NONSMOOTH ANALYSIS OF LORENTZ INVARIANT FUNCTIONS
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Abstract. A real valued function g(z,t) on R™ XR is called Lorentz invariant if g(z,t) = g(Uz, t)
for all nxn orthogonal matrices U and all (x, t) in the domain of g. In other words, g is invariant under
the linear orthogonal transformations preserving the Lorentz cone: {(z,t) € R™ x R|t > ||z||}. It is

easy to see that every Lorentz invariant function can be decomposed as g = f o 8, where f : R2 — R

is a symmetric function and £ is the root map of the hyperbolic polynomial p(x,t) = t2 —w% ——xz2.

We investigate variety of important variational and non-smooth properties of g and characterize them
in terms of the symmetric function f.
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1. Introduction and notation. Denote the set of all orthogonal n x n matrices
by O(n). Let the function g(z,t) be defined on an open subset of R” xR, taking values
in R. The inner product of two vectors, (z,t) and (y,r) in R™ x R is {(x,t), (y,r)) =
2Ty + tr. Throughout the entire paper we assume that

g(Uz,t) = g(x,t), forall U € O(n), (1.1)

and all (z,t) in the domain of g. We call a function g with property (1.1) Lorentz
inwariant because it is invariant under the linear orthogonal transformations preserv-
ing the Lorentz cone {(z,t) € R" x R|t > ||z||}. A set Q@ CR"™ x R is called Lorentz
invariant if (z,t) € Q implies that (Ux,t) € Q for every U € O(n). Define the map

B(x,t) : R® x R — R,

8(w.6) = o+ . ¢ = o).

The rational behind the map [ is the following. Consider the polynomial p(z, ) :
R™ x R — R defined by p(z,t) = t? =23 —--- —x2 and let d := (0, ...,0,v/2) € R" xR.
Then, the coordinates of §(x,t) are the roots of the polynomial A — P((z,t)— Ad). In
general, a homogeneous polynomial p(z) : R™ — R with degree of homogeneity m, for
which there is a direction d € R™, p(d) # 0, such that A — p(x — Ad) has m real roots
for every xz € R", is called hyperbolic. In 1997, Giiler [6], pointed out the relevance
of these polynomials for optimization. Further information and developments can be
found in [2], [13], [12], [18].

Let the function f(a,b) be defined on an open subset of R? and assume that it is
symmetric, that is f(a,b) = f(b,a) for all (a,b) in its domain. Necessarily, the domain
of f is a symmetric subset of R?, that is (a,b) € A = (b,a) € A. The following easy
lemma establishes the connection between ¢, 8 and f.

LEMMA 1.1 (Lorentz invariant functions). The next two properties of a function
g:R" xR — R are equivalent:
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(i) g is Lorentz invariant;

(ii) g = f o 3 for some symmetric function f : R? — R.

If g = f o we say that f is the symmetric function corresponding to g. This
correspondence is one-to-one and given g the corresponding symmetric function is

a—2b a+b
—0,...,0, —— |.
V2 V2 >

That (1.2) defines a symmetric function in (a,b) is quaranteed by (1.1).

The aim of this paper is to establish variety of important for optimization varia-
tional and non-smooth properties of the function g = fog and how they arise from the
corresponding properties of f. By deriving a wide range or nonsmooth formulae we
hope this work to be a useful reference source. This work completes the similar inves-
tigations of spectral functions [8], [9] [11], [7]; and singular value functions [10], [14],
[15]. Optimization problems over the Lorentz cone, also known as the second order
cone, have wide range of applications, see for example [16]. With the development of
the non-smooth Newton’s method and various smoothing techniques the non-smooth
properties of functions associated with the Lorentz cone have been of interest lately.
For example, the strong semismoothness of the projection onto the Lorentz cone have
been established in [23, Proposition 4.3]. A formula for the Bouligand subdifferential
of the projection onto the Lorentz cone is derived in [24, Lemma 14]. Our paper is
based on results that first appeared in the author’s Ph.D. dissertation [21].

We conclude this section with an elementary fact.

LEMMA 1.2. The composition f o (3 is lower semicontinuous if and only if f is.

Throughout the entire work, the functions g, and f will have the properties
described in this section.

J(a,h) = g( (1.2)

2. Fenchel conjugation. For a function F' : R" — (—o00,400|, the Fenchel
conjugate F* : R™ — [—o0, +00] is the function
F*(y) = sup {z"y — F(x)}.
TER™
It is well known that F™* is lower semicontinuous and convex [19]. In this section we

prove the following formula.
PropPOSITION 2.1. We always have

(foB) =Ff"op. (2.1)

Proof. Let y # 0. In the third equality below, we use the fact that f is symmetric
to see that the given supremum is the same as the supremum over the set {(a,b) €
R?|a — b > 0}. From the definition we have

(feB)(yr)= sup {((y,r),(z,1)) = (fof)(z,1)}

(z,t)ERnH1

= sup sup {y,7), (x,1)) — f(a,b)}
(a,b)E€R t(jrcyul)vus;;x/ﬁ
t— el = bv2

(o (52 25 ) reo)

a—b a+bd }
= su +r — f(a,b
o LIl e
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- { (A ) ) o)
= (f" o B)(y, 7).

The case y = 0 is easy. O

An alternative proof of this result uses Theorem 5.5 and the example in Section 7.5
in [2], where the proposition has been generalized to the subclass of so called isometric
hyperbolic polynomials. In [1, Theorem 6.1] the proposition has been shown to hold
for symmetric functions composed with the eigenvalues of the elements of formally
real Jordan algebras.

3. Convexity and convex subdifferentials.

3.1. Convexity. THEOREM 3.1. The composition f o B is conver and lower
semicontinuous if and only if f is conver and lower semicontinuous.

Proof. Suppose f is convex and lower semicontinuous. If f = +oo then fo = 400
and the theorem is clear. Suppose f assumes some finite values. Then, using the
convexity one can show that f > —oo and by [19, Theorem 12.2] we have f** = f.
Since f* is symmetric, we use (2.1) in fo 8 = f** o 8 = (f* o 8)*, to conclude that
f o[ is convex and lower semicontinuous. The opposite direction follows from (1.2)
and Lemma 1.2. O

The proof of above theorem can be also deduced from Theorem 3.9 and the
example in Section 7.5 in [2]. Even though the proof of Theorem 3.1 is quite elegant,
a direct approach removes the condition that f be lower semicontinuous.

THEOREM 3.2. The composition f o (3 is convex if and only if f is convex.

