
Nonsmooth analysis of singular
values. Part II: Applications

Adrian S. Lewis∗and Hristo S. Sendov†

September 21, 2004

Abstract

In this work we continue the nonsmooth analysis of absolutely sym-
metric functions of the singular values of a real rectangular matrix.
Absolutely symmetric functions are invariant under permutations and
sign changes of its arguments. We extend previous work on subgradi-
ents to analogous formulae for the proximal subdifferential and Clarke
subdifferential when the function is either locally Lipschitz or just
lower semicontinuous. We illustrate the results by calculating the var-
ious subdifferentials of individual singular values. Another application
gives a nonsmooth proof of Lidskii’s theorem for weak majorization.
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1 Introduction

This paper is a continuation of our work in [10], where we began a system-
atic study of the nonsmooth properties of functions of the singular values of
a rectangular matrix. There we gave simple formulae for the regular subdif-
ferential, the limiting subdifferential, and the horizon subdifferential, of such
functions and illustrated the results with several applications.

To make the development as self contained as possible, in the next section
we have stated all results from the first paper that are needed in the proofs
here.

The development that follows has four main parts. We begin by discussing
absolutely symmetric functions of singular values that are locally Lipschitz
and show that the main formula from [10] is preserved for the Clarke sub-
differential as well. Next we relax that assumption and require the functions
involved to be only lower semicontinuous. The independent development for
the Lipschitz case is interesting in its own right: It deepens the analogies with
the work of Lewis in [9], as well as extending and generalizing the convexity
results there. We need some of these convexity results later in the third part,
where we are interested in the individual singular values of a real rectangu-
lar matrix. The last part deals with another application of our theory. We
derive, through elementary nonsmooth analysis, a famous theorem in ma-
trix perturbation analysis: Lidskii’s theorem for weak majorization between
the vectors of singular values of perturbed rectangular matrices. The results
described here were first investigated in the second author’s dissertation [15].

2 Definitions and preliminary results

Given a function f : Rn → [−∞, +∞] we say vector y ∈ Rn is a regular
subgradient of f at x if f(x) < ∞ and

f(x + z) ≥ f(x) + 〈y, z〉+ o(z) as z → 0.

The set of all regular subgradients at x is denoted by ∂̂f(x) and called the
regular subdifferential.

A vector y ∈ Rn is a (limiting) subdifferential of f at x if f(x) < ∞
and there is a sequence of points xr in E approaching x with values f(xr)
approaching the finite value f(x), and a sequence of regular subgradients
yr in ∂̂f(xr) approaching y. The set of all limiting subgradients is denoted
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∂f(x). In case when f(x) = ∞ we set ∂̂f(x) = ∂f(x) = ∅. The reader can
verify that ∂f(x) and ∂̂f(x) are always closed sets and that ∂̂f(x) is convex.

If the function f is locally Lipschitz around x, convex combinations of
subgradients are called Clarke subgradients. The set of Clarke subgradients
is the Clarke subdifferential ∂cf(x). (This definition is equivalent to the
standard one in [2] - see for example Theorem 2 in [5].)

Henceforth we will assume that n and m are natural numbers and n ≤ m.
Let Mn,m denote the Euclidean space of n × m real matrices, with inner
product 〈X,Y 〉 = tr XT Y . Simpler, Mn will denote Mn,n. By O(n) we will
denote the group of n×n orthogonal matrices, and the product O(n)×O(m)
will be denoted by O(n,m). One of the main objects of this paper is the class
of singular value functions. These are functions F : Mn,m → [−∞, +∞] with
the invariance property

F (UT
n XUm) = F (X) for all (Un, Um) ∈ O(n,m) and X ∈ Mn,m.

When (Un, Um) varies freely over O(n,m), in the product UT
n XUm only the

singular values are invariant. Thus it is not surprising that F can be ex-
pressed as the composition F (X) = (f ◦ σ)(X), where σ(X) are the singular
values of X and f : Rn → R is such that

f(x1, x2, ..., xn) = f(|xπ(1)|, |xπ(2)|, ..., |xπ(n)|),

for any permutation π. We will call such functions absolutely symmetric. In
this way the singular value functions are in one-to-one correspondence with
the absolutely symmetric functions. Throughout we will assume without loss
of generality that the singular values of X are ordered nonincreasingly, that
is,

σ1(X) ≥ σ2(X) ≥ · · · ≥ σn(X).

We would like to note that analogous results to those we present in this
work hold also for the space of n×m complex matrices with the inner product
〈X, Y 〉 = Re (tr X∗Y ), where X∗ denotes transposition and complex conjuga-
tion. With this inner product the complex matrices turn into an Euclidean
space over the reals. Orthogonal matrices below become unitary, but the
functions with matrix argument are still (extended) real valued.

We will use the following notation throughout

• Rn
↓ = {x ∈ Rn |x1 ≥ x2 ≥ ... ≥ xn}

• Rn
+ = {x ∈ Rn |xi ≥ 0, i = 1, .., n}

3



• Rn = Rn
↓ ∩ Rn

+

• |x| = (|x1|, |x2|, ..., |xn|), for x ∈ Rn

• x̄ denotes the vector with the same entries as x ∈ Rn ordered in non-
increasing order, that is, x̄1 ≥ x̄2 ≥ · · · ≥ x̄n .

• x̂ = |x|.
• P (n) the set of all n× n permutation matrices.

• P(−)(n) the set of all n× n matrices that have only one nonzero entry
in every row and column, which is ±1 (we will call them signed permu-
tation matrices).

• E will stand for any finite dimensional Euclidean space and O(E) will
denote the group of its orthogonal transformations.

• For (Un, Um) ∈ O(n,m) and X ∈ Mn,m we denote (Un, Um).X =
UT

n XUm, the action of (Un, Um) on X.

• For x ∈ Rn, Diag x ∈ Mn,m ∪Mn will denote the matrix with vector x
on its main diagonal and zeros elsewhere. The dimensions on Diag x
will be clear from the context. For X ∈ Mn,m ∪Mn, by diag X we will
denote the vector in Rn of diagonal entries of X.

Finally we will need the following preliminary results.

Subgradient Invariance Theorem: If f : E → [−∞, +∞] is invariant
under a subgroup G of O(E), then any point x in E and transforma-
tion g in G satisfy ∂f(gx) = g∂f(x). Corresponding result holds for
the regular subdifferential.

