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Abstract

A homogeneous polynomial p(z) is hyperbolic with respect to a given
vector d if the real polynomial ¢t — p(z + td) has all real roots for
all vectors z. We show that any symmetric convex function of these
roots is a convex function of z, generalizing a fundamental result of
Garding. Consequently we are able to prove a number of deep results
about hyperbolic polynomials with ease. In particular, our result sub-
sumes Davis’s characterization of convex functions of the eigenvalues
of Hermitian matrices, and von Neumann’s classical result on unitar-
ily invariant matrix norms. We then develop various convex-analytic
tools for such symmetric functions, of interest in interior-point meth-
ods for optimization problems posed over related cones.
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1 Introduction

A beautiful result of Davis [6] states that for any symmetric convex function
f on R™, the function

(1) Z € 5" — f(MZ))

is convex. We call a function symmetric if it is invariant under permutations
of its arguments. For any matrix Z in S, the space of n x n real symmetric
matrices, the vector A(Z) has components the eigenvalues of Z, arranged in
decreasing order.

This convexity theorem has a strong resemblance to a famous result of von
Neumann [31], characterizing unitarily invariant matrix norms as symmetric
gauge functions of the singular values. Indeed, the analogy is not accidental:
the paper [19] develops an axiomatic framework subsuming both models, and
at a more sophisticated level, both results follow quickly from the Kostant
convexity theorem in semisimple Lie theory [20].

The work we describe in this current paper also concerns the above type of
convexity result, but with a very different and remarkably simple approach.
To illustrate the key idea, consider the determinant as a function on S™. This
function is a homogeneous polynomial which is hyperbolic with respect to the
identity matrix I: that is, the real polynomial

t € R s det(Z — tI)

has all real roots, namely the eigenvalues A;(Z). The properties of such poly-
nomials play a significant role in the partial differential equations literature
(see for example [13])), but we use just one, central result, due to Garding
[8]: the largest root A;(-) is always a convex function.

Working from Garding’s result, we show, just like Davis’s theorem, that any
symmetric convex function of the roots A;(+) is convex. The richness of the



class of hyperbolic polynomials then allows us to derive many elegant (and
often classical) inequalities in a unified fashion. Examples include beautiful
properties of the elementary symmetric functions. One particular hyperbolic
polynomial leads back to von Neumann’s result.

The second half of this paper is convex-analytic in character. Functions of
the form (1) are fundamental in eigenvalue optimization and semidefinite
programming [22]. They have an attractive duality theory: the Fenchel con-
jugate of the function (1) is described elegantly by the formula (foA)* = f*oA
[18]. Analogously, von Neumann proved a similar result for unitarily invari-
ant norms, useful in matrix approximation problems [14].

Hyperbolic polynomials offer a a unifying framework in which to study such
convexity and duality results. They also have potential application in mod-
ern interior point methodology. Associated with any hyperbolic polynomial
comes a closed convex hyperbolicity cone which, with the above notation, we
can write

(Z:0(2) >0 i)

For example, in the symmetric matrix case this is simply the cone of positive
semidefinite matrices. Giiler has shown how optimization problems over such
cones are good candidates for interior point algorithms analogous to the
dramatically successful techniques current in semidefinite programming [10].
With these aims in mind, we develop an attractive duality theory and convex-
analytic tools for symmetric convex functions of the roots associated with
general hyperbolic polynomials.

Notation

We write R, (resp. R7) for the set {u € R™ :u; > 0,Vi} (resp. {u € R™:
u; > 0,Yi}. The closure (resp. boundary, convex hull, linear span) of a set
S is denoted clS (resp. bd S, conv S, spanS). A cone is a nonempty set
that contains every nonnegative multiple of all its members. If v € R™, then
uy 1s the vector v with its coordinates arranged decreasingly; also, U, :=
{uy : uw € U}, for every subset U of R™. The transpose of a matrix (or
vector) A is denoted AT. The identity matrix or map is written /. Suppose
X is a Euclidean space with inner product (-,-) and h : X — [—o0,+00]
is convex, then h* (resp. Oh, Vh, dom h) stands for the Fenchel conjugate
(vesp. subdifferential map, gradient map, domain) of h. (Rockafellar’s [30] is



the standard reference for these notions from convex analysis.) Higher order
derivatives are denoted by V*h. If U C X, then the positive polar cone is
U® :={z e X : (z,U) > 0}. If Ais a linear operator between Euclidean
spaces, then its conjugate is written A*. The range of a map A is denoted by
ran A. Finally, if A, B are two subsets of X, then d(A, B) :=inf ||A — B]| is
the distance between A and B.

2 Tools

We assume throughout the paper that

X is a finite-dimensional real vector space.

This section contains a selection of important facts on hyperbolic polynomials
from Garding’s fundamental work [8], and a deep inequality on elementary
symmetric functions.

Hyperbolic polynomials and eigenvalues

Definition 2.1 (homogeneous polynomial) Suppose p is a nonconstant
polynomial on X and m is a positive integer. Then p is homogeneous of
degree m, if p(tz) = t"p(z), for all t € R and every z € X.

