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Abstract

A homogeneous polynomial p�x� is hyperbolic with respect to a given
vector d if the real polynomial t �� p�x� td� has all real roots for all
vectors x� We show that any symmetric convex function of these roots
is a convex function of x� generalizing a fundamental result of G�arding�
Consequently we are able to prove a number of deep results about
hyperbolic polynomials with ease� In particular� our result subsumes
von Neumann�s characterization of unitarily invariant matrix norms�
and Davis�s characterization of convex functions of the eigenvalues of
Hermitian matrices� We then develop various convex	analytic tools
for such symmetric functions� of interest in interior	point methods for
optimization problems posed over related cones�
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� Introduction

A famous result of von Neumann ���� states that for any symmetric gauge g
on Rn� the function

Z �Mn �� g���Z�����

is a norm �and so in particular is convex�	 By a symmetric gauge we mean
a norm which is invariant under sign changes and permutations of its argu

ments	 For any matrix Z in Mn� the space of n� n real matrices� the vector
��Z� has components the singular values of Z arranged in decreasing order	
Rather less well
known is a parallel result of Davis ��� stating that for any
symmetric convex function f on Rn� the function

Z � Sn �� f���Z�����

is convex	 Here� for any matrix Z in Sn� the space of n � n real symmetric
matrices� the vector ��Z� has components the eigenvalues of Z� arranged in
decreasing order	
Norms of the form ��� are important in matrix approximation ����	 Analo

gously� functions of the form ��� are fundamental in eigenvalue optimization
and semide
nite programming ����	 In both areas there is an attractive du

ality theory� the Fenchel conjugate of the function ��� is described elegantly
by the formula �f � ��� � f� � � ����� and von Neumann showed a parallel
result for the norm ���	
The analogies between these two families of results are not accidental	 The
paper ���� develops an axiomatic framework subsuming both models	 At
a more sophisticated level� both convexity results follow quickly from the
Kostant convexity theorem in semisimple Lie theory ����	
The work we describe in this current paper also concerns the above type of
convexity result� but with a very di�erent and remarkably simple approach	
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To illustrate the key idea� consider the determinant as a function on Sn	 This
function is a homogeneous polynomial which is hyperbolic with respect to the
identity matrix I� that is� the real polynomial

t � R �� det�Z � tI�

has all real roots� namely the eigenvalues �i�Z�	 The properties of such poly

nomials play a signi
cant role in the partial di�erential equations literature
�see for example ������� but we use just one� central result� due to G�arding
���� the largest root ����� is always a convex function	
Working from G�arding�s result� we show� just like Davis�s theorem� that any
symmetric convex function of the roots �i��� is convex	 The richness of the
class of hyperbolic polynomials then allows us to derive many elegant �and
often classical� inequalities in a uni
ed fashion	 Examples include beautiful
properties of the elementary symmetric functions	 One particular hyperbolic
polynomial leads us back to the singular value example	
Associated with any hyperbolic polynomial comes a closed convex hyperbol�
icity cone which� with the above notation� we can write

fZ � �i�Z� � � 	ig�
For example� in the symmetric matrix case this is simply the cone of positive
semide
nite matrices	 G�uler has shown how optimization problems over such
cones are good candidates for interior point algorithms analogous to the
dramatically successful techniques current in semide
nite programming ����	
In part with that aim in mind� we develop an attractive duality theory and
convex
analytic tools for symmetric convex functions of the roots associated
with general hyperbolic polynomials	

Notation

We write Rm
�� �resp	 Rm

�� for the set fu � Rm � ui � ��	ig �resp	 fu � Rm �
ui � ��	ig	 The closure �resp	 boundary� convex hull� linear span� of a set
S is denoted cl S �resp	 bdS� convS� span S�	 A cone is a nonempty set
that contains every nonnegative multiple of all its members� it thus always
contains �	 If u � Rm� then u� is the vector u with its coordinates arranged
decreasingly� also� U� �� fu� � u � Ug� for every subset U of Rm	 The
transpose of a matrix �or vector� A is denoted AT 	 The identity matrix or
map is written I	 Suppose Y is an arbitrary Euclidean space with inner
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product h�� �i and h � Y � ��
��
� is convex� then h� �resp	 �h� rh�
domh� stands for the Fenchel conjugate �resp	 subdi�erential map� gradient
map� domain� of h	 �Rockafellar�s monograph ���� is the standard reference
for these notions from convex analysis	� Higher order derivatives are denoted
by rkh	 If U � X� then the positive polar cone is U� �� fx � X � hx�Ui �
�g	 If A is a linear operator between Euclidean spaces� then its conjugate is
written A�	 The range of a map � is denoted by ran�	 Finally� if A�B are
two subsets of X� then d�A�B� �� inf kA�Bk is the distance between A and
B	

� Tools

We assume throughout the paper that

X is a 
nite
dimensional real vector space	

This section contains a selection of important facts on hyperbolic polynomials
from G�arding�s fundamental work ���� and a deep inequality on elementary
symmetric functions	

Hyperbolic polynomials and eigenvalues

De�nition ��� �homogeneous polynomial� Suppose p is a nonconstant
polynomial on X and m is a positive integer	 Then p is homogeneous of
degree m� if p�tx� � tmp�x�� for all t � R and every x � X	

De�nition ��� �hyperbolic polynomial� Suppose that p is a homoge

neous polynomial of degree m on X and d � X with p�d� �� �	 Then p
is hyperbolic with respect to d� if the polynomial t �� p�x � td� �where t is a
scalar� has only real zeros� for every x � X	

De�nition ��� �	eigenvalues and trace
� Suppose p is hyperbolic with
respect to d � X of degree m	 Then for every x � X� we can write

p�x� td� � p�d�
mY
i��

�t� �i�x��
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and assume without loss of generality that ���x� � ���x� � � � � � �m�x�	
The corresponding map X � Rm

� � x �� ����x�� � � � � �m�x�� is denoted by �
and called the eigenvalue map �with respect to p and d�	 We say that �i�x�
is the ith largest eigenvalue of x �with respect to p and d� and de
ne the sum
of the k largest eigenvalues by �k ��

Pk
i�� �i� for every � 
 k 
 m	 The

function �m is called the trace	

The eigenvalues f�i�x�g are thus the roots of the polynomial t �� p�x� td�	
It follows readily that the trace �m is linear �see also the paragraph following
Fact �	���	
Unless stated otherwise� we assume throughout the paper that

p is a hyperbolic polynomial of degree m with respect to d�
with eigenvalue map � and �k ��

Pk
i�� �k�

for every � 
 k 
 m	 The notions �eigenvalues� and �trace� are well

motivated by the the following example	

The Hermitian matrices� Let X be the real vector space of the m � m
Hermitian matrices and p �� det	 Then p is hyperbolic of degree m with
respect to d �� I and � maps x � X to its eigenvalues� arranged decreasingly	
Thus for every � 
 k 
 m� the function �k is indeed the sum of the k largest
eigenvalues and �m is the �ordinary� trace	

As we go� we will point out what some of the results become in the important
case of the Hermitian matrices	 Details and further examples are provided
in Section �	
We now introduce the notion of isomorphic triples� which will simplify the
analysis of homogeneous polynomials in Section � considerably	

De�nition ��� Suppose p �resp	 q� is a homogeneous polynomial on X
�resp	 Y � and d � X �resp	 e � Y �	 If there exists a linear one
to
one map
� from X onto Y with p � q � � and ��d� � e� then we say that the triple
�X� p� d� is isomorphic to �Y� q� e� �by ��� and we write �X� p� d� � �Y� q� d�	

It is clear that the binary operation � de
nes an equivalence relation on all
triples	 The following basic properties are easy to verify	

Proposition ��� Suppose �X� p� d� is isomorphic to �Y� q� e� by �	 Then�
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�i� The degrees of p and q coincide	

�ii� p is hyperbolic with respect to d if and only if q is hyperbolic with
respect to e	

�iii� If p �resp	 q� is hyperbolic with respect to d �resp	 e� with correspond

ing eigenvalue map � �resp	 ��� then � � � � �	

Many examples of hyperbolic polynomials can be obtained as described be

low	

Proposition ��


�i� If q is hyperbolic with respect to the same d� then so is pq	

�ii� If m � �� then q�x� �� d
dt
p�x� td�

��
t��

�
�rp�x���d� is hyperbolic with

respect to d	

�iii� If Y is a subspace of X and d � Y � then the restriction pjY is hyperbolic
with respect to d	

Proof� �i� is elementary	 �ii� essentially follows from Rolle�s Theorem� see
also ��� Lemma ��	 �iii� is obvious	 �

The technique of Proposition �	�	�ii� has a higher order analog� see Fact �	��
below	
Given a hyperbolic polynomial on R

n� we can construct a related one on
R

n�� as follows	

Proposition ��� Suppose p is hyperbolic with respect to d � Rn with eigen

value map �	 Assume that di �� � and de
ne q on Rn�� by

q�y�� � � � � yn��� � p�y�� � � � � yn���
yi
di
dn��

Then q is hyperbolic with respect to e �� �d�� � � � � dn��� and its eigenvalue
map � satis
es ��y�� � � � � yn��� � ��y�� � � � � yn���

yi
di
dn�	

Proof� Straightforward	 �

The following property of the eigenvalues is well
known ���� Equation �����
and easily veri
ed	