Symmetricity Theorem: If Y ∈ Mn,m is a regular or a limiting subgradi-
ent of a singular value function F at X ∈ Mn,m, then XT Y and Y T X
are symmetric matrices. (See the theorem with the same name in [10].)

Order Inequality: For any x, y ∈ Rn we have xT y ≤ x̄T ȳ with equality iff
∃Q ∈ P (n) such that Qx = x̄ and Qy = ȳ. (See for example [6].)

Absolute Order Inequality: For any x, y ∈ Rn we have xT y ≤ x̂T ŷ with
equality iff ∃P(−) ∈ P(−)(n) such that P(−)x = x̂ and P(−)y = ŷ. (For a
direct proof see [10], or [7] for generalizations.)

Simultaneous Rectangular Conjugacy Theorem: For any vectors x, y,
u, and v in Rn, there is an element (Un, Um) in O(n, m) such that
Diag x = UT

n (Diag u)Um and Diag y = UT
n (Diag v)Um iff there is a ma-

trix P(−) in P(−)(n) with x = P(−)u and y = P(−)v. (See the proposition
with the same name in [10].)
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Singular Values Derivative Theorem Any x in Rn and M ∈ Mn,m sat-

isfy diag M ∈ conv
(
P(−)(n)xσ

′(Diag x; M)
)
. (See the proposition with

the same name in [10].)

Von Neumann’s Trace Theorem: Any X, Y ∈ Mn,m satisfy the inequal-
ity tr XT Y ≤ σ(X)T σ(Y ). Equality holds iff there is (Un, Um) ∈
O(n,m) such that X = UT

n (Diag σ(X))Um and Y = UT
n (Diag σ(Y ))Um.

(See [10] or the original proof in [18].)

We are also going to need the main result from [10]:

Theorem 2.1 (Subgradients) The (limiting) subdifferential of a singular
value function f ◦ σ at X ∈ Mn,m is given by the formula

∂(f ◦ σ)(X) = O(n, m)X .Diag ∂f(σ(X)),(1)

where

O(n,m)X = {(Un, Um) ∈ O(n,m) : (Un, Um).Diag σ(X) = X}.

The regular subgradients satisfy corresponding formula.

We define O(n,m)X = {(Un, Um) ∈ O(n,m) : (Un, Um).X = X}, which
is the stabilizer of X in O(n,m) under the defined action. Clearly for any
(Un, Um) ∈ O(n,m)X we have the relationship

(Un, Um)O(n,m)Diag σ(X) = O(n,m)X .

3 Clarke subgradients - the Lipschitz case

One can easily see that f is locally Lipschitz around σ(X) if and only if
F = f ◦ σ is locally Lipschitz around X, and in this section we will assume
that this is the case. It is important to notice that we have the following
extension. The proof follows immediately from the definitions.

Theorem 3.1 (Subgradient Invariance & Symmetricity) If the func-
tion f is locally Lipschitz around x then both the Subgradient Invariance
Theorem and the Symmetricity Theorem, stated in the previous section, can
be extended to cover the Clarke subdifferential case.
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If X is an n× n square symmetric matrix (that is X ∈ S(n)) then λ(X)
will denote its eigenvalues arranged in nonincreasing order. The following
lemma whose proof can be found in [9, Lemma 3], is needed later.

Lemma 3.2 For any vector w in Rn
↓ , the function wT λ is convex on S(n),

and any vector x in Rn
↓ satisfies Diag w ∈ ∂(wT λ)(Diag x).

The proof of the next lemma is elementary and uses the fact that the
sum of the k-largest eigenvalues or the k-largest singular values is a sublinear
function, see [3, Corollary 4.3.18] and [3, Example 7.4.24].

Lemma 3.3 (i) For any vector w in Rn
↓ the function wT λ is sublinear.

(ii) For any vector w in Rn the function wT σ is sublinear.

A subset C of E is invariant under a subgroup, G, of O(n) if gC = C for
all transformations g in G. If the function f : Rn → [−∞, +∞] is absolutely
symmetric then the regular subdifferential of f at a point x in Rn is a convex
set, invariant under the stabilizer P(−)(n)x by the Subgradient Invariance
Theorem.

Given a partitioning of the set {1, 2, ..., n}, into r + 1 blocks I1,I2,...,Ir+1,
of one or several consecutive integers we, write any vector y in Rn in the form

y =
r+1⊕

l=1

yl, where yl ∈ R|Il| for each l.

For matrices U l in M|Il| for each 1 ≤ l ≤ r, and U r+1 in either M|Ir+1|,
M|Ir+1|+m−n, or M|Ir+1|,|Ir+1|+m−n, we write Diag (U l) for the block diagonal
matrix 



U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · U r+1




It is clear that Diag (U l) will be either an n× n, m×m square or an n×m
rectangular matrix , depending on the dimensions of U r+1, and it will be
clear from the context which is the case.

Suppose we are given the following subgroups of P(−)(n) and O(n,m)
respectively:

P̃ (n) = {Diag (P l) : P l ∈ P (|Il|), 1 ≤ l ≤ r and P r+1 ∈ P(−)(|Ir+1|)},
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Õ(n,m) = {(Diag (U l), Diag (V l)
)

: U l = V l ∈ O(|Il|), 1 ≤ l ≤ r and

U r+1 ∈ O(|Ir+1|); V r+1 ∈ O(|Ir+1|+ m− n)}.

Notice that P̃ (n) is the group defined by the property: P̃ (n)x = x for all
x ∈ Rn such that xi = xj ⇔ i, j ∈ Il for some l and xi = 0 ⇔ i ∈ Ir+1.

Lemma 3.4 (Sum Of Invariant Sets) If the sets C, D ⊂ Rn are convex
and invariant under the group P̃ (n) then

Õ(n,m).Diag C + Õ(n,m).Diag D = Õ(n,m).Diag (C + D).

Proof. Diagonalizing each block for 1 ≤ l ≤ r and applying the singular
value decomposition theorem to the last, (r + 1)st, block proves the equality

(2) Õ(n,m).Diag C = {Diag (X l) : ⊕r
l=1λ(X l)⊕ σ(Xr+1) ∈ C}.

Let X = Diag (X l) ∈ Õ(n,m).Diag C, and

Y = Diag (Y l) ∈ Õ(n,m).Diag D.

