verlag, 1967.

O. GULER. Hyperbolic polynomials and interior point methods for
convex programming. Mathematics of Operations Research, 22(2):350—
377, 1997.

G. HARDY, J.E.LITTLEWOOD, and G. POLYA. Inequalities. Cam-
bridge University Press, second edition, 1952.

J.-B. HIRIART-URRUTY and D. YE. Sensitivity analysis of all eigen-
values of a symmetric matrix. Numerische Mathematik, 70:45-72, 1992.

L. HORMANDER. Notions of convezity, volume 127 of Progress in

mathematics. Birkhauser, Boston, 1994.

R.A. HORN and C.R. JOHNSON. Matriz analysis. Cambridge Univer-
sity Press, second edition, 1985.

R.A.HORN and C.R. JOHNSON. Topics in matriz analysis. Cambridge
University Press, first edition, 1991. Paperback edition with corrections,

1994.

T.W. HUNGERFORD. Algebra, volume 73 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1974.

40



[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

N.V. KRYLOV. On the general notion of fully nonlinear second-order
elliptic equations. Transactions of the American Mathematical Society,

347(3):857-895, March 1995.

P.D. LAX. Differential Equations, Difference Equations and Matrix
Theory. Communications on pure and applied mathematics, 11:175-194,
1958.

A.S. LEWIS. Convex analysis on the Hermitian matrices. SIAM Journal
on Optimization, 6(1):164-177, February 1996.

A.S. LEWIS. Group invariance and convex matrix analysis. SIAM
Journal on Matriz Analysis, 17(4):927-949, 1996.

A.S. LEWIS. Convex analysis on Cartan subspaces, April 1997.
Preprint.

A.S. LEWIS. Lidskii’s theorem via nonsmooth analysis. Research Re-
port CORR 98-11, Department of Combinatorics and Optimization,
University of Waterloo, April 1998.

A.S. LEWIS and M.L. OVERTON. Eigenvalue optimization. Acta Nu-
merica, 5:149-190, 1996.

C.-K. LI and N.-K. TSING. Linear operators preserving certain func-
tions on singular values of matrices. Linear and Multilinear Algebra,

26(1-2):133-143, 1990.

M. MARCUS and L. LOPES. Inequalities for symmetric functions and
Hermitian matrices. Canadian Journal of Mathematics, 9:305-312, 1957.

M. MARCUS and H. MINC. The invariance of symmetric functions of
singular values. Pacific Journal of Mathematics, 12:327-332, 1962.

M. MARCUS and B. MOYLS. Linear transformations on algebras of
matrices. Canadian Journal of Mathematics, 11:61-66, 1959.

AW. MARSHALL and I. OLKIN. Inequalities: Theory of Majoriza-
tion and Its Applications, volume 143 of Mathematics in Science and
Engineering. Academic Press, New York, 1979.

41



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J.B. McLEOD. On four inequalities in symmetric functions. Proceedings
of the Edinburgh Mathematical Society (Series II), 11:211-219, 1958-
1959.

DRAGOSLAV S. MITRINOVIC. Analytic inequalities. Springer-Verlag,
New York, 1970. In cooperation with P. M. Vasi¢. Die Grundlehren der
mathematischen Wisenschaften, Band 1965.

D.S. MITRINOVIC, J.E. PECARIC, and A.M. FINK. Classical and
New Inequalities in Analysis, volume 61 of Mathematics and Its Appli-
cations (Fast Furopean Series). Kluwer, 1993.

AM. OSTROWSKI. Solution of equations in Euclidean and Banach
spaces. Academic Press, New York, third edition, 1973.

R.T. ROCKAFELLAR. Convez Analysis. Princeton University Press,
Princeton, NJ, 1970.

C.M. THEOBALD. An inequality for the trace of the product of two
symmetric matrices. Mathematical Proceedings of the Cambridge Philo-
sophical Society, T7:265-267, 1975.

J. von NEUMANN. Some matrix inequalities and metrization of matric-
space. Tomsk University Review, 1:286-300, 1937. In: Collected Works,
Pergamon, Oxford, 1962, Volume IV, 205-218.

S. WAKABAYASHI. Remarks on hyperbolic polynomials. Tsukuba
Journal of Mathematics, 10(1):17-28, 1986.

42



