
NONSMOOTH ANALYSIS OF LORENTZ INVARIANT FUNCTIONS

HRISTO S. SENDOV∗

Abstract. A real valued function g(x, t) on Rn×R is called Lorentz invariant if g(x, t) = g(Ux, t)
for all n×n orthogonal matrices U and all (x, t) in the domain of g. In other words, g is invariant under
the linear orthogonal transformations preserving the Lorentz cone: {(x, t) ∈ Rn × R | t ≥ ‖x‖}. It is
easy to see that every Lorentz invariant function can be decomposed as g = f ◦ β, where f : R2 → R
is a symmetric function and β is the root map of the hyperbolic polynomial p(x, t) = t2−x2

1−· · ·−x2
n.

We investigate variety of important variational and non-smooth properties of g and characterize them
in terms of the symmetric function f .
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1. Introduction and notation. Denote the set of all orthogonal n×n matrices
by O(n). Let the function g(x, t) be defined on an open subset of Rn×R, taking values
in R. The inner product of two vectors, (x, t) and (y, r) in Rn × R is 〈(x, t), (y, r)〉 =
xT y + tr. Throughout the entire paper we assume that

g(Ux, t) = g(x, t), for all U ∈ O(n), (1.1)

and all (x, t) in the domain of g. We call a function g with property (1.1) Lorentz
invariant because it is invariant under the linear orthogonal transformations preserv-
ing the Lorentz cone {(x, t) ∈ Rn × R | t ≥ ‖x‖}. A set Ω ⊆ Rn × R is called Lorentz
invariant if (x, t) ∈ Ω implies that (Ux, t) ∈ Ω for every U ∈ O(n). Define the map

β(x, t) : Rn × R→ R2,

β(x, t) =
1√
2
(t + ‖x‖, t− ‖x‖).

The rational behind the map β is the following. Consider the polynomial p(x, t) :
Rn×R→ R defined by p(x, t) = t2−x2

1−· · ·−x2
n and let d := (0, ..., 0,

√
2) ∈ Rn×R.

Then, the coordinates of β(x, t) are the roots of the polynomial λ 7→ P ((x, t)−λd). In
general, a homogeneous polynomial p(x) : Rn → R with degree of homogeneity m, for
which there is a direction d ∈ Rn, p(d) 6= 0, such that λ 7→ p(x−λd) has m real roots
for every x ∈ Rn, is called hyperbolic. In 1997, Güler [6], pointed out the relevance
of these polynomials for optimization. Further information and developments can be
found in [2], [13], [12], [18].

Let the function f(a, b) be defined on an open subset of R2 and assume that it is
symmetric, that is f(a, b) = f(b, a) for all (a, b) in its domain. Necessarily, the domain
of f is a symmetric subset of R2, that is (a, b) ∈ A ⇒ (b, a) ∈ A. The following easy
lemma establishes the connection between g, β and f .

Lemma 1.1 (Lorentz invariant functions). The next two properties of a function
g : Rn × R→ R are equivalent:
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(i) g is Lorentz invariant;
(ii) g = f ◦ β for some symmetric function f : R2 → R.
If g = f ◦ β we say that f is the symmetric function corresponding to g. This

correspondence is one-to-one and given g the corresponding symmetric function is

f(a, b) = g

(
a− b√

2
, 0, ..., 0,

a + b√
2

)
. (1.2)

That (1.2) defines a symmetric function in (a, b) is quaranteed by (1.1).
The aim of this paper is to establish variety of important for optimization varia-

tional and non-smooth properties of the function g = f ◦β and how they arise from the
corresponding properties of f . By deriving a wide range or nonsmooth formulae we
hope this work to be a useful reference source. This work completes the similar inves-
tigations of spectral functions [8], [9] [11], [7]; and singular value functions [10], [14],
[15]. Optimization problems over the Lorentz cone, also known as the second order
cone, have wide range of applications, see for example [16]. With the development of
the non-smooth Newton’s method and various smoothing techniques the non-smooth
properties of functions associated with the Lorentz cone have been of interest lately.
For example, the strong semismoothness of the projection onto the Lorentz cone have
been established in [23, Proposition 4.3]. A formula for the Bouligand subdifferential
of the projection onto the Lorentz cone is derived in [24, Lemma 14]. Our paper is
based on results that first appeared in the author’s Ph.D. dissertation [21].

We conclude this section with an elementary fact.
Lemma 1.2. The composition f ◦ β is lower semicontinuous if and only if f is.
Throughout the entire work, the functions g, β and f will have the properties

described in this section.

2. Fenchel conjugation. For a function F : Rn → (−∞,+∞], the Fenchel
conjugate F ∗ : Rn → [−∞, +∞] is the function

F ∗(y) = sup
x∈Rn

{xT y − F (x)}.

It is well known that F ∗ is lower semicontinuous and convex [19]. In this section we
prove the following formula.

Proposition 2.1. We always have

(f ◦ β)∗ = f∗ ◦ β. (2.1)

Proof. Let y 6= 0. In the third equality below, we use the fact that f is symmetric
to see that the given supremum is the same as the supremum over the set {(a, b) ∈
R2 | a− b ≥ 0}. From the definition we have

(f ◦ β)∗(y, r) = sup
(x,t)∈Rn+1

{〈(y, r), (x, t)〉 − (f ◦ β)(x, t)}

= sup
(a,b)∈R2

sup
(x, t) s.t.

t + ‖x‖ = a
√

2
t − ‖x‖ = b

√
2

{〈(y, r), (x, t)〉 − f(a, b)}

= sup
(a,b)∈R2

{〈
(y, r),

(
y

‖y‖
a− b√

2
,
a + b√

2

)〉
− f(a, b)

}

= sup
(a,b)∈R2

{
‖y‖a− b√

2
+ r

a + b√
2
− f(a, b)

}
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= sup
(a,b)∈R2

{〈(
r + ‖y‖√

2
,
r − ‖y‖√

2

)
, (a, b)

〉
− f(a, b)

}

= (f∗ ◦ β)(y, r).

The case y = 0 is easy.
An alternative proof of this result uses Theorem 5.5 and the example in Section 7.5

in [2], where the proposition has been generalized to the subclass of so called isometric
hyperbolic polynomials. In [1, Theorem 6.1] the proposition has been shown to hold
for symmetric functions composed with the eigenvalues of the elements of formally
real Jordan algebras.

3. Convexity and convex subdifferentials.

3.1. Convexity. Theorem 3.1. The composition f ◦ β is convex and lower
semicontinuous if and only if f is convex and lower semicontinuous.

Proof. Suppose f is convex and lower semicontinuous. If f ≡ +∞ then f◦β ≡ +∞
and the theorem is clear. Suppose f assumes some finite values. Then, using the
convexity one can show that f > −∞ and by [19, Theorem 12.2] we have f∗∗ = f .
Since f∗ is symmetric, we use (2.1) in f ◦ β = f∗∗ ◦ β = (f∗ ◦ β)∗, to conclude that
f ◦ β is convex and lower semicontinuous. The opposite direction follows from (1.2)
and Lemma 1.2.

The proof of above theorem can be also deduced from Theorem 3.9 and the
example in Section 7.5 in [2]. Even though the proof of Theorem 3.1 is quite elegant,
a direct approach removes the condition that f be lower semicontinuous.

