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Abstract

The singular values of a rectangular matrix are nonsmooth func-
tions of its entries. In this work we study the nonsmooth analysis of
functions of singular values. In particular we give simple formulae for
the regular subdifferential, the limiting subdifferential, and the horizon
subdifferential, of such functions. Along the way to the main result
we give several applications and in particular derive von Neumann’s
trace inequality for singular values.
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1 Introduction

The singular values of a rectangular matrix are natural analogues of the
eigenvalues of a square matrix. In this work we are interested in the first-order
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behaviour of functions of the singular values of a rectangular matrix variable.
The singular values, like the eigenvalues, are not smooth functions of the
entries of the matrix. Hence, in order to gain insight into their behaviour
we resort to “generalized gradients” (which we refer to as “subdifferentials”).
Clarke introduced the notion of generalized gradient in [2] and [3]; thorough
accounts of more recent developments may be found in [4] and [16].

The main result of this work gives formulae for the regular subdiffer-
ential, limiting subdifferential, and horizon subdifferential of singular value
functions. Those are the composition of a symmetric and sign invariant func-
tion with the singular values of a rectangular matrix: f ◦ σ. A nonsmooth
analyst may propose to approach the problem of characterizing the subdiffer-
ential of f ◦ σ using the nonsmooth chain rule. A matrix analyst may notice
that every singular value is the difference of two convex functions and the
subdifferentials of the latter are easier to describe. Since we are interested
in the more general question about functions of the singular values, both
approaches will end up using the nonsmooth chain rule which has the form

∂(f ◦ σ)(X) ⊂ ∪{∂(yT σ)(X) | y ∈ ∂f(σ(X))}.

There are two potential problems with this formula. First it is an inclusion
and the conditions for equality will unnecessary restrict our generality. Sec-
ond, even in the cases when we can establish equality it is not clear whether
and how the union of the sets on the right hand side can be transformed into
the simple formula resulting from our approach.

We follow the terminology and notation of [16]. The paper closely imitates
and extends the development in [13]. There are obvious patterns between the
notation, techniques, and results there and here which suggest that there is a
general theoretic framework that encompasses them all. One possible unify-
ing path increasingly receiving attention lately uses properties of semisimple
Lie groups and their associated Lie algebras (see [14], [19], [18]).

The results described here were first investigated in the second author’s
dissertation [17]. In Part II of this paper we extend the results to obtain
analogous formulae for the proximal subdifferential and Clarke subdifferential
when the function is either locally Lipschitz or just lower semicontinuous.
We use them to calculate the subdifferentials of individual singular values.
Another application gives a nonsmooth proof of Lidskii’s theorem for weak
majorization of singular values.
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2 The limiting subdifferential

Definition 2.1 (Regular Subgradient) Given a Euclidean space E (by
which we mean, a finite-dimensional real inner-product space), a function
f : E → [−∞, +∞], and a point x in E at which f is finite, an element y of
E is a regular subgradient of f at x if it satisfies

f(x + z) ≥ f(x) + 〈y, z〉+ o(z) as z → 0 in E.

As usual, o(·) denotes a real-valued function defined on a neighbourhood
of the origin in E, and satisfying limz→0 ‖z‖−1o(z) = 0. The set of regular
subgradients is denoted ∂̂f(x) and is called the regular subdifferential. It is
easy to show that it is always closed and convex.

This definition is just one-sided version of the classical (Fréchet) deriva-
tive. A weakness of this natural concept of subdifferential is that even for
well-behaved functions f it may be empty as it is for example for the function
f(x) = −|x| at x = 0. The idea of the limiting subdifferential enhances regu-
lar subdifferential by gathering information from the regular subdifferentials
at points near x as well.

Definition 2.2 (Limiting Subdifferential) An element y of E is a limit-
ing subgradient if there is a sequence of points xr in E approaching x with
values f(xr) approaching the finite value f(x), and a sequence of regular
subgradients yr in ∂̂f(xr) approaching y.

The set of all subgradients is the limiting subdifferential ∂f(x).

Definition 2.3 (Horizon Subgradient) An element y of E is a horizon
subgradient if there is a sequence of points xr in E approaching x with values
f(xr) approaching the finite value f(x), a sequence of reals tr decreasing to
0, and a sequence of regular subgradients yr in ∂̂f(xr) such that try

r → y.