�



Fact ��� For all r� s � R and every � 
 i 
 m�

�i�rx� sd� �

�
r�i�x� � s� if r � ��

r�m���i�x� � s� otherwise	

It follows that the eigenvalue map � is positively homogeneous ���tx� � t��x��
for all t � � and every x � X� and continuous �the zeros of a polynomial
are continuous with respect to the coe�cients� see� for instance� ���� Ap

pendix A��	
G�arding showed that the largest eigenvalue map is sublinear� that is� posi

tively homogeneous and convex	

Theorem ��� �G�arding� The largest eigenvalue map �� is sublinear	

Proof� Positive homogeneity follows from Fact �	�	 Now G�arding showed
that �m is concave ��� Theorem ��� which is equivalent to the convexity of
��� since ����x� � ��m�x�� for every x � X	 �

The Hermitian matrices �continued�� It is well
known that the largest eigen

value map is convex in this case� see� for instance� ����	

Hyperbolicity cone

De�nition ���� �hyperbolicity cone� The hyperbolicity cone of p with
respect to d� written C�d� or C�p� d�� is the set fx � X � p�x�td� �� ��	t � �g	
Fact ���� C�d� � fx � X � �m�x� � �g	 Hence C�d� is an open convex cone
that contains d with closure clC�d� � fx � X � �m�x� � �g	 If c � C�d��
then p is hyperbolic with respect to c and C�c� � C�d�	

Proof� See G�arding�s ��� Section ��	 �

Remark ���� Note that �m�x� � � if and only if ����x� 	 � by Fact �	�	
Hence G�arding�s result �Theorem �	�� implies the convexity of C�d�	 In fact�

C�d� is a convex cone precisely because �� is a convex function	

To see why convexity of C�d� yields convexity of ��� 
x x and y in X and
observe that x � �m�x�d and y � �m�y�d both belong to clC�d�	 By as

sumption� �x � y� � ��m�x� � �m�y�� � clC�d�	 On the other hand� the
smallest t such that �x � y� � td belongs to clC�d� is ��m�x � y�	 Alto

gether� �m�x� � �m�y� 
 �m�x� y� and the concavity of �m �or convexity of
��� follows	
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De�nition ���� �complete hyperbolic polynomial� p is complete if

fx � X � ��x� � �g � f�g�

The following result� which follows easily from Proposition �	�	�iii�� considers
the concepts just introduced for isomorphic triples	

Proposition ���� Suppose �X� p� d� is isomorphic to �Y� q� e� by �	 Then�

�i� C�q� e� � ��C�p� d��	

�ii� p is complete if and only if q is	

Fact ���� Suppose p is hyperbolic with respect to d� with corresponding
eigenvalue map � and hyperbolicity cone C�d�	 Then

fx � X � ��x� � �g � fx � X � x� C�d� � C�d�g
� fx � X � p�tx� y� � p�y��	y � X�	t � Rg�

Consequently� fx � X � ��x� � �g � clC�d� � ��clC�d��	

Proof� See G�arding�s ��� Section ��	 The �Consequently� part follows readily
from the displayed equation and the openness of C�d�	 �

It is always possible to 
nd a restriction of p that is complete� indeed� d ��
fx � X � ��x� � �g� consequently� if Y is any subspace of X which contains
d and is algebraically complemented to fx � X � ��x� � �g� then pjY is
hyperbolic with respect to d �Proposition �	�	�iii�� and complete	

Example ���
 We let X � Rn� p�x� �
P

j xj and d � ��� �� � � � � �� in X	

Then p is hyperbolic with respect to d of degreem � � and ��x� � �
n

Pn
j�� xj	

It follows that p is complete only when n � �	

The Hermitian matrices �continued�� The hyperbolicity cone of p � det with
respect to d � I is the set of all positive de
nite matrices	 The polynomial
p � det is complete� since every nonzero Hermitian matrix has at least one
nonzero eigenvalue	
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Elementary symmetric functions

De�nition ���� �symmetric function� A function f on Rm is symmetric�
if f�u� � f�u��i��� for all permutations 
 of f�� � � � �mg and every u � Rm	

De�nition ���� �elementary symmetric functions� For any given in

teger k � �� �� � � � �m� the map Ek � Rm � R � u �� P

i������ik

Qk
l�� uil is

called the kth elementary symmetric function on Rm	 We also set E� �� �	

Fact ���� For every x � X and all t � R�

p�x� td� � p�d�
mY
i��

�t� �i�x�� � p�d�
mX
i��

Ei���x��t
m�i

and for every � 
 i 
 m�

p�d�Ei���x�� �
�

�m� i��
rm�ip�x��d� d� � � � � d� �z �

m�i times

��

If � 
 i 
 m� then Ei � � is hyperbolic with respect to d of degree i	

Proof� The 
rst displayed equation is elementary while the second displayed
equation is a consequence of Taylor�s Theorem	 The �If� part follows by
employing Proposition �	�	�ii� repeatedly	 �

Fact �	�� gives a very transparent proof of the linearity of trace� indeed�
�m � E� �� is a homogeneous �hyperbolic� polynomial of degree � and hence
linear	

We also note that the elementary symmetric functions themselves are hyper

bolic�

Example ���� Let X � Rm and d � ��� �� � � � � �� � Rm	 Then for every
� 
 k 
 m� the kth elementary symmetric function Ek is hyperbolic of degree
k with respect to d	

Proof� Let p �� Em	 It is straightforward to check that Em is hyperbolic
of degree m with respect to d with corresponding eigenvalue map ��x� � x�	
Since each Ek is symmetric� the result now follows from Fact �	��	 �
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An inequality in elementary symmetric functions

The following inequality was discovered independently by McLeod ���� and
by Bullen and Marcus ��� Theorem ��	

Fact ���� �McLeod� ����� Bullen and Marcus� ����� Suppose � 
 k 
 l 

m and u� v � Rm

��	 Set q �� �El�El�k���k	 Then

q�u� v� � q�u� � q�v��

unless u and v are proportional or k � l � �� in which case we have equality	

Bullen and Marcus�s proof relies on an inequality by Marcus and Lopes �����
Theorem ��� which is the case k � � in Fact �	��	 �Proofs can also be found
in ��� Theorem �	���� ��� Section V	��� and ���� Section VI	��	�
We record two interesting consequences of Fact �	��	

Corollary ���� �Marcus and Lopes�s ���� Theorem ��� The function �E��m
m

is sublinear on Rm
�� and it vanishes on bdRm

�	

Proof� Set k � l � m in Fact �	�� and use continuity	 �

Recall that a function h is called logarithmically convex� if log �h is convex	
The function q in Fact �	�� is concave ��strictly modulo rays��� which yields
logarithmic and strict convexity of ��q�

Proposition ���� Suppose q is a function de
ned on R
m
��	 Consider the

following properties�
�i� the range of q is contained in ����
��
�ii� q�ru� � rq�u�� for all r � � and every u � Rm

���
�iii� q�u� v� � q�u� � q�v�� for all u� v � Rm

���
�iv� if u� v � Rm

�� with q�u� v� � q�u� � q�v�� then v � �u� for some � � �	
Suppose q satis
es �i� �iii�	 Then ��q is logarithmically convex	 If further

more �iv� holds� then ��q is strictly convex	

Proof� �i� �iii� implies that q is a concave function with range in ����
�	
It follows that ln �q is concave �since ln is increasing and concave�	 Hence
� ln �q is convex� equivalently� ��q is logarithmically convex	 Now assume
that �iv� holds as well and 
x u� v � Rm

�� with ��q���u� �
�v� �

�
�

�
q�u� �

�
�

�
q�v�	

��



It su�ces to show that u � v	 Because q is concave on Rm
�� and r �� ��r is

convex on ����
�� we estimate

�
�
�
q�u� � �

�
q�v�

� �

q��
�
u� �

�
v�

�
�

�

�

q�u�
�

�

�

�

q�v�
� �

�
�
q�u� � �

�
q�v�

�

Hence equality holds throughout and so v � �u� for some � � �	 The
equalites imply �

���
� �

�
�� � �

�
�� which yields � � �	 Thus u � v and

therefore ��q is strictly convex	 �

Corollary ���� Suppose � 
 k 
 l 
 m	 Then the function �El�k�El���k is
symmetric� positively homogeneous� and logarithmically convex	 Moreover�
the function is strictly convex on Rm

�� unless l � � and m � �	

Proof� Positive homogeneity and symmetry are clear	 Log convexity follows
by combining Proposition �	�� and Fact �	��� this even yields strict convexity
unless k � l � �	 But if k � l � �� then the function becomes ��

Pm
i�� ui�

which is strictly convex exactly when m � �	 �

� Convexity

Sublinearity of the sum of the largest eigenvalues

Theorem ��� Suppose q is a homogeneous symmetric polynomial of degree
n on Rm� hyperbolic with respect to e �� ��� �� � � � � �� � Rm� with eigenvalue
map �	 Then

q � �

is a hyperbolic polynomial of degree n with respect to d and its eigenvalue
map is � � �	

Proof� For simplicity� write !p for q � �	
Step � � !p is a polynomial on X	
Since q�y� is a symmetric polynomial on Rm� it is �by� e	g	� ���� Proposi

tion V	�	��	�ii��� a polynomial in E��y�� � � � � Em�y�	 On the other hand� by
Fact �	��� Ei � � is hyperbolic with respect to d of degree i� for � 
 i 
 m	
Altogether� !p�x� � q���x�� is a polynomial on X	
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Step � � !p is homogeneous of degree n	
Since q is symmetric and homogeneous� and in view of Fact �	�� we obtain
!p�tx� � q���tx�� � tn!p�x�� for all t � R and every x � X	

Step 	 � !p�d� �� �	
Again using Fact �	�� we have !p�d� � q���d�� � q�e� �� �	

Step 
 � !p is hyperbolic with respect to d	
Using once more Fact �	�� we write for every x � X and all t � R�

!p�x� td� � q���x� td�� � q���x� � te� � q�e�

nY
k��

�t� �k���x���� �

The next example is easy to check	

Example ��� Fix � 
 k 
 m� set e �� ��� �� � � � � �� � Rm� and let

q�u� ��
Y

��i��i������ik�m

kX
l��

uil�

Then q is a homogeneous symmetric polynomial on Rm of degree
�
m
k

�
� hy


perbolic with respect to e� and its eigenvalues are f �
k

Pk
l�� uil � � 
 i� 	 i� 	

� � � 	 ik 
 mg	 In particular� the largest eigenvalue of q is the sum of the k
largest components of u	

We now present our main result� the generalization of Theorem �	�� the sum
of the largest eigenvalues is sublinear	 This readily implies local Lipschitzness
of each eigenvalue map �see also �����	

Corollary ��� For every � 
 k 
 m� the function �k is sublinear and �k is
locally Lipschitz	

Proof� Fix � 
 k 
 m� de
ne q as in Example �	�� and consider !p �� q � �	
By Theorem �	� and Example �	�� the largest eigenvalue of !p is equal to
�
k
�k�x�	 Now Theorem �	� yields the sublinearity of �k	 Finally� recall that

every convex function is locally Lipschitz ����� Theorem ��	���� hence so is
each �i	 So �� is locally Lipschitz	 If k � �� then �k � �k � �k�� is " as the
di�erence of two locally Lipschitz functions " locally Lipschitz� too	 �

The Hermitian matrices �continued�� Here it is well known that the sum
of the k largest eigenvalues is a convex function and that the kth largest
eigenvalue map is locally Lipschitz� see� for instance� ����	
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Remark ��� Consider the polynomial !p constructed in the proof of Corol

lary �	� in the context of the Hermitian matrices	 Then

�����
m

k �!p�x� t
k
I� � det�tI �#k�x���

where #k�x� denotes the kth additive compound of x	 �See ���� Section ��	F�
for more on compound matrices	�

Corollary ��� The function wT���� is sublinear� for every w � Rm
� 	

Proof� Write wT� �
Pm

i�� wi�i � wm�m �
Pm��

i�� �wi � wi����i and then
apply Corollary �	�	 �

Note that we can rewrite Corollary �	� quite arti
cially as wT ���x � y� �
��x�� 
 wT

� ��y�� for all x� y � X and w � Rm
� 	

It would be interesting to 
nd out about the following generalization�

Open Problem ��
 �Lidskii�s theorem� Decide whether or not

wT ���x� y�� ��x�� 
 wT
� ��y�� for all x� y � X and w � Rm 	

If this condition is satis
ed� then we say that Lidskii�s theorem holds for the
triple �X� p� d�	
The condition means that the vector ��y� �majorizes� the vector ��x� y��
��x�� for all x� y � X� see ���� Proposition �	B	��	 �The interested reader is
referred to ���� for further information on majorization	�

The Hermitian matrices �continued�� Lidskii�s theorem does hold for the
Hermitians	 A recent and very complete reference is Bhatia�s ���� see also
���� for a new proof rooted in nonsmooth analysis	

In Section �� we point out that Lidskii�s theorem holds valid for all our
examples	 It will be convenient to have the following simple result ready�

Proposition ��� Suppose �X� p� d� is isomorphic to �Y� q� e�	 Then Lidskii�s
theorem holds for �X� p� d� if and only if it does for �Y� q� e�	

Proof� Immediate from Proposition �	�	�iii�	 �

��



Convexity of composition

Fact ��� Suppose f � Rm � ��
��
� is convex and symmetric	 Suppose
further u� v � Rm

� and u� v � �Rm
� �

�	 Then f�u� � f�v�	 Moreover� if f is
strictly convex on conv fu��i� � 
 is a permutation of f�� � � � �mgg and u �� v�
then f�u� � f�v�	

Proof� Imitate the proof of ���� Theorem �	�� and consider ���� Example �	��	
See also ���� �	C	�	c on page ���	 �

Theorem ��� �convexity� Suppose x� y � X� 
 � ��� ��� and f � Rm �
��
��
� is convex and symmetric	 Then

f���
x � ��� 
�y�� 
 f�
��x� � �� � 
���y��

and hence the composition f �� is convex	 If f is strictly convex and 
��x��
���
���y� �� ��
x� ���
�y�� then f���
x� ���
�y�� 	 f�
��x� � ���

���y��	

Proof� �See also ���� Proof of Theorem �	��	� Fix an arbitrary w � Rm
� 	

Set u �� 
��x� � �� � 
���y� and v �� ��
x � �� � 
�y�	 Then both
u and v belong to Rm

� 	 By Corollary �	�� wT� is convex on X	 Therefore�
wT��
x����
�y� 
 
wT��x�����
�wT��y�� equivalently� wT �u�v� � �	
It follows that u� v � �Rm

� �
�	 By Fact �	�� f�u� � f�v�� which is the second

displayed statement	 The convexity of f � � follows	 Finally� the �If� part is
implied by the above and the �Moreover� part of Fact �	�	 �

The Hermitian matrices �continued�� In this case� the convexity of the com

position is attributed to Davis ���� see also ���� Corollary �	��	

Another consequence is G�arding�s inequality� see ���� Lemma �	��	

Corollary ���� �G�arding�s inequality� Suppose p�d� � �	 Then func

tion x �� ��p�x����m is sublinear on the hyperbolicity cone C�d�� and it
vanishes on its boundary	

Proof� By Corollary �	��� the function �E��m
m is sublinear and symmet


ric on Rm
�	 Hence� by Theorem �	�� the function x �� ��Em���x����m is

sublinear on fx � X � ��x� � �g � clC�d�	 The result follows� since
p�x� � p�d�Em���x��� for every x � X	 �

The Hermitian matrices �continued�� Corollary �	�� implies the Minkowski
Determinant Theorem� m

p
det�x� y� � m

p
detx � m

p
det y� whenever x� y �

X are positive semi
de
nite	

��



Corollary ���� Suppose x� y � X	 Then�

�i� k��x� y�k 
 k��x� � ��y�k	
�ii� k��x� y�k� � k��x�k� � k��y�k� 
 �h��x�� ��y�i	

Moreover� equality holds in �i� or �ii� if and only if ��x� y� � ��x� � ��y�	

Proof� �i�� Let w �� ��x � y� � R
m
� 	 Then� using Corollary �	� and the

Cauchy
Schwarz inequality in Rm� we estimate

k��x� y�k� � wT��x� y� 
 wT ���x� � ��y��


 kwkk��x� � ��y�k � k��x � y�kk��x� � ��y�k�

The inequality follows	 The condition for equality follows from the condition
for equality in the Cauchy
Schwarz inequality	
�ii�� The condition is equivalent to �i�	 �

� Making X Euclidean

De�nition ��� De
ne k � k � X � ����
� � x �� k��x�k and

h�� �i � X �X � R � �x� y� �� �
�
kx� yk� � �

�
kx� yk��

Theorem ��� Suppose p is complete	 Then X equipped with h�� �i is a
Euclidean space with induced norm k � k	

Proof� We have kxk� � k��x�k� �Pm
i�� �i�x�

� � �E����x���
� � �E����x��	

Facts �	� and �	�� imply that k � k� is a homogeneous polynomial of degree
� on X	 Since k � k � � and p is complete� the result now follows from the
Polarization Identity	 �

Remark ��� The Euclidean norm k � k de
ned in De
nition �	� is precisely
the Hessian norm used in interior point methods and thus well
motivated	
To see this� assume that p is complete and recall that the hyperbolic barrier
function is de
ned by F �x� �� � ln�p�x��	 The Hessian norm at x is then
given by

kxk�d �� r�F �d��x� x��

��



For t positive and su�ciently small� we have p�tx�d� � p�d�
Qm

i�����t�i�x��
and hence �after taking logarithms�

F �d� tx� � F �d��
mX
i��

ln�� � t�i�x���

Expand the left �resp	 right� side of this equation into a Taylor �resp	
log� series	 Then compare coe�cients of t� to conclude r�F �d��x� x���� �
k��x�k���	 Thus k � kd � k � k	 Further information can be found in ����� see�
in particular� ���� equation ���	

The norm constructed above has the pleasant property that any isomorphism
to another triple is actually an isometry�

Proposition ��� Suppose p is complete and the triple �X� p� d� is isomorphic
to the triple �Y� q� e� by �	 Then � is an isometry from X onto Y 	

Proof� Denote the eigenvalue map of p �resp	 q� by � �resp	 ��	 Using
Proposition �	�	�iii� and the de
nitions of the norms in X and Y � we have
for every x � X� kxk � k��x�k � k����x��k � k��x�k	 �

Proposition ��� �sharpened Cauchy�Schwarz� Suppose p is complete	
Then

hx� yi 
 h��x�� ��y�i 
 kxkkyk� for all x� y � X	

Proof� By the Cauchy
Schwarz inequality in R
m and Corollary �	��	�ii��

�h��x�� ��y�i � k��x� y�k��k��x�k��k��y�k� � kx� yk��kxk��kyk� �
�hx� yi	 �

The Hermitian matrices �continued�� The inner product on the Hermitian
matrices is precisely what one would expect� hx� yi � trace �xy�	 The sharp

ening of the Cauchy
Schwarz inequality is due to von Neumann� see ����
Theorem �	�� and the discussion therein	

We can now re
ne Theorem �	�	

Theorem ��
 �strict convexity� Suppose p is complete and f � Rm �
��
��
� is strictly convex and symmetric	 Then the composition f � � is
strictly convex on X	

��



Proof� Fix 
 � ��� ��� x� y � X and set � �� � � 
	 Suppose that �f �
���
x��y� � 
�f ����x����f ����y�	 We have to show that x � y	 Using
Theorem �	� and convexity of f � we estimate


�f � ���x� � ��f � ���y� � �f � ���
x � �y�


 f�
��x� � ���y��


 
�f � ���x� � ��f � ���y��

hence equality must hold throughout	 By strict convexity of f � we conclude
that ��x� � ��y�	 We also know that 
��x�����y� � ��
x��y� �otherwise�
Theorem �	� would imply that the 
rst displayed inequality is strict� which
is a contradiction�	 Thus ��x� � ��y� � 
��x� � ���y� � ��
x� �y�	 Since
� is norm preserving� we obtain kxk � kyk � k
x��yk	 But k � k is induced
by an inner product� whence k � k� is strictly convex	 Therefore� x � y and
the proof is complete	 �

We now demonstrate how Theorem �	� can be used to recover a recent re

sult by Krylov �see ���� Theorem �	�	�ii���	 Our proof appears to be more
transparent than Krylov�s	

Corollary ��� Suppose p�d� � �	 Then each of the following functions is
convex on the hyperbolicity cone C�d��

� ln p� ln
Em�� � �
Em � � �

Em�� � �
Em � � �

If p is complete� then each of these functions is strictly convex	

Proof� De
ne 
rst f�u� �� � ln p�d� �Pm
i�� ln ui on R

m
�� and F �x� ��

� ln p�x� on C�d�	 Then f is strictly convex and symmetric	 Since p�x� �
p�d�Em���x��� we have F � f � �	 It follows that F is convex �by The

orem �	��� even strictly if p is complete �by Theorem �	��	 This proves
the result for the 
rst function	 Now let f �� ln�Em���Em� on Rm

�� and

F �� ln Em����
Em��

on C�d�	 Then f is strictly convex by Corollary �	��	 By
Theorem �	� �resp	 Theorem �	��� F is convex �resp	 strictly convex� if p is
complete�	 This yields the statement for the second function	 Finally observe
that the third function is obtained by taking the exponential of the second
function	 But this operation preserves �strict� convexity	 �

��



Krylov�s result is closely related to parts of G�uler�s very recent work on hy

perbolic barrier functions	 We now give a simple proof of G�uler�s ���� Theo

rem �	��	 The functions F and g below play a crucial role in interior point
method� as they allow the construction of long
step interior
point methods
using the hyperbolic barrier function F 	

Corollary ��� Suppose p�d� � � and c belongs to the hyperbolicity cone
C �� C�d�	 De
ne

F � C � R � x �� � ln�p�x�� and g � C � R � x �� ��rF �x���c��

Then F and g are convex on C	 If p is complete� then both F and g are
strictly convex	

Proof� The statement on F is already contained in Corollary �	�	 Now let
� be the eigenvalue map corresponding to c	 Then� by Fact �	��� p�x� �
p�c�Em���x�� and �rp�x���c� � p�c�Em�����x��	 Thus

g�x� �
�

p�x�

�rp�x���c� � Em�����x��

Em���x��
�

Now argue as for the second function in the proof of Corollary �	�	 �

The Hermitian matrices �continued�� The statement on F corresponds to
strict convexity of the function x �� � ln det�x� on the cone of positive semi

de
nite Hermitian matrices� this result is due to Fan ���	

Remark ��� It is worthwhile to point out that Krylov ���� and G�uler derive
their results from hyperbolic function theory whereas we here �piggyback�
on inequalities in elementary symmetric functions	 The latter approach is
far more elementary	

We already pointed out that the trace �m is linear	 With the notation intro

duced in De
nition �	�� we can express this more elegantly	

Proposition ���� �trace� �m�x� � hd� xi� for every x � X	

Proof� Fix x � X	 By Fact �	�� kx�dk� �Pm
i����i�x�d��� �

Pm
i����i�x��

��� � kxk� � ��m�x� �m	 So �hx� di � kx� dk� � kx� dk� � ��m�x�	 �

��



� Convex calculus

De�nition ��� �isometric hyperbolic polynomial� We say p is isomet�
ric �with respect to d�� if for all y� z � X� there exists x � X such that

��x� � ��z� and ��x � y� � ��x� � ��y��

Isometricity depends only on equivalence classes of triples�

Proposition ��� Suppose �X� p� d� is isomorphic to �Y� q� e�	 Then p is iso

metric if and only if q is	

Proof� Immediate from Proposition �	�	�iii�	 �

It is clear that if p is isometric� then ran� is a closed convex cone contained
in Rm

� 	 The next example shows that the range of � may be nonconvex in
general	

Example ��� �a hyperbolic polynomial that is not isometric� If the
polynomial p�x� � x�x�x	 is de
ned on X � span

	
��� �� ��� ��� �� ��



� then p

is hyperbolic of degree m � � with respect to d � ��� �� ��	 Hence ��x� � x�
and p is complete	 It follows that for all 
� � � R�

�
�

��� �� �� � ���� �� ��

�
�

�

��� �� �� � ���� �� ��� if � � ��


��� �� �� � ���� �� ��� otherwise	

Since ���� �� �� � �������� �� � ��� ����� �� ran �� the set ran � is a closed
nonconvex cone in R	

�	 In particular� p is not isometric	

Unless stated otherwise� we assume from now on that

p is complete� with corresponding inner product h�� �i and norm k � k	

We chose the name �isometric� because of the equivalent condition �iii� in
the following proposition	

Proposition ��� The following are equivalent�

�i� p is isometric	

��



�ii� maxx
��x��uhx� yi � hu� ��y�i� for all u � ran� and every y � X	

�iii� d�u� ��y�� � d�����u�� y�� for all u � ran � and every y � X	

Proof� ��i���ii��� 
x u � ran � and y � X	 If x � X with ��x� � u�
then hx� yi 
 hu� ��y�i by Proposition �	�	 Since u � ran�� there exists
z � X such that ��z� � u	 By isometricity of p� there exists x � X such
that ��x� � u and ��x � y� � ��x� � ��y�	 Now Corollary �	��	�ii� and its
condition for equality implies that hx� yi � hu� ��y�i and �ii� follows	
��ii���iii��� 
x u � ran � and y � X	 If x � X with ��x� � u� then �by
Proposition �	�� ku� ��y�k� � kxk� � kyk�� �h��x�� ��y�i 
 kxk� � kyk��
�hx� yi � kx � yk� and hence d�u� ��y�� 
 d�����u�� y�	 Equality follows if
we pick $x � X such that ��$x� � u and h$x� yi � hu� ��y�i	
��iii���i��� 
x y� z � X	 Set u �� ��z�	 Note that d�����u�� y� is attained�
since the closed set fx � X � ��x� � ug is contained in fx � X � kxk �
kukg� which is compact	 So pick x � X with ��x� � u � ��z� and ku �
��y�k � kx� yk	 Squaring and simplifying yields h��x�� ��y�i � hx� yi	 Now
Corollary �	��	�ii� and its condition for equality yields ��x�y� � ��x����y�	
Hence p is isometric	 �

The Hermitian matrices �continued�� Here ran � � Rm
� and p � det is

isometric �we will discuss this in Section ��	

Theorem ��� �Fenchel conjugacy� Suppose that f � Rm � ��
��
�
is symmetric	 Then �f ���� 
 f� ��	 If p is isometric and f�Pran�u� 
 f�u��
for every u � �dom f��� then �f � ��� � f� � �	

Proof� Fix an arbitrary y � X	 Then� using Proposition �	�� symmetry
of f � and the Hardy
Littlewood
P%olya inequality �see ���� Section ��	���� the
inequality follows from

f����y�� � sup
u�Rm

	hu� ��y�i � f�u�


� sup

u�Rm�

	hu� ��y�i � f�u�



� sup
u�ran�

max
x
��x��u

	hx� yi � f���x��


� sup

x�X

	hx� yi � �f � ���x�

� �f � ����y��

Now assume that p is isometric and f�Pran�u� 
 f�u�� for every u � �dom f��	
Fix momentarily an arbitrary u � Rm

� 	 Then� on the one hand� f�Pran�u� 

f�u� �if u � �dom f��� then the inequality follows by assumptions� otherwise�

��



the inequality is trivial�	 Since ran � is a closed convex cone that contains
��y��Pran�u� a well
known property of projections yields on the other hand
hu � Pran�u� ��y�i 
 �	 Altogether� hu� ��y�i � f�u� 
 hPran�u� ��y�i �
f�Pran�u�	 Therefore� using Proposition �	��

f����y�� � sup
u�Rm

�

	h��y�� ui � f�u�

 
 sup

u��ran�

	h��y�� u	i � f�u	�



� sup
x�X

	hy� xi � f���x��


� �f � ����y�� �

The assumption that f�Pran�u� 
 f�u�� for every u � �dom f�� is important�
in Section �� we present an isometric hyperbolic polynomial and a convex
symmetric function f with �f � ��� �� f� � �	

Corollary ��
 Suppose p is isometric and f � Rm� ��
��
� is symmet

ric	 Suppose one of the following conditions holds�

�i� �dom f�� � ran�	

�ii� ran � � Rm
� 	

�iii� f is convex and Pran�u � conv fu��i� � 
 permutes f�� � � � �mgg� for
every u � �dom f��	

Then �f � ��� � f� � �	

Proof� �i� is clear from Theorem �	�	 �ii� is implied by �i�	 �iii�� 
x
u � �dom f�� and write Pran�u �

P
i �iu

i� where each �i is nonnegative�P
i �i � �� and each ui is some permutation of u	 By convexity and symmetry

of f � we conclude f�Pran�u� 
 f�u�	 Apply again Theorem �	�	 �

Theorem ��� �subgradients� Suppose p is isometric� ran� � R
m
� � and

f � Rm � ��
��
� is convex and symmetric	 Let x� y � X	 Then

y � ��f � ���x� if and only if ��y� � �f���x�� and hx� yi � h��x�� ��y�i	
Consequently� �

�
��f � ���x�� � �f���x��	

Proof� Since ran� � Rm
� � we have �Corollary �	�	�ii�� �f � ��� � f� � �	 In

view of Proposition �	�� the following equivalences hold true� y � ��f ����x�
� �f � ���x� � �f � ����y� � hx� yi � f���x�� � f����y�� � h��x�� ��y�i and

��



hx� yi � h��x�� ��y�i � ��y� � �f���x�� and hx� yi � h��x�� ��y�i	 �Con

sequently�� Clearly� by the above� �

�
��f � ���x�� � �f���x��	 Conversely�

pick v � �f���x��	 Then f���x�� � f��v� � hv� ��x�i	 By the assumption
that ran � � R

m and Proposition �	�	�ii�� hv� ��x�i � hy� xi� for some y with
��y� � v	 Hence �f � ���x� � �f � ����y� � hy� xi and so y � ��f � ���x��
which implies v � ��y� � �

�
��f � ���x��	 �

The Hermitian matrices �continued�� Theorem �	� corresponds to ���� The

orem �	��	

Corollary ��� �di�erentiability� Suppose p is isometric� ran � � Rm
� � and

f � Rm � ��
��
� is convex and symmetric	 Let x� y � X	 Then f � �
is di�erentiable at x and y � r�f � ���x� if and only if f is di�erentiable at
��x� and fy	 � X � ��y	� � rf���x��� hx� y	i � h��x�� ��y	�ig � fyg	
Proof� Clear from Theorem �	�	 �

Corollary ��� �variational description of �k� Let p be isometric� and
suppose ran � � Rm

� 	 Let � 
 k 
 m	 Then for every x � X�

�k�x� � max
y
��y�
���m�y��k����y���

hx� yi

and ��k�x� � fy � X � hx� yi � �k�x�� ��y� � �� �m�y� � k� ���y� 
 �g	
Proof� De
ne f�u� �� maxi������ik

Pk
l�� uil	 Then f is symmetric and

convex on Rm and f� is the indicator function of fu � Rm �
P

i ui �
k and each � 
 ui 
 �g	 Now �k � f � � and so Corollary �	� yields
��k � f� � �	 Thus y � ��k�x� � x � ���k�y� � hx� yi � �k�x�� ��y� � ��
�m�y� � k� and ���y� 
 �	 �

The Hermitian matrices �continued�� Corollary �	� is a direct generalization
of the variational formulations due to Rayleigh and Ky Fan� see ���� Section ��
for more details	

� Diagonalization

We uphold the assumption that

p is complete� with corresponding inner product h�� �i and norm k � k	

��



De�nition 
�� �invariance group� Let L � L�X� be the �general� linear
group on X �with composition�� endowed with the natural topology of point

wise convergence� and let O � O�X� �� fA � L�X� � A� � A��g be the
orthogonal group	 We de
ne the invariance group by

G � G�p� �� fA � L � � �A � �g�

Since ��x� � ��y� precisely when p�x�td� � p�y�td� �equality as polynomi

als in t�� it follows that A � G if and only if A � L and p�x�td� � p�Ax�td��
for all t � R and every x � X	

Proposition 
�� G is a closed subgroup of O	

Proof� Elementary	 �

The Hermitian matrices �continued�� The invariance group G contains all
unitary similarity transformations x �� u�xu for Hermitian x and unitary u	
�This actually describes the entire invariance group� see Section � below	�

De�nition 
�� �diagonalizability� We say that p allows diagonalization
�with respect to d�� if there is some linear isometry # from span ran� to X
such that

for every x � X� there exists A � G with x � A#��x�	

We refer to # as a diagonalizing map �of p with respect to d�	

It follows readily that � �# � � � �	

The Hermitian matrices �continued�� The polynomial p � det allows diag

onalization and a diagonalizing map is # �� Diag� which sends a vector in
Rm to the corresponding diagonal matrix	

Proposition 
�� Suppose �X� p� d� is isomorphic to �Y� q� e� by � and let �
be the eigenvalue map corresponding to q	 Then�

�i� L�Y �� � �L�X� and G�q�� � �G�p�	
�ii� Suppose # is a diagonalizing map of p� x � X� y � �x� and A � G�p�

with x � A#��x�	 Then �# is a diagonalizing map of q� �A�� � G�q��
and y � ��A�����#���y�	

��



�iii� p allows diagonalization if and only if q does	

Proof� Denote the eigenvalue map of q by � and recall that � � � �
� �Proposition �	�	�iii�� and that � is a surjective isometry from X to Y
�Proposition �	��	 Hence �� � ��� and �i� follows	 �ii�� Apply � to both
sides of x � A#��x� and use �i�	 �iii� follows from �ii� by symmetry	 �

Theorem 
�� If p allows diagonalization� then it is isometric	

Proof� Let # be a diagonalizing map� 
x y � X and u � ran �� say u � ��z��
for some z � X	 Obtain A � G such that y � A#��y�	 Set x �� A#��z�	
Then ��x� � u and hx� yi � hA#��z�� A#��y�i � hu� ��y�i	 Therefore� by
Proposition �	�� p is isometric	 �

Theorem 
�
 Suppose p allows diagonalization and let # be a diagonalizing
map	 Let x� y � X	 Then hx� yi � h��x�� ��y�i if and only if there exists
A � G such that simultaneously x � A#��x� and y � A#��y�	

Proof� ���� h��x�� ��y�i � hA#��x�� A#��y�i � hx� yi	
���� Pick A � G such that x � y � A#��x� y�	 Then h��x�� ��x � y�i �
hA#��x�� A#��x� y�i � hA#��x�� x� yi	 Using this and Proposition �	��
we estimate

kx�A#��x�k� � kxk� � kA#��x�k� � �hx�A#��x�i
� �kxk� � �hx � y�A#��x�i� �hy�A#��x�i
� �kxk� � �h��x�� ��x � y�i� �hy�A#��x�i