Proof. If f o (3 is convex then f is by (1.2). Suppose now that f is convex with
domain C. The domain of fo3is 371(C). Let (x,t), (y,r) € 37(C) and let a € [0, 1].
Since (t + ||z, t — ||lz])), (r + [|yll,» — |y]|) € V2C and C is symmetric and convex we
find that the points

(at + (1 —a)r +afzl|+ (1 = a)llyl,at + (1 —a)r —aflz]| = (1 = )]yl
(at + (1 —a)r —afzl| = (1 = )yl at + (1 = a)r + aflz] + (1 = @)[ly])

are both in v/2C. Denote the first displayed point by av/2 and the second by bv/2.
Since

—allz| = (1= )yl < llex + (1 — a)y| < allz] + (1 = a)llyl],
there is a 8 € [0, 1] such that for the point
V2= (at + (1 —a)r+[laz + (1 - a)yl,at + (1 - a)r — [laz + (1 — a)y|))
we have ¢ = Ba+ (1 — 8)b € C. Thus
f(e) < Bf(a) + (1 =P)f(b) = f(a)
< af((t+ el t = lz)/V2) + (1= a) f((r + Iyl =yl /v2),

where we used the fact that f(a) = f(b) and that f is convex. O
The proof of Theorem 3.2 shows the following property.
LEMMA 3.3. Let C C R? be a convex and symmetric set. Then

B7HC) = {(z,t) € R" x R| B(z,1) € C}

18 convex and Lorentz invariant.



3.2. Convex subdifferentials. Let f : R? — (—o0,+00] be convex. For every
point (a,b) such that f(a,b) < 400 we define the subdifferential of f at (a,b) to be
the set

0f(a,b) = {(a’, V)| f(c,d) = f(a,b) = {(a',V), (¢, d) = (a,])), ¥(c,d)}.

It is easy to see that f(a,b)+f*(a’,b") = ((a,b), (a/, ")) if and only if (a’, V") € 9f(a,b).
The set 0f(a,b) is a singleton {(a’,")} if and only if f is differentiable at the point
(a,b) with gradient V f(a,b) = (a’,V'), see [19, Theorem 25.1].
The following result gives a formula for the subgradient of the composition f o .
THEOREM 3.4. Suppose f : R? — (—o0, +00] is convex and lower semicontinuous.

Then (y,r) € (f o B)(x,t) if and only if B(y,r) € Of(B(x,t)) and Ty = ||z||y.
Proof. Suppose first (y,r) € O(f o 8)(x,t). Then using formula (2.1) we get
l2lllyll +rt > 2"y +rt = ((y,7), (x,1))
= (foB)(,t) + (f o B)"(y,r)
= (foB)(,t) + (7o B)(y,7)

> (E+ Nz + Nyl + & = Nzl = llylD) /2
= [lzllllyll + rt.

Thus, we have equalities everywhere: (a) 3(y,r) € f(B(x,t)) and (b) 2Ty = ||z||||y]|-
In the other direction the proof is clear by reversing the steps above. O

For a generalization of this proposition to formally real Jordan algebras see [1,
Corollary 6.2].

4. Differentiability. The partial derivatives of the function f with respect to
its first and second argument are denoted by f] and f} respectively.

THEOREM 4.1. The composition f o [ is differentiable at the point (x,t) if and
only if f is differentiable at B(x,t). In that case we have the formulae

f1(B(@,t))—f5(B(2,t)) .
Va(foB)(,t) = Va2l x  ifx#0
0 ife=0

and
1

d
@(foﬁ)(fﬂat) = \/i

(f1(B(x, 1) + f5(B(x,1)))-

Proof. Suppose first that f is differentiable at the point G(z,t). If  # 0 the
theorem and the formulae are trivial and follow from the chain rule. So let us assume
now that © = 0. Let h = (h, hp+1) € R" x R and

d:= (0,...,0, (f{(B(z, 1)) + f4(B(x,1)))/V2) € R" x R.

Then
0 B)(O0.0) + (b ) = (F 0 A)(0,1)) — dTh]
h—0 Il
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o Lt Bu1)) = F(B(0,1)) = B (130, 1)) + J3(500,0) V3]
= ]

The fact that f is differentiable at 3(0,t) = (t/v/2,t//2) gives

Fr AR P — 17l
7 + £2(8(0,1)) 7z

where ~ indicates that the difference of both sides is of order o(]|h||). Using the fact
that for a symmetric function f, f1(8(0,t)) = f4(8(0,t)) and substituting above we
see that the limit is zero, that is, V(f o 8)(0,t) = d.

The proof in the other direction is easy using formula (1.2). O

THEOREM 4.2. Let f be symmetric and defined on an open symmetric subset of
R2. Then f o 3 is continuously differentiable at the point (x,t) if and only if f is
continuously differentiable at B(x,t).

Proof. Suppose that f is continuously differentiable at §(xz,t). The theorem is
clear if  # 0. So suppose x = 0. Let {(z*,t*)} be a sequence of points in R" x R
approaching (0,t). We need only prove that V(fo3)(z*,t*) approaches V(fo3)(0,1).
We consider two cases. The general case easily follows by combining them.

Case 1. If 2% = 0 for all k. Then using the formula in Theorem 4.1 we obtain

FBhst + hny1)) ~ f(B(0, 1)) + f1(B(0,1))

Jin V(70 (0.4 = i (0.0, T (15040 + 1550.47) )
=V (fop)(0,1),

by the continuity of V f at 5(0,¢).
Case 2. If zF # 0 for all k. Using again the formula in Theorem 4.1 for the
derivative with respect to ¢ we obtain

i (0 B, 14) = lim = (F(AGE149) + F(3(a". 1) = (7 0 9);(0.0)

For the derivative with respect to x; we get

ot
lim
k=00 /2 || il
because x¥/||z*|| is bounded and the continuity of V£ at 3(0,t) gives us

Jim (f1(B(",17) = F5(B(=", £5)) = F1(B(0,1)) = F5(B(0,1)) = 0.

Jim (f o B, («*,1%) = (f1(B(",%)) = f2(B(z*, %)) =0,

The last equality follows from the fact that f is symmetric.
The opposite direction of the theorem is easy using (1.2). O

5. The decomposition functions. In this section we define the functions d,
and d} and summarize some of their properties that will be used frequently. We
call them decomposition functions because they will be used to describe how the
subgradients of f o 3 are decomposed into subgradients of f.

DEFINITION 5.1. For every nonzero vector z in R™ we define the map

d.:R" x R — R?,
5



1 2Ty 2Ty
dz(yat) = (t+ 77t_ MR
V2 2] 1]

In cases when the direction (y, t) is fixed and clear from the context we simply write
d, in stead of d,(y,t).
DEFINITION 5.2. For every nonzero vector z in R™ we define the map

d: :R? - R" x R,

The following lemma collects a few elementary properties of the maps d, and d}.
The proof is omitted.

LEMMA 5.3. Let z and w be nonzero vectors in R™.

(i) The maps d.(-) and d%(-) are linear and adjoint to each other.

(ii) For every point (y1,72) in R?

. 146 1-6
duwdZ(71,72) = T(’Ylﬁz) + T(Vzﬁl),
where § = @”ﬂlel € [-1,1]. In particular, when w = z we have

d.d(v1,72) = (71, 72)-

(#ii) For every point (y,r) in R™ x R such that y = az for some a € R

dzd(y,r) = (y,7).