Theorem 3.2. The composition f ◦ β is convex if and only if f is convex.
Proof. If f ◦ β is convex then f is by (1.2). Suppose now that f is convex with

domain C. The domain of f ◦β is β−1(C). Let (x, t), (y, r) ∈ β−1(C) and let α ∈ [0, 1].
Since (t + ‖x‖, t− ‖x‖), (r + ‖y‖, r − ‖y‖) ∈ √2C and C is symmetric and convex we
find that the points

(αt + (1− α)r + α‖x‖+ (1− α)‖y‖, αt + (1− α)r − α‖x‖ − (1− α)‖y‖),
(αt + (1− α)r − α‖x‖ − (1− α)‖y‖, αt + (1− α)r + α‖x‖+ (1− α)‖y‖)

are both in
√

2C. Denote the first displayed point by a
√

2 and the second by b
√

2.
Since

−α‖x‖ − (1− α)‖y‖ ≤ ‖αx + (1− α)y‖ ≤ α‖x‖+ (1− α)‖y‖,
there is a β ∈ [0, 1] such that for the point

c
√

2 := (αt + (1− α)r + ‖αx + (1− α)y‖, αt + (1− α)r − ‖αx + (1− α)y‖)
we have c = βa + (1− β)b ∈ C. Thus

f(c) ≤ βf(a) + (1− β)f(b) = f(a)

≤ αf((t + ‖x‖, t− ‖x‖)/
√

2) + (1− α)f((r + ‖y‖, r − ‖y‖)/
√

2),

where we used the fact that f(a) = f(b) and that f is convex.
The proof of Theorem 3.2 shows the following property.
Lemma 3.3. Let C ⊆ R2 be a convex and symmetric set. Then

β−1(C) := {(x, t) ∈ Rn × R |β(x, t) ∈ C}
is convex and Lorentz invariant.
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3.2. Convex subdifferentials. Let f : R2 → (−∞, +∞] be convex. For every
point (a, b) such that f(a, b) < +∞ we define the subdifferential of f at (a, b) to be
the set

∂f(a, b) = {(a′, b′)|f(c, d)− f(a, b) ≥ 〈(a′, b′), (c, d)− (a, b)〉, ∀(c, d)}.

It is easy to see that f(a, b)+f∗(a′, b′) = 〈(a, b), (a′, b′)〉 if and only if (a′, b′) ∈ ∂f(a, b).
The set ∂f(a, b) is a singleton {(a′, b′)} if and only if f is differentiable at the point
(a, b) with gradient ∇f(a, b) = (a′, b′), see [19, Theorem 25.1].

The following result gives a formula for the subgradient of the composition f ◦ β.
Theorem 3.4. Suppose f : R2 → (−∞, +∞] is convex and lower semicontinuous.

Then (y, r) ∈ ∂(f ◦ β)(x, t) if and only if β(y, r) ∈ ∂f(β(x, t)) and xT y = ‖x‖‖y‖.
Proof. Suppose first (y, r) ∈ ∂(f ◦ β)(x, t). Then using formula (2.1) we get

‖x‖‖y‖+ rt ≥ xT y + rt = 〈(y, r), (x, t)〉
= (f ◦ β)(x, t) + (f ◦ β)∗(y, r)
= (f ◦ β)(x, t) + (f∗ ◦ β)(y, r)

= f

(
t + ‖x‖√

2
,
t− ‖x‖√

2

)
+ f∗

(
r + ‖y‖√

2
,
r − ‖y‖√

2

)

≥ (
(t + ‖x‖)(r + ‖y‖) + (t− ‖x‖)(r − ‖y‖))/2

= ‖x‖‖y‖+ rt.

Thus, we have equalities everywhere: (a) β(y, r) ∈ ∂f(β(x, t)) and (b) xT y = ‖x‖‖y‖.
In the other direction the proof is clear by reversing the steps above.

For a generalization of this proposition to formally real Jordan algebras see [1,
Corollary 6.2].

4. Differentiability. The partial derivatives of the function f with respect to
its first and second argument are denoted by f ′1 and f ′2 respectively.

Theorem 4.1. The composition f ◦ β is differentiable at the point (x, t) if and
only if f is differentiable at β(x, t). In that case we have the formulae

∇x(f ◦ β)(x, t) =

{
f ′1(β(x,t))−f ′2(β(x,t))√

2‖x‖ x if x 6= 0
0 if x = 0

and

d

dt
(f ◦ β)(x, t) =

1√
2
(f ′1(β(x, t)) + f ′2(β(x, t))).

Proof. Suppose first that f is differentiable at the point β(x, t). If x 6= 0 the
theorem and the formulae are trivial and follow from the chain rule. So let us assume
now that x = 0. Let h = (h̄, hn+1) ∈ Rn × R and

d :=
(
0, ..., 0, (f ′1(β(x, t)) + f ′2(β(x, t)))/

√
2
) ∈ Rn × R.

Then

lim
h→0

|(f ◦ β)((0, t) + (h̄, hn+1))− (f ◦ β)((0, t))− dT h|
‖h‖ =
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lim
h→0

|f(β(h̄, t + hn+1))− f(β(0, t))− hn+1(f ′1(β(0, t)) + f ′2(β(0, t)))/
√

2|
‖h‖ .

The fact that f is differentiable at β(0, t) = (t/
√

2, t/
√

2) gives

f(β(h̄,t + hn+1)) ∼ f(β(0, t)) + f ′1(β(0, t))
hn+1 + ‖h̄‖√

2
+ f ′2(β(0, t))

hn+1 − ‖h̄‖√
2

,

where ∼ indicates that the difference of both sides is of order o(‖h‖). Using the fact
that for a symmetric function f , f ′1(β(0, t)) = f ′2(β(0, t)) and substituting above we
see that the limit is zero, that is, ∇(f ◦ β)(0, t) = d.

The proof in the other direction is easy using formula (1.2).
Theorem 4.2. Let f be symmetric and defined on an open symmetric subset of

R2. Then f ◦ β is continuously differentiable at the point (x, t) if and only if f is
continuously differentiable at β(x, t).

Proof. Suppose that f is continuously differentiable at β(x, t). The theorem is
clear if x 6= 0. So suppose x = 0. Let {(xk, tk)} be a sequence of points in Rn × R
approaching (0, t). We need only prove that ∇(f ◦β)(xk, tk) approaches ∇(f ◦β)(0, t).
We consider two cases. The general case easily follows by combining them.

Case 1. If xk = 0 for all k. Then using the formula in Theorem 4.1 we obtain

lim
k→∞

∇(f ◦ β)(0, tk) = lim
k→∞

(
0, ..., 0,

1√
2

(
f ′1(β(0, tk)) + f ′2(β(0, tk))

))

= ∇(f ◦ β)(0, t),

by the continuity of ∇f at β(0, t).
Case 2. If xk 6= 0 for all k. Using again the formula in Theorem 4.1 for the

derivative with respect to t we obtain

lim
k→∞

(f ◦ β)′t(x
k, tk) = lim

k→∞
1√
2

(
f ′1(β(xk, tk)) + f ′2(β(xk, tk))

)
= (f ◦ β)′t(0, t).

For the derivative with respect to xi we get

lim
k→∞

(f ◦ β)′xi
(xk, tk) = lim

k→∞
xk

i√
2‖xk‖

(
f ′1(β(xk, tk))− f ′2(β(xk, tk))

)
= 0,

because xk
i /‖xk‖ is bounded and the continuity of ∇f at β(0, t) gives us

lim
k→∞

(f ′1(β(xk, tk))− f ′2(β(xk, tk)) = f ′1(β(0, t))− f ′2(β(0, t)) = 0.

The last equality follows from the fact that f is symmetric.
The opposite direction of the theorem is easy using (1.2).

5. The decomposition functions. In this section we define the functions dz

and d∗z and summarize some of their properties that will be used frequently. We
call them decomposition functions because they will be used to describe how the
subgradients of f ◦ β are decomposed into subgradients of f .

Definition 5.1. For every nonzero vector z in Rn we define the map

dz : Rn × R→ R2,
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dz(y, t) =
1√
2

(
t +

zT y

‖z‖ , t− zT y

‖z‖
)

.

In cases when the direction (y, t) is fixed and clear from the context we simply write
dz in stead of dz(y, t).

Definition 5.2. For every nonzero vector z in Rn we define the map

d∗z : R2 → Rn × R,

d∗z(a, b) =
(

z

‖z‖
a− b√

2
,
a + b√

2

)
.

The following lemma collects a few elementary properties of the maps dz and d∗z.
The proof is omitted.

Lemma 5.3. Let z and w be nonzero vectors in Rn.
(i) The maps dz(·) and d∗z(·) are linear and adjoint to each other.
(ii) For every point (γ1, γ2) in R2

dwd∗z(γ1, γ2) =
1 + δ

2
(γ1, γ2) +

1− δ

2
(γ2, γ1),

where δ = wT z
‖w‖‖z‖ ∈ [−1, 1]. In particular, when w = z we have

dzd
∗
z(γ1, γ2) = (γ1, γ2).

(iii) For every point (y, r) in Rn × R such that y = az for some a ∈ R

d∗zdz(y, r) = (y, r).