 �kxk� � �hx� x� yi� �h��y�� ��x�i
� �kxk� � �hx� x� yi� �hy� xi
� ��

Hence x � A#��x�	 By symmetry� y � A#��y�	 �

The Hermitian matrices �continued�� Theorem �	� becomes a classic criterion
for simultaneous ordered spectral decomposition due to Theobald ����	

Corollary 
�� Suppose p allows diagonalization and let # be a diagonal

izing map	 Suppose further ran � � Rm

� � and f � Rm � ��
��
� is
convex and symmetric	 Let x� y � X	 Then y � ��f � ���x� if and only
if ��y� � �f���x�� and there exists A � G such that x � A#��x� and
y � A#��y�	 Hence ��f � ���x� � fA#�f���x�� � x � A#��x�g	 Conse

quently� f � � is di�erentiable at x if and only if f is di�erentiable at ��x�	

��



Proof� Combine Theorem �	� with Theorem �	� and Theorem �	�	 �Con

sequently�� if f � � is di�erentiable at x and x � A#��x�� for some A � G�
then A#�f���x�� is singleton	 Hence f is di�erentiable at ��x�	 Conversely�
assume that f is di�erentiable at ��x�	 Then each element in the convex set
��f � ���x� has the same norm� namely krf���x��k	 This can only happen
when the set is a singleton and hence f � � must be di�erentiable at x	 �

The Hermitian matrices �conclusion�� Corollary �	� recovers results recently
established by Lewis� see ���� Section ��	

We conclude by connecting the present framework to Lewis�s framework of
normal decomposition systems �����

Theorem 
�� �normal decomposition system� Suppose p allows diag

onalization� and let # be a diagonalizing map	 Set � �� # � �	 Then X is a
Euclidean space� G is a closed subgroup of O� and � is a selfmap of X	 Also�

�i� ��Ax� � ��x�� for every x � X and all A � G	
�ii� For every point x � X� there exists an operator A � G with x � A��x�	

�iii� For all x� y � X� the inequality hx� yi 
 h��x�� ��y�i holds	
In other words� �X�G� �� is a normal decomposition system	

Proof� Only �iii� is not immediately clear	 Suppose x� y � X	 Then� using
Proposition �	� and the fact that # is an isometry� we estimate hx� yi 

h��x�� ��y�i � h#��x��#��y�i � h��x�� ��y�i	 �

� Examples

��� R
n

Consider the vector space
X � R

n�

the polynomial

p�x� �
nY
i��

xi�

and the direction
d � ��� �� ���� ���

��



Then p is hyperbolic and complete with eigenvalue map

��x� � x��

The induced norm and inner product in X are just the standard Euclidean
ones in Rn	 The invariance group G is the set of all linear transformations of
the form

G � f�x�� x�� ���� xn� �� �x����� x����� ���� x��n�� j
 is a permutationg�
Clearly G is isomorphic to the symmetric group Sn	 We have ran� � Rn

�

and so we can choose a diagonalizing map # � span ran � �� X to be
the identity map	 Hence� by Theorem �	�� p is isometric	 In this case the
sharpened Cauchy
Schwarz inequality �Proposition �	�� reduces to the well

known Hardy
Littlewood
P%olya inequality �see ���� Chapter X��	

xTy 
 xT� y�

and Theorem �	� shows equality holds if and only if the vectors x and y can
be simultaneously ordered with the same permutation	 Since ran� � Rn

��
Corollary �	� shows that for every symmetric function f � Rn� ��
��
�
we have

�f � ��� � f� � ��
Also Lidskii�s Theorem holds� because ��x� is the ordered set of eigenvalues
of the symmetric matrix Diag�x� �see ��� page ����	

��� Hermitian matrices

In this section we summarize the example we have followed throughout the
paper	 Consider the vector space Hn �of n � n Hermitians matrices�� and
denote the ordered eigenvalues of a matrix x � Hn by !���x� � !���x� �
��� � !�n�x�	 In the case of Hermitian matrices� the Frobenius ���� page ����
norm can be de
ned by kxkF � k!��x�k� where the last norm is the standard
Euclidean norm in Rn	 Let

X � Hn�

the polynomial be
p�x� � detx�

and the direction be
d � I�

��



Then p is hyperbolic and complete with eigenvalue map

��x� � !��x��

The induced norm and inner product in X are given by

kxk� � kxk�F �
hx� yi � trxy�

The invariance group G consists of all linear transformations on X that pre

serve the eigenvalues of every x � X	 Then from ���� Theorem �� it follows
that

G � fx �� u�xu� x �� u�xTujuunitaryg�
Clearly we have ran� � Rn

�	 We can choose a diagonalizing map
# � span ran � �� X to be

#��x�� x�� ���� xn�� � Diag �x�� x�� ���� xn��

Hence� by Theorem �	�� p is isometric	 In this case the sharpened Cauchy

Schwarz inequality �Proposition �	�� reduces to Fan�s inequality�

trxTy 
 !��x�T !��y�

and Theorem �	� shows equality holds if and only if the matrices x and y
can be simultaneously unitarily diagonalized �with eigenvalues in decreasing
order�� which is due to Theobald	 Since ran� � Rn

�� Corollary �	� implies
that for every symmetric function f � Rn � ��
��
� we have

�f � ��� � f� � ��
It is well known that Lidskii�s theorem holds in this case �see��� Section
III	���	
Note that there is an entirely analogous example on the space of n by n real
symmetric matrices	

��� Singular values

Consider the vector space Mn�m �of n by m real matrices�	 We assume m 
 n
and denote the singular values of a matrix x in Mn�m by ���x� � ���x� �
��� � �m�x�	 The Frobenius norm ���� page ��� & page ���� is de
ned by

��



kxkF � k��x�k� where the last norm is the standard Euclidean norm in Rn�
and ��x� � ����x�� ���x�� ���� �m�x��	 Now consider the vector space

X �Mn�m �R�

the polynomial

p�x� 
� � det �
�Im � xTx� �x �Mn�m� 
 � R��

and the direction
d � ��� ���

Then p is hyperbolic and complete with eigenvalue map

��x� 
� � �
 � ���x�� 
� ���x�� ���� 
� ���x�� 
� ���x���

The induced norm and inner product are given by

k�x� 
�k� � �m
� � �kxk�F �
h�x� 
�� �x� ��i � �m
� � �trxTy�

for �x� 
� and �y� �� in X	 It is not di�cult to see that if T � G then
T �x� 
� � � !Tx� 
�� where !T is a linear operator on Mn�m preserving all sin

gular values	 Then from the main theorem in ���� or in ����� it follows that
the invariance group G is�

G �


 f�x� 
� �� �uxv� 
� ju� v orthogonalg� �m	n�
f�x� 
� �� �uxv� 
�� �x� 
� �� �uxTv� 
� ju� v orthogonalg� �m�n�

The span of ran� decomposes as a direct sum�

span ran � � Re� fs � R�m j s�m�i�� � �si� 	ig�
where the vector e � R�m has all components �� and then we can choose a
diagonalizing map #� span ran � �� X to be

#�
e� s� � �Diag�s�� s�� ���� sm�� 
��

where �Diag�s�� s�� ���� sm��i�j � si if i � j and � otherwise	 Hence� by The

orem �	�� p is isometric	 Notice that in this case the sharpened Cauchy

Schwarz inequality �Proposition �	�� reduces to

trxTy 
 ��x�T��y��

��



and Theorem �	� shows equality holds if and only if x and y have a simul

taneous 'ordered� singular value decomposition �that is� there are unitary
matrices u and v such that x � u�Diag ��x��v and y � u�Diag ��y��v �	 This
is the classical result known as 'von Neumann�s Lemma� �see for example ����
page �����	
Note that when m � � we get the Lorentz Cone example which is discussed
below	 An analogous example can be obtained by considering the vector
space X � C n�m �R	

(((

We now show that for some functions in the singular value case we have
�f � ��� �� f� � �	 Consider the symmetric function

f�u� � max
��i�m

ui�

Then

f��v� �



��

Pm
i�� vi � �� vi � �

�
� else

Now let m � �	 Then ran� � f
e � ��� �������� j� � � � �g	 Let
v � �

�
��� �� ����� � ran �	 Let y � X be such that ��y� � v	 It is

straightforward to check that h��z�� ��y�i � ���z� 	 z � X	 It follows from
the sharpened Cauchy
Schwarz inequality �Proposition �	�� that hz� yi 

���z� 	 z � X	 Then

�f � ����y� � ����y� � sup
z �X

fhz� yi � ���z�g � ��

On the other hand clearly

�f� � ���y� � f��v� � �
�

(((

In this subsection we show Lidskii�s theorem holds for this example	 So we
want to show that for all �x� 
�� �y� �� � X

wT ���x � y� 
� ��� ��x� 
�� 
 wT
� ��y� �� 	w � R�m�

This is equivalent to

wT ����x� y�� ����x� y����� ���x�� ����x����� 
 wT
� ���y�� ����y�����

��



for all w � R�m	 Now assume n � m and let ) be the eigenvalue map
�ordered decreasingly� in H�m	 But we have �see ���� Theorem �	�	� ��

)

�
� x
xT �

�
�

�
��x�

����x���
�
�

so the above inequality is equivalent to

wT

�
)

�
� x� y

�x� y�T �

�
� )

�
� x
xT �

��

 wT

� )

�
� y
yT �

�
�

for all w in R�m� which is true by Lidskii�s Theorem in H�m	 Hence Lidskii�s
theorem holds when n � m	

��	 Absolute reordering

Consider the vector space
X � R

n�R

Let the polynomial be

p�x� 
� �
nY
i��

�
� � x�i ��

and the direction be
d � ��� ���

Then p is hyperbolic and complete with eigenvalue map

��x� 
� � �jxj�� ��jxj��� � 
e�

where jxj � �jx�j� jx�j� � � � � jxnj�� and e � ��� �� � � � � �� � R�n	 If kxk� denotes
the standard Euclidean norm in Rn� then the induced norm and inner product
in X are given by

k�x� 
�k� � �kxk�� � �n
��

h�x� 
�� �y� ��i � �
nX
i��

xiyi � �n
��

The invariance group G is

G � f�x� 
� �� �P���x� 
� jP��� is a signed permutation matrixg�

��



where a signed permutation matrix has only one nonzero entry in each row
and column which is either �� or ��	 The span of ran� decomposes as a
direct sum�

span ran � � Re� fs � R�n
� j s�n�i�� � �si� 	ig�

We can choose a diagonalizing map #� span ran � �� X to be

#�
e� s� � ��s�� s�� � � � � sn�� 
� �

Hence� by Theorem �	�� p is isometric	 In this case the sharpened Cauchy

Schwarz inequality �Proposition �	�� reduces to the well
known inequality
�see ���� section ���

xTy 
 jxjT� jyj�
and Theorem �	� shows equality holds if and only if the vectors x and y can
be simultaneously ordered with the same signed permutation	
Note that the similarities with the previous example are not accidental	 It
corresponds to the subspace �Diag Rn��R of Mn�m�R	 So we can immedi

ately see that for some functions f we have �f � ��� �� f� � �	 Also because
jxj� � ��Diag�x��� one sees� from the corresponding part in the previous
example� that Lidskii�s Theorem holds	

��
 Lorentz cone

Let the vector space be
X � R

n�

and the polynomial be

p�x� � xTAx � x�� � x�� � � � � � x�n�

where A � Diag��������� ������� � Mn �n � n real matrices�	 Let the
direction be

d � �d�� d�� ���� dn� � X such that d�� � d�� � � � �� d�n�

Then p is hyperbolic and complete with eigenvalue map

��x� �

�
xTAd�

p
D�x�

p�d�
�
xTAd�

p
D�x�

p�d�

�
�

��



where D�x� � �xTAd��� p�x�p�d� is the discriminant of p�x� td� considered
as a quadratic polynomial in t	 �The fact that D�x� � � for each x� and so
that p�x� is hyperbolic� is the well
known Aczel inequality� see ���� p	���	�
The induced norm and inner product are given by

kxk� � �
��xTAd�� � p�x�p�d�

p�d��
� and

hx� yi � ��xTAd��yTAd�� ��xTAy�p�d�

p�d��
�

for x and y in X	 Immediately from the de
nition the invariance group G is

G � fB � Mn jBTAB � A and BTAd � Adg�
We now show that the mapping � � X � R�

� is onto	 Indeed� 
x �t�� t�� � R�
��

and let l be an arbitrary� 
xed nonzero vector from fdg� � X	 �The reader
can easily verify that l � fdg� if and only if lTAd � �	� Set 
 �� �

��t� � t���

and v ��
q
�p�d�

p�l�

�
t��t�
�

�
l	 Then we have ��
d � v� � �t�� t��	 Clearly then

span ran � � R
��

Above we have to make sure that p�l� 	 �	 Indeed� because the discriminant
of p�x� is always nonnegative we get that p�l� 
 �	 Suppose that p�l� � ��
then this together with lTAd � �� and dtAd � � gives us the three rela

tions� l�� � $lT$l� d�l� � $dT$l� d�� � $dT $d� where we have used the notation
$x � �x�� ���� xn�� and the dot product in the relations is the usual one in
R

n��	 Notice that $l �� � or otherwise l � �	 Then from the Cauchy
Schwarz
inequality we get� jd�l�j� � j $dT$lj� 
 j $dT $djj$lT$lj 	 d��l

�
�� contradiction	

We can choose a diagonalizing map #� span ran � �� X to be

#�u�� u�� �
u� � u�

�
d�

s
�p�d�
p�l�

�
u� � u�

�

�
l�

where again� l is an arbitrary� 
xed� nonzero vector from fdg� � X	 �The
reader can easily verify that De
nition �	� of the map # is satis
ed	� Hence�
by Theorem �	�� p is isometric	 Notice that in this case the sharpened
Cauchy
Schwarz inequality �Proposition �	�� becomes

�xTAd��yTAd�� �xTAy�p�d� 

p
D�x�D�y��

��



and Theorem �	� gives the necessary and su�cient condition for equality	
Let f � ��� �� ���� �� � Rn	 The fact that Lidskii�s Theorem holds for the
polynomial p�x� in the direction f is clear from the corresponding discussion
in section �	�	 For arbitrary direction� note that� by ��� pages �
��� we have
that the hyperbolicity cone C�p� d� � fx � Rnjx�� � x�� � � � � � x�ng is homo�
geneous� that is� there is an orthogonal linear map U � Rn � Rn such that
�� p�Ux� � p�x�
�� Ud � f 	
Hence the triples �X� p� d� and �X� p� f� are isomorphic	 So from Proposition
�	� we see that Lidskii�s Theorem holds again	

(((

We note that if Y is a subspace of Hs �for some positive integer s�� d � Y
and d � �� then q�y� � det y is a hyperbolic polynomial over Y with respect

to the direction d	 Indeed q�y� td� � det �d� det �d�
�

�yd�
�

� � tI� and all the

eigenvalues of d�
�

�yd�
�

� are real numbers because it is a hermitian matrix	
Triples of this type will be called standard hyperbolic triples	

Many of our examples are isomorphic to a standard hyperbolic triple	 For
the example in section �	�� consider the map ��x� � Diag�x�	 Then clearly
p�x� � det ��x�	 For the example in section �	� it is clear	 The example
in section �	� is 'almost� isomorphic to a standard hyperbolic triple as well	
Indeed� consider the mapping � � Mn�m �R � Hn�m de
ned by�

�x� 
� ���
�


In x
xT 
Im

�
�

then 
n�mp�x� 
� � det ��x� 
�	

If we consider �a slight variation� the hyperbolic polynomial

p�x� 
� � det�
�I � xxT �

with respect to d � ��� ��� where again x � X � Mn�m � R	 Then the
mapping � � Mn�m � R � H�n de
ned by�

�x� 
� ��
�
� 
In�m � �

� 
Im xT

� x 
In

�
A

��



gives an isomorphism between �X� p� d� and a standard hyperbolic triple	 The
fact that p�x� 
� � det ��x� 
� follows from the identity�

det

�
� 
In�m � �

� 
Im xT

� x 
In

�
A �

det

�
� In�m � �

� Im �
� � �

	
x In

�
A
�
� 
In�m � �

� 
Im xT

� x 
In

�
A
�
� In�m � �

� Im � �
	
xT

� � In

�
A

� det

�
� 
In�m � �

� 
Im �
� � 
In � �

	
xxT

�
A � det�
�In � xxT ��

When 
 � � the conclusion of the above identity still holds� one just needs
to consider the two cases n � m and n 	 m separately	

In general though it is not true that every hyperbolic triple is isomorphic to
a standard hyperbolic triple� consider for example X � R

��

p�x� � x�� � x�� � x�� � x�	 � x��� d � ��� �� �� �� ���

Suppose there is a linear isomorphism � � X � Y � Hs� such that p�x� �
det��x�� and ��d� � �	
Because p is homogeneous of degree � we have t�p�x� � p�tx� � det��tx� �
det t��x� � ts det��x�	 Hence we see that s � �	
Because � is linear� there are vectors a� b� c� f � R� such that for every x � R�

we have

p�x� � det

�
aTx bTx� icTx

bTx� icTx fTx

�
�

There is a nonzero vector x � R� such that x� � �� and x � spanfa� b� cg	 So
� �� �kxk� � p�x� � det��x� � �� a contradiction	 Of course this example
doesn�t disprove the conjecture made in ����� which concerns polynomials in
only two variables	

��� The degree � case

In this section we show that every complete hyperbolic polynomial of degree
two is isometric	 Let the vector space be

X � R
n�

��



We will assume that p�x� is hyperbolic polynomial of degree two with respect
to a vector d	 Without loss of generality� we write

p�x� � xTAx�

where A � Hn	 Proposition �	� implies that if S � X � X is a nonsingular
linear transformation� then q�y� �� p�Sy� is hyperbolic with respect to l �
S��d	