We wish to show
X + Y ∈ Õ(n,m).Diag (C + D),

or equivalently, by identity (2),

⊕r
l=1λ(X l + Y l)⊕ σ(Xr+1 + Y r+1) ∈ C + D.

Since identity (2) shows ⊕r
l=1λ(X l) ⊕ σ(Xr+1) lies in the convex set C and

⊕r
l=1λ(Y l)⊕ σ(Y r+1) lies in the convex set D, it suffices to show

⊕r
l=1 λ(X l + Y l)⊕ σ(Xr+1 + Y r+1) ∈

conv (P̃ (n)(⊕r
l=1λ(X l)⊕ σ(Xr+1))) + conv (P̃ (n)(⊕r

l=1λ(Y l)⊕ σ(Y r+1))).

If this fails then there is a separating hyperplane separating the point from
the set. That is, there exists a vector z = ⊕lz

l satisfying

〈z, ⊕r
l=1λ(X l + Y l)⊕ σ(Xr+1 + Y r+1)〉
> max 〈z, conv (P̃ (n)(⊕r

l=1 λ(X l)⊕ σ(Xr+1)))

+ conv (P̃ (n)(⊕r
l=1λ(Y l)⊕ σ(Y r+1)))〉

= max 〈z, P̃ (n)(⊕r
l=1λ(X l)⊕ σ(Xr+1))〉

7



+ max 〈z, P̃ (n)(⊕r
l=1λ(Y l)⊕ σ(Y r+1))〉.

But then the (Absolute) Order Inequality and Lemma 3.3 show
r∑

l=1

〈zl, λ(X l + Y l)〉+ 〈zr+1, σ(Xr+1 + Y r+1)〉

>

r∑

l=1

〈zl, λ(X l)〉+ 〈ẑr+1, σ(Xr+1)〉

+
r∑

l=1

〈zl, λ(Y l)〉+ 〈ẑr+1, σ(Y r+1)〉

=
r∑

l=1

〈zl, λ(X l) + λ(Y l)〉+ 〈ẑr+1, σ(Xr+1) + σ(Y r+1)〉

≥
r∑

l=1

〈zl, λ(X l + Y l)〉+ 〈ẑr+1, σ(Xr+1 + Y r+1)〉

≥
r∑

l=1

〈zl, λ(X l + Y l)〉+ 〈zr+1, σ(Xr+1 + Y r+1)〉,

which is a contradiction. ¥

Corollary 3.5 (Convex Invariant Sets) If the set C ⊂ Rn is convex and
invariant under the group P̃ (n) then the set of matrices Õ(n,m).Diag C is
convex.

Proof. We just have to apply the above lemma to the sets

C1 = λC D1 = (1− λ)C,

where λ is a number in [0, 1]. ¥

Lemma 3.6 If the set C ⊂ Rn is invariant under the group P̃ (n), then the
following equality holds

conv (Õ(n,m).Diag C) = Õ(n,m).Diag (conv C).

Proof. It is clear that Õ(n,m).Diag C ⊂ Õ(n,m).Diag (conv C), and the
later set is convex because of Corollary 3.5. Consequently

conv (Õ(n,m).Diag C) ⊆ Õ(n,m).Diag (conv C).
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The opposite inclusion is trivial. ¥
Recently, an independent result by Tam and Hill, covering the result

below, appeared in [16]. They consider invariant functions, called orbital, in
the context of semisimple Lie group theory. We offer a direct approach that
first appeared in the second author’s thesis [15].

Theorem 3.7 (Clarke Subgradients) The Clarke subdifferential of a lo-
cally Lipschitz singular value function f ◦ σ at a matrix X in Mn,m is given
by the formula

(3) ∂c(f ◦ σ)(X) = O(n, m)X .Diag ∂cf(σ(X)),

where

O(n,m)X = {(Un, Um) ∈ O(n,m) : (Un, Um).Diag σ(X) = X}.
Proof. Assume first X = Diag x for a vector x in Rn. After that the
general case will follow easily by the Subgradient Invariance Theorem. Let

x1 = ... = xk1 > xk1+1 = ... = xk2 > xk2+1... = xkr > xkr+1 = ... = xkr+1 = 0,

where kr+1 = n. Partition the set {1, 2, ..., n} into r + 1 blocks: I1 =
{1, 2, ..., k1}, I2 = {k1 + 1, ..., k2},..., Ir+1 = {kr + 1, ..., kr+1}.

We are going to compute the group O(n,m)Diag x (it is a group since
x ∈ Rn). If (Un, Um) is in O(n,m)Diag x, then we have

(Diag x)(Diag x)T Un = Un(Diag x)(Diag x)T

(Diag x)T (Diag x)Um = Um(Diag x)T (Diag x),

which shows that Un =Diag (U l), where U l ∈ O(|Il|) for 1 ≤ l ≤ r + 1, and
Um =Diag (V l), where V l ∈ O(|Il|) for 1 ≤ l ≤ r, and V r+1 ∈ O(|Ir+1|+m−
n). Now from the identity

UT
n (Diag x) = (Diag x)UT

m

one sees that U l = V l for each 1 ≤ l ≤ r. So we obtain

(4) O(n,m)Diag x = Õ(n,m).

Since x is invariant under the group P̃ (n) the convex set ∂cf(x) is also
invariant under P̃ (n), by the Subgradient Invariance Theorem. Corollary 3.5
now shows that the set Õ(n,m).Diag ∂cf(x) is convex.
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The Subgradient Theorem (2.1) now gives us

∂c(f ◦ σ)(Diag x) = conv ∂(f ◦ σ)(Diag x) = conv (Õ(n,m).Diag ∂f(x)).

Using the easily established fact

Õ(n,m).Diag ∂f(x) ⊆ Õ(n,m).Diag ∂cf(x)

and the convexity of the right hand side, we see that

conv (Õ(n,m).Diag ∂f(x)) ⊆ Õ(n,m).Diag ∂cf(x).

On the other hand from ∂cf(x) = conv ∂f(x) one can immediately see that
the reverse inclusion holds as well:

Õ(n,m).Diag ∂cf(x) = Õ(n,m).Diag (conv ∂f(x))

= Õ(n,m).conv (Diag ∂f(x))

⊆ conv (Õ(n, m).(Diag ∂f(x))

= conv ∂(f ◦ σ)(Diag x)

= ∂c(f ◦ σ)(Diag x).