The set of horizon subgradients is denoted ∂∞f(x). If f(x) is infinite
then the sets ∂f(x) and ∂̂f(x) are defined to be empty, and ∂∞f(x) to be
{0}. The reader can verify that ∂f(x) and ∂̂f(x) are always closed sets, and
we have the inclusion (∂̂f(x))∞ ⊂ ∂∞f(x) (where C∞ denotes the recession
cone of a closed convex set). It is easy to see that ∂∞f(x) is a cone and if f
is Lipschitz around the point x then ∂∞f(x) = {0}.
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Definition 2.4 (Subdifferential Regularity) If the function f is finite
at the point x with at least one subgradient there then it is regular at x
if it is lower semicontinuous near x, every subgradient is regular, that is
∂̂f(x) = ∂f(x), and furthermore

∂∞f(x) = (∂̂f(x))∞.

This definition just says that the set epi f = {(x, α) |α ≥ f(x)} is (Clarke)
regular at the point (x, f(x)): see [16, Corollary 8.11] for the justification.

Definition 2.5 (Tangent Cone) Let L be a subset of the space E, and fix
a point x in E. An element d of E belongs to the regular tangent cone to L
at x, written TL(x), if

xr − x

tr
→ d,

for some sequence xr in L approaching x and a sequence tr decreasing to 0.

Definition 2.6 (Negative Polar Cone) The (negative) polar of a subset
H of E is the set

H− = {y ∈ E : 〈x, y〉 ≤ 0 ∀x ∈ H}.

The proof of the following easy and standard result can be found in [13,
Proposition 1].

Proposition 2.7 (Normal Cone) Given a function f : E → [−∞, +∞]
and a point x in E, any regular subgradient of f at x is polar to the tangent
cone of the level set L = {z ∈ E : f(z) ≤ f(x)} at x; that is

∂̂f(x) ⊂ (TL(x))−.

In this paper we are interested in functions that are invariant under cer-
tain orthogonal transformations of the space E. A linear transformation g
on the space E is orthogonal if it preserves the inner product:

〈gx, gy〉 = 〈x, y〉 for all elements x and y of E.

Such linear transformations form the orthogonal group O(E). A function f
on E is invariant under a subgroup G of O(E) if f(gx) = f(x) for all points
x in E and transformations g in G.
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In the following proposition, f ′(·; ·) denotes the usual directional deriva-
tive:

f ′(x; z) = lim
t↓0

f(x + tz)− f(x)

t
, (when well-defined)

for elements x and z of E.
The following needed result is Proposition 2 in [13].

Proposition 2.8 (Subgradient Invariance) If the function f : E →
[−∞, +∞] is invariant under a subgroup G of O(E), then any point x in
E and transformation g in G satisfy ∂f(gx) = g∂f(x). Corresponding re-
sults hold for regular, horizon, and (if f is Lipschitz around x) Clarke sub-
gradients, and f is regular at the point gx if and only if it is regular at x.
Furthermore, for any element z of E, the directional derivative f ′(gx; gz)
exists if and only if f ′(x; z) does, and in this case the two are equal.

This section ends with a lemma which is useful in the later analysis of
regularity. (See [13, Lemma 1].)

Lemma 2.9 (Recession) For any nonempty closed convex subset C of E,
closed subgroup H of O(E), and transformation g in O(E), the set gHC is
closed, and if it is also convex then its recession cone is gH(C∞).

3 The normal space

Throughout the whole paper we will assume that n and m are natural num-
bers and n ≤ m. Let Mn,m denote the Euclidean space of n×m real matrices,
with inner product 〈X, Y 〉 = tr XT Y . It is easily seen that analogous results
to those we present in this work hold for the space of n×m complex matrices
with the inner product 〈X,Y 〉 = Re (tr X∗Y ), where X∗ denotes transposi-
tion and complex conjugation. With this inner product the complex matrices
turn into an Euclidean space over the reals. Orthogonal matrices below be-
come unitary, but the functions with matrix argument are still (extended)
real valued.

The main goal of this section is to give a straightforward proof that for a
fixed X ∈ Mn,m the set

{UT
n XUm |Un, Um – orthogonal }
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is a smooth manifold and to characterize its tangent and normal spaces at
every point. To do this precisely we need a little of differential geometry and
the results stated below will be needed only in this section.

If M is a smooth manifold and m ∈ M , then TM(m) will denote the tan-
gent space to M at the point m. The next three results are respectively Prop-
osition 4.5.1, Proposition 12.9.4, Proposition 13.3.1, and Proposition 13.3.2
in [1].

Lemma 3.1 (Manifold Sum) Let M and M ′ be smooth manifolds, and
let p, p′ denote the projections of M ×M ′ onto M, M ′ respectively then the
function

λ : TM×M ′(a, a′) 7→ TM(a)⊕ TM ′(a′)

defined by w 7→ (dp, dp′)w is a linear isomorphism.