Definition 2.2 (hyperbolic polynomial) Suppose that p is a homoge-
neous polynomial of degree m on X and d € X with p(d) # 0. Then p
is hyperbolic with respect to d, if the polynomial ¢ — p(z 4 td) (where ¢ is a
scalar) has only real zeros, for every z € X.

Definition 2.3 (“eigenvalues and trace”) Suppose p is hyperbolic with
respect to d € X of degree m. Then for every x € X, we can write

p(z +td) = ﬁ

=1

and assume without loss of generality that Aj(z) > Ag(z) > Am(2).
The corresponding map X — R : z = (A(2),... , An(2)) is denoted by A
and called the eigenvalue map (wzth respect to p cmd d). We say that \;(z)



is the i*h largest eigenvalue of = (with respect to p and d) and define the sum
of the k largest eigenvalues by o 1= Ele A;, for every 1 < k < m. The
function a,, is called the trace.

The eigenvalues {\;(z)} are thus the roots of the polynomial ¢ — p(z—td). It
follows that the trace o,, is linear (see also the paragraph following Fact 2.13).
Unless stated otherwise, we assume throughout the paper that

p is a hyperbolic polynomial of degree m with respect to d,
with eigenvalue map A and oy, := Ele Ak,

for every 1 < k < m. The notions “eigenvalues” and “trace” are well-
motivated by the the following example.

The Hermitian matrices. Let X be the real vector space of the m x m
Hermitian matrices and p := det. Then p is hyperbolic of degree m with
respect to d := I and XA maps z € X to its eigenvalues, arranged decreasingly.
Thus for every 1 < k < m, the function oy, is indeed the sum of the k largest
eigenvalues and o, is the (ordinary) trace.

As we go, we will point out what some of the results become in the important
case of the Hermitian matrices. Further examples are provided in Section 6.
A simple way to generate new hyperbolic polynomials is differentiation:

Proposition 2.4 If m > 1, then ¢(z) := Lp(z + td)‘tzo = (Vp(z))(d) is
hyperbolic with respect to d.
Proof. This is essentially Rolle’s theorem; see also [8, Lemma 1]. W

The following property of the eigenvalues is well-known ([8, Equation (2)]).
Fact 2.5 For all r,s € R and every 1 <i < m:

Ai(re + sd) = {r/\i(:B)—I_S7 i 20.;

PAm+1-i(2) + 8, otherwise.
Hence the eigenvalue map A is positively homogeneous (A(tz) = tA(z), for all
t > 0 and every € X) and continuous (use, for instance, [29, Appendix A]).
Garding showed that the largest eigenvalue map is sublinear, that is, posi-
tively homogeneous and convex.



Theorem 2.6 (Garding) The largest eigenvalue map )\ is sublinear.

Proof. Positive homogeneity follows from Fact 2.5. Now Garding showed
that A, is concave [8, Theorem 2|, which is equivalent to the convexity of
A1, since Ay (—z) = —Ap(z), for every z € X. W

The Hermitian matrices (continued). It is well-known that the largest eigen-
value map is convex in this case; see, for instance, [12].

Hyperbolicity cone
Definition 2.7 (hyperbolicity cone) The hyperbolicity cone of p with re-
spect to d, written C'(d) or C(p,d), is the set {z € X : p(x +td) # 0,Vt > 0}.

Fact 2.8 C(d) = {z € X : \,u(z) > 0}. Hence C(d) is an open convex cone
that contains d with closure c1C(d) = {x € X : A, (z) > 0}. If ¢ € C(d),
then p is hyperbolic with respect to ¢ and C(c¢) = C(d).

Proof. See Garding’s [8, Section 2]. W

Definition 2.9 (complete hyperbolic polynomial) p is complete if
{z € X :A(z) =0} ={0}.

Fact 2.10 Suppose p is hyperbolic with respect to d, with corresponding
eigenvalue map A and hyperbolicity cone C(d). Then

{teX: AMz)=0}={zeX :2+C(d)=C(d)}
={z e X :ptz+y)=ply),Vy € X,Vt € R}.

Consequently, {z € X : A(z) = 0} = clC(d) N (—clC(d)).

Proof. See Garding’s [8, Section 3]. The “Consequently” part follows readily
from the displayed equation and the openness of C(d). W

The Hermitian matrices (continued). The hyperbolicity cone of p = det with
respect to d = I is the set of all positive definite matrices. The polynomial
p = det is complete, since every nonzero Hermitian matrix has at least one
nonzero eigenvalue.



Elementary symmetric functions

Definition 2.11 (symmetric function) A function f on R™is symmetric,
if f(u) = f(un@)), for all permutations 7 of {1,... ,m} and every u € R™.

Definition 2.12 (elementary symmetric functions) For any given in-
teger k = 1,2,... ,m, the map By : R™ — R 1w >, . Hle w;, 18

called the k* elementary symmetric function on R™. We also set Ey := 1.

Fact 2.13 For every z € X and all ¢ € R,

p(z +td) = p(d) [Tt + Xi(2)) = p(d) Y Bi(A(w))t™

m m

and for every 0 <1 < m,

PAE(NE) = o V)

m—1 times

If 1 <¢ < m, then E; o A is hyperbolic with respect to d of degree .