LEMMA 5.4. Let A and B be symmetric subsets of R?. The sets

D(A) = {d;(7v1,72)|(71,72) € A, z # 0}, and
C(A) = {(y,r)ld:(y,7) € A, Vz # 0},

satisfy the following properties.
(i) If A is convex then
(a) If (x,t) is in D(A), then (6x,t) is in D(A) for every é € [—1,1].
(b) D(A) is a convez set.
(c) D(A) =C(A).
(d) If B is also convex, then cl (D(A) + D(B)) = clD(A + B).
(i) For any A we have
(a) convD(A) = D(conv A).
(b) D(clA) = c1D(A).
Proof. Part (i)a. Let (z,t) = d%(vy1,72) for some (y1,72) in A and z # 0. Since
the set A is symmetric and convex, (v2,71) is in A and for every « € [0, 1] the convex
combination (ay; + (1 — a)y2,av2 + (1 — a)v;) is in A. Thus,

* zZ M=
di(an + (1 — )y, a2+ (1—a)mn) = <Z| 1\/5 2

= (x(2a—1),t) € D,

(2a — 1),

71 +’Yz>
V2

for all @ € [0,1]. Now set § := 2 — 1.



Part (i)b. Since A is convex, for any two points (v1,72) and (d1,d2) in A and
u € [0,1], we have that (uy1 + (1 — p)d1, py2 + (1 — p)ds) is in A. Thus, for every
z#0

<Zﬂ(7172)+(1ﬂ)(5152) p(n +’Y2)+(1#)(51+52)) D
121l V2 ’ V2 '

Take two points (x!,t!) and (22,t?) in D and a number p € (0,1). We want to
show that (ux! + (1 — p)a?, ut! + (1 — p)t?) is also in D. Suppose

(xlvtl) = dzl (’Yla’y2)7 (I2,t2) = d22(61752)

for some (y1,72) and (d1,d2) in A4, 21 # 0 and 2% # 0. Set

(5.1)

_ 1 (5 _ (5 2
2= 71— 72 Zl +(1-p) 102 22 ’
V2 [l V2 |12
and notice that
171 — 72l |01 — 02|

2|l < p——rs-="+(1—p)———.
ol < w2 (1=
Then

(5.2)

u(xl’tl) +(1- u)(:cz,t2) _ <Z#7 wlyr +y2) + (1 —p)(61 + 52))

V2
If z,, = 0 then from (5.1) and part (i)a with 6 = 0 we see that
plat 1Y) + (1 — p) (22, t%) € D.

Suppose now z, # 0. Choose one of the points (y1,72), (72,71) in A and one of
the points (41, d2), (d2,d1) in A so that, using part (i)a, inclusion (5.1) becomes

z pln = el (=) = bof o plv +2) + (1 — p) (61 + 02)
(nzn 2 4 V2 )ED’

for all z# 0 and 6 € (0,1). Let § be a number in (0, 1) such that
py = v2[ + (1 — p)|61 — b
V2

Putting all together we obtain that (5.2) is in D, showing that D is a convex set.
Part (i)c. Suppose (y,r) € C, then d,(y,r) € A for all z # 0. Apply Lemma 5.3
part (iii) with @ = 0 and any z if y = 0; or with a =1 and z = y if y # 0 to obtain
(y,7) = dzd=(y,r) = d;(d-(y, 7)) € D.

This shows that C C D.
Suppose now (y,r) € D. That is, (y,r) = d(y1,72) for some (y1,72) in A and

6 = [|zu]-

some z # 0. Let Z be an arbitrary nonzero vector and set § := HzZHTﬁ € [-1,1]. Then
by Lemma 5.3 part (ii) we have

) 146
dé(yu{r) = dédz(’YD’YQ) = T(Pyla’}?) + T(W?fyl) S Aa
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because A is symmetric and convex. So D C C.
Part (i)d. By part (i)b we have that both D(A)+D(B) and D(A+ B) are convex
sets. It is clear that the latter set is contained in the former:

cl(D(A) + D(B)) 2 I D(A + B).

In order to show that the sets are equal it suffices to show that their support functions
are equal. Fix any z € R"™ and suppose first that  # 0. In the first and last equality
below, we use the fact that A and B are symmetric sets.

max{((x,t), (d%: (y1,72) + d52(01,02))) (71, 72) € 4, (61,02) € B, 2" #0, 2* # 0}
= max{((z,1), (d;(11,72) + d3(d1,62))) (71, 72) € A, (61,02) € B}
z,t),dy(y1 + 61,72 + 02))[(11,72) € A, (01,62) € B}

z,t),dy (a1, a2))|(en, a2) € A+ B}

z,t), d; (y1,72))(71,72) € A+ B, 2 # 0}.

((z,
= max{((
= max{((
= max{((
The case z = 0 is easy.

Part (ii)a. The inclusion A C conv A implies D(A) C D(conv A). Since the set
D(conv A) is convex by part (i)b, we obtain convD(A) C D(conv A). The opposite
inclusion D(conv A) C convD(A) is easy.

Part (ii)b. Let {d’.(7f,75)} be a sequence in D(A) approaching a vector (z, ).
Since the unit sphere in R™ is compact, we can find a subsequence, denoted again
by k, such that 2*/||z*|| converges to a unit vector . For this subsequence we have
V¥ —~k| — V2| z|| and ¥ ++% — +/2s. Consequently, {(7F,75)} is bounded so there
is a subsequence, denoted again by k, for which (v¥,75) — (71,72) € cl A. So, the
sequence {d, (v§,75)} approaches d(v1,72) which is in D(cl A). This shows that for
an arbitrary set A we have the inclusion D(cl A) D c]l D(A). The opposite inclusion is
easy. O

6. Clarke subdifferential - the Lipschitz case. Suppose that h is a real-
valued function defined on some subset of R™. We say that h is locally Lipschitz at x
in R™ if there exists a scalar K such that

|h(z") — h(z')| < K||2" —2'||, for all 2" 2" close to x.

For locally Lipschitz functions the Clarke directional derivative [4] at the point z in
the direction v is defined to be

he(z;v) = limsuph(y +Av) - h(y)
y—x; A0 A

For y close to  and A to 0, the difference quotient in the definition of h°(x;v) is
bounded above by Klv|. Thus, h°(z;v) is well defined and finite. We need the
following formula for the Clarke directional derivative that can be found in [4, p. 64]:

h°(x;v) = limsup {(Vh(y),v) | y is such that Vh(y) exists},? (6.1)

Yy—x

for every pair (z;v). In other words, there exists a sequence {z*} in R™ approaching
x such that f is differentiable at each z,, and

(Vh(z*),v) — h°(z;0). (6.2)

1By the Rademacher’s theorem, locally Lipschitz functions are differentiable almost everywhere.
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The Clarke subdifferential 0°h(x) is defined as
Oh(x) = {&| (v,&) < h°(x;v) for all v}.