The result follows. ¥

For completeness we would like to state and prove the Clarke version of
the Diagonal Subgradients Corollary in [10]. (Diagonal Subgradients Corol-
lary in [10] states that the result below holds for regular and limiting sub-
gradients.)

Corollary 3.8 (Diagonal Clarke Subgradients) For any vectors x and
y in Rn and any singular value function f ◦ σ,

y ∈ ∂cf(x) ⇔ Diag y ∈ ∂c(f ◦ σ)(Diag x).

Proof. If the function f is Lipschitz around σ(X) and y is a Clarke
subgradient at x, then y is a convex combination of limiting subgradients
yi ∈ ∂f(x). By the Diagonal Subgradients Theorem for limiting subgradients
in [10], each matrix Diag yi is a subgradient of f ◦σ at X, and since Diag y is
a convex combination of these matrices, Diag y must be a Clarke subgradient.

To see the reverse implication choose a diagonal matrix Diag y ∈ ∂c(f ◦
σ)(Diag x). Then the Clarke Subgradients Theorem above shows the exis-
tence of an element (Un, Um) in O(n,m) and a vector z in ∂cf(x̂) such that
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Diag y = (Un, Um).Diag z and Diag x = (Un, Um).Diag x̂. By the Simulta-
neous Rectangular Conjugacy Theorem, there is a matrix P(−) in P(−)(n)
with y = P(−)z and x = P(−)x̂, and the result follows from the Subgradient
Invariance Theorem. ¥

Corollary 3.9 (Strict Differentiability) If f is Lipschitz around σ(X),
then f ◦ σ is strictly differentiable at X if and only if f strictly differentiable
at σ(X).

Proof. In the Lipschitz case f is strictly differentiable at x if and only
if the Clarke subdifferential is a singleton. By the above theorem and the
fact that the Clarke subdifferential is a convex set this happens if and only
if ∂c(f ◦ σ)(X) is a singleton (since a convex set with a constant norm is a
singleton).

4 Clarke subgradients - the lower semicon-

tinuous case

A function f is called lower semicontinuous if its graph

epi f = {(x, α) ∈ Rn × R | f(x) ≤ α}
is a closed subset of Rn+1. Let C ⊂ Rn and x ∈ C. A vector v is a regular

normal to C at x, written v ∈ N̂C(x), if lim
z→x
z∈C

〈v, z − x〉
‖z − x‖ ≤ 0. A vector v is a

normal to C at x, written v ∈ NC(x), if there is a sequence of points xr in C
approaching x, and a sequence of regular normals vr in N̂C(xr) approaching
v. Notice that NC(x) is a closed cone. The set of Clarke subgradients of a
function f at x, ∂̄f(x), is defined by

∂cf(x) = {v | (v,−1) ∈ cl conv Nepi f (x, f(x))},
and is called the Clarke subdifferential. It can be shown (see [14, Theo-
rem 9.13 (b) and Theorem 8.49]) that if f is locally Lipschitz around x then
this definition coincides with the definition given at the beginning, that is
why we use the same notation for the subdifferential, ∂c, as in the locally Lip-
schitz case. If f is lower semicontinuous around x then we have the formula
(see [14, Theorem 8.9]):

(5) Nepi f (x, f(x)) = {λ(v,−1) | v ∈ ∂f(x), λ > 0}∪{(v, 0) | v ∈ ∂∞f(x)}.
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The following lemma can be found in [12, Proposition 2.6], we include a proof
for completeness.

Lemma 4.1 If f is lower semicontinuous around x we have the representa-
tion

∂cf(x) = cl (conv ∂f(x) + conv ∂∞f(x)).

In particular when the cone ∂∞f(x) doesn’t contain lines we have (see also
[14, Theorem 8.49]) the simpler formula

∂cf(x) = conv ∂f(x) + conv ∂∞f(x).

Proof. Define the sets

K1 = {(v, 0) | v ∈ ∂∞f(x)},
K2 = {λ(v,−1) | v ∈ ∂f(x), λ > 0}, and

L = {x ∈ Rn+1 |xn+1 = −1}.

Then by (5) we get

(6) conv Nepi f (x, f(x)) = conv K1 + conv K2,

and by the definition of the set L

(7) (conv K1 + conv K2) ∩ L = {(v,−1) | v ∈ conv ∂∞f(x) + conv ∂f(x)}.

Let us see on the other hand that the following equality holds:

(8) (cl conv Nepi f (x, f(x))) ∩ L = cl (conv Nepi f (x, f(x)) ∩ L).

Indeed, take a point (v,−1) in (cl conv Nepi f (x, f(x))) ∩ L. So there is a
sequence (vr, αr) in conv Nepi f (x, f(x)), approaching (v,−1). For big enough
r, we have αr < 0. Then

(
vr

|αr| ,
αr

|αr|
)

=
(

vr

|αr| ,−1
)

is in conv Nepi f (x, f(x)) ∩
L, approaching (v,−1). So (v,−1) is in cl (conv Nepi f (x, f(x)) ∩ L). The
opposite inclusion is clear.

So putting (6), (7), and (8) together

{(v,−1) | v ∈ ∂cf(x)} = (cl conv Nepi f (x, f(x))) ∩ L

= cl {(v,−1) | v ∈ conv ∂∞f(x) + conv ∂f(x)}
= {(v,−1) | v ∈ cl (conv ∂∞f(x) + conv ∂f(x))},
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and we are done. In the other case, we have that the cone ∂∞f(x) doesn’t
contain lines if and only if Nepi f (x, f(x)) doesn’t contain lines. Since when
a cone doesn’t contain lines and is closed, so too is its convex hull (see [14,
Theorem 3.15]), we get

cl conv Nepi f (x, f(x)) = conv Nepi f (x, f(x))

and the second formula becomes clear. ¥

Let (Un, Um) be an arbitrary, fixed element of the set O(n,m)X . Then the
representation O(n,m)X = (Un, Um) O(n,m)Diag σ(X) holds, where the symbol
O(n,m)Diag σ(X) denotes the stabilizer of the matrix Diag σ(X) in the group
O(n,m). Notice that the matrices in the stabilizer O(n,m)Diag σ(X) have the

same structure as those in the set Õ(n,m) in Lemma 3.4 and Corollary 3.5.
Let now f be an absolutely symmetric function.Clearly f is lower semicon-
tinuous if and only if f ◦ σ is lower semicontinuous. Using (in this order)
Lemma 4.1, Theorem 2.1, Lemma 3.6, Corollary 3.5, Lemma 3.4, a simple
limiting argument using the fact that the set O(n,m)X is compact (when
exchanging it with ’cl’), and using everywhere the above representation, we
get:

∂c(f ◦ σ)(X) = cl
(
conv ∂∞(f ◦ σ)(X) + conv ∂(f ◦ σ)(X)

)

= cl
(
conv O(n,m)X .Diag ∂∞f(σ(X)) + conv O(n,m)X .Diag ∂f(σ(X))

)

= cl
(
O(n,m)X .conv Diag ∂∞f(σ(X)) + O(n,m)X .conv Diag ∂f(σ(X))

)

= cl
(
O(n,m)X .