Proof. The first displayed equation is elementary while the second displayed
equation is a consequence of Taylor’s Theorem. The “If” part follows by
employing Proposition 2.4 repeatedly. B

Fact 2.13 gives a very transparent proof of the linearity of trace: o, = E;0A
is a homogeneous (hyperbolic) polynomial of degree 1 and hence linear.

Also, the elementary symmetric functions themselves are hyperbolic:

Example 2.14 Let X = R™ and d = (1,1,...,1) € R™ Then for every
1 < k < m, the k** elementary symmetric function Ej, is hyperbolic of degree
k with respect to d.

Proof. Let p := E,,. It is straightforward to check that E,, is hyperbolic
of degree m with respect to d with corresponding eigenvalue map A(z) = ;.
Since each Ej, is symmetric, the result now follows from Fact 2.13. N



An inequality in elementary symmetric functions

The following inequality was discovered independently by McLeod [26] and
by Bullen and Marcus [4, Theorem 3.

Fact 2.15 (McLeod, 1959; Bullen and Marcus, 1961) Suppose 1 < k <1 <
m and u,v € RT, . Set ¢ := (El/El_k)l/k. Then

q(u +v) > q(u) + q(v),
unless u and v are proportional or k = [ = 1, in which case we have equality.

Bullen and Marcus’s proof relies on an inequality by Marcus and Lopes ([23,
Theorem 1], which is the case & = 1 in Fact 2.15. (Proofs can also be found
in [2, Theorem 1.16], [5, Section V.4], and [28, Section VL.5].)

We record two interesting consequences of Fact 2.15.

Corollary 2.16 (Marcus and Lopes’s [23, Theorem 2]) The function —EY™

m

is sublinear on R,

and it vanishes on bd R’f.

Proof. Set k =1 = m in Fact 2.15 and use continuity. M

Recall that a function h is called logarithmically convez, if log oh is convex.
The function ¢ in Fact 2.15 is concave (“strictly modulo rays”), which yields
logarithmic and strict convexity of 1/¢:

Proposition 2.17 Suppose ¢ is a function defined on R7',. Consider the
following properties:

(1) the range of ¢ is contained in (0, +o00);

(i) g(ru) = rq(u), for all » > 0 and every u € R ;

(iii) q(u 4 v) > q(u) + q(v), for all u,v € R ;

(iv) if w,v € R, with g(u 4+ v) = q(u) + q(v), then v = pu, for some p > 0.
Suppose ¢ satisfies (i)—(iii). Then 1/q is logarithmically convex. If further-
more (iv) holds, then 1/q is strictly convex.

Proof. The proof is straight forward. See [1] for details. W

Corollary 2.18 Suppose 1 < k <1 < m. Then the function (E;_/E;)*/* is
symmetric, positively homogeneous, and logarithmically convex. Moreover,
the function is strictly convex on R, unless [ = 1 and m > 2.

Proof. Positive homogeneity and symmetry are clear. Log convexity follows
by combining Proposition 2.17 and Fact 2.15; this even yields strict convexity
unless k =1 = 1. But if k = [ = 1, then the function becomes 1/ 7" u;,
which is strictly convex exactly when m =1. W

8



3 Convexity

Sublinearity of the sum of the largest eigenvalues

Theorem 3.1 Suppose ¢ is a homogeneous symmetric polynomial of degree
n on R™, hyperbolic with respect to e := (1,1,... ,1) € R™, with eigenvalue
map p. Then

qgo

is a hyperbolic polynomial of degree n with respect to d and its eigenvalue
map is o A.

Proof. For simplicity, write p for g o .

Step 1: p is a polynomial on X.

Since ¢(y) is a symmetric polynomial on R™, it is (by, e.g., [16, Proposi-
tion V.2.20.(i1)]) a polynomial in Ei(y),...,En(y). On the other hand, by
Fact 2.13, E; o A is hyperbolic with respect to d of degree 7, for 1 <17 < m.
Altogether, p(z) = q(A(z)) is a polynomial on X.

Step 2: p is homogeneous of degree n.

Since ¢ is symmetric and homogeneous, and in view of Fact 2.5, we obtain
p(txe) = q(A(tz)) = t"p(z), for all t € R and every z € X.

Step 3: p(d) # 0.
Again using Fact 2.5, we have p(d) = q(A(d)) = q(e) # 0.

Step 4: p is hyperbolic with respect to d.
Using once more Fact 2.5, we write for every z € X and all ¢ € R:

5o+ ) = a(\(w -+ 1)) = a(\2) + 16) = a(e) [ + mAw)).

The next example is easy to check.

Example 3.2 Fix 1 <k <m,set e:=(1,1,...,1) € R™, and let

q(u) := H Z i,

1<81 <p < <2 < 1=1

Then ¢ is a homogeneous symmetric polynomial on R™ of degree (7;‘), hy-

perbolic with respect to e, and its eigenvalues are {% Ele w, 11 <1y <ig <
-« < ir < m}. In particular, the largest eigenvalue of ¢ is the arithmetic
mean of the k largest components of u.

9



We now present our main result, the generalization of Theorem 2.6: the sum
of the largest eigenvalues is sublinear. This readily implies Lipschitzness of
the eigenvalue map.