In can be shown that the set 9°h(x) is compact, nonempty and convex. If h is convex
and finite on a neighbourhood of x then 9°h(x) = Oh(z) and if h is continuously
differentiable at = then 0°h(x) = {Vh(x)}. In this sense the Clarke subdifferential
generalizes both the convex subdifferential and the gradient of a C! function. Finally,
Proposition 2.1.2 in [4] shows that the Clarke directional derivative is the support
function of the Clarke subdifferential:

h®(w;v) = max{(v, &) |§ € O°h(z)}. (6.3)

Now, we return to the symmetric, bivariate function f, which we now require to
be locally Lipschitz. It is not difficult to see that f is locally Lipschitz if and only if
f o B is. We are going to present a formula expressing the Clarke subdifferential of
f o3 in terms of the Clarke subdifferential of f.

The following elementary lemma shows that the Clarke directional derivative of
h o 3 is invariant under Lorentz orthogonal transformations of the argument and the
direction.

LEMMA 6.1. Let (x,t) be a point in the domain of f o 3, let (y,r) be a direction
and let U be an orthogonal matriz. Then

(foB)°((2,1); (y,r)) = (f 0 B)° (U, 1); Uy, 7))

THEOREM 6.2 (Clarke directional derivative). Let (0,t) be a point in the domain
of fo B and let (y,r) be any direction. Then if x =0

(fo3)°((0,1); (y, 7)) = max{f°(5(0,); d-(y,r))|z € R", z # O}. (6.4)

NOTE 6.3. For the Clarke directional derivative at a point (x,t) with x # 0 see
Corollary 6.6.

Proof. By (6.2), there is a sequence of points {(x*,t*)} approaching (0,¢) such
that

(£ 0 B)°((0,0)5(4.1) = lim (V(f © B)(*,15), (3. 7)):

In order to evaluate V(f o §) using Theorem 4.1 we need to consider two cases de-
pending on whether z* is zero or not. The general situation follows from these two
cases by considering subsequences.

Case 1.a. Suppose z¥ = 0 for all k. Let 8% := 3(0,t*) and note that f(8*) =
f4(B%). Fix an arbitrary nonzero vector z € R™. Then

(f 2 8)°((0,1); (y,7)) = lim (V(f 0 B)(0,£%), (y, 7))

lim <(o,...,o, W),(y,r)>

V2
Jim (V£(5%), 5(0,7)

kILII;O <vf(ﬂk)a d.(y, 7“)>
9



< (B0, 8); d=(y,7)))-

In the last inequality we used (6.1).

2k

Case 1.b. Suppose z¥ # 0 for all k, klim W = ﬁ and let g% := B(z%,t%).
—00 || T z

Then, we have
(f 0 8)°((0,2)(y, ) = Tim (V(f o B)(a*, %), (y,7))
_ oy [ (180 = f5(8Y) ke F1(BY) + f3(8%) .
i (B e ) )
~ i J108%) = £3(8%) F1(8%) + [5(8%)
k—oo 2k V2
T N G oM ey (T @)y
klwflw>(ﬂ+ﬂxk|)+f2<ﬁ><ﬂ ﬂnm)
= Jim (Vf'(8%),d-(y.r))
< f2(B(0,1);d=(y, 7)),

k—oo

(@*)Ty +

where, in substituting /||| by z/||z| in the last equality, we used the fact that
since f is locally Lipschitz the sequence {(f](8%), f4(3*)} is bounded. All this shows
that if x = 0 then

(foB3)°((0,); (y, 7)) < sup{f°(8(0,t);d.(y,7)|]z € R", z # 0}.

To show the opposite inequality, fix a nonzero vector z € R™. There is a sequence of
points {(ax, bx)} approaching 3(0,t) such that

fo(ﬁ(o,t); dZ(ya 7‘)) = nll)n;o<vf(aka bk)v dz(yar)>'

There is an infinite subsequence {(ag/, by )} of {(ax, bx)} that satisfies one of the three
possibilities
(i) agr = by for all k'
(11) ap > by for all k.
(111) ap < by for all K.
For this subsequence we still have

77300, dx(y7) = lim (V. f(arr, b da(p.7)-

Without loss of generality we may assume that {(ax,br)} satisfies one of the three
possibilities and consider them separately.

Case 2.a. Suppose ay = by, for all k. Note that in this case we have f{(ag,ar) =
f(ag,ar). Thus,

FoB(0,); dx(y, 7)) = lim (V f(ay, ax), d:(y. 7))
fila, ai) + f3lan, ax)

= V2
= lim (V(f o 8)(0,ax), (y,7))

IN

(f 2 8)°((0,2); (y, 7))

10



Case 2.b. Suppose aj > by for all k. Define the sequence of vectors
—b
- (a’“ . ’“,0,...,0) € R",

(notice that ||2*¥|| = (ax — bx)/2) and let U be an orthogonal matrix such that

UzF z
lm —— = —. (6.5)
k—oo [l2F]| ||z]|

In the third equality below we use the fact that the Lipschitzness of f implies that the
sequence { f1(ag,br) — f4(ax, br)} is bounded, thus in the limit we can replace z/||z||
by Uz*/||z*||. We calculate

fo(ﬂ(O,t);dz (y,r)) = kh_)nolo<vf(a’k)bk)7 dZ(y7r)>
Jilag, by) — fﬁ(akabk)z y> . filar, bi) + f3(ak, br)

- i (S0 V2 ’
_ i ( f10ak ) — foaw k) o Jilaw, be) + fo(an, bi)
_k1HOO< VI U y>+ 7
) arp — by ay + by,
:klirgo <V(f0ﬁ)< \/§ ,0,...,0, ﬁ >7(UTyaT)>
< (foB)°((0,8); (UTy, 7))
= (f20)°((0,%); (y,7)).

In the last equality we used Lemma 6.1.
Case 2.c. Suppose ai < by for all k. Define the sequence of vectors

. (b’“ ; @k, o) € R",

(notice that ||2*|| = (bx — ax)/2) and proceed analogously to the previous case. O
It is straightforward to check that for every (y,r) € R™ x R and every nonzero
x € R™ we have

5(('1'/7 t/) + :u(yv 7“)) — 5($17 t/)

lim
(@ ,¢") = (2,t), 110 W

= d:r(y7 T)'

Applying [3, Theorem 6.2.3] to the Lipschitz map ((x,t) we obtain the following
result.

LEMMA 6.4. If x # 0 then ((x,t) is strictly differentiable and its strict derivative
is the linear map d,. That is

lim B’ t') — Bz, t") —dg(z' — ", ¢ — ")
(@' ,t), (a" ") —(z,t) ||(CE/ _ :L,//’t, — t”)”
(' )£ (" ¢

=0.