Lemma 5.4. Let A and B be symmetric subsets of R2. The sets

D(A) = {d∗z(γ1, γ2)|(γ1, γ2) ∈ A, z 6= 0}, and
C(A) = {(y, r)|dz(y, r) ∈ A, ∀z 6= 0},

satisfy the following properties.
(i) If A is convex then

(a) If (x, t) is in D(A), then (δx, t) is in D(A) for every δ ∈ [−1, 1].
(b) D(A) is a convex set.
(c) D(A) = C(A).
(d) If B is also convex, then cl (D(A) +D(B)) = clD(A + B).

(ii) For any A we have
(a) convD(A) = D(conv A).
(b) D(cl A) = clD(A).

Proof. Part (i)a. Let (x, t) = d∗z(γ1, γ2) for some (γ1, γ2) in A and z 6= 0. Since
the set A is symmetric and convex, (γ2, γ1) is in A and for every α ∈ [0, 1] the convex
combination (αγ1 + (1− α)γ2, αγ2 + (1− α)γ1) is in A. Thus,

d∗z
(
αγ1 + (1− α)γ2, αγ2 + (1− α)γ1

)
=

(
z

‖z‖
γ1 − γ2√

2
(2α− 1),

γ1 + γ2√
2

)

= (x(2α− 1), t) ∈ D,

for all α ∈ [0, 1]. Now set δ := 2α− 1.
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Part (i)b. Since A is convex, for any two points (γ1, γ2) and (δ1, δ2) in A and
µ ∈ [0, 1], we have that (µγ1 + (1 − µ)δ1, µγ2 + (1 − µ)δ2) is in A. Thus, for every
z 6= 0

(
z

‖z‖
µ(γ1 − γ2) + (1− µ)(δ1 − δ2)√

2
,
µ(γ1 + γ2) + (1− µ)(δ1 + δ2)√

2

)
∈ D. (5.1)

Take two points (x1, t1) and (x2, t2) in D and a number µ ∈ (0, 1). We want to
show that (µx1 + (1− µ)x2, µt1 + (1− µ)t2) is also in D. Suppose

(x1, t1) = d∗z1(γ1, γ2), (x2, t2) = d∗z2(δ1, δ2)

for some (γ1, γ2) and (δ1, δ2) in A, z1 6= 0 and z2 6= 0. Set

zµ := µ
γ1 − γ2√

2
z1

‖z1‖ + (1− µ)
δ1 − δ2√

2
z2

‖z2‖ ,

and notice that

‖zµ‖ ≤ µ
|γ1 − γ2|√

2
+ (1− µ)

|δ1 − δ2|√
2

.

Then

µ(x1, t1) + (1− µ)(x2, t2) =
(

zµ,
µ(γ1 + γ2) + (1− µ)(δ1 + δ2)√

2

)
. (5.2)

If zµ = 0 then from (5.1) and part (i)a with δ = 0 we see that

µ(x1, t1) + (1− µ)(x2, t2) ∈ D.

Suppose now zµ 6= 0. Choose one of the points (γ1, γ2), (γ2, γ1) in A and one of
the points (δ1, δ2), (δ2, δ1) in A so that, using part (i)a, inclusion (5.1) becomes

(
z

‖z‖
µ|γ1 − γ2|+ (1− µ)|δ1 − δ2|√

2
δ,

µ(γ1 + γ2) + (1− µ)(δ1 + δ2)√
2

)
∈ D,

for all z 6= 0 and δ ∈ (0, 1). Let δ be a number in (0, 1) such that

µ|γ1 − γ2|+ (1− µ)|δ1 − δ2|√
2

δ = ‖zµ‖.

Putting all together we obtain that (5.2) is in D, showing that D is a convex set.
Part (i)c. Suppose (y, r) ∈ C, then dz(y, r) ∈ A for all z 6= 0. Apply Lemma 5.3

part (iii) with a = 0 and any z if y = 0; or with a = 1 and z = y if y 6= 0 to obtain

(y, r) = d∗zdz(y, r) = d∗z(dz(y, r)) ∈ D.

This shows that C ⊆ D.
Suppose now (y, r) ∈ D. That is, (y, r) = d∗z(γ1, γ2) for some (γ1, γ2) in A and

some z 6= 0. Let ẑ be an arbitrary nonzero vector and set δ := zT ẑ
‖z‖‖ẑ‖ ∈ [−1, 1]. Then

by Lemma 5.3 part (ii) we have

dẑ(y, r) = dẑd
∗
z(γ1, γ2) =

1 + δ

2
(γ1, γ2) +

1− δ

2
(γ2, γ1) ∈ A,
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because A is symmetric and convex. So D ⊆ C.
Part (i)d. By part (i)b we have that both D(A)+D(B) and D(A+B) are convex

sets. It is clear that the latter set is contained in the former:

cl (D(A) +D(B)) ⊇ clD(A + B).

In order to show that the sets are equal it suffices to show that their support functions
are equal. Fix any x ∈ Rn and suppose first that x 6= 0. In the first and last equality
below, we use the fact that A and B are symmetric sets.

max{〈(x, t), (d∗z1(γ1, γ2) + d∗z2(δ1, δ2))〉|(γ1, γ2) ∈ A, (δ1, δ2) ∈ B, z1 6= 0, z2 6= 0}
= max{〈(x, t), (d∗x(γ1, γ2) + d∗x(δ1, δ2))〉|(γ1, γ2) ∈ A, (δ1, δ2) ∈ B}
= max{〈(x, t), d∗x(γ1 + δ1, γ2 + δ2)〉|(γ1, γ2) ∈ A, (δ1, δ2) ∈ B}
= max{〈(x, t), d∗x(α1, α2)〉|(α1, α2) ∈ A + B}
= max{〈(x, t), d∗z(γ1, γ2)〉|(γ1, γ2) ∈ A + B, z 6= 0}.

The case x = 0 is easy.
Part (ii)a. The inclusion A ⊆ conv A implies D(A) ⊆ D(conv A). Since the set

D(conv A) is convex by part (i)b, we obtain convD(A) ⊆ D(conv A). The opposite
inclusion D(conv A) ⊆ convD(A) is easy.

Part (ii)b. Let {d∗xk(γk
1 , γk

2 )} be a sequence in D(A) approaching a vector (z, s).
Since the unit sphere in Rn is compact, we can find a subsequence, denoted again
by k, such that xk/‖xk‖ converges to a unit vector x. For this subsequence we have
|γk

1 −γk
2 | →

√
2‖z‖ and γk

1 +γk
2 →

√
2s. Consequently, {(γk

1 , γk
2 )} is bounded so there

is a subsequence, denoted again by k, for which (γk
1 , γk

2 ) → (γ1, γ2) ∈ clA. So, the
sequence {d∗xk(γk

1 , γk
2 )} approaches d∗x(γ1, γ2) which is in D(cl A). This shows that for

an arbitrary set A we have the inclusion D(clA) ⊇ clD(A). The opposite inclusion is
easy.

6. Clarke subdifferential - the Lipschitz case. Suppose that h is a real-
valued function defined on some subset of Rm. We say that h is locally Lipschitz at x
in Rm if there exists a scalar K such that

|h(x′′)− h(x′)| ≤ K‖x′′ − x′‖, for all x′′, x′ close to x.

For locally Lipschitz functions the Clarke directional derivative [4] at the point x in
the direction v is defined to be

h◦(x; v) = limsup
y→x; λ↓0

h(y + λv)− h(y)
λ

.

For y close to x and λ to 0, the difference quotient in the definition of h◦(x; v) is
bounded above by K|v|. Thus, h◦(x; v) is well defined and finite. We need the
following formula for the Clarke directional derivative that can be found in [4, p. 64]:

h◦(x; v) = limsup
y→x

{〈∇h(y), v〉 | y is such that ∇h(y) exists}, 1 (6.1)

for every pair (x; v). In other words, there exists a sequence {xk} in Rm approaching
x such that f is differentiable at each xn and

〈∇h(xk), v〉 → h◦(x; v). (6.2)

1By the Rademacher’s theorem, locally Lipschitz functions are differentiable almost everywhere.
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The Clarke subdifferential ∂ch(x) is defined as

∂ch(x) = {ξ | 〈v, ξ〉 ≤ h◦(x; v) for all v}.