(
conv Diag ∂∞f(σ(X)) + conv Diag ∂f(σ(X))

))

= O(n,m)X .cl
(
conv Diag ∂∞f(σ(X)) + conv Diag ∂f(σ(X))

)

= O(n,m)X .Diag cl
(
conv ∂∞f(σ(X)) + conv ∂f(σ(X))

)

= O(n,m)X .Diag ∂c(f(σ(X)).

This proves the following theorem.

Theorem 4.2 If X ∈ Mn,m and f is an absolutely symmetric function and
lower semicontinuous around σ(X), then f◦σ is lower semicontinuous around
X and

∂c(f ◦ σ)(X) = O(n,m)X .∂c(f(σ(X)),

where

O(n,m)X = {(Un, Um) ∈ O(n,m) : (Un, Um).Diag σ(X) = X}.

13



5 Proximal subgradients

In this section we show that the formula in Theorem 4.2 also holds for prox-
imal subgradients of singular value functions.

Definition 5.1 (Proximal Subgradients) A vector y is called a proximal
subgradient of a function f : Rn → R at x, a point where f(x) is finite, if
there exist ρ > 0 and δ > 0 such that

f(x + z) ≥ f(x) + 〈y, z〉 − 1

2
ρ‖z‖2 when ‖z‖ ≤ δ.

The set of all proximal subgradients will be denoted with ∂pf(x).

It is clear from the definition that

(9) ∂pf(x) ⊆ ∂̂f(x).

Lemma 5.2 (Proximal Subgradients Invariance) Suppose the function
f : E → [−∞, +∞] (E is an inner product space) is invariant under a
subgroup G of O(E), then any point x in E and transformation g in G
satisfy ∂pf(gx) = g∂pf(x).

Proof. Suppose first y ∈ ∂pf(x), so there is a ρ > 0 such that all z in E
sufficiently close to 0 satisfy f(x + z) ≥ f(x) + 〈y, z〉 − 1

2
ρ‖z‖2. Using the

invariance of f we get

f(gx + z) = f(x + g−1z)

≥ f(x) + 〈y, g−1z〉 − 1

2
ρ‖g−1z‖2

= f(gx) + 〈gy, z〉 − 1

2
ρ‖z‖2,

so gy ∈ ∂pf(gx). One can easily see that ∂pf(gx) = g∂pf(x). ¥

5.1 A preliminary result

Our aim in this auxiliary section will be to prove the identity

σ(X + M) = σ(X) + σ′(X; M) + O(‖M‖2)
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and as an added bonus we will obtain an expression for σ′(X; M). First of
all from [3, Theorem 4.3.1] we have that

(10) λ(X + M) = λ(X) + O(‖M‖).
We will use the following notation and results from [17]. If A is an n × n
symmetric matrix, its eigenvalues are all real and we can arrange them in
nonincreasing order

λ1(A) · · · ≥ λi−1(A) > λi(A) = · · ·λl(A) · · · = λj(A) > λj+1(A) ≥ · · ·λn(A),

where i ≤ l ≤ j and λl(A) is the l-th largest eigenvalue of A (counting mul-
tiplicity of each of them). The following proposition is an easy consequence
of equation (10) and Proposition 1.4 in [17].

Proposition 5.3 Let A ∈ S(n) and U ∈ O(n) so that

UT AU = Diag (λ1(A), ..., λn(A)) (U = [u1, ..., un]).

If we set U1 := [ui, ..., uj] then

λl(A + E) = λl(A) + λl−i+1(U
T
1 EU1) + O(‖E‖2). ¥

Fix X ∈ Mn,m, let M ∈ Mn,m be a perturbation matrix, and

X = V T
(
Diag σ(X)

)
W

be the singular value decomposition of X. Define

A :=

(
0 X

XT 0

)
, E :=

(
0 M

MT 0

)
.

It is well known (see [3, Theorem 7.3.7]) that the eigenvalues of the matrix
A are (σ1(X), ..., σn(X), 0, ..., 0,−σn(X), ...,−σ1(X)) with m−n zeros in the
middle. Let U ∈ Mn+m be the orthogonal matrix that gives the ordered
spectral decomposition of A, that is

UT AU = Diag
(
σ1(X), ..., σn(X), 0, ..., 0,−σn(X), ...,−σ1(X)

)

We apply the above proposition to the l-th eigenvalue of A, 1 ≤ l ≤ n, using
the matrices A, E, and U to get

σl(X + M) = λl(A + E)

= λl(A) + λl−i+1(U
T
1 EU1) + O(‖E‖2)

= σl(X) + λl−i+1(U
T
1 EU1) + O(‖M‖2).

In particular we get that

σ′(X; M) = λl−i+1(U
T
1 EU1).
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5.2 Proximal subgradients

Following the standard reduction ideas we first prove a simpler version of the
theorem we want.

Lemma 5.4 (Diagonal Proximal Subgradients) For any vectors x in
Rn, y in Rn and any singular value function f ◦ σ we have

y ∈ ∂pf(x) ⇔ Diag y ∈ ∂p(f ◦ σ)(Diag x).