We now turn our attention to the problem of characterizing the Clarke subdiffer-
ential 0°(f o B)(z,1).
THEOREM 6.5. The Clarke subgradient at (x,t) of a Lorentz invariant function
f o B, locally Lipschitz at (x,t), is given by the formulae
11



(i) if © # 0 then
O°(f o B)(@,t) = {dz(71,72) | (11,72) € O°f(B(=, 1)) };
(i) if x =0 then

(fo8)(0,1) = {dZ(v1,72) [ (11,72) € O°f(5(0, 1)), = # O}

Proof. Case (i) Suppose that « # 0. Then, by Lemma 6.4, 3 is strictly differen-
tiable at (z,t) with strict derivative d,. Moreover, d, is a surjective linear map. So
we can apply the chain rule for the Clarke subdifferential [4, Theorem 2.3.10], which
in our situation holds with equality:

O(f o B)(z,t) = 0°f(B(w,1)) 0 da.
Now, if (v,p) € 9°(f o B)(x,t) and (y,r) € R™ x R, then there is a subgradient
(71,72) € 9°f(B(x,t)) such that

((0,p), (y, 7)) = ((11,72) 0 da)(y, 1) = ((v1:72)s da (y, 7)) = (d5 (71, 72) (5 7)),

where the last equality follows by Lemma 5.3. So
O°(f o B) (@, t) S {dz(71,72)|(71,72) € O°f(B(x, 1))},

the other inclusion is now clear.
Case (ii) Suppose that 2 = 0 and define

D :={d;(71,72)|(71,72) € 9°f(B(0,1)), = # 0}.

Two closed, convex sets are equal whenever their support functions are the same. The
support function for the set conv D, evaluated at (y,r), is

max{((y,7), (2,5))| (2, s) € convD}
= max{{(y,7), (z,5)) | (z,5) € D}
= max{((y,7),d>(71,72)) | (v1,72) € 9°f(B(0,1)), z # 0}
max{(d.(y,7), (v1,72)) | (v1,72) € 9°F(B(0,1)), z # 0}
max{max{(d.(y,7), (v1,72)) | (v1,72) € 9°f(B(0,1))} |z # 0}
= max{f°(6(0,t);d.(y,7)) |z # 0}
(f o B)°((0,2); (y, 7)),

where, in the last two equalities, we used (6.3) and Theorem 6.2. By (6.3) again
applied to the function f o 8 we obtain

cleconvD = 9°(f o 8)(0,¢),

because 9°(f o 8)(x,t) is a closed convex set [4, Proposition 2.1.2]. The fact that
convD = D follows from Lemma 5.4 part (i)b and the fact that D is closed follows
by the same lemma part (ii)b. O

COROLLARY 6.6 (Clarke directional derivative). Let (x,t) be a point in the do-
main of fo B and let (y,r) be a direction in R™ x R. Then if x # 0,

(foB)°((x,1); (y,r)) = f(B(x, 1); da(y, 7))
Proof. Use again the fact that (f o 8)°((z,t); (y,r)) is the support function of

0°(f o B)(x,t), see [4, Proposition 2.1.2]. O
12



7. Second order properties. Let, in this section, f be twice differentiable at
the point (a,b). This means that f is differentiable in a neighbourhood of this point
and the first derivative, V f, is differentiable again at (a,b). The question that we are
going to answer now is whether g := f o 8 is twice differentiable at any point (z,t)
such that G(z,t) = (a,b). Elementary calculus shows that, if  # 0 then g is twice
differentiable. It turns out that this is always the case as we prove in Theorem 7.1. A
generalization of Theorem 7.1 and Theorem 7.2 to the setting of formally real Jordan
algebras can be found in [25]. Our approach is direct and first appeared in [21].

7.1. Second order differentiability. THEOREM 7.1. The function g := fof3
is twice differentiable at (z,t) if and only if f is twice differentiable at 3(x,t). In that
case we have

(i) if © # 0 then

oy Siillz|? = zix;
//. (z,t) = Tilj "o 4 v etV A ,
gzlzj( ) 2||x||2( 11 21 f ) \@HJJHP) (f1 f2)
T,
i, (T, ) = 5 —(f11 — fla + o1 — f45),
2]z
7z Lq "
() = =
gmlt(‘r ) 2”1,”( +f 22)

1
Gee(w:t) = 5(f11 + fi2 + for + f2a),

where 0;; is 1 if i = j and 0 otherwise;
(i) if x = 0, then

1 " " " o -
5 - + ) yr=y,
g;’m(O,t) :{ 2( 11 — J12 21 f22) f J

otherwise,

o

1
g1:(0,t) = ( 11+ fia + f21 + fo2)-

All second-order derivatives of f, in both cases, are evaluated at B(x,t).
Proof. The ‘only if’ part follows easily from (1.2).
The verification of part (i) is straightforward. For part (i) denote

1

Hii = 5 (11 = fiz = far + fa2), fori=1,...m,
1

Hy = (i + fiz + f21 + f22),

H:= Dlag (H117 a3} H’ﬂ/’la Htt)7

where the second-order derivatives of f are evaluated at 3(0,t) and the operator Diag
forms a diagonal matrix from its vector argument. Fix an arbitrary sequence {h*} in
R™ x R converging to 0 and denote h* := (h¥, ..., hF)T. Using Theorem 4.1 we are
going to show that the limit of the difference quotient

Koo ||hk||
13




is 0. We consider separately each coordinate in the difference quotient. Two cases are
necessary: one for the coordinates from 1 to n and one for the (n + 1)St coordinate.
The sequence {h*} can be partitioned into two subsequences—one in which h* = 0
for all k and one in which h* # 0 for all k. We will be done if we show that the limit
of the difference quotient for each of the two subsequences is zero. That lead us to
consider two subcases in each main case.

Case a. Suppose i € {1,...,n}. Then the difference quotient becomes

lim lgi (Rt + hi 1) — gi(0,¢) — Hizh¥|
k—oco ||hk|| ’

(7.1)

We use Theorem 4.1 to evaluate the derivatives g;. Notice that if h* = 0 for all k,
then the limit is clearly 0. Thus, suppose h* # 0 for all k. Then (7.1) becomes

| (FLBGRR, 4 B L0) = F3(B(RE 4 B 1)) = B (f = S = 4+ 132)
ko ¥ ’

where the second derivatives of f are evaluated at 5(0,t). Because fi and f4 exist in
a neighbourhood of §(0,¢) and are differentiable at 3(0,t) we have

hy + 112" Ry — 2%

V2 V2o

PB4+ W D F30500,0) + 7 300, 09 2 I g gy e — I
2 n+1 2 ) 21 5 \/i 29 R \/i ,

FLBR" t+ by 1))~ (80, 1) + f11(B(0,1)) 12(8(0,1))

where ~ indicates that the difference of both sides is of order o(||h*||). Because f is
symmetric, at the point 3(0,t) we have f| = f3, fi5 = £} and f1; = f5. Substituting
the two expansions into the limit shows that it is indeed 0.