Corollary 3.3 For every 1 < k < m, the function oy, is sublinear and Ay, is
(globally) Lipschitz.

Proof. Fix 1 <k < m, define ¢q as in Example 3.2, and consider p := go .
By Theorem 3.1 and Example 3.2, the largest eigenvalue of p is equal to
%O'k(:l?). Now Theorem 2.6 yields the sublinearity of o. Finally, recall that
every sublinear finite function is globally Lipschitz (this follows from [30,
Theorem 13.2, Corollary 13.2.2, and Corollary 13.3.3]); in particular, so is
each o;. Thus A; is Lipschitz. If & > 2, then A\, = 03, — 03_1 18 — as the

difference of two Lipschitz functions — Lipschitz as well. W

The Hermitian matrices (continued). Here it is well known that the sum
of the k largest eigenvalues is a convex function and that the k% largest
eigenvalue map is Lipschitz; see, for instance, [12].

Corollary 3.4 The function wT A(+) is sublinear, for every w € R

Proof. Write wl\ = Mo WA = WO + Ef:ll(wl — w;41)0; and then
apply Corollary 3.3. N

Note that we can rewrite Corollary 3.4 quite artificially as wT(\(z + y) —
Az)) < wf)\(y), for all z,y € X and w € R}
It would be interesting to find out about the following generalization:

Open Problem 3.5 (Lidskii’s theorem) Decide whether or not
wl ( Mz +y) — A(z)) < wf)\(y), for all z,y € X and w € R™.

The condition means that the vector A(y) “majorizes” the vector A(z +y) —
A(z), for all z,y € X; see [25, Proposition 4.B.8]. (The interested reader is
referred to [25] for further information on majorization.) If this condition is
satisfied, then we will simply say that “Lidskii’s theorem holds”.

The Hermitian matrices (continued). Lidskii’s theorem does hold for the
Hermitians. A recent and very complete reference is Bhatia’s [3]; see also
[21] for a new proof rooted in nonsmooth analysis.

In Section 6, we point out that Lidskii’s theorem holds for further examples
as well.

10



Convexity of composition

Fact 3.6 Suppose f : R™ — [—o0, +00] is convex and symmetric. Suppose
further u,v € R and u — v € (RT")®. Then f(u) > f(v). Moreover: if f is
strictly convex on conv {ur() : 7 is a permutation of {1,... ,m}} and u # v,

then f(u) > f(v).

Proof. Imitate the proof of [19, Theorem 3.3] and consider [19, Example 7.1].
See also [25, 3.C.2.c on page 68]. W

Theorem 3.7 (convexity) Suppose z,y € X, a € (0,1), and f : R™ —
[—00, +00] is convex and symmetric. Then

FMaz + (1 —a)y)) < flar(z) + (1 - a)A(y))

and hence f o A is convex. If f is strictly convex and aA(z) + (1 — a)A(y) #
Moz + (1~ a)y), then f(Maw + (1 - aly)) < F(aA(z) + (1 - a)\(y))

Proof. (See also [19, Proof of Theorem 4.3].) Fix an arbitrary w € R
Set u := aA(z) + (1 — a)A(y) and v := A(az + (1 — @)y). Then both
u and v belong to R". By Corollary 3.4, wT X is convex on X. Therefore,
wT Maz+(1—a)y) < awT Mz)+ (1 - a)wT My); equivalently, wT (v —v) > 0.
It follows that « —v € (R7")®. By Fact 3.6, f(u) > f(v), which is the second
displayed statement. The convexity of f o A follows. Finally, the “If” part is
implied by the above and the “Moreover” part of Fact 3.6. W

The Hermitian matrices (continued). In this case, the convexity of the com-
position is attributed to Dawvis [6]; see also [18, Corollary 2.7].

Another consequence is Garding’s inequality; see [10, Lemma 3.1].

Corollary 3.8 (Garding’s inequality) Suppose p(d) > 0. Then function
x +— —(p(x))Y/™ is sublinear on the hyperbolicity cone C(d), and it vanishes
on its boundary.

Proof. By Corollary 2.16, the function —EXN™ is sublinear and symmet-
ric on R. Hence, by Theorem 3.7, the function 2 —(Epm(M(2))Y™ is
sublinear on {x € X : A(z) > 0} = clC(d). The result follows, since
p(z) = p(d)En(A(z)), for every z € X. R

The Hermitian matrices (continued). Corollary 3.8 implies the Minkowski
Determinant Theorem.: '{’/det(:n +y) > Vdetx 4 /dety, whenever z,y €

X are positive semi-definite.

11



Corollary 3.9 Suppose z,y € X. Then:
) 1Mz + )l < [7) + M)l
) 1A+ )l — IA@IP — A7 < 20A), Aw)).
Moreover, equality holds in (i) or (ii) if and only if A(z + y) = A(z) + A(y).