Theorem 3.2 (Quotient Manifold) If H is a closed subgroup of a Lie
group G then either H is open in G (and the quotient set topology on G/H
is discrete) or the quotient G/H admits a differentiable structure such that
the natural surjection

π : G → G/H

g 7→ gH

has rank equal to the dimension of G/H at every point; that is, the linear
map dπ between the tangent spaces is onto.

All quotient manifolds below have the differential structure described in
Theorem 3.2.

Theorem 3.3 (Orbit Submanifold) Suppose G is a Lie group that also
acts on the Hausdorff manifold M and satisfies the natural conditions

G×M → M

(g,m) 7→ gm

is differentiable and g1(g2m) = (g1g2)m for all g1, g2 ∈ G and m ∈ M . If the
stabilizer Gm is not an open subgroup of G, then the mapping

φm : G/Gm → M, defined by

g(Gm) 7→ gm, for g in G,
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is is one-to-one and has rank equal to the dimension of G/Gm at every point.
Moreover, the orbit Gm in M can be given the structure of a submanifold of
M diffeomorphic to G/Gm under φm.

Let O(n) be the Lie group of n × n real orthogonal matrices, and let
O(n,m) denote the Cartesian product O(n) × O(m), which is also a Lie
group. An easy calculation shows that the tangent space to O(n) at the
identity matrix I, is just the subspace of skew-symmetric matrices, A(n).
Consequently from Lemma 3.1 we see that TO(n,m)(In, Im) = A(n)× A(m).

Consider the action of the group O(n,m) on the space Mn,m defined by

(Un, Um).X = UT
n XUm, for all (Un, Um) in O(n,m) and X in Mn,m.

For a fixed matrix X in Mn,m, the orbit

O(n,m).X = {UT
n XUm : (Un, Um) ∈ O(n,m)}

is just the set of n×m matrices with the same singular values as X. Here is
then the key fact.

Theorem 3.4 (Normal Space) The orbit O(n,m).X is a submanifold of
the space Mn,m, with tangent space

(1) TO(n,m).X(X) = {XZm − ZnX : Zn ∈ A(n) and Zm ∈ A(m)}

and normal space

(2) (TO(n,m).X(X))⊥ = {Y ∈ Mn,m : XT Y and XY T symmetric}.

Proof. Part I. The tangent space. Consider the stabilizer

O(n,m)X = {(Un, Um) ∈ O(n,m) : UT
n XUm = X}

and the bijection φ between the sets O(n,m)/O(n,m)X and O(n,m).X de-
fined by:

(Un, Um)(O(n,m)X) 7→ UT
n XUm, for (Un, Um) in O(n,m).

Clearly O(n,m)X is a closed subgroup of O(n,m) (it is closed under limit op-
erations). So from Theorem 3.3 it follows that the map φ is a diffeomorphism,
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and hence its differential dφ is an isomorphism between the corresponding
tangent spaces

TO(n,m)/O(n,m)X
((In, Im)O(n,m)X) and TO(n,m).X(X)

Consider, on the other hand, the quotient map

π : O(n,m) → O(n,m)/O(n,m)X , defined by

(Un, Um) 7→ (Un, Um)(O(n,m)X), for all (Un, Um) in O(n,m).

Theorem 3.2 implies that its differential

dπ : TO(n,m)(In, Im) → TO(n,m)/O(n,m)X
((In, Im)O(n, m)X)

is onto. Now consider a third map

ψ : O(n,m) → O(n, m).X, defined by

(Un, Um) 7→ UT
n XUm, for all (Un, Um) in O(n,m).

Since ψ = φ ◦ π, the chain rule gives dψ = dφ ◦ dπ, that is

(dψ)TO(n,m)(In, Im) = TO(n,m).X(X).

But as we noted above TO(n,m)(In, Im) = A(n) × A(m). Now we show that
(dψ)(Zn, Zm) = XZm − ZnX. Define the map

Φ : Mn ×Mm → Mn,m

Φ(U, V ) = UT XV,

where Mn, Mm, and Mn,m have their standard differential structure. Let dΦ
be its differential at (In, Im). Then because TMn(M) = Mn for each M ∈ Mn

it is easy to see that

dΦ : Mn ×Mm → Mn,m

dΦ(U, V ) = UT X + XV.