Case b. Suppose ¢ = n + 1. The arguments are analogous to the previous case.
We use again Theorem 4.1 to evaluate the derivative g; and then substitute f{ and
f% with their first order expansions. O

7.2. Continuity of the Hessian. THEOREM 7.2. The function g := fo 3 is
twice continuously differentiable at (x,t) if and only if f is such at B(x,t).

Proof. The ‘only if’ direction is also easy to obtain from (1.2). The ‘if’ direction
is clear in the case when x # 0. Thus, we suppose that f is twice continuously differ-
entiable at 3(0,¢) and are going to show that for any sequence of vectors {(z*,¢*)} in
R™ x R approaching (0,t), the Hessian V2g(z*,t*) is approaching V2¢(0,). Viewing,
for a fixed basis, V2¢(0,t) as a matrix, we are going to prove the convergence for each
entry. We again consider two cases and the general situation follows easily from them.
If 2% = 0 for all k, then the result follows directly from the continuity of V2f at the
point (0, 1), see Theorem 7.1. If ¥ # 0 for all n then from the continuity of V2f at
the point 3(0,t) and the formulae given in Theorem 7.1 we have

lim g7 (", t*) = lim g}’ («* t*) =0
k—oo "7 k—o0 °

lim gy} («*,t*) = ¢{3,(0, 1),
k—o0

where we also used the fact that since f is symmetric fi5 = f4 and f{} = f, at the
point 3(0,t). The interesting part is to show hm a .z (z*,tF) = Q/m’,;mj (0,%). Denote

1
—(t* + ||l2F |, 7 — ||2F))),

Bif = \/i

14



By = —= (" + [l ¢" + Iz,

]

BE L= 2 (= 2| 8 4 2.

S

Because f is symmetric f{(8%,) = f5(8%_). This allows us to evaluate the following
limit using the Mean Value theorem.

: 1 y ,
Jim ey (1O 1) = G, 14))
: 1 y , , )
= Jim e (R85 = A8 + £ = (85,)
k k E 2
() e o )

Z%( 11(8(0,1)) = fi5(8(0,8)) = f51(8(0, 1)) + £35(8(0, 1))

k_ ||k k| .k
Above, the numbers v* and ;¥ are between tolel ang ¢ Ug I

and the last equality
uses the continuity of V2f and the fact that f is symmetric. Using the formula for

g;'m given in Theorem 7.1 we can see that

Jim g7, (%, 17) = %( 11(8(0,8)) = fi5(8(0,1)) = F51(B(0,)) + f5(8(0,1)))

= gllltll:E] (07 t)'
This concludes the proof. O

7.3. Positive definite Hessian. We begin with a simple lemma and the main
result of this subsection follows after it.

LEMMA 7.3. Suppose that function f is continuously differentiable on an open
convexr subset of R? and is strictly convex there. For any point (a,b) in its domain
with a > b we have f1(a,b) > fi(a,b).

THEOREM 7.4. Suppose that f is twice continuously differentiable at ((x,t).
Then V2(f o 8) is positive definite at the point (z,t) if and only if V2f is positive
definite at B(x,t).

Proof. Suppose that V2f(8(z,t)) is positive definite. We use the formulae in
Theorem 7.1 to give a matrix representation of the Hessian of f o (3. Define the
(n+1) x 2 matrix:

and the (n+ 1) x (n+ 1) matrix

.’EfET
M 2 [ I 0
V2| 0 0

where I, is the n x n identity matrix.
Case I. When x # 0 the Hessian of f o 8 can be written as

V2(f 0 B)(x,1) = XV2F(B(x, 1) X7 + MV f(5(x,1)) ( 4 ) -
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For any nonzero vector (y,r) we have

e,V (B, )y, )T

(I 1Zll2l? = (="9)%) (£1(B(2, 1) = f3(B(x,1))).

(0.7 (V*(f 0 8)(.1) (v, )" =
1
V2l

Using Lemma 7.3 we see that the above expression is strictly positive.

Case II. In the case when x = 0, then the Hessian of f o 8 is a diagonal matrix
and the fact that it is positive definite can be easily seen.

In the other direction the result follows from (1.2). O

The proof of the next corollary is virtually the same as [22, Theorem 7.2], we
omit it.

COROLLARY 7.5. Let C be a symmetric and convexr subset of R?. Let f : R? = R
be twice continuously differentiable function defined on C. Then

+

min  Apin (V2 a, b)) = min Amin(V2(f o z,t)). 7.2
0 Awin (V2 F(@,D) = | v Auin(V3(f 0 9)(a.) (72)
Above, Amin denotes the smallest eigenvalue of the matriz in its argument.
Multiplying both sides of (7.2) by —1 we obtain

)\max v2 7b = )\max v2 ,t)).
Jax Amax(VEf(a,b) = - max  Amex(V(f 0 B)(2,1))

8. The regular and proximal subdifferentials. Given a function i : R™ —
[—00, +00] and a point  in R™ at which h is finite, a vector y of R™ is called a regular
subgradient of h at x if

h(z + z) > h(z) + (y,2) + o(]|z]|) as z — 0.

The set of regular subgradients is denoted 511(33) and is called the regular subdifferential
of h at z. If h is infinite at z then the set Oh(z) is defined to be empty. It is not
difficult to show that it is always a closed and convex set, see [20].

A vector y is called a prozimal subgradient of the function h at x, a point where
h(x) is finite, if there exist p > 0 and ¢ > 0 such that

1
h(w +2) = h(w) + (y,2) = 5pll2l*  when 2] <.

The set of all proximal subgradients will be denoted d,h(z). If h is infinite at  then
the set Oph(x) is defined to be empty. It is not difficult to show that it is always a
closed and convex set, see [5].

Let now f be the symmetric, bivariate function on R? and ¢ := f o 8. We are
going to derive a formula for dg(x,t) in terms of df(8(x,t)). The next lemma lists
several properties of the map ((z,t) that we need. By RZ we denote the cone of
vectors x in R™ satisfying x1 > 2o > ... > x,,. -

LEMMA 8.1.

(i) For any vector w in R2 the function wl 3 is conver and any point (z,t) in

R™ x R satisfies di(w) € O(w? B)(z, ).
(ii) The directional derivative B'((z,t); (y,r)) is given by

SN i
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(iii) The map B is Lipschitz with global constant 1.
(iv) Given a point (x,t) in R™ x R, all vectors (z,s) close to zero satisfy

B(,) + (2,5)) = B(x,t) + B'((x, )i (2, 5)) + Ol (2, 5)|*)-

Proof.
(i) The convexity is elementary. To check the second half we need to verify that

wTﬁ(yvr) - wTﬂ(Jj,t) 2 <d;(w17w2)7 (y —I,r—= t)>7

which expanded and simplified is equivalent to

T
wo T (y — o) w — wo
(lyll = llz[}) >

w1 —
V2 | V2

After cancelation, the last inequality follows from the Cauchy-Schwarz in-
equality.

(ii) This part is a straightforward verification.