Lemma ��� If p�x� � xtAx is hyperbolic� then p is complete if and only if
A is nonsingular	

Proof� Because of Fact �	��� the linearity space of p�x� in our case is
fx � X � �tx � y�TA�tx � y� � yTAy� 	y � X� 	t � Rg � fx � X �
xTAx t� � �xTAy t � � 	y � X� 	t � Rg� fx � X � xTAx � � and xTAy �
� 	y � Xg � fx � X � Ax � �g � f�g i� A is nonsingular	 �

Proposition �	�� now says that if p�x� is a complete hyperbolic polynomial
with respect to d� and S � X � X is a nonsingular linear transformation�
then q�y� �� p�Sy� is also a complete hyperbolic polynomial with respect to
l � S��d	

Lemma ��� Let p�x� � xTAx be a complete� hyperbolic polynomial� with
respect to d of degree two	 Then the symmetric matrix A is nonsingular and
has exactly �n��� eigenvalues of one sign� and � eigenvalue with the opposite
sign	

Proof� The nonsingularity of A follows from the previous lemma	 Now�
because p�x� is hyperbolic with respect to d� we have that the discriminant
of the quadratic function

t �� �x� td�TA�x� td��

�dTAx����dTAd��xTAx� is nonnegative 	x � X	 This inequality implies two
things	 First A cannot be positive de
nite because then the Cauchy
Schwarz
inequality for the scalar product de
ned by A contradicts the nonnegativity
of the discriminant	 Similarly� A cannot be negative de
nite	 Without loss
of generality we can assume that that dTAd � �� so for every x in the
�n� ��
dimensional orthogonal complement �with respect to the usual inner

��



product� of the vector Ad we have � � xTAx	 This implies that A has at
least �n � �� nonpositive eigenvalues� but none of them can be zero� so A
has �n��� strictly negative eigenvalues	 The last eigenvalue must be strictly
positive� because A cannot be negative semide
nite	 The case dTAd 	 � is
handled analogously	 �

Now� Proposition �	� says that if p�x� is an isometric� complete hyperbolic
polynomial with respect to d� and S � X � X is a nonsingular linear trans

formation� then q�y� �� p�Sy� is also an isometric� complete� hyperbolic
polynomial with respect to l � S��d	

Let p�x� � xTAx be isometric with respect to d	 Without loss of generality we
can assume that p�d� � �	 By Sylvester�s theorem in the linear algebra �see
for example ����� Theorem �	�	��� there exists a nonsingular transformation
x � Sy of the variable x such that q�y� �� p�Sy� has the form� q�y� �
y�� � y�� � � � � y�n	 Moreover� from the above� q�y� is hyperbolic with respect
to S��d	 Because the subsection about the Lorentz cone showed that q�y� �
y��� y��� � � �� y�n is isometric with respect to any d in the hyperbolicity cone
of q� and C�q� l� � S���C�p� d�� we answered the question about isometricity
for the whole class of hyperbolic polynomials of degree two	

��� Antisymmetric tensor powers

Consider the function p�x� � det x on the vector space of n � n real sym

metric �or Hermitian� matrices� and let q � Ek be the elementary symmetric
function of order k and pk�x� � Ek � ��x�	 We saw earlier that pk is a
hyperbolic polynomial with respect to the identity matrix I	 We have

pk�x� �
X

	��i��i������ik�

detx�
j
� � tr
��kx

�
�

where x�
j
� is the principal submatrix obtained from x by keeping its rows
and columns i�� � � � � ik� and the second equality above can be regarded as the
de
nition of the symbol tr

��kx
�
	 For the 
rst equality above one can see

����� and justi
cation for the use the the symbol tr
��kx

�
can be found in

the explanations below	 Now� from Corollary �	��� De
nition �	�� and from
the fact that pk�x� � tr

��kx
�
is a homogeneous hyperbolic polynomial� it

��



follows immediately that

tr
��k�x� y�

���k � tr
��kx

���k
� tr

��ky
���k

�

when x� y are symmetric and positive de
nite	 This is one of the main results
in ����	

(((

We give some preliminary de
nitions and facts about tensor spaces� they can
be found in ��� and ���	 Let E�� � � � � Ek be k copies of a given vector space E	
Consider the free vector space C � C�E��� � ��Ek� over the set E��� � ��Ek	
Let N � N�E�� � � � � Ek� be the subspace of C generated by the elements

�x�� � � � � 
y� � �y�� � � � � xk�� 
�x�� � � � � y�� � � � � xk�� ��x�� � � � � y�� � � � � xk��

for all indexes i and for all y�� y� � Ei and xj � Ej 	 j �� i	 Denote by 
 the
canonical projection of C onto the space G � C�N and de
ne a mapping

� � E� � � � � � Ek � C�N

by setting
��x�� � � � � xk� � 
�x�� � � � � xk��

We call the pair �G��� a tensor product of E�� � � � � Ek and we will denote
��x�� � � � � xk� by x� � � � � � xk 
 the tensor product of the vectors x�� � � � � xk	
The vector space G is sometimes denoted by �kE	 The antisymmetric
tensor product of vectors x�� � � � � xk � E is de
ned and denoted by

x� � � � � � xk � �k��
�

�

X
�

��x���� � � � � � x��k��

where � runs over all permutations of the k indices and �� is ��� depending
on whether � is an even or odd permutation	 Clearly x� � � � � � xk � �kE	
The span of all antisymmetric tensors x� � � � � � xk in �kE is denoted by
�kE and is called the kth antisymmetric tensor product of E	 If the
vector space E is an Euclidean space then �kE can also be made Euclidean
by de
ning inner product as follows

hx� � � � � � xk� y� � � � � � yki � det�hxi� yji�k�ki�j���

��



and extending it linearly to the whole space �kE �it is well de
ned��	 If
the vector space E has dimension n and e�� � � � � en is an orthonormal ba

sis� then eI � ei� � � � � � eik is an orthonormal basis of �kE� where I �
f�i�� i�� � � � � ik� j � 
 i� 	 i� 	 � � � 	 ik 
 ng	 Moreover if we are given linear
operator A on E it can be extended in a unique way to a linear operation on
�kE by

A�x� � � � � � xk� � A�x�� � � � � �A�xk��
and extending it linearly to the whole space �kE �it is again well de
ned��	
The linear operator on �kE induced by A will be denoted by �kA	

��� Unitary invariant norms

In this section we derive a well known von Neumann�s theorem about unitary
invariant norms as a consequence of the convexity results in this paper	

In ����� von Neumann ���� gave a famous characterization of unitary invari

ant matrix norms �that is� norms f on Cm�n satisfying f�uxv� � f�x� for
all unitary matrices u and v and matrices x in Cm�n �	 His result states that
such norms are those functions of the form g � �� where the map

x � C
m�n �� ��x� � R

m

has components the singular values ���x� � ���x� � ��� � �m�x� of x �as

suming m 
 n� and g is a norm on Rm� invariant under sign changes and
permutations of components	 Proof of this can be found also in ���� Theorem
�	�	���	

For x � Rm� let jxj� have components jxij arranged in decreasing order	

Lemma ��� For x� y� � � Rm� such that �� � �� � ��� � �m � �� and
� � ��� ��� we have

h�� j�x � ��� ��yj�i 
 h�� �jxj� � �� � ��jyj�i�
Proof� Apply Theorem �	� and Example �	� from ����� with X � Rm�
G �signed permutation matrices� ��x� � jxj�	 �

Now de
ne H � R�n� Rn by

H�u� � �
��v� � v�� v	 � v�� � � � � v�n�� � v�n��

where v � juj�	

��



Lemma ��� For u� v � R�n� z � Rn such that z� � z� � ��� � zn � �� and
� � ��� �� we have

hz�H��u � ��� ��v�i 
 hz� �H�u� � �� � ��H�v�i�

Proof� Apply Lemma �	� with m � �n and ��i�� � ��i � zi	 �

Now suppose g � Rn �� ��
��
� is convex and absolutely symmetric �that
is� g�x� � g�jxj��� 	x�	

Lemma ��� g�H��u � ��� ��v�� 
 �g�H�u�� � ��� ��g�H�v��	

Proof� Apply Theorem �	� from ���� to Lemma �	�	 �

Now de
ne f � R�n �� ��
��
� by f�u� � g�H�u��	

Lemma ��
 The function f is absolutely symmetric and convex	

Proof� Notice that H�juj�� � H�u�	 Consequently� f�juj�� � g�H�juj��� �
g�H�u�� � f�u�� 	u	 So f is absolutely symmetric	 The convexity follows
from Lemma �	�	 �

Theorem ��� �von Neumann� The function g � � is convex	

Proof� Using Section �	� where X � Mn�m �R� p�x� 
� � det�
�I �xTx��
and d � ��� ��� we have that ��x� �� � ����x�� ���� �m�x����m�x�� ��������x��	
So H���x� ��� � ��x�	 Then 
nally g���x�� � f���x� ���� which� because of
Theorem �	�� is convex in x	 �
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