We have that O(n)×O(m) is a submanifold of Mn×Mm, so the tangent space
TO(n)×O(m)(In, Im) is isomorphic to a vector subspace of TMn×Mm(In, Im).
Also the end of Theorem 3.3 implies that the tangent space TO(n,m).X(X)
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is isomorphic to a vector subspace of TMn,m(X). Let i be the natural in-
jection of O(n) × O(m) into Mn × Mm, and let j be the natural injec-
tion of O(n, m).X into Mn,m. Then from the definitions j ◦ ψ = Φ ◦ i.
So dj ◦ dψ = dΦ ◦ di, but (di)(Zn, Zm) = (Zn, Zm) for each (Zn, Zm) in
A(n) × A(m), and dj is the identity on TO(n,m).X(X). Thus, we obtain
(dψ)(Zn, Zm) = (dΦ)(Zn, Zm) = ZT

n X +XZm = XZm−ZnX, as we claimed.
Part II. The normal space. If a matrix Y in Mn,m satisfies XT Y =

Y T X, and XY T = Y XT , then for any matrices Zn ∈ A(n), and Zm ∈ A(m)
we have

〈Y, XZm − ZnX〉 = tr Y T (XZm − ZnX)

= tr Y T XZm − tr Y T ZnX

= tr Y T XZm − tr XY T Zn.

We will show now that tr Y T XZm=0. Indeed,

tr Y T XZm = tr ZT
mXT Y = −tr ZmXT Y = −tr ZmY T X = −tr Y T XZm.

Analogously we get tr XY T Zn = 0, consequently Y ∈ (TXO(n,m).X)⊥.
Conversely suppose that tr Y T (XZm − ZnX) = 0 for all Zn ∈ A(n) and

Zm ∈ A(m). For each Zn ∈ A(n) we have

tr Y T ZnX = tr XY T Zn = tr (XY T Zn)T = tr ZT
n Y XT = −tr ZnY XT ,

that is
tr XY T Zn = −tr ZnY XT .

Let Zm = 0. Then our assumption becomes tr XY T Zn = 0 and consequently
we have tr ZnY XT = 0 and so is their difference:

tr (XY T Zn − ZnY XT ) = 0.

Choosing Zn = XY T − Y XT gives

0 = tr
(
XY T (XY T − Y XT )− (XY T − Y XT )Y XT

)

= tr
(
XY T (XY T − Y XT )

)− tr
(
Y XT (XY T − Y XT )

)

= tr (XY T − Y XT )(XY T − Y XT ) = −tr (XY T − Y XT )T (XY T − Y XT ),

whence XY T = Y XT . Analogously by choosing first Zn = 0 and then
Zm = Y T X −XT Y we obtain XT Y = Y T X. ¥
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Throughout the entire paper all vectors are considered to be column vec-
tors unless stated otherwise. We denote the cone of vectors x in Rn satisfying
x1 ≥ x2 ≥ ... ≥ xn by Rn

↓ . We denote the standard basis in Rn by e1, e2, ..., en.
For any vector x in Rn we denote by x̄ the vector with the same entries as
x ordered in nonincreasing order. Let P (n) denote the set of all n × n per-
mutation matrices. (Those matrices that have only one nonzero entry in
every row or column, which is 1.) Let P(−)(n) denote the set of all n × n
signed permutation matrices. (Those matrices that have only one nonzero
entry in every row or column, which is ±1.) If P(−) ∈ P(−)(n) then we will
denote by |P(−)| the permutation matrix obtained from P(−) by taking the
absolute values of its entries. If x is a vector in Rn then |x| will denote the
vector (|x1|, |x2|, ..., |xn|)T and x2 will denote the vector (x2

1, ..., x
2
n)T . Finally

if x, y ∈ Rn then x · y = (x1y1, ..., xnyn). We will need the following standard
lemma in our proofs (see [10]).

Lemma 3.5 Any vectors x and y in Rn we have the inequality

xT y ≤ x̄T ȳ.

Equality holds if and only if some matrix Q in P (n) satisfies Qx = x̄ and
Qy = ȳ.

4 Singular Values

Analogously to the eigenvalue decomposition of a symmetric matrix via an
orthogonal transformation, any rectangular matrix can also be diagonalized
via an orthogonal transformation on Mn,m. We state the precise result below.
For the proof the reader may refer either to [7, Theorem 7.3.5] or to [8,
Theorem 3.1.1].

For any matrix X, with X i,j we denote its (i, j)-th entry. For any vector
x in Rn let Diag x denote the matrix with entries (Diag x)i,i = xi for all i,
and (Diag x)i,j = 0 for i 6= j. We want to turn the readers attention to the
fact that sometimes Diag x will denote an n × m matrix, sometimes n × n
and sometimes m×m (this in case x ∈ Rm), but there will be no confusion
because the context will make clear which is the case.

Theorem 4.1 (Singular Value Decomposition) Let X ∈ Mn,m (n ≤
m). There are positive real numbers σ(X) := (σ1(X), σ2(X), ..., σn(X))T
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in nonincreasing order σ1(X) ≥ σ2(X) ≥ ... ≥ σn(X), and square orthogonal
(unitary if X is complex) matrices Un and Um such that

X = UT
n

(
Diag σ(X)

)
Um.