Proof. (i): Let w := Az +y) € RP". Then, using Corollary 3.4 and the
Cauchy-Schwarz inequality in R™, we estimate
[A(z +y)lI* = w Az +y) < w (M) + AMy))
< [Jwl[[[AM2) + A = Az + y)[IA(=z) + Ayl
The inequality follows. The condition for equality follows from the condition

for equality in the Cauchy-Schwarz inequality.
(ii): The condition is equivalent to (i). W

4 Making X Euclidean
Definition 4.1 Define |- || : X — [0,+00) :  — ||[A(2)]| and
() : X x X = R:(2,y) = e+ yl|* — 3z —y]%

Theorem 4.2 Suppose p is complete. Then X equipped with (-,-) is a
Euclidean space with induced norm || - ||.

Proof. We have ||z]]? = ||A(z)]]? = Yir; Ai(2)? = (E1(A(2)))? — 2E2(A(x)).
Facts 2.5 and 2.13 imply that || - [|? is a homogeneous polynomial of degree
2 on X. Since || - || > 0 and p is complete, the result now follows from the
Polarization Identity. W

Remark 4.3 The norm ||-|| defined in Definition 4.1 is precisely the Hessian
norm used in interior point methods and thus well-motivated. To see this,
assume that p is complete and recall that the hyperbolic barrier function is
defined by F(z):= —In(p(x)). The Hessian norm at z is then given by

|2]lg := V*F(d)[z, z].

12



For t positive and sufficiently small, we have p(tx+d) = p(d) [[i—, (1 +tAi(z))
and hence (after taking logarithms)

m

F(d+tz) = F(d) =) In(1+tAi(z)).

=1

Expand the left (resp. right) side of this equation into a Taylor (resp.
log) series. Then compare coefficients of ¢* to conclude V2F(d)[z,z]/2! =
|IA()]|?>/2. Thus || |la = || || Further information can be found in [10]; see,
in particular, [10, equation 16].

Proposition 4.4 (sharpened Cauchy-Schwarz) Suppose p is complete.
Then

(z,y) < (A=), Ay)) < l=[lllyll, ~ for all 2,y € X.

Proof. By the Cauchy-Schwarz inequality in R™ and Corollary 3.9.(ii),

2(A(2), Ay)) = Mz +y)II” = [A@)1* = IA)I1P = llz+yll* = =] = lylI* =
2(z,y). N

The Hermitian matrices (continued). The inner product on the Hermitian
matrices is precisely what one would expect: (z,y) = trace (zy). The sharp-
ening of the Cauchy-Schwarz inequality is essentially due to von Neumann;
see [18, Theorem 2.2] and the discussion therein.

We can now refine Theorem 3.7.

Theorem 4.5 (strict convexity) Suppose p is complete and f : R™ —
[—00, +00] is strictly convex and symmetric. Then the composition f o X is
strictly convex on X.

Proof. Fix a € (0,1), z,y € X and set 8 := 1 — a. Suppose that (f o
AN(az+ Py) = a(for)(z)+B(foA)(y). We have to show that z = y. Using

Theorem 3.7 and convexity of f, we estimate

a(f o) (z) +B(f o M)(y) = (f o M)(az + fy)
flad(z) + BA(y))
a(foX)(z) 4+ B(f o M)(y);

hence equality must hold throughout. By strict convexity of f, we conclude

that A(z) = A(y). We also know that aX(z)+BA(y) = A(ax+By) (otherwise,

<
<

13



Theorem 3.7 would imply that the first displayed inequality is strict, which
is a contradiction). Thus A(z) = A(y) = aX(z) + BA(y) = Aaz + By). Since
A is norm preserving, we obtain ||z|| = ||y|| = ||az + By||. But || -|| is induced
I

by an inner product, whence || - ||? is strictly convex. Therefore, x = y and

the proof is complete. W
Theorem 4.5 can be used to recover a recent result by Krylov (see [17, The-

orem 6.4.(ii)]). Our proof appears to be more transparent than Krylov’s.

Corollary 4.6 Suppose p(d) > 0. Then each of the following functions is
convex on the hyperbolicity cone C(d):

Em_lo)\ Em_lo)\
E,o\’ E,o\

—Inp, In

If p is complete, then each of these functions is strictly convex.

Proof. Define first f(u) := —Inp(d) — >~ Inu; on RT, and F(z) :=
—lnp(z) on C(d). Then f is strictly convex and symmetric. Since p(z) =
p(d)En(A(z)), we have F' = f o A It follows that F' is convex (by The-
orem 3.7), even strictly if p is complete (by Theorem 4.5). This proves
the result for the first function. Now let f := In(E,,_1/E,) on R7, and
F:=In % on C(d). Then f is strictly convex by Corollary 2.18. By
Theorem 3.7 (resp. Theorem 4.5), F' is convex (resp. strictly convex, if p is
complete). This yields the statement for the second function. Finally observe
that the third function is obtained by taking the exponential of the second

function. But this operation preserves (strict) convexity. W

Krylov’s result is closely related to parts of Giiler’s very recent work on hy-
perbolic barrier functions. We now give a simple proof of Giiler’s [10, Theo-
rem 6.1]. The functions F' and g below play a crucial role in interior point
method, as they allow the construction of long-step interior-point methods
using the hyperbolic barrier function F.