In can be shown that the set ∂ch(x) is compact, nonempty and convex. If h is convex
and finite on a neighbourhood of x then ∂ch(x) = ∂h(x) and if h is continuously
differentiable at x then ∂ch(x) = {∇h(x)}. In this sense the Clarke subdifferential
generalizes both the convex subdifferential and the gradient of a C1 function. Finally,
Proposition 2.1.2 in [4] shows that the Clarke directional derivative is the support
function of the Clarke subdifferential:

h◦(x; v) = max{〈v, ξ〉 | ξ ∈ ∂ch(x)}. (6.3)

Now, we return to the symmetric, bivariate function f , which we now require to
be locally Lipschitz. It is not difficult to see that f is locally Lipschitz if and only if
f ◦ β is. We are going to present a formula expressing the Clarke subdifferential of
f ◦ β in terms of the Clarke subdifferential of f .

The following elementary lemma shows that the Clarke directional derivative of
h ◦ β is invariant under Lorentz orthogonal transformations of the argument and the
direction.

Lemma 6.1. Let (x, t) be a point in the domain of f ◦ β, let (y, r) be a direction
and let U be an orthogonal matrix. Then

(f ◦ β)◦((x, t); (y, r)) = (f ◦ β)◦((Ux, t); (Uy, r)).

Theorem 6.2 (Clarke directional derivative). Let (0, t) be a point in the domain
of f ◦ β and let (y, r) be any direction. Then if x = 0

(f ◦ β)◦((0, t); (y, r)) = max{f◦(β(0, t); dz(y, r))|z ∈ Rn, z 6= 0}. (6.4)

Note 6.3. For the Clarke directional derivative at a point (x, t) with x 6= 0 see
Corollary 6.6.

Proof. By (6.2), there is a sequence of points {(xk, tk)} approaching (0, t) such
that

(f ◦ β)◦((0, t); (y, r)) = lim
k→∞

〈∇(f ◦ β)(xk, tk), (y, r)〉.

In order to evaluate ∇(f ◦ β) using Theorem 4.1 we need to consider two cases de-
pending on whether xk is zero or not. The general situation follows from these two
cases by considering subsequences.

Case 1.a. Suppose xk = 0 for all k. Let βk := β(0, tk) and note that f ′1(β
k) =

f ′2(β
k). Fix an arbitrary nonzero vector z ∈ Rn. Then

(f ◦ β)◦((0, t); (y, r)) = lim
k→∞

〈∇(f ◦ β)(0, tk), (y, r)〉

= lim
k→∞

〈(
0, ..., 0,

f ′1(β
k) + f ′2(β

k)√
2

)
, (y, r)

〉

= lim
k→∞

〈∇f(βk), β(0, r)〉
= lim

k→∞
〈∇f(βk), dz(y, r)

〉
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≤ f◦(β(0, t); dz(y, r))).

In the last inequality we used (6.1).

Case 1.b. Suppose xk 6= 0 for all k, lim
k→∞

xk

‖xk‖ =
z

‖z‖ and let βk := β(xk, tk).

Then, we have

(f ◦ β)◦((0, t);(y, r)) = lim
k→∞

〈∇(f ◦ β)(xk, tk), (y, r)〉

= lim
k→∞

〈(
f ′1(β

k)− f ′2(β
k)√

2‖xk‖ xk,
f ′1(β

k) + f ′2(β
k)√

2

)
, (y, r)

〉

= lim
k→∞

f ′1(β
k)− f ′2(β

k)√
2‖xk‖ (xk)T y +

f ′1(β
k) + f ′2(β

k)√
2

r

= lim
k→∞

f ′1(β
k)

(
r√
2

+
(xk)T y√
2‖xk‖

)
+ f ′2(β

k)
(

r√
2
− (xk)T y√

2‖xk‖

)

= lim
k→∞

〈∇f ′(βk), dz(y, r)
〉

≤ f◦(β(0, t); dz(y, r)),

where, in substituting xk/‖xk‖ by z/‖z‖ in the last equality, we used the fact that
since f is locally Lipschitz the sequence {(f ′1(βk), f ′2(β

k)} is bounded. All this shows
that if x = 0 then

(f ◦ β)◦((0, t); (y, r)) ≤ sup{f◦(β(0, t); dz(y, r)|z ∈ Rn, z 6= 0}.
To show the opposite inequality, fix a nonzero vector z ∈ Rn. There is a sequence of
points {(ak, bk)} approaching β(0, t) such that

f◦(β(0, t); dz(y, r)) = lim
n→∞

〈∇f(ak, bk), dz(y, r)〉.

There is an infinite subsequence {(ak′ , bk′)} of {(ak, bk)} that satisfies one of the three
possibilities

(i) ak′ = bk′ for all k′.
(ii) ak′ > bk′ for all k′.
(iii) ak′ < bk′ for all k′.

For this subsequence we still have

f◦(β(0, t); dz(y, r)) = lim
k′→∞

〈∇f(ak′ , bk′), dz(y, r)〉.

Without loss of generality we may assume that {(ak, bk)} satisfies one of the three
possibilities and consider them separately.

Case 2.a. Suppose ak = bk for all k. Note that in this case we have f ′1(ak, ak) =
f ′2(ak, ak). Thus,

f◦(β(0, t); dz(y, r)) = lim
k→∞

〈∇f(ak, ak), dz(y, r)〉

= lim
k→∞

f ′1(ak, ak) + f ′2(ak, ak)√
2

r

= lim
k→∞

〈∇(f ◦ β)(0, ak), (y, r)〉
≤ (f ◦ β)◦((0, t); (y, r)).

10



Case 2.b. Suppose ak > bk for all k. Define the sequence of vectors

zk :=
(

ak − bk

2
, 0, ..., 0

)
∈ Rn,

(notice that ‖zk‖ = (ak − bk)/2) and let U be an orthogonal matrix such that

lim
k→∞

Uzk

‖zk‖ =
z

‖z‖ . (6.5)

In the third equality below we use the fact that the Lipschitzness of f implies that the
sequence {f ′1(ak, bk)− f ′2(ak, bk)} is bounded, thus in the limit we can replace z/‖z‖
by Uzk/‖zk‖. We calculate

f◦(β(0,t); dz(y, r)) = lim
k→∞

〈∇f(ak, bk), dz(y, r)〉

= lim
k→∞

〈
f ′1(ak, bk)− f ′2(ak, bk)√

2‖z‖ z, y

〉
+

f ′1(ak, bk) + f ′2(ak, bk)√
2

r

= lim
k→∞

〈
f ′1(ak, bk)− f ′2(ak, bk)√

2‖zk‖ zk, UT y

〉
+

f ′1(ak, bk) + f ′2(ak, bk)√
2

r

= lim
k→∞

〈
∇(f ◦ β)

(
ak − bk√

2
, 0, ..., 0,

ak + bk√
2

)
, (UT y, r)

〉

≤ (f ◦ β)◦((0, t); (UT y, r))
= (f ◦ β)◦((0, t); (y, r)).

In the last equality we used Lemma 6.1.
Case 2.c. Suppose ak < bk for all k. Define the sequence of vectors

zk :=
(

bk − ak

2
, 0, ..., 0

)
∈ Rn,

(notice that ‖zk‖ = (bk − ak)/2) and proceed analogously to the previous case.
It is straightforward to check that for every (y, r) ∈ Rn × R and every nonzero

x ∈ Rn we have

lim
(x′,t′)→(x,t), µ↓0

β((x′, t′) + µ(y, r))− β(x′, t′)
µ

= dx(y, r).

Applying [3, Theorem 6.2.3] to the Lipschitz map β(x, t) we obtain the following
result.

Lemma 6.4. If x 6= 0 then β(x, t) is strictly differentiable and its strict derivative
is the linear map dx. That is

lim
(x′,t′), (x′′,t′′)→(x,t)

(x′,t′) 6=(x′′,t′′)

β(x′, t′)− β(x′′, t′′)− dx(x′ − x′′, t′ − t′′)
‖(x′ − x′′, t′ − t′′)‖ = 0.

We now turn our attention to the problem of characterizing the Clarke subdiffer-
ential ∂c(f ◦ β)(x, t).