The entries of the vector σ(X) = (σ1(X), σ2(X), ..., σn(X))T are called
the singular values of X. The numbers {σ1(X), σ2(X), ..., σn(X)} are the
nonnegative square roots of the eigenvalues of XXT and thus are uniquely
determined. For convenience and without loss of generality we have assumed
that they are ordered nonincreasingly.

Definition 4.2 We say that two matrices X and Y in Mn,m have a simul-
taneous ordered singular value decomposition if there is an element (Un, Um)
in O(n,m) such that X = UT

n (Diag σ(X))Um and Y = UT
n (Diag σ(Y ))Um.

We need to introduce more notation that will be used in the proof of the
next lemma. Let M be a matrix in Mn,m, and 1 ≤ i1 < i2 < ... < ir ≤ n, 1 ≤
j1 < j2 < ... < js ≤ m be given numbers. Then M(i1, i2, ..., ir; j1, j2, ..., js)
will denote the minor of M (with dimensions r × s) obtained at the in-
tersection of the rows with indexes i1, i2, ..., ir, and columns with indexes
j1, j2, ..., js. If v is a vector in Rn then we will use similar notation to denote
a subvector of v. That is, a subvector of v formed by the entries with indexes
1 ≤ i1 < i2 < ... < ir ≤ n will be denoted by v(i1, i2, ..., ir). Finally M(i; ·)
will denote the row of M with index i (these are row vectors), and M(·; i) will
denote the column of M with index i. The following lemma gives a necessary
and sufficient condition for two matrices to “almost” have a simultaneous or-
dered singular value decomposition. For a necessary and sufficient condition
for simultaneous ordered singular value decomposition see Theorem 4.6.

Lemma 4.3 Two matrices Y and Z in Mn,m satisfy ZT Y = Y T Z and
ZY T = Y ZT if and only if there exists an element (Un, Um) in O(n,m)
and a signed permutation matrix P(−) in P(−)(n) such that

(3) Y = UT
n (Diag P(−)σ(Y ))Um, Z = UT

n (Diag σ(Z))Um.

Before we prove the result we need to comment on it.

Remark 4.4 There are four interesting variations of this kind of problem
that appear in the literature. Given a set of complex rectangular matrices one
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may ask when they can be simultaneously diagonalized with unitary matrices
(Un, Um) where the resulting diagonal matrices are allowed to have complex
entries, and a second variation asks when the same diagonalization can be
performed with a pair of orthogonal matrices. For both those questions we
refer the reader to Theorem 1 and Theorem 4 in [5]. The third form of
the problem is the one we need and formulated above: when a set of real
rectangular matrices can be simultaneously diagonalized with orthogonal pair
(Un, Um) (see [20] who also credits the original result to Wiegmann [22]). The
proof we present here is somewhat different and the reduction steps in it make
the main idea quite transparent. The final fourth variation asks when the set
of matrices have simultaneous (ordered) singular value decomposition. (That
is, the resulting diagonal matrices have real, nonnegative (ordered) diagonal.)
A necessary and sufficient condition for the fourth problem is given by von
Neumann in [21]. We address that question below in Theorem 4.6 by giving
a variational proof of this result.

Proof. In one direction the lemma is clear. In the other direction, suppose
first that n = m and Y and Z are nonsingular. We will divide the proof into
several reduction stages. It is well known that the eigenvalues of Y T Z are
the same as the eigenvalues of ZY T counting multiplicities. Then because
they are both symmetric, there are two orthogonal matrices A and B in
O(n) such that Y T Z = AT ΛA and ZY T = BT ΛB. Consequently Y T Z =
(AT B)(ZY T )(BT A). We make the substitution: Y̆ = (AT B)Y and Z̆ =
(AT B)Z. Then we have

Y̆ T Z̆ = Y T Z = (AT B)(ZY T )(BT A) = Z̆Y̆ T ,

that is Y̆ T and Z̆ commute. Hence Y̆ and Z̆T commute as well. Next, because
Y̆ T and Z̆ commute with the symmetric matrix Y̆ T Z̆ it follows that every
eigenspace of Y̆ T Z̆ is invariant under Y̆ T and Z̆. Thus if Vn is an orthogonal
matrix in O(n), whose columns are eigenvectors of Y̆ T Z̆ so that all eigen-
vectors corresponding to the same eigenvalues occur one after another, then
both V T

n Y̆ T Vn and V T
n Z̆Vn must be block diagonal (recall that eigenvectors

corresponding to different eigenvalues are orthogonal):