Proof. Suppose first that Diag y is a proximal subgradient. Then there
are ρ > 0 and δ > 0 such that for all vectors z in Rn such that ‖z‖ < δ we have

f(x + z) = (f ◦ σ)(Diag x + Diag z)

≥ (f ◦ σ)(Diag x) + tr (Diag y)(Diag z)− 1

2
ρ‖Diag z‖2

= f(x) + 〈y, z〉 − 1

2
ρ‖z‖2,

so y ∈ ∂pf(x). (In this case we didn’t use that x ∈ Rn.)
In the opposite direction, let y ∈ ∂pf(x). By Lemma 5.2, every element

of the finite set P(−)(n)xy is a proximal subgradient of f at x. We consider
the support function of the convex hull of this set (which we denote by Λ),

δ∗Λ(z) = max{zT P(−)y : P(−) ∈ P(−)(n)x}, for all z in Rn.

This function is sublinear, with global Lipschitz constant ‖y‖. The definition
of proximal subgradients implies that there are numbers ρ > 0 and δ > 0
such that for all vectors z in Rn satisfying ‖z‖ < δ we have

(11) f(x + z) ≥ f(x) + δ∗Λ(z)− 1

2
ρ‖z‖2.

On the other hand using the result from the previous subsection, sufficiently
small matrices Z in Mm,n must satisfy

‖σ(Diag x + Z)− x− σ′(Diag x; Z)‖ ≤ K‖Z‖2.

Therefore by inequality (11), together with the Lipschitzness of δ∗Λ and σ, we
get

f(σ(Diag x + Z)) = f(x + (σ(Diag x + Z)− x))
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≥ f(x)− 1

2
ρ‖σ(Diag x + Z)− x‖2

+ δ∗Λ(σ′(Diag x; Z) + [σ(Diag x + Z)− x− σ′(Diag x; Z)])

≥ f(x) + δ∗Λ(σ′(Diag x; Z))−
(

1

2
ρ + K‖y‖

)
‖Z‖2.

Recall that by the Singular Value Derivatives Theorem we have

(12) diag Z ∈ conv
(
P(−)(n)xσ

′(Diag x; Z)
)
.

Since the polytope Λ is invariant under the group P(−)(n)x, so is its support
function, so

δ∗Λ
(
P(−)σ

′(Diag x; Z)
)

= δ∗Λ
(
σ′(Diag x; Z)

)
,

for any matrix P(−) in P(−)(n)x. The convexity of δ∗Λ, its invariance property,
and relation (12), imply that

δ∗Λ(diag Z) ≤ δ∗Λ(σ′(Diag x; Z)).

We continue the chain of inequalities above:

f(σ(Diag x + Z)) ≥ f(x) + δ∗Λ(diag Z)−
(

1

2
ρ + K‖y‖

)
‖Z‖2

≥ f(x) + yT diag Z −
(

1

2
ρ + K‖y‖

)
‖Z‖2

= f(x) + 〈Diag y, Z〉 −
(

1

2
ρ + K‖y‖

)
‖Z‖2,

and the result follows. ¥

We are now ready to prove again the formula that pervades the whole paper
in the case of proximal subdifferentials.

Theorem 5.5 (Proximal Subgradients) The proximal subdifferential of
any singular value function f ◦ σ at a matrix X in Mn,m is given by the
formula

∂p(f ◦ σ)(X) = O(n, m)X .Diag ∂pf(σ(X)),

where

O(n,m)X = {(Un, Um) ∈ O(n,m) : (Un, Um).Diag σ(X) = X}.
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Proof. For any vector y in ∂pf(σ(X)), the Diagonal Proximal Subgradients
Lemma (5.4) shows

Diag y ∈ ∂p(f ◦ σ)(Diag σ(X)),

and now, for any element (Un, Um) in O(n,m)X , from the Proximal Subgra-
dients Invariance Lemma (5.2) we get

(Un, Um).Diag y ∈ ∂p(f ◦ σ)((Un, Um).Diag σ(X)) = ∂p(f ◦ σ)(X),

and we are done with showing the inclusion ”⊇”. We now show the opposite
inclusion ”⊆”. Let Y ∈ ∂p(f ◦σ)(X). Because ∂p(f ◦σ)(X) ⊆ ∂̂(f ◦σ)(X) ⊆
∂(f ◦ σ)(X), the Symmetricity Theorem implies that XT Y = Y T X and
Y T X = XT Y . This means that the rectangular matrices X and Y can be
simultaneously diagonalized by one and the same orthogonal pair (Un, Um)
(see [10]). We get that

Y = UT
n (Diag P(−)σ(Y ))Um, X = UT

n (Diag σ(X))Um,

for some element (Un, Um) in O(n,m), and some P(−) in P(−)(n). Conse-
quently (Un, Um) ∈ O(n,m)X . Lemma 5.2 shows that

Diag P(−)σ(Y ) ∈ ∂p(f ◦ σ)(Diag σ(X)).

Finally the Diagonal Proximal Subgradients Lemma (5.4) gives us

P(−)σ(Y ) ∈ ∂pf(σ(X)).

Thus the matrix Y belongs to the set O(n,m)X .Diag ∂pf(σ(X)). ¥

6 Absolute order statistics and individual sin-

gular values

In this section we want to present a useful application of the different varia-
tions of the Subgradients Theorems. We are going to calculate the proximal,
regular, limiting, horizon, and Clarke subdifferentials of an individual singu-
lar value σk(·). The availability of such formulas indicated the potential of
this approach in matrix perturbation theory.
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We start by defining the absolutely symmetric function corresponding to
the r-th singular value. The kth absolute order statistic ϕk : Rn → R is
defined to be

ϕk(x) = kth largest element of {|x1|, |x2|, ..., |xn|}

(or in other words ϕk(x) = (x̂)k). It clearly satisfies the relation ϕk(x) =
σk(Diag x). To apply the Subgradient Theorem, note that σk = ϕk ◦ σ.
Thus we must first compute the subdifferential of ϕk. We define the function
sign (x) as

sign (x) =

{
1, if x ≥ 0,

−1, if x < 0.

Let {e1, ..., en} be the standard basis in Rn.

Proposition 6.1 At any point x in Rn, the regular subgradients of the kth

absolute order statistic are described by

∂̂ϕk(x) =





conv {±ei | |xi| = ϕk(x)}, if ϕk−1(x) > ϕk(x) = 0,
conv {(sign (xi))ei | |xi| = ϕk(x)}, if ϕk−1(x) > ϕk(x) 6= 0,
∅, otherwise,

and moreover ∂∞ϕk(x) = {0}, and ∂pϕk(x) = ∂̂ϕk(x).