Theorem 6.5. The Clarke subgradient at (x, t) of a Lorentz invariant function
f ◦ β, locally Lipschitz at (x, t), is given by the formulae

11



(i) if x 6= 0 then

∂c(f ◦ β)(x, t) = {d∗x(γ1, γ2) | (γ1, γ2) ∈ ∂cf(β(x, t))};
(ii) if x = 0 then

∂c(f ◦ β)(0, t) = {d∗z(γ1, γ2) | (γ1, γ2) ∈ ∂cf(β(0, t)), z 6= 0}.
Proof. Case (i) Suppose that x 6= 0. Then, by Lemma 6.4, β is strictly differen-

tiable at (x, t) with strict derivative dx. Moreover, dx is a surjective linear map. So
we can apply the chain rule for the Clarke subdifferential [4, Theorem 2.3.10], which
in our situation holds with equality:

∂c(f ◦ β)(x, t) = ∂cf(β(x, t)) ◦ dx.

Now, if (v, p) ∈ ∂c(f ◦ β)(x, t) and (y, r) ∈ Rn × R, then there is a subgradient
(γ1, γ2) ∈ ∂cf(β(x, t)) such that

〈(v, p), (y, r)〉 = ((γ1, γ2) ◦ dx)(y, r) = 〈(γ1, γ2), dx(y, r)〉 = 〈d∗x(γ1, γ2), (y, r)〉,
where the last equality follows by Lemma 5.3. So

∂c(f ◦ β)(x, t) ⊆ {d∗x(γ1, γ2)|(γ1, γ2) ∈ ∂cf(β(x, t))},
the other inclusion is now clear.

Case (ii) Suppose that x = 0 and define

D := {d∗z(γ1, γ2)|(γ1, γ2) ∈ ∂cf(β(0, t)), z 6= 0}.
Two closed, convex sets are equal whenever their support functions are the same. The
support function for the set convD, evaluated at (y, r), is

max{〈(y, r), (z, s)〉 | (z, s) ∈ convD}
= max{〈(y, r), (z, s)〉 | (z, s) ∈ D}
= max{〈(y, r), d∗z(γ1, γ2)〉 | (γ1, γ2) ∈ ∂cf(β(0, t)), z 6= 0}
= max{〈dz(y, r), (γ1, γ2)〉 | (γ1, γ2) ∈ ∂cf(β(0, t)), z 6= 0}
= max{max{〈dz(y, r), (γ1, γ2)〉 | (γ1, γ2) ∈ ∂cf(β(0, t))} | z 6= 0}
= max{f◦(β(0, t); dz(y, r)) | z 6= 0}
= (f ◦ β)◦((0, t); (y, r)),

where, in the last two equalities, we used (6.3) and Theorem 6.2. By (6.3) again
applied to the function f ◦ β we obtain

cl convD = ∂c(f ◦ β)(0, t),

because ∂c(f ◦ β)(x, t) is a closed convex set [4, Proposition 2.1.2]. The fact that
convD = D follows from Lemma 5.4 part (i)b and the fact that D is closed follows
by the same lemma part (ii)b.

Corollary 6.6 (Clarke directional derivative). Let (x, t) be a point in the do-
main of f ◦ β and let (y, r) be a direction in Rn × R. Then if x 6= 0,

(f ◦ β)◦((x, t); (y, r)) = f◦(β(x, t); dx(y, r)).

Proof. Use again the fact that (f ◦ β)◦((x, t); (y, r)) is the support function of
∂c(f ◦ β)(x, t), see [4, Proposition 2.1.2].
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7. Second order properties. Let, in this section, f be twice differentiable at
the point (a, b). This means that f is differentiable in a neighbourhood of this point
and the first derivative, ∇f , is differentiable again at (a, b). The question that we are
going to answer now is whether g := f ◦ β is twice differentiable at any point (x, t)
such that β(x, t) = (a, b). Elementary calculus shows that, if x 6= 0 then g is twice
differentiable. It turns out that this is always the case as we prove in Theorem 7.1. A
generalization of Theorem 7.1 and Theorem 7.2 to the setting of formally real Jordan
algebras can be found in [25]. Our approach is direct and first appeared in [21].

7.1. Second order differentiability. Theorem 7.1. The function g := f ◦ β
is twice differentiable at (x, t) if and only if f is twice differentiable at β(x, t). In that
case we have

(i) if x 6= 0 then

g′′xixj
(x, t) =

xixj

2‖x‖2 (f ′′11 − f ′′12 − f ′′21 + f ′′22) +
δij‖x‖2 − xixj√

2‖x‖3 (f ′1 − f ′2),

g′′txi
(x, t) =

xi

2‖x‖ (f ′′11 − f ′′12 + f ′′21 − f ′′22),

g′′xit(x, t) =
xi

2‖x‖ (f ′′11 + f ′′12 − f ′′21 − f ′′22),

g′′tt(x, t) =
1
2
(f ′′11 + f ′′12 + f ′′21 + f ′′22),

where δij is 1 if i = j and 0 otherwise;
(ii) if x = 0, then

g′′xixj
(0, t) =

{
1
2 (f ′′11 − f ′′12 − f ′′21 + f ′′22), if i = j,
0 otherwise,

g′′txi
(0, t) = 0,

g′′xit(0, t) = 0,

g′′tt(0, t) =
1
2
(f ′′11 + f ′′12 + f ′′21 + f ′′22).

All second-order derivatives of f , in both cases, are evaluated at β(x, t).
Proof. The ‘only if’ part follows easily from (1.2).
The verification of part (i) is straightforward. For part (ii) denote

Hii :=
1
2
(f ′′11 − f ′′12 − f ′′21 + f ′′22), for i = 1, ..., n,

Htt :=
1
2
(f ′′11 + f ′′12 + f ′′21 + f ′′22),

H := Diag (H11, ...,Hnn, Htt),

where the second-order derivatives of f are evaluated at β(0, t) and the operator Diag
forms a diagonal matrix from its vector argument. Fix an arbitrary sequence {hk} in
Rn × R converging to 0 and denote h̄k := (hk

1 , ...., hk
n)T . Using Theorem 4.1 we are

going to show that the limit of the difference quotient

lim
k→∞

‖∇g(h̄k, t + hk
n+1)−∇g(0, t)−Hhk‖
‖hk‖ ,
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is 0. We consider separately each coordinate in the difference quotient. Two cases are
necessary: one for the coordinates from 1 to n and one for the (n + 1)st coordinate.
The sequence {hk} can be partitioned into two subsequences—one in which h̄k = 0
for all k and one in which h̄k 6= 0 for all k. We will be done if we show that the limit
of the difference quotient for each of the two subsequences is zero. That lead us to
consider two subcases in each main case.

Case a. Suppose i ∈ {1, ..., n}. Then the difference quotient becomes

lim
k→∞

|g′i(h̄k, t + hk
n+1)− g′i(0, t)−Hiih

k
i |

‖hk‖ . (7.1)

We use Theorem 4.1 to evaluate the derivatives g′i. Notice that if h̄k = 0 for all k,
then the limit is clearly 0. Thus, suppose h̄k 6= 0 for all k. Then (7.1) becomes

lim
k→∞

| h̄k√
2‖h̄k‖ (f

′
1(β(h̄k, t + hk

n+1))− f ′2(β(h̄k, t + hk
n+1)))− h̄k

2 (f ′′11 − f ′′12 − f ′′21 + f ′′22)|
‖hk‖ ,

where the second derivatives of f are evaluated at β(0, t). Because f ′1 and f ′2 exist in
a neighbourhood of β(0, t) and are differentiable at β(0, t) we have

f ′1(β(h̄k, t + hk
n+1))∼f ′1(β(0, t)) + f ′′11(β(0, t))

hk
n+1 + ‖h̄k‖√

2
+ f ′′12(β(0, t))

hk
n+1 − ‖h̄k‖√

2
,

f ′2(β(h̄k, t + hk
n+1))∼f ′2(β(0, t)) + f ′′21(β(0, t))

hk
n+1 + ‖h̄k‖√

2
+ f ′′22(β(0, t))

hk
n+1 − ‖h̄k‖√

2
,

where ∼ indicates that the difference of both sides is of order o(‖hk‖). Because f is
symmetric, at the point β(0, t) we have f ′1 = f ′2, f ′′12 = f ′′21 and f ′′11 = f ′′22. Substituting
the two expansions into the limit shows that it is indeed 0.