V T
n Y̆ T Vn = Diag (Y̆ T

1 , Y̆ T
2 , ..., Y̆ T

l ), V T
n Z̆Vn = Diag (Z̆1, Z̆2, ..., Z̆l),

where Y̆ T
i ,Z̆i ∈ Mni

, 1 ≤ ni ≤ n, n1 + n2 + · · ·nl = n, and each Y̆ T
i Z̆i =

Z̆iY̆
T
i = λiIni

, where λ1, λ2, ..., λl are the distinct (all of them are nonzero)
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eigenvalues of the symmetric matrix Y̆ T Z̆. For each i choose a singular
value decomposition Z̆i = RT

i DiSi (Ri, Si - orthogonal, Di - diagonal), and
observe Y̆ T

i = ST
i (λiD

−1
i )Ri. Note that the absolute values of the diagonal

entries of λiD
−1
i are the singular values of Y̆ T

i . So we reduced Y and Z to
l pairs of matrices Y̆i and Z̆i that satisfy (3). Clearly the singular values of
Z are the same as the singular values of Z̆ and are the union of diagonal
entries of D1, ..., Dl. Let P be a permutation matrix in P (n) such that
Diag σ(Z) = P T Diag (D1, ..., Dl)P . Then retracing back the reductions one
sees that the lemma holds in the case when n = m and the matrices Y , Z
are nonsingular. In fact, decomposition (3) holds with

UT
n = BT AVnDiag

(
RT

1 , ..., RT
l

)
P, Um = P T

(
Diag (S1, ..., Sl)

)
V T

n .

We now consider the general case n ≤ m. First we observe that the
symmetric matrices Y T Y and ZT Z commute. Indeed

(ZT Z)(Y T Y ) = ZT (Y ZT )Y = (ZT Y )(ZT Y )

= (Y T Z)(Y T Z) = Y T (ZY T )Z = (Y T Y )(ZT Z).

Analogously one sees that the pair of symmetric matrices Y Y T and ZZT also
commute. It is well known that the eigenvalues of Y T Y are the same as the
eigenvalues of Y Y T plus m− n additional zeros. Hence there is a matrix Vm

in O(m) and a matrix Vn in O(n) that simultaneously diagonalize the above
two pairs respectively (Recall that for any matrix Y , the eigenvalues of Y Y T

are the singular values of Y squared and similarly for Y T .):

V T
n (Y Y T )Vn = Diag σ2(Y ), V T

m (Y T Y )Vm = Diag (σ2(Y )T , 0, ..., 0︸ ︷︷ ︸
m−n

)T ,

V T
n (ZZT )Vn = Diag Pnσ2(Z), V T

m (ZT Z)Vm = Diag Pm(σ2(Z)T , 0, ..., 0︸ ︷︷ ︸
m−n

)T ,

where Pn is a permutation matrix in P (n), and Pm is in P (m). Now we make
the substitution:

Ŷ = V T
n Y Vm, Ẑ = V T

n ZVm.

Observe that:

Ŷ T Ẑ = V T
m Y T ZVm = V T

m ZT Y Vm = ẐT Ŷ ,

13



Z(T;P)

Y(I;J)

T

P

J

A

B

I

DC

Z, Y 

Figure 1: The sets I,J,T,P and A,B,C,D.

and similarly one checks that Ŷ ẐT = ẐŶ T . Moreover we have that

Ŷ Ŷ T = Diag σ2(Y ), Ŷ T Ŷ = Diag (σ2(Y )T , 0, ..., 0︸ ︷︷ ︸
m−n

)T(4)

and

ẐẐT = Diag Pnσ2(Z), ẐT Ẑ = Diag Pm(σ2(Z)T , 0, ..., 0︸ ︷︷ ︸
m−n

)T .(5)

Next, we investigate the structure of the matrices Ŷ and Ẑ. Let the
ranks of Ŷ and Ẑ be k and l respectively, and let Ŷ (i1, ..., ik; j1, ..., jk) and
Ẑ(t1, t2, ..., tl; p1, p2, ..., pl) be nonsingular minors. Let I = {i1, i2, ..., ik}, J =
{j1, j2, ..., jk}, T = {t1, t2, ..., tl}, P = {p1, p2, ..., pl}. Equation (4) tells us
that the rows and the columns of Ŷ are mutually orthogonal. If we take a
row, ri of Ŷ , such that i 6∈ I then ri is a linear combination of rows with
indexes from the set I. Multiplying this linear combination by ri gives that
rT
i ri = 0. Similar argument for the columns imply that all the entries of

Ŷ that don’t belong to the minor Ŷ (i1, ..., ik; j1, ..., jk) are zero. The same
arguments apply to Ẑ.

Let A = I∩T , B = T\I, C = P\J and D = P ∩J , see Figure 1. Take an
index i in the set B. From the above paragraph we have that the i-th row of Ŷ
is the zero vector: Ŷ (i; ·) = 0. So we get Ŷ (i; ·)Ẑ(x; ·)T = 0 for all 1 ≤ x ≤ n.