Corollary 4.7 Suppose p(d) > 0 and ¢ belongs to the hyperbolicity cone
C := C(d). Define

F:C—-R:z— —In(p(z)) and ¢g:C - R:z— —(VF(2))(c).

Then F and g are convex on C. If p is complete, then both F' and g are
strictly convex.

14



Proof. The statement on F' is already contained in Corollary 4.6. Now let
p be the eigenvalue map corresponding to c¢. Then, by Fact 2.13, p(z) =

P(0) B (p(2)) and (Vp(2))(<) = p(e) s (1(x)). Thus

1 Bm1(p(2))
g(x) = Vp(2))(c) = :
e )= o)
Now argue as for the second function in the proof of Corollary 4.6. W

The Hermitian matrices (continued). The statement on F corresponds to
strict convexity of the function # — —In det(z) on the cone of positive semi-
definite Hermitian matrices; this result is due to Fan [7].

We already pointed out that the trace o, is linear. With the notation intro-
duced in Definition 4.1, we can express this more elegantly.

Proposition 4.8 (trace) o, (z) = (d,z), for every z € X.

Proof. Fixz € X. By Fact 2.5, [|[z+d|*> = Y-, (Mi(z£d))? = S0 (Ni(z)+

1)? = ||z]|* £ 20m(z) + m. So 4z, d) = ||z + d||* — |z — d||* = don(z). N

5 Convex calculus

Definition 5.1 (isometric hyperbolic polynomial) We say p is isomet-
ric (with respect to d), if for all y, z € X, there exists # € X such that

A(z) = Az) and Az +y)= A=)+ A(y).

It is clear that if p is isometric, then ran A is a closed convex cone contained
in R". However, the range of A need not be convex in general:

Example 5.2 (a hyperbolic polynomial that is not isometric) If the
polynomial p(z) = z 2223 is defined on X = span {(1, 1,1),(3,1, 0)}, then p
is hyperbolic of degree m = 3 with respect to d = (1,1,1). Hence A(z) = z,
and p is complete. It follows that for all a, 3 € R,

a(1,1,1) +A(3,1,0), if §>0;

Aa(1,1,1) + B(3,1,0)) = {a(l 1,1) + 4(0,1,3), otherwise.

Since A(3,1,0) + A(—3,—1,0) = (3,0,—3) & ran A, the set ran A is a closed

nonconver cone in Ri. In particular, p is not isometric.
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Unless stated otherwise, we assume from now on that

p is complete, with corresponding inner product (-,-) and norm || - ||.

We chose the name “isometric” because of the equivalent condition (iii) in
the following proposition.

Proposition 5.3 The following are equivalent:
(1) p is isometric.
(i) max,.(a)=u(z,y) = (v, A(y)), for all w € ran X and every y € X.
(i) d(u, A(y)) = d(A"!(u),y), for all w € ran X and every y € X.

Proof. This can be checked directly; see also [1, Proposition 5.4]. N

The Hermitian matrices (continued). Clearly, ran A = RT* in this case.
Isometricity can be seen as follows: Fix two Hermitian matrices y and z,
and denote the corresponding diagonal matrices built from A(y), A(z) by
A(y),A(z), respectively. Diagonalize y = w*A(y)u, where u is some uni-
tary matrix. Then set x := u*A(z)u. It is easy to verify that A(z) = A(z)
and Mz 4+ y) = A(z) + A(y), hence p = det is indeed isometric.

Theorem 5.4 (Fenchel conjugacy) Suppose that f : R™ — (—o0, +00]
is symmetric. Then (foA)* < f*o . If p is isometric and f(Panru) < f(u),
for every w € (dom f)|, then (foA)* = f*o A

Proof. Fix an arbitrary y € X. Then, using Proposition 4.4, symmetry
of f, and the Hardy-Littlewood-Pélya inequality (see [11, Section 10.2]), the
inequality follows from

(My)) = sup{ w, My } = sup{ w, My f(u)}

> sup  max {(s,y) - f(A(fv))} Zzg§{<w,y> — (foX)(=)}

= (foA)(y).

Now assume that p is isometric and f(Pranat) < f(u), for every u € (dom f),.
Fix momentarily an arbitrary u € R Then, on the one hand, f(Pranru) <
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f(u) (if w € (dom f), then the inequality follows by assumptions; otherwise,
the inequality is trivial). Since ran X is a closed convex cone that contains
A(y) + Pranau, a well-known property of projections yields on the other hand
(w — Pranxu, A(y)) < 0. Altogether, (u,A(y)) — f(u) < (Pranrt, A(y)) —
f(Pranau). Therefore, using Proposition 5.3,

F(My)) = sup {(My),u) — f(u)} < sup {(My).u) — F(u)}

=sup{(y.2) — fA@)} = (foA)(y). ®

The assumption that f(Prnat) < f(u), for every u € (dom f), is important:
in Example 6.1 below, we present an isometric hyperbolic polynomial and a
convex symimetric function f with (f o A\)* # f*o A.

Corollary 5.5 Suppose p is isometric and f : R™ — (—o0, +00] is symmet-
ric. Then (f o A)* = f* o X if any of the following conditions holds:

(1) (dom f); C ran A.
(ii) ran A = R

(iii) f is convex and Punau € conv{ur; : « permutes {1,... ,m}}, for
every u € (dom f),.