Case b. Suppose i = n + 1. The arguments are analogous to the previous case.
We use again Theorem 4.1 to evaluate the derivative g′t and then substitute f ′1 and
f ′2 with their first order expansions.

7.2. Continuity of the Hessian. Theorem 7.2. The function g := f ◦ β is
twice continuously differentiable at (x, t) if and only if f is such at β(x, t).

Proof. The ‘only if’ direction is also easy to obtain from (1.2). The ‘if’ direction
is clear in the case when x 6= 0. Thus, we suppose that f is twice continuously differ-
entiable at β(0, t) and are going to show that for any sequence of vectors {(xk, tk)} in
Rn×R approaching (0, t), the Hessian ∇2g(xk, tk) is approaching ∇2g(0, t). Viewing,
for a fixed basis, ∇2g(0, t) as a matrix, we are going to prove the convergence for each
entry. We again consider two cases and the general situation follows easily from them.
If xk = 0 for all k, then the result follows directly from the continuity of ∇2f at the
point β(0, t), see Theorem 7.1. If xk 6= 0 for all n then from the continuity of ∇2f at
the point β(0, t) and the formulae given in Theorem 7.1 we have

lim
k→∞

g′′xit(x
k, tk) = lim

k→∞
g′′txi

(xk, tk) = 0

lim
k→∞

g′′tt(x
k, tk) = g′′tt(0, t),

where we also used the fact that since f is symmetric f ′′12 = f ′′21 and f ′′11 = f ′′22 at the
point β(0, t). The interesting part is to show lim

k→∞
g′′xixj

(xk, tk) = g′′xixj
(0, t). Denote

βk
+− :=

1√
2
(tk + ‖xk‖, tk − ‖xk‖),
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βk
++ :=

1√
2
(tk + ‖xk‖, tk + ‖xk‖),

βk
−+ :=

1√
2
(tk − ‖xk‖, tk + ‖xk‖).

Because f is symmetric f ′1(β
k
−+) = f ′2(β

k
+−). This allows us to evaluate the following

limit using the Mean Value theorem.

lim
k→∞

1√
2‖xk‖

(
f ′1(β(xk, tk))− f ′2(β(xk, tk))

)

= lim
k→∞

1√
2‖xk‖

(
f ′1(β

k
+−)− f ′1(β

k
++) + f ′1(β

k
++)− f ′1(β

k
−+)

)

= lim
k→∞

(
− f ′′12

(
tk + ‖xk‖√

2
, νk

)
+ f ′′11

(
µk,

tk + ‖xk‖√
2

))

=
1
2
(
f ′′11(β(0, t))− f ′′12(β(0, t))− f ′′21(β(0, t)) + f ′′22(β(0, t))

)
.

Above, the numbers νk and µk are between tk−‖xk‖√
2

and tk+‖xk‖√
2

and the last equality
uses the continuity of ∇2f and the fact that f is symmetric. Using the formula for
g′′xixj

given in Theorem 7.1 we can see that

lim
k→∞

g′′xixj
(xk, tk) =

δij

2
(
f ′′11(β(0, t))− f ′′12(β(0, t))− f ′′21(β(0, t)) + f ′′22(β(0, t))

)

= g′′xixj
(0, t).

This concludes the proof.

7.3. Positive definite Hessian. We begin with a simple lemma and the main
result of this subsection follows after it.

Lemma 7.3. Suppose that function f is continuously differentiable on an open
convex subset of R2 and is strictly convex there. For any point (a, b) in its domain
with a > b we have f ′1(a, b) > f ′2(a, b).

Theorem 7.4. Suppose that f is twice continuously differentiable at β(x, t).
Then ∇2(f ◦ β) is positive definite at the point (x, t) if and only if ∇2f is positive
definite at β(x, t).

Proof. Suppose that ∇2f(β(x, t)) is positive definite. We use the formulae in
Theorem 7.1 to give a matrix representation of the Hessian of f ◦ β. Define the
(n + 1)× 2 matrix:

X :=
1√
2

( x
‖x‖ − x

‖x‖
1 1

)
,

and the (n + 1)× (n + 1) matrix

M :=
1√

2‖x‖

(
In − xxT

‖x‖2 0
0 0

)
,

where In is the n× n identity matrix.
Case I. When x 6= 0 the Hessian of f ◦ β can be written as

∇2(f ◦ β)(x, t) = X∇2f(β(x, t))XT + M∇f(β(x, t))
(

1
−1

)
.
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For any nonzero vector (y, r) we have

(y, r)
(∇2(f ◦ β)(x, t)

)
(y, r)T =

1
2
dx(y, r)∇2f(β(x, t))dx(y, r)T

+
1√

2‖x‖3
(‖y‖2‖x‖2 − (xT y)2

)(
f ′1(β(x, t))− f ′2(β(x, t))

)
.

Using Lemma 7.3 we see that the above expression is strictly positive.
Case II. In the case when x = 0, then the Hessian of f ◦ β is a diagonal matrix

and the fact that it is positive definite can be easily seen.
In the other direction the result follows from (1.2).
The proof of the next corollary is virtually the same as [22, Theorem 7.2], we

omit it.
Corollary 7.5. Let C be a symmetric and convex subset of R2. Let f : R2 → R

be twice continuously differentiable function defined on C. Then

min
(a,b)∈C

λmin(∇2f(a, b)) = min
(x,t)∈β−1(C)

λmin(∇2(f ◦ β)(x, t)). (7.2)

Above, λmin denotes the smallest eigenvalue of the matrix in its argument.
Multiplying both sides of (7.2) by −1 we obtain

max
(a,b)∈C

λmax(∇2f(a, b)) = max
(x,t)∈β−1(C)

λmax(∇2(f ◦ β)(x, t)).

8. The regular and proximal subdifferentials. Given a function h : Rm →
[−∞, +∞] and a point x in Rm at which h is finite, a vector y of Rm is called a regular
subgradient of h at x if

h(x + z) ≥ h(x) + 〈y, z〉+ o(‖z‖) as z → 0.

The set of regular subgradients is denoted ∂̂h(x) and is called the regular subdifferential
of h at x. If h is infinite at x then the set ∂̂h(x) is defined to be empty. It is not
difficult to show that it is always a closed and convex set, see [20].

A vector y is called a proximal subgradient of the function h at x, a point where
h(x) is finite, if there exist ρ > 0 and δ > 0 such that

h(x + z) ≥ h(x) + 〈y, z〉 − 1
2
ρ‖z‖2 when ‖z‖ ≤ δ.

The set of all proximal subgradients will be denoted ∂ph(x). If h is infinite at x then
the set ∂ph(x) is defined to be empty. It is not difficult to show that it is always a
closed and convex set, see [5].

Let now f be the symmetric, bivariate function on R2 and g := f ◦ β. We are
going to derive a formula for ∂̂g(x, t) in terms of ∂̂f(β(x, t)). The next lemma lists
several properties of the map β(x, t) that we need. By Rn

≥ we denote the cone of
vectors x in Rn satisfying x1 ≥ x2 ≥ ... ≥ xn.

Lemma 8.1.
(i) For any vector w in R2

≥ the function wT β is convex and any point (x, t) in
Rn × R satisfies d∗x(w) ∈ ∂(wT β)(x, t).

(ii) The directional derivative β′((x, t); (y, r)) is given by

β′((x, t); (y, r)) =
{

dx(y, r), if x 6= 0
β(y, r), if x = 0.
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(iii) The map β is Lipschitz with global constant 1.
(iv) Given a point (x, t) in Rn × R, all vectors (z, s) close to zero satisfy

β((x, t) + (z, s)) = β(x, t) + β′((x, t); (z, s)) + O(‖(z, s)‖2).

Proof.
(i) The convexity is elementary. To check the second half we need to verify that

wT β(y, r)− wT β(x, t) ≥ 〈d∗x(w1, w2), (y − x, r − t)〉,

which expanded and simplified is equivalent to

w1 − w2√
2

(‖y‖ − ‖x‖) ≥ xT (y − x)
‖x‖

w1 − w2√
2

.