14



Using the relationship Ŷ ẐT = ẐŶ T we get that Ẑ(i; ·)Ŷ (x; ·)T = 0 for all
1 ≤ x ≤ n. So in particular the vector Ẑ(i; ·)(J) (that is, the subvector of
the i-th row of Ẑ formed from the entries with indexes in J) is orthogonal
to all the vectors Ŷ (x; ·)(J) for all x ∈ I. But the last set of vectors form
the nonsingular minor of Ŷ . So Ẑ(i; ·)(J) = 0. We already knew that
Ẑ(i; ·)(J\D) = 0 so what we get in addition is that Ẑ(i; ·)(D) = 0, and
this applies for every i in B. So all the entries of the submatrix Ẑ(B; D) of
the nonsingular minor Ẑ(T ; P ), are zero. Completely analogously but now
choosing an index from the set C and using the relationship Ŷ T Ẑ = ẐT Ŷ one
sees that all the entries of the submatrix Ẑ(A; C) of the nonsingular minor
Ẑ(T ; P ), are zero.

Next, we want to show that |A| = |D| and |C| = |B|. Suppose |C| < |B|,
so the submatrix Ẑ(B; C) has linearly dependent rows. But then the rows of
Ẑ(B; P ) are linearly dependent and this contradicts that fact that Ẑ(T ; P ) is
nonsingular. Suppose now |C| > |B|, so the columns of Ẑ(B; C) are linearly
dependent, and so will be the columns of Ẑ(T ; C) and we get again the same
contradiction. So |C| = |B|, and because |A|+ |B| = l and |C|+ |D| = l we
obtain that |A| = |D| as well. In summary, we proved that the nonsingular
minor of Ẑ is block diagonal:

Ẑ(T ; P ) = Diag
(
Ẑ(B; C), Ẑ(A; D)

)
.

Completely analogously we obtain the same result for Ŷ . That is the
nonsingular minor of Ŷ is block diagonal:

Ŷ (I; J) = Diag
(
Ŷ (A; D), Ŷ (I\A; J\D)

)
.

Now, because Ŷ ẐT = ẐŶ T and Ŷ T Ẑ = ẐT Ŷ one easily sees that

Ŷ (A; D)Ẑ(A; D)T = Ẑ(A; D)Ŷ (A; D)T , and

Ŷ (A; D)T Ẑ(A; D) = Ẑ(A; D)T Ŷ (A; D)

Moreover Ŷ (A; D), Ẑ(A; D) are square and nonsingular. So from the first
part of the proof they have simultaneous singular value decompositions as
described in the lemma. Next, we find (four) orthogonal matrices that give
the singular value decomposition of Ŷ (I\A; J\D) and Ẑ(B; C) and because
(I\A)∩B = ∅ and (J\D)∩C = ∅ it is not difficult to see how we can obtain
the singular value decomposition described in the lemma. ¥
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In what follows, for a vector x in Rn, we write x̂ for the vector in Rn

with the same entries as |x| arranged in nonincreasing order. Note that
σ(Diag x) = x̂. The following lemma follows as a particular case of the more
general framework in [12, Theorem 2.2, Example 7.2], we give a direct proof
here.

Lemma 4.5 For any vectors x and y in Rn we have the inequality

(6) xT y ≤ x̂T ŷ

with equality if and only if there is a signed permutation matrix P(−) in
P(−)(n) such that P(−)x = x̂ and P(−)y = ŷ.

Proof. It is clear that the inequality holds since

xT y ≤ |x|T |y| ≤ x̂T ŷ,

where the last inequality follows from Lemma 3.5. The condition for equality
in one direction is clear too. Now suppose we have equalities above. Because
|x|T |y| = x̂T ŷ, from Lemma 3.5, there is a permutation matrix Q in P (n)
such that Q|x| = x̂ and Q|y| = ŷ.

Let I be the n × n identity matrix. The fact that we have the equality
xT y = |x|T |y| makes it possible to assign signs to the entries of the identity
matrix I so that if I(−) is the so-formed matrix, we have I(−)x = |x| and
I(−)y = |y|. Indeed, for every index i, 1 ≤ i ≤ n, we assign the signs as
follows:
if xi = 0 and yi = 0 set I i,i

(−) = 1;

if xi = 0 and yi 6= 0 set I i,i
(−) =sign (yi);

if xi 6= 0 and yi = 0 set I i,i
(−) =sign (xi);

if xi 6= 0 and yi 6= 0, in order for the equality to hold we must have sign (xi) =
sign (yi), so set I i,i