(iii) For any points (x,t) and (z, s) we have

18((x,8) + (2,8)) = Bz, )|

1
= —||{+s+|lz+z2|,t+s—||x+2z||) — (t+|x|,t— ||z
\/QII( Iz + 2| o+ z[) = ¢+ Izl t = =[]

1
= !
= V52 & (o + 2]~ [al)?

B

;w@@w

(iv) Suppose first that « # 0. Then using part (ii) of this lemma and several times
the Cauchy-Schwarz inequality we get

18((2,t) + (2,5)) = Blz, 1) = B'((z, t)'(z )

e +all+ o+ ) |

(s + Nl + 2l = llzll, s = (l= + 2] = [lz[)]]

\\u+znx ””

I'TZ 2
Qm+z||m)
Tl

=0(|z]*) = O(ll(z, )",

where the penultimate equality holds since V|| - ||(2) = 177
The case z = 0 is easy. O
Let L be a subset of R™ and fix a point z in R™. An element d belongs to the
contingent cone to L at x, denoted K (L|x), if either d = 0 or there is a sequence {z*}
in L approaching z with (z* — x)/||z* — z|| approaching d/||d||. The negative polar of
a subset H of R™ is the set

T ={yeR"|(z,y) <0Vx e H}.

We use the following lemmas from [11], see Propositions 2.1 and 2.2 there.
17



LEMMA 8.2. Given a function f : R™ — [—o0,+o0] and a point 20 in R™,
any reqular subgradient of f at 2V is polar to the contingent cone of the level set
L={z € E: f(x) < f(a°)} at 2°; that is

0f(2°) € (K(L[2)".

LEMMA 8.3. If the function f : R™ — [—o0,+00] is invariant under a subgroup
G of O(m), then any point x in R™ and transformation g in G satisfy 3f(gx) =
gé f(x). Corresponding results hold for the proximal, approzimate, horizon and Clarke
subgradients (see next sections).

We define the action of the orthogonal group O(n) on R™ x R by

U.(z,t) = (Ux,t), for every U € O(n).
For a fixed point (z,t) in R” x R we define the orbit
O(n).(x,t) = {(Ux,t)|U € O(n)}.

If  # 0, this orbit is just a n — 1 dimensional sphere with radius ||z|| at level ¢ in
R™ x R. So it is a n — 1 dimensional manifold and one can easily calculate that its
tangent and normal spaces at the point (x,t) are

T(oy(O(n).(z,t)) = {(y,0)|y" = = 0}, and
Nz (O(n).(z,1)) = {(az,b)|(a,b) € R?}.

If x = 0 then

T(0,t)(O(n).(0,t)) = {0}, and
No,»(O(n).(0,1)) =R

Now, using these observations and Lemma 8.2 we can say more about é( fopB)(x,t)
in the case when x # 0. .

LEMMA 8.4. Ifxz # 0 and (y,r) € O(f o B)(x,t) then (y,r) = (azx,r) for some
a€R.

Proof. If (y,r) € 3(]” o B)(z,t) then by Lemma 8.2 we have

(v:7) € (K({(z,9)|(f 0 B)(2,5) < (f o B)(, D) }|(2, 1))~
C (K(O(n).(z,t)[(x, 1))~
= Ny (O(n).(x, 1)

The claim follows from the expression for the normal space above. O
The following is the main theorem of this section.
THEOREM 8.5. The regular subdifferential of any Lorentz invariant function fof
at the point (x,t) is given by the formulae
(i) if ¢ # 0 then
O(f o B)(@,t) = {d(v1,72)|(71,72) € Of (B(=, 1)) };

(i) if x =0 then
(f © B)(0,4) = {d(71,72)|(11,72) € DF(5(0,1)), = # 0}.
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Similar formulae hold for the proximal subdifferential.

Proof. Case (i). This case follows immediately from the chain rule [20, Exer-
cise 10.7].

Case (ii). Let © = 0. We are going to show that

A(f 0 B8)(0,t) = {(y,7)|d-(y, ) € Df(B(0,1)),Vz # 0}.

The stated version follows from Lemma 5.4 part (i)c.
Suppose (y,7) € O(f o 3)(0,t), let z := (21,22) € R? be small and let w be an
arbitrary nonzero vector in R"™. Then

F(B0, 1) + (21, 20)) = (foﬁ)((07t)+ (|w21 — 2 A +22>)

wl V2 V2
wlyz1—2z0 21+ 2
> (foB)(0,t) + ol V3 +r 7 + o([|=]])

= f(ﬁ(ovt)) + <dw(y77ﬁ)a (Z17Z2)> + O(HZH)

Consequently d, (y,) € df(5(0,t)) for all w # 0.
In the opposite direction suppose that d,(y,r) € 9f(8(0,t)) for all w # 0. If
y = 0 then for any vector (z,s) € R” x R close to 0 we have

(fo ﬂ)(( )+ (2,8)) = F(B(0,1) + (B((0,8) + (2, 5)) — B(0, 1))
F(B(0,8)) + (dw(0,7), (B((0, 1) + (2,5)) = B(0,1))) + o([|(2, 5)|)
F(B0,)) +rs +o([| (2, )[])

=( 5)(0,8) +((0,7), (2, ) + o(ll (2, 5) ])-

o0 (0,7) € A(f o §)(0,1).
If y # 0 then for w = y we have d,(y,r) € 0f(8(0,t)). Let (2,5) € R* x R be a
vector close to 0. Then

(f 0 B)((0,8) + (2, 8)) = F(B(0,) + (B((0,8) + (2, 8)) = 5(0,1)))
> f(B8(0,8)) + (dy(y,7), (B0, 1) + (2,)) = B(0,1))) + o[ (2, 5))
= f(80, 1)) + [lyllllz[l + 75 + o([I(z, $)II)
> (fo8)(0,1) +{(y,7), (2,5)) + o([[ (2, 5)])-

Consequently (y,7) € d(f o 8)(0,1).
The proof for the proximal subdifferential is essentially identical. O

9. The approximate and horizon subdifferential. Given a function h :
R™ — [—00,+00] and a point x in R™ at which h is finite, a vector y of R™ is
called an approzimate subgradient of h at x if there is a sequence of points {z*} in R™
approaching = with values h(x"*) approaching h(z) and a sequence of regular subgra-
dients »* in 3h(xk) approaching y. The set of all approximate subgradients is called
the approximate subdifferential Oh(x). A vector y is called a horizon subgradient if
either y = 0 or there is a sequence of points {zv} in R™ approaching x with values
h(z*) approaching h(z), a sequence {t*} of reals decreasing to zero and a sequence of
regular subgradients y* in 5h(;v’c ) for which t*y* approaches y. The set of all horizon
subgradients is denoted 9°°h(x). If h is infinite at 2 then the set Oh(z) is defined to
be empty and 9°°h(z) to be {0}.
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Recall that we used the same notation, Oh(z), for the convex subgradient when
h is a convex function. There is no danger of confusion because the subdifferentials
coincide when h is a proper, convex function, see [20, Proposition 8.12].