After cancelation, the last inequality follows from the Cauchy-Schwarz in-
equality.

(ii) This part is a straightforward verification.
(iii) For any points (x, t) and (z, s) we have

‖β((x, t) + (z, s))− β(x, t)‖
=

1√
2
‖(t + s + ‖x + z‖, t + s− ‖x + z‖)− (t + ‖x‖, t− ‖x‖)‖

=
1√
2
‖(s + ‖x + z‖ − ‖x‖, s− (‖x + z‖ − ‖x‖))‖

=
√

s2 + (‖x + z‖ − ‖x‖)2
≤

√
s2 + ‖z‖2

= ‖(z, s)‖.

(iv) Suppose first that x 6= 0. Then using part (ii) of this lemma and several times
the Cauchy-Schwarz inequality we get

‖β((x, t) + (z, s))− β(x, t)− β′((x, t); (z, s))‖2

=
1
2

∥∥∥∥
(
‖x + z‖ − ‖x‖ − xT z

‖x‖ ,−‖x + z‖+ ‖x‖+
xT z

‖x‖
)∥∥∥∥

2

=
(
‖x + z‖ − ‖x‖ − xT z

‖x‖
)2

= O(‖z‖4) = O(‖(z, s)‖4),

where the penultimate equality holds since ∇‖ · ‖(x) = x
‖x‖ .

The case x = 0 is easy.
Let L be a subset of Rm and fix a point x in Rm. An element d belongs to the

contingent cone to L at x, denoted K(L|x), if either d = 0 or there is a sequence {xk}
in L approaching x with (xk − x)/‖xk − x‖ approaching d/‖d‖. The negative polar of
a subset H of Rm is the set

H− = {y ∈ Rm|〈x, y〉 ≤ 0 ∀x ∈ H}.

We use the following lemmas from [11], see Propositions 2.1 and 2.2 there.
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Lemma 8.2. Given a function f : Rm → [−∞, +∞] and a point x0 in Rm,
any regular subgradient of f at x0 is polar to the contingent cone of the level set
L = {x ∈ E : f(x) ≤ f(x0)} at x0; that is

∂̂f(x0) ⊂ (K(L|x0))−.

Lemma 8.3. If the function f : Rm → [−∞, +∞] is invariant under a subgroup
G of O(m), then any point x in Rm and transformation g in G satisfy ∂̂f(gx) =
g∂̂f(x). Corresponding results hold for the proximal, approximate, horizon and Clarke
subgradients (see next sections).

We define the action of the orthogonal group O(n) on Rn × R by

U.(x, t) = (Ux, t), for every U ∈ O(n).

For a fixed point (x, t) in Rn × R we define the orbit

O(n).(x, t) = {(Ux, t)|U ∈ O(n)}.
If x 6= 0, this orbit is just a n − 1 dimensional sphere with radius ‖x‖ at level t in
Rn × R. So it is a n − 1 dimensional manifold and one can easily calculate that its
tangent and normal spaces at the point (x, t) are

T(x,t)(O(n).(x, t)) = {(y, 0)|yT x = 0}, and

N(x,t)(O(n).(x, t)) = {(ax, b)|(a, b) ∈ R2}.
If x = 0 then

T(0,t)(O(n).(0, t)) = {0}, and

N(0,t)(O(n).(0, t)) = Rn+1.

Now, using these observations and Lemma 8.2 we can say more about ∂̂(f ◦β)(x, t)
in the case when x 6= 0.

Lemma 8.4. If x 6= 0 and (y, r) ∈ ∂̂(f ◦ β)(x, t) then (y, r) = (ax, r) for some
a ∈ R.

Proof. If (y, r) ∈ ∂̂(f ◦ β)(x, t) then by Lemma 8.2 we have

(y, r) ∈ (K({(z, s)|(f ◦ β)(z, s) ≤ (f ◦ β)(x, t)}|(x, t)))−

⊂ (K(O(n).(x, t)|(x, t)))−

= N(x,t)(O(n).(x, t)).

The claim follows from the expression for the normal space above.
The following is the main theorem of this section.
Theorem 8.5. The regular subdifferential of any Lorentz invariant function f ◦β

at the point (x, t) is given by the formulae
(i) if x 6= 0 then

∂̂(f ◦ β)(x, t) = {d∗x(γ1, γ2)|(γ1, γ2) ∈ ∂̂f(β(x, t))};
(ii) if x = 0 then

∂̂(f ◦ β)(0, t) = {d∗z(γ1, γ2)|(γ1, γ2) ∈ ∂̂f(β(0, t)), z 6= 0}.
18



Similar formulae hold for the proximal subdifferential.
Proof. Case (i). This case follows immediately from the chain rule [20, Exer-

cise 10.7].
Case (ii). Let x = 0. We are going to show that

∂̂(f ◦ β)(0, t) = {(y, r)|dz(y, r) ∈ ∂̂f(β(0, t)), ∀z 6= 0}.
The stated version follows from Lemma 5.4 part (i)c.

Suppose (y, r) ∈ ∂̂(f ◦ β)(0, t), let z := (z1, z2) ∈ R2 be small and let w be an
arbitrary nonzero vector in Rn. Then

f(β(0, t) + (z1, z2)) = (f ◦ β)
(

(0, t) +
(

w

‖w‖
z1 − z2√

2
,
z1 + z2√

2

))

≥ (f ◦ β)(0, t) +
wT y

‖w‖
z1 − z2√

2
+ r

z1 + z2√
2

+ o(‖z‖)

= f(β(0, t)) + 〈dw(y, r), (z1, z2)〉+ o(‖z‖).

Consequently dw(y, r) ∈ ∂̂f(β(0, t)) for all w 6= 0.
In the opposite direction suppose that dw(y, r) ∈ ∂̂f(β(0, t)) for all w 6= 0. If

y = 0 then for any vector (z, s) ∈ Rn × R close to 0 we have

(f ◦ β)((0, t) + (z, s)) = f(β(0, t) + (β((0, t) + (z, s))− β(0, t)))
≥ f(β(0, t)) + 〈dw(0, r), (β((0, t) + (z, s))− β(0, t))〉+ o(‖(z, s)‖)
= f(β(0, t)) + rs + o(‖(z, s)‖)
= (f ◦ β)(0, t) + 〈(0, r), (z, s)〉+ o(‖(z, s)‖).

so (0, r) ∈ ∂̂(f ◦ β)(0, t).
If y 6= 0 then for w = y we have dy(y, r) ∈ ∂̂f(β(0, t)). Let (z, s) ∈ Rn × R be a

vector close to 0. Then

(f ◦ β)((0, t) + (z, s)) = f(β(0, t) + (β((0, t) + (z, s))− β(0, t)))
≥ f(β(0, t)) + 〈dy(y, r), (β((0, t) + (z, s))− β(0, t))〉+ o(‖(z, s)‖)
= f(β(0, t)) + ‖y‖‖z‖+ rs + o(‖(z, s)‖)
≥ (f ◦ β)(0, t) + 〈(y, r), (z, s)〉+ o(‖(z, s)‖).

Consequently (y, r) ∈ ∂̂(f ◦ β)(0, t).
The proof for the proximal subdifferential is essentially identical.

9. The approximate and horizon subdifferential. Given a function h :
Rm → [−∞, +∞] and a point x in Rm at which h is finite, a vector y of Rm is
called an approximate subgradient of h at x if there is a sequence of points {xk} in Rm

approaching x with values h(xk) approaching h(x) and a sequence of regular subgra-
dients yk in ∂̂h(xk) approaching y. The set of all approximate subgradients is called
the approximate subdifferential ∂h(x). A vector y is called a horizon subgradient if
either y = 0 or there is a sequence of points {xv} in Rm approaching x with values
h(xk) approaching h(x), a sequence {tk} of reals decreasing to zero and a sequence of
regular subgradients yk in ∂̂h(xk) for which tkyk approaches y. The set of all horizon
subgradients is denoted ∂∞h(x). If h is infinite at x then the set ∂h(x) is defined to
be empty and ∂∞h(x) to be {0}.
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Recall that we used the same notation, ∂h(x), for the convex subgradient when
h is a convex function. There is no danger of confusion because the subdifferentials
coincide when h is a proper, convex function, see [20, Proposition 8.12].