Proof. (i) is clear from Theorem 5.4. (ii) is implied by (i). (iii): fix
uw € (dom f), and write Panu = Y, piui, where each p; is nonnegative,
3, pi = 1, and each u' is some permutation of u. By convexity and symmetry
of f, we conclude f(Panxu) < f(u). Apply again Theorem 5.4. W

Theorem 5.6 (subgradients) Suppose p is isometric, ran A = R7*, and
f:R™ — (—o0,+00] is convex and symmetric. Let z,y € X. Then

y € 0(foX)(z) if and only if My) € 9f(A(z)) and (z,y) = (A(z), A(y)).
Consequently, )\[a(f 0 )\)(:13)] = Jf(A(z)).

Proof. Since ran A = R, we have (Corollary 5.5.(ii)) (fo A)* = f*o A. In
view of Proposition 4.4, the following equivalences hold true: y € 9(foX)(z)

& (FoX)(x)+ (foN)(y) = (z,y) & f(A=)) + f(My)) = (A(=), My)) and
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(0.) = (@) AW)) & Aly) € DF((z)) and (z,y) =
sequently”: Clearly, by the above, )\[ (f o A)( ] C 9f(A(z)). Conversely,
pick v € 9f(A(z)). Then f(A(z))+ f*(v) = (v,A(z)). By the assumption
that ran A = R™ and Proposition 5.3.(ii), (v, A(z)) = (y, ), for some y with
My) = v. Honce (f 0 A)(z) + (£ 5 A)(y) = (9.2) and 50 y € O(f o A)(x),
which implies v = A(y) € )\[ (foX)(z )] [ |

(z,y) = (Mz),A(y)). “Con-

The Hermitian matrices (continued). Theorem 5.6 corresponds to [18, The-
orem 3.2].

Corollary 5.7 (differentiability) Suppose p is isometric, ran A = RT*, and
f:R™ = (—o00,400] is convex and symmetric. Let z,y € X. Then fo A
is differentiable at  and y = V(f o A)(2) if and only if f is differentiable at

A(z) and {y" € X : A(y') = VF(A@)), (2, ¢') = (M), My )} = {y}-
Proof. Clear from Theorem 5.6. N

Corollary 5.8 (variational description of o) Let p be isometric, and
suppose ran A = R7". Let 1 <k < m. Then for every z € X,

) = r0r e Y)

and Jor(z) = {y € X : (z,y) = ow(x), Ay) =2 0, om(y) = k, i (y) < 1}.

Proof. Define f(u) := max; <., Ele w;,. Then f is symmetric and
convex on R™ and f* is the indicator function of {u € R™ : > . u; =
kand each 0 < w; < 1}. Now o, = f o A and so Corollary 5.5 yields
of = f*oX Thus y € dop(z) & = € Ooj(y) & (z,y) = or(z), My) > 0,
om(y) =k,and \(y)<1. N

The Hermitian matrices (conclusion). Corollary 5.8 is a generalization of the
variational formulations due to Rayleigh and Ky Fan; see also [12, Section 2].

6 Further examples

For complete details in these examples see the corresponding
section in [1].
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6.1 R"

Consider the vector space X = R"™, the polynomial

n

p(z) =[] =

=1

and the direction d = (1,1,...,1). Then p is hyperbolic and complete with
eigenvalue map A(z) = #;. The induced norm and inner product in X are
just the standard Euclidean ones in R". We have ranA = RY. It can be
seen easily that p is isometric. In this case the sharpened Cauchy-Schwarz
inequality (Proposition 4.4) reduces to the well-known Hardy-Littlewood-
Pélya inequality (see [11, Chapter X])
2Ty < wipw-

Equality holds if and only if the vectors  and y can be simultaneously ordered
with the same permutation. Since ranA = R, Corollary 5.5 shows that for
every symmetric function f : R™ — (—o0o, +00] we have (f o A)* = f*o A
Also Lidskii’s Theorem holds, because A(z) is the ordered set of eigenvalues
of the symmetric matrix Diag(z) (see [3, page 69]).

6.2 Singular values

Consider the vector space M, ., (of n by m real matrices). We assume m < n
and denote the singular values of a matrix @ in M, , by o1(z) > oa(z) >

. > op(z). The Frobenius norm [14, page 291 & page 421] is defined
by ||z||r = ||o(z)]|, where the last norm is the standard Euclidean norm
in R™ and o(z) = (o1(2),02(2), ..., 0m(z)). Now consider the vector space
X =M, ., xR, the polynomial

p(z,a) = det (a’I,, — 2Tz) (2 € My, € R),

and the direction d = (0,1). Then p is hyperbolic and complete with eigen-
value map

)\(JB, Oé) = (a + 0-1(:17)7 o+ 0‘2(:13), ey 00— 0‘2(:13), a — 0‘1(213))-
The induced norm and inner product are given by
(=, )||* = 2ma’ + 2||z||F,

(@,a), (2.8)) = 2map + 2traTy,
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for (z, ) and (y,3) in X. With the help of the Singular Value Decomposition
Theorem [14, Theorem 7.3.5] one can see that p is isometric. Notice that in
this case the sharpened Cauchy-Schwarz inequality (Proposition 4.4) reduces
to

tra’y < o(z)Ta(y).