Proof. Define the set of indices I = {i | |xi| = ϕk(x)}, and consider several
cases.

If the inequality ϕk−1(x) > ϕk(x) holds then clearly, close to the point
x, the function ϕk is given by w ∈ Rn 7→ maxi∈I |wi|. The subdifferential
at x of this second function (which is convex) is conv {±ei | |xi| = ϕk(x)}
if ϕk(x) = 0 or is conv {(sign (xi))ei | |xi| = ϕk(x)} if ϕk(x) 6= 0. (See [13,
Theorem 23.8] together with [1, Problem 3.2.13].)

On the other hand, in the case ϕk−1(x) = ϕk(x), suppose y is regular
subgradient, and so satisfies

ϕk(x + z) ≥ ϕk(x) + yT z + o(z), as z → 0.

Here we consider two subcases whose argumentation slightly differ from one
another.
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Assume first that ϕk−1(x) = ϕk(x) = 0. For any index i in I, all small
positive δ satisfy ϕk(x + δei) = ϕk(x) and ϕk(x − δei) = ϕk(x), from which
we deduce yi = 0 for each i in I. But also

ϕk

(
x + δ

∑
i∈I

ei

)
= ϕk(x) + δ, and

ϕk

(
x− δ

∑
i∈I

ei

)
= ϕk(x) + δ,

which leads to the contradiction
∑

i∈I yi = 1. So ∂̂ϕk(x) = ∅.
Second, suppose we have ϕk−1(x) = ϕk(x) > 0. For any index i in I, all

small positive δ satisfy ϕk(x+ δ(sign (xi))ei) = ϕk(x), from which we deduce
(sign (xi))yi ≤ 0, but also

ϕk

(
x− δ

∑
i∈I

(sign (xi))ei

)
= ϕk(x)− δ,

which leads to the contradiction
∑

i∈I(sign (xi))yi ≥ 1. Again we must have
had

∑
i∈I yi = 1.

The horizon subdifferential is easy to check since ϕk is Lipschitz. For the
last claim we use the fact that for any function ∂pf(x) ⊆ ∂̂f(x) with equality
whenever f is convex. ¥

For a vector y in Rn we define the support of y to be

supp y = {i | yi 6= 0}.
The number of elements in this set is then |supp y|. It will help to think that
the structure of the vector (ϕ1(x), ϕ2(x), ..., ϕn(x)) is given by

ϕ1(x) = ... = ϕk1(x) > · · · > ϕkl−1+1(x) = ... = ϕk(x) = ... = ϕkl
(x)

> ...ϕkr(x) ≥ 0, (k0 = 0, kr = n),

so that ϕk(x) is somewhere in the lth block of equal entries.

Theorem 6.2 (kth Absolute Ordered Statistic) The Clarke subdiffer-
ential of the kth absolute ordered statistic ϕk at a point x in Rn is given
by

∂cϕk(x) =

{
conv {±ei | |xi| = ϕk(x)}, if ϕk(x) = 0
conv {(sign (xi))ei | |xi| = ϕk(x)}, otherwise ,
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whereas the (limiting) subdifferential is given by

∂ϕk(x) = {y ∈ ∂cϕk(x) | |supp y| ≤ α}, where(13)

α = 1− k + |{i | |xi| ≥ ϕk(x)}|.
Regularity holds if and only if ϕk−1(x) > ϕk(x).

Remark 6.3 Notice that α is equal to the number of elements in the same
block as ϕk(x) after ϕk(x), including ϕk(x). In other words, with the notation
introduced right before the theorem we can get the expression α = kl−k+1.

Proof. We begin by proving Equation (13). Every vector z in a small
enough neighbourhood around x will have the property that ẑi = ẑj ⇒
x̂i = x̂j for all i and j. That is why by using Proposition 6.1 one can easily

see that for all z in that neighbourhood, ∂̂ϕk(z) is contained in the set in
the right hand side of Equation (13). Because this set is closed, after taking
limits we see that ∂ϕk(x) is contained in it as well.

We now show the opposite inclusion. Take a vector y in the right hand
side of (13) and an index set J such that

|J | = n− α,

j ∈ J ⇒ yj = 0,

{i | |xi| 6= ϕk(x)} ⊆ J.

It can easily be seen that for small enough δ we have

ϕk−1

(
x + δ

∑
i∈J

(sign (xi))ei

)
> ϕk

(
x + δ

∑
i∈J

(sign (xi))ei

)
= ϕk(x).

Finally using Proposition 6.1 we see that, depending on the case considered,

y ∈
{

conv {±ei | i 6∈ J}
conv {(sign (xi))ei | i 6∈ J}

}
= ∂̂ϕk

(
x + δ

∑
i∈J

(sign (xi))ei

)
,

whence by taking limits we conclude that y ∈ ∂ϕk(x). The formulas for the
Clarke case follow by taking convex hulls. The regularity claim follows by
Proposition 6.1. ¥

Finally the subdifferentials of the singular value function σk(X) are given
by the following corollary.
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Corollary 6.4 (Singular Value Subgradients) The Clarke subdifferen-
tial of the kth singular value σk at a matrix X in Mn,m is given by

∂cσk(X) = conv {vwT | ‖v‖ = ‖w‖ = 1, Xw = σk(X)v, XT v = σk(X)w}

whereas the (limiting) subdifferential is given by

∂σk(X) = {Y ∈ ∂cσk(X) | rank Y ≤ α}, where

α = 1− k + |{i |σi(X) ≥ σk(X)}|.

Regularity holds if and only if σk−1(X) > σk(X).

Proof. We will only deduce the formula for the Clarke subdifferential. The
limiting one and the condition for regularity will follow easily.

Fix a matrix X. For any pair (V,W ) ∈ O(n,m)X we have that X =
V T (Diag σ(X))W is the (ordered) singular value decomposition of X, where
we suppose V T = [v1, ..., vn] and W T = [w1, ..., wm]. We first consider the
case when σk(X) > 0. For any index i, such that σi(X) = σk(X), using
V X = (Diag σ(X))W we can express the ith row on both sides: σi(X)wT

i =
vT

i X. Then
V T (Diag ei)W = viw

T
i .