THEOREM 9.1. The approzimate subdifferential of any Lorentz invariant function
f o at the point (x,t) is given by the formulae:

(i) if © # 0 then

O(f o B)(x,t) = {dy(a,b) [ (a,b) € Of (B(x,1))};
(i) if © =0 then

9(f 0 8)(0,1) = {d:(a,b) [ (a,b) € Df(5(0, 1)), z # 0}

Similar formulae hold for the horizon subgradient.

Proof. Part (i). x # 0. This case follows immediately from the chain rule [20,
Exercise 10.7].

Part (ii). x = 0. Suppose (y,r) € 9(fo5)(0,t). By definition, there is a sequence
of points {(z*,t*)} approaching (0,t) with (fo3)(z*,t*) approaching (fo3)(0,t) and
a sequence of regular subgradients (y*,r*) € é(f o B3)(z*,t*) approaching (y,r).

Case l.a. Suppose z¥ = 0 for all k. Then Theorem 8.5 says that (y*,7*) =
d*(ax,a) such that (a,ar) € Af(B(0,t%)), for some zF # 0. Since (y*,r*) ap-
proaches (y,7) we get that y = 0 and ay — a :=r/v/2. So (0,7) = (0,v/2a) = d*(a,a)
for any z # 0 and (a,a) € 9f(5(0,1)).

Case 1.b. Suppose ¥ # 0 for all k. Then Theorem 8.5 says that (y*,r*) =
dy,, (ak, bi) such that (ay, by) € Af(B(z*,t%)). Let us choose a subsequence &’ for which

a*' /||a*"|| converges to a unit vector z. Then we have that |a —by | approaches v/2||y||
and aj + by approaches v/2r, that is, (agr, byr) is bounded sequence so if necessary
we may choose a convergent subsequence k”. Then (ag~,br+) — (a,b) € df(5(0,t))
and (y,r) = d%(a,b).

Case 1.c. Suppose the sequence z* has infinitely many elements that are equal
to 0 and infinitely many elements that are not equal to 0. Let {z*} = {z*} U {z*"},
where 2% # 0 and z*" = 0. We now choose any of the subsequences k' or k” and
apply the corresponding subcase above.

To show the opposite inclusion, suppose that (y,r) = d%(a,b) for some (a,b) €
df(B(0,t)) and some z # 0. By the definition of approximate subgradients there is
a sequence (cg,dy) approaching 5(0,t), with f(ck,ds) approaching f(5(0,t)) and a
sequence of regular subgradients (ag, by) approaching (a,b) and such that (ax,by) €
3f(ck, di). We have three possible cases.

Case 2.a. Suppose first that there is an infinite subsequence k' such that cx >
di for all k'. Then d%(cys,dy) approaches d*(5(0,t)) = (0,t) with f(cp,dp) =
(f o B)(d%(ckr,dr)) approaching f(5(0,t)) = (f o 8)(0,t) and regular subgradients

(arr i) € Of(B(di(cw,di))). If we set 2% o= ﬁL\/;”, then Theorem 8.5 says

that d*,, (ap,br) € A(f o B)(d* (e, dpr)). Notice that z* /||zF'|| converges to z/| 2,
so d,,(ax, byr) approaches d(a,b) = (y,7), so (y,r) is in 9(f o 8)(0,1).

Case 2.b. There is an infinite subsequence k’ such that ¢y < dj for all k. We
are going to revert to the previous case. We have that (y,r) = d* (b, a) where (b,a) €
df(8(0,t)) (see Lemma 8.3) and z # 0. We are given also that the sequence (dg/, cy)
approaches 3(0,t), with f(dy, cx) approaching f(5(0,¢)) and the sequence of regular
subgradients (by, ax) approaches (b,a) and is such that (by,ap) € Of (di,c) (by
Lemma 8.3 again). The rest is analogous to the previous case.
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Case 2.c. Suppose finally that there is an infinite subsequence &’ such that
¢k = dy for all k. Then d%(cy/, dy) approaches di(6(0,¢)) = (0,¢), with f(ck,di) =
(f o B)(d%(cgr,dr)) approaching f(5(0,t)) = (f o 8)(0,t) and regular subgradients
(ags,brr) € OF(B(d=(chr, dps))). But then by Theorem 8.5 we have that d*(ag, by) €
A(f o B)(0, V/2d,). Since d(ay,by) approaches d%(a,b), we are done.

The proof of the formulae for the horizon subgradient is analogous. O

10. Clarke subgradients - the lower semicontinuous case. A function h
is caller lower semicontinuous if its epigraph epih = {(x,a) € R™ x R|h(z) < a} is
a closed subset of R” x R. Let C C R™ and z € C. A vector v € R" is a regular

(v,z—T)

normal to C at z, written v € NC(E), if limsupW < 0. It is a normal vector
T—T

to C at 7, written v € No(Z), if there is a sequence of points 2* in C' approaching
7 and a sequence of regular normals v* in Ng(2*) approaching v. The set of Clarke
subgradients of a function h at z, 0°h(z), is defined by

0°h(Z) = {v|(v, —1) € clconv Nepip(Z, h(Z)}.

It can be shown that if A is locally Lipschitz around Z then this definition coincides
with the definition given in Section 6, so there is no danger of confusion, see [20,
Theorem 9.13 (b) and Theorem 8.49].

By [20, Theorem 8.9], if h is lower semicontinuous around Z the following formula
holds:

Nepi n(7, h(7)) = {A(v, —1) | v € Oh(Z), A > 0} U{(v,0)|v € 8°h(z)}.

The following lemma can be found in [17, Proposition 2.6]. For an independent
proof see [15, Lemma 4.1].
LEMMA 10.1. If h is lower semicontinuous around T we have the representation

0°h(Z) = cl (conv Oh(Z) + conv O°°h(Z)).
In particular, when the cone O h(Z) is pointed we have simpler

O°h(Z) = conv Oh(Z) 4+ conv I h(Z).

It is easy to see that f is lower semicontinuous if and only if f o 5 is. Our final
result is the following theorem.

THEOREM 10.2. The Clarke subdifferential of any lower semicontinuous, Lorentz
invariant function f o 3 at the point (x,t) is given by the formulae:

(i) if x # 0 then

O°(f o B)(x,t) = {dz(a,b) [ (a,b) € O°f(B(x,1))};
(ii) if x =0 then
9°(f 0 £)(0,1) = {dZ(a,b) | (a,b) € O°f(B(0,1)), z # 0}.
Proof. Suppose first that x = 0. Let A := 9f(5(x,t)) and B := 0 f(6(x,t)).

Using Lemma 5.4 and Lemma 10.1 we get

O°(f o B)(x,t) = cl(conv A(f o B)(x,t) + conv I (f o B)(x, 1))

21



cl(convD(A) + convD(B))
cl (D(conv A) + D(conv B))
= clD(conv A + conv B)

= D(cl (conv A + conv B))

= D(9°f(B(,1)).

The case z # 0 is analogous. O
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