Equality holds if and only if # and y have a simultaneous ‘ordered’ singular
value decomposition (that is, there are unitary matrices v and v such that
¢ = u(Diago(z))v and y = u(Diago(y))v ). This is the classical result
known as ‘von Neumann’s Lemma’ (see for example [15, page 182]). For a
proof using results from this paper see [1]. We note that Lidskii’s theorem
holds too.

Note that when m = 1 we get the Lorentz Cone example which is discussed
below. An analogous example can be obtained by considering the vector
space X = C,,,,, x R.

We now show that for some functions in the singular value case we have

(Fo ) # f o
Example 6.1 Consider the symmetric function

flu) = 11;12}; u;.

Its Fenchel conjugate is

* _ 07 if Zzl Uy = ]-7 v; > 07
Fv) = { +o00, else.
If m =2and y € X is such that M(y) = £(3,1,1,—1), a short calculation
1] shows that 0 = (1 0 A)"(y) # (/0 \(y) = +oo.

Remark 6.2 In 1937, von Neumann [31] gave a famous characterization
of unitarily invariant matrix norms (that is, norms f on C™*" satisfying
f(uzv) = f(z) for all unitary matrices v and v and matrices z in C™*™). His
result states that such norms are those functions of the form goo, where g is a
norm on R™, invariant under sign changes and permutations of components.
Proof of this can be found also in [14, Theorem 7.4.24]. In [1] we show this
theorem can also be derived in our framework.
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6.3 Absolute reordering
Consider the vector space X = R™ x R Let the polynomial be

n

pz.a) = [J(a® —2}).

=1

and the direction be d = (0,1). Then p is hyperbolic and complete with
eigenvalue map

Mz, a) = (=], (=|z]))) + ae,

where |z| = (|z41], |22, ..., |2za]), and e = (1,1,...,1) € R Direct verifica-
tion of the definition shows that p is isometric and furthermore that Lidskii’s
theorem holds. Note that the similarities with the previous example are not
accidental. It corresponds to the subspace (Diag R™) x R of M, ,, x R.

6.4 Lorentz cone
Let the vector space be X = R”, and the polynomial be

p(w):wTAw:w%—wg—---—wi,

where A = Diag(1,—1,—1,...,—1) € M, (n x n real matrices). Let the
direction be d = (dy,ds, ...,d,) € X such that d > d5 +---+ d2. Then pis

hyperbolic and complete with eigenvalue map

Az) = (:BTAd—I- v/ D(z) 2T Ad — VD(:B))

p(d) ’ p(d)

where D(z) = (2T Ad)? — p(z)p(d) is the discriminant of p(z + td) considered
as a quadratic polynomial in ¢. (The fact that D(z) > 0 for each 2, and so
that p(z) is hyperbolic, is the well-known Aczel inequality, see [27, p.57].)
The induced norm and inner product are given by

2(«" Ad)* — p(z)p(d)

z||* = 2 REIE , and
(5.4 = 4(27 Ad)(y" Ad) — 2(=T Ay)p(d)
’ p(d)? ’
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for # and y in X. It is a bit trickier to see that p is isometric. Notice
that in this case the sharpened Cauchy-Schwarz inequality (Proposition 4.4)

becomes
(27 Ad)(y" Ad) — (T Ay)p(d) < +/D(=)D(y),

and [1] gives the necessary and sufficient condition for equality. Lidskii’s
Theorem holds as well.

6.5 The degree 2 case

Let the vector space be X = R™ We assume that p(z) is homogeneous
polynomial of degree two. Without loss of generality, we write

pla) = 2" Aa,

where A € S™. Fix a direction d in X with p(d) # 0. Then p(z) is hyperbolic
with respect to d if and only if the matrix (d¥ Ad)~! A has exactly one positive
eigenvalue (see [8, page 958]). Furthermore, p is complete if and only if A is
nonsingular. Such a p is always isometric, and Lidskii’s Theorem holds.

6.6 Antisymmetric tensor powers

Consider the function p(z) = det = on the vector space of n x n real sym-
metric (or Hermitian) matrices, and let ¢ = Ej, be the elementary symmetric
function of order k and pi(z) = Ej o A(x). We saw earlier that pj is a hyper-
bolic polynomial with respect to the identity matrix I (see Fact 2.13). We

pr(z) = Z det zala] = tr (A'z),

a=(i1 <ig<-<1iy)

have

where z[a|a] is the principal submatrix obtained from z by keeping its rows
and columns 7y, ..., 7, and the second equality above can be regarded as the
definition of the symbol tr (/\kw) For the first equality above, see [24], and
justification for the use of the symbol tr (/\kx) can be found in [9]. Now, from
Corollary 3.8 (Garding’s inequality) and from the fact that pg(z) = tr (/\kx)
is a homogeneous hyperbolic polynomial, it follows immediately that

tr (A(z 4+ )" >t (AFa) T b (AFy) Y

when z,y are symmetric and positive definite. This is one of the main results

in [23].
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