Theorem 9.1. The approximate subdifferential of any Lorentz invariant function
f ◦ β at the point (x, t) is given by the formulae:

(i) if x 6= 0 then

∂(f ◦ β)(x, t) = {d∗x(a, b) | (a, b) ∈ ∂f(β(x, t))};
(ii) if x = 0 then

∂(f ◦ β)(0, t) = {d∗z(a, b) | (a, b) ∈ ∂f(β(0, t)), z 6= 0}.
Similar formulae hold for the horizon subgradient.

Proof. Part (i). x 6= 0. This case follows immediately from the chain rule [20,
Exercise 10.7].

Part (ii). x = 0. Suppose (y, r) ∈ ∂(f◦β)(0, t). By definition, there is a sequence
of points {(xk, tk)} approaching (0, t) with (f ◦β)(xk, tk) approaching (f ◦β)(0, t) and
a sequence of regular subgradients (yk, rk) ∈ ∂̂(f ◦ β)(xk, tk) approaching (y, r).

Case 1.a. Suppose xk = 0 for all k. Then Theorem 8.5 says that (yk, rk) =
d∗zk(ak, ak) such that (ak, ak) ∈ ∂̂f(β(0, tk)), for some zk 6= 0. Since (yk, rk) ap-
proaches (y, r) we get that y = 0 and ak → a := r/

√
2. So (0, r) = (0,

√
2a) = d∗z(a, a)

for any z 6= 0 and (a, a) ∈ ∂f(β(0, t)).
Case 1.b. Suppose xk 6= 0 for all k. Then Theorem 8.5 says that (yk, rk) =

d∗xq
(ak, bk) such that (ak, bk) ∈ ∂̂f(β(xk, tk)). Let us choose a subsequence k′ for which

xk′/‖xk′‖ converges to a unit vector z. Then we have that |ak′−bk′ | approaches
√

2‖y‖
and ak′ + bk′ approaches

√
2r, that is, (ak′ , bk′) is bounded sequence so if necessary

we may choose a convergent subsequence k′′. Then (ak′′ , bk′′) → (a, b) ∈ ∂f(β(0, t))
and (y, r) = d∗z(a, b).

Case 1.c. Suppose the sequence xk has infinitely many elements that are equal
to 0 and infinitely many elements that are not equal to 0. Let {xk} = {xk′} ∪ {xk′′},
where xk′ 6= 0 and xk′′ = 0. We now choose any of the subsequences k′ or k′′ and
apply the corresponding subcase above.

To show the opposite inclusion, suppose that (y, r) = d∗z(a, b) for some (a, b) ∈
∂f(β(0, t)) and some z 6= 0. By the definition of approximate subgradients there is
a sequence (ck, dk) approaching β(0, t), with f(ck, dk) approaching f(β(0, t)) and a
sequence of regular subgradients (ak, bk) approaching (a, b) and such that (ak, bk) ∈
∂̂f(ck, dk). We have three possible cases.

Case 2.a. Suppose first that there is an infinite subsequence k′ such that ck′ >
dk′ for all k′. Then d∗z(ck′ , dk′) approaches d∗z(β(0, t)) = (0, t) with f(ck′ , dk′) =
(f ◦ β)(d∗z(ck′ , dk′)) approaching f(β(0, t)) = (f ◦ β)(0, t) and regular subgradients
(ak′ , bk′) ∈ ∂̂f(β(d∗z(ck′ , dk′))). If we set zk′ := z

‖z‖
ck′−dk′√

2
, then Theorem 8.5 says

that d∗
zk′ (ak′ , bk′) ∈ ∂̂(f ◦ β)(d∗z(ck′ , dk′)). Notice that zk′/‖zk′‖ converges to z/‖z‖,

so d∗
zk′ (ak′ , bk′) approaches d∗z(a, b) = (y, r), so (y, r) is in ∂(f ◦ β)(0, t).
Case 2.b. There is an infinite subsequence k′ such that ck′ < dk′ for all k′. We

are going to revert to the previous case. We have that (y, r) = d∗−z(b, a) where (b, a) ∈
∂f(β(0, t)) (see Lemma 8.3) and z 6= 0. We are given also that the sequence (dk′ , ck′)
approaches β(0, t), with f(dk′ , ck′) approaching f(β(0, t)) and the sequence of regular
subgradients (bk′ , ak′) approaches (b, a) and is such that (bk′ , ak′) ∈ ∂̂f(dk′ , ck′) (by
Lemma 8.3 again). The rest is analogous to the previous case.
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Case 2.c. Suppose finally that there is an infinite subsequence k′ such that
ck′ = dk′ for all k′. Then d∗z(ck′ , dk′) approaches d∗z(β(0, t)) = (0, t), with f(ck′ , dk′) =
(f ◦ β)(d∗z(ck′ , dk′)) approaching f(β(0, t)) = (f ◦ β)(0, t) and regular subgradients
(ak′ , bk′) ∈ ∂̂f(β(d∗z(ck′ , dk′))). But then by Theorem 8.5 we have that d∗z(ak′ , bk′) ∈
∂̂(f ◦ β)(0,

√
2dq′). Since d∗z(ak′ , bk′) approaches d∗z(a, b), we are done.

The proof of the formulae for the horizon subgradient is analogous.

10. Clarke subgradients - the lower semicontinuous case. A function h
is caller lower semicontinuous if its epigraph epi h = {(x, α) ∈ Rn × R|h(x) ≤ α} is
a closed subset of Rn × R. Let C ⊂ Rn and x̄ ∈ C. A vector v ∈ Rn is a regular
normal to C at x̄, written v ∈ N̂C(x̄), if limsup

x→x̄

〈v,x−x̄〉
|x−x̄| ≤ 0. It is a normal vector

to C at x̄, written v ∈ NC(x̄), if there is a sequence of points xk in C approaching
x̄ and a sequence of regular normals vk in N̂C(xk) approaching v. The set of Clarke
subgradients of a function h at x̄, ∂ch(x̄), is defined by

∂ch(x̄) = {v|(v,−1) ∈ cl convNepi h(x̄, h(x̄)}.

It can be shown that if h is locally Lipschitz around x̄ then this definition coincides
with the definition given in Section 6, so there is no danger of confusion, see [20,
Theorem 9.13 (b) and Theorem 8.49].

By [20, Theorem 8.9], if h is lower semicontinuous around x̄ the following formula
holds:

Nepi h(x̄, h(x̄)) = {λ(v,−1) | v ∈ ∂h(x̄), λ > 0} ∪ {(v, 0) | v ∈ ∂∞h(x̄)}.

The following lemma can be found in [17, Proposition 2.6]. For an independent
proof see [15, Lemma 4.1].

Lemma 10.1. If h is lower semicontinuous around x̄ we have the representation

∂ch(x̄) = cl (conv ∂h(x̄) + conv ∂∞h(x̄)).

In particular, when the cone ∂∞h(x̄) is pointed we have simpler

∂ch(x̄) = conv ∂h(x̄) + conv ∂∞h(x̄).

It is easy to see that f is lower semicontinuous if and only if f ◦ β is. Our final
result is the following theorem.

Theorem 10.2. The Clarke subdifferential of any lower semicontinuous, Lorentz
invariant function f ◦ β at the point (x, t) is given by the formulae:

(i) if x 6= 0 then

∂c(f ◦ β)(x, t) = {d∗x(a, b) | (a, b) ∈ ∂cf(β(x, t))};

(ii) if x = 0 then

∂c(f ◦ β)(0, t) = {d∗z(a, b) | (a, b) ∈ ∂cf(β(0, t)), z 6= 0}.

Proof. Suppose first that x = 0. Let A := ∂f(β(x, t)) and B := ∂∞f(β(x, t)).
Using Lemma 5.4 and Lemma 10.1 we get

∂c(f ◦ β)(x, t) = cl (conv ∂(f ◦ β)(x, t) + conv ∂∞(f ◦ β)(x, t))
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= cl (convD(A) + convD(B))
= cl (D(conv A) +D(conv B))
= clD(conv A + convB)
= D(cl (conv A + convB))
= D(∂cf(β(x, t)).

The case x 6= 0 is analogous.
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