By Theorem 3.7 we get

∂cσk(X) = (Un, Um)O(n,m)Diag σ(X).
(
Diag conv{ei |σi(X) = σk(X)}),

where (Un, Um) is a fixed element of O(n,m)X . The set {ei |σi(X) = σk(X)}
is clearly invariant under the subgroup, P̃ (n), of P(−)(n) that stabilizes σ(X).

Then by Lemma 3.6 and recalling that O(n,m)Diag σ(X) = Õ(n,m) we obtain

∂cσk(X) = (Un, Um)conv Õ(n,m).
(
Diag {ei |σi(X) = σk(X)})

= conv O(n,m)X .
(
Diag {ei |σi(X) = σk(X)})

= conv {viw
T
i |σi(X) = σk(X), (V, W ) ∈ O(n,m)X}

Suppose now σk(X) = 0. If, as above, (V, W ) ∈ O(n,m)X then the only
restrictions on vk and wk are: ‖vk‖ = ‖wk‖ = 1, XT vk = Xwk = 0. Thus

∂cσk(X) = (Un, Um)conv Õ(n,m).
(
Diag {±ei |σi(X) = σk(X)})

= conv O(n,m)X .
(
Diag {±ei |σi(X) = 0})
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= conv {±viw
T
i | σi(X) = 0, (V, W ) ∈ O(n,m)X}.

The stated formula now follows. ¥

A formula for the regular subdifferential of a singular value can also easily
be obtained using Proposition 6.1 and the considerations above.

Corollary 6.5 The Clarke subdifferential of the kth singular value σk at 0
is given by

∂cσk(0) = conv {vwT | v ∈ Rn, w ∈ Rm, ‖v‖ = ‖w‖ = 1}

= {Y ∈ Mn,m |
n∑

i=1

σi(Y ) ≤ 1},

whereas the (limiting) subdifferential at 0 is given by

∂σk(0) = {Y ∈ ∂cσk(0) | rank Y ≤ n− k + 1}

= {Y ∈ Mn,m |
n∑

i=1

σi(Y ) = 1 and rank Y ≤ n− k + 1}.

Proof. It is clear from the previous corollary that

∂cσk(0) = conv {vwT | v ∈ Rn, w ∈ Rm, ‖v‖ = ‖w‖ = 1}.

The equivalence with the second expression (which is just the unit ball for
the Schatten 1-norm) is an easy exercise, and well-known. ¥

7 Lidskii’s theorem for weak majorization -

via nonsmooth analysis

This section parallels and extends the techniques in [8] where the original
form of Lidskii’s theorem, about the vector of eigenvalues of perturbed sym-
metric matrices, was proved using tools from nonsmooth analysis.

The form of Lidskii’s theorem (for weak majorization) in which we are
interested here states (see [4, Theorem 3.4.5]) that any matrices X and Y in
Mn,m satisfy

|σ(X + Y )− σ(X)| ≺w σ(Y ).
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The symbol ≺w denotes weak majorization: for two vectors x and y in Rn

we say that y weakly majorizes x, and write x ≺w y if
∑k

i=1 x̄i ≤
∑k

i=1 ȳi for
k = 1, 2, ..., n. Clearly x ≺w y if and only if P1x ≺w P2y (for any permutation
matrices P1 and P2).

In this section we show how this form of Lidskii’s theorem can be eas-
ily derived from the results obtained in the paper. We need an equivalent
characterization of weak majorization.

Lemma 7.1 Let x and y be any two vectors in Rn, then the following con-
ditions are equivalent

(i) |x| ≺w |y|;
(ii) x ∈ conv (P(−)(n)y);

(iii) for every vector w in Rn we have wT x ≤ ŵT ŷ.

Proof. The equivalence of (i) and (ii) is the content of [11, Theorem 1.2].
Suppose now (ii) holds, then for all w in Rn,

wT x ≤ max
P(−)∈P(−)(n)

(wT P(−)y) = ŵT ŷ.

If (iii) holds but x 6∈ conv (P(−)(n)y), then there is a separating hyperplane,
that is, there is a vector z in Rn such that

zT x > max
P(−)∈P(−)(n)

(zT P(−)y) = ẑT ŷ,

a contradiction. ¥

Fix w in Rn and consider the absolutely symmetric function defined by

(14) f(x) = wT x̂.

The function f is clearly Lipschitz. If x has coordinates with distinct absolute
values, then f is differentiable at x and ∇f(x) = P(−)w for some P(−) ∈
P(−)(n). The set of all such vectors x (whose entries have distinct absolute
values) has a complement in Rn with measure zero. On the other hand we
have the following theorem (see [2, Theorem 2.5.1]).
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Theorem 7.2 (Intrinsic Clarke Subdifferential) Let the function f be
Lipschitz near x, and suppose S is any set of Lebesgue measure 0 in Rn.
Then

∂cf(x) = conv {lim ∇f(xi) | xi → x, xi 6∈ S}
(It is well known that if f is Lipschitz in a neighbourhood of x then f is
differentiable almost everywhere in that neighbourhood.) ¥

From this theorem we get that the function defined in (14) satisfies

∂cf(x) ⊂ conv (P(−)(n)w).

We need another theorem, [2, Theorem 2.3.7].

Theorem 7.3 (Mean-Value Theorem) Let x and y be vectors in Rn, and
suppose that f is Lipschitz on an open set containing the line segment [x, y].
Then there exists a point u in (x, y) such that

f(x)− f(y) ∈ 〈∂cf(u), x− y〉. ¥

We have that wT σ(·) = (f ◦ σ)(·) is Lipschitz, so there is a matrix U in
Mn,m, between the matrices X and X + Y , and a matrix T in ∂c(wT σ)(U)
such that:

wT
(
σ(X + Y )− σ(X)

)
= tr (T T Y ) ≤ σ(T )T σ(Y ),

where the last inequality is von Neumann’s Trace Theorem. On the other
hand applying formula (3) and the above inclusion we get

σ(T ) ∈ conv (P(−)(n)w).

Consequently σ(T )T σ(Y ) ≤ ŵT σ(Y ). We have thus shown that for every
vector w in Rn we have

wT
(
σ(X + Y )− σ(X)

) ≤ ŵT σ(Y ).

Lidskii’s theorem follows from Lemma 7.1.
An independent work by Tam and Hill, covering this version of Lidskii’s

theorem, appeared in [16]. Their considerations are in the context of semisim-
ple Lie group theory. Our direct and simpler approach first appeared in the
second author’s thesis [15].
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