(−) = sign (xi). We have that QI(−)x = x̂ and QI(−)y = ŷ;
let P(−) = QI(−). ¥

The Normal Space Theorem (3.4) will be extremely useful to us in the
following sections. However we can immediately demonstrate its importance
by recalling the variational proof of an inequality essentially due to von Neu-
mann [8, p. 182]. The following theorem may also be viewed as a necessary
and sufficient condition for two matrices to have a simultaneous ordered sin-
gular value decomposition.
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Theorem 4.6 (Von Neumann’s Trace Theorem) Any matrices X and
Y in Mn,m satisfy the inequality tr XT Y ≤ σ(X)T σ(Y ). Equality holds if and
only if X and Y have a simultaneous ordered singular value decomposition

Proof. For fixed X and Y , consider the optimization problem

α = sup
Z∈O(n,m).X

tr Y T Z.(7)

Observe first that there is an element (Un, Um) in O(n,m) satisfying Y =
UT

n (Diag σ(Y ))Um, and then choosing Z = UT
n (Diag σ(X))Um shows that

α ≥ σ(X)T σ(Y ).
Next, since the orbit O(n,m).X is compact, problem (7) has an optimal

solution, Z = Z0 say, and any such Z0 by stationarity must satisfy

Y ⊥ TO(n,m).X(Z0) (= TO(n,m).Z0(Z0)).

The Normal Space Theorem now shows that the matrices Y and Z0 satisfy
ZT

0 Y = Y T Z0 and Z0Y
T = Y ZT

0 . Then by Lemma 4.3, there is an element
(Un, Um) in O(n,m), and a signed permutation matrix P(−) in P(−)(n) such
that

Y = UT
n (Diag P(−)σ(Y ))Um, Z0 = UT

n (Diag σ(Z0))Um.(8)

Hence using Lemma 3.5 we get

α = tr Y T Z0 = σ(Z0)
T P(−)σ(Y ) ≤ σ(Z0)

T |P(−)|σ(Y )

≤ σ(Z0)
T σ(Y ) = σ(X)T σ(Y ) ≤ α.

Hence we can conclude that α = σ(X)T σ(Y ) and, using Lemma 4.5, there
exists a signed permutation matrix R in P(−)(n) such that RP(−)σ(Y ) = σ(Y )
and Rσ(Z0) = σ(Z0). Plugging this into equations (8) we get that

Y = UT
n

(
Diag RT σ(Y )

)
Um, Z0 = UT

n

(
Diag RT σ(Z0)

)
Um.

But (
Diag RT σ(Y )

)
= RT (Diag σ(Y ))

( |R| 0
0 Im−n,m−n

)
,

and there is a similar equation involving Z0. The theorem follows. ¥

This section ends with two simple linear-algebraic results which are useful
later. The first is Proposition 3 in [13].
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Proposition 4.7 (Simultaneous Square Conjugacy) For any vectors x,
y, u, v in Rn, there is a matrix U in O(n) with Diag x = UT (Diag u)U and
Diag y = UT (Diag v)U if and only if there is a matrix P in P (n) with x = Pu
and y = Pv.

Proposition 4.8 (Simultaneous Rectangular Conjugacy)For any vec-
tors x, y, u, and v in Rn, there is an element (Un, Um) in O(n,m) with
Diag x = UT

n (Diag u)Um and Diag y = UT
n (Diag v)Um if and only if there is

a matrix P(−) in P(−)(n) with x = P(−)u and y = P(−)v.

Proof. In one direction the proof is easy. In the other direction we divide
it into four steps. First we note that

(Diag x)(Diag x)T = UT
n (Diag u)(Diag u)T Un

(Diag y)(Diag y)T = UT
n (Diag v)(Diag v)T Un

So from Proposition 4.7, there is a permutation matrix P1 in P (n) such that

x2 = P1u
2, and y2 = P1v

2.

This implies that the number of zero entries in vector u is equal to the number
of zero entries in vector x, and the permutation is such that if P1e

i = ej then
|ui| = |xj| and |vi| = |yj|.

Second we have that

(Diag x)(Diag x)T = UT
n (Diag u)(Diag u)T Un

(Diag x)(Diag y)T = UT
n (Diag u)(Diag v)T Un

Again according to the previous proposition, there is a permutation matrix
P2 in P (n) such that

x2 = P2u
2 and x · y = P2(u · v).

Third, let π1 and π2 be the permutations corresponding to the permuta-
tion matrices P1 and P2, that is, Pje

i = eπj(i) for all j = 1, 2 and i = 1, ..., n.
We use π1 and π2 to form a new permutation π (with corresponding permu-
tation matrix P ) in the following way:

π(i) =

{
π1(i) if ui = 0
π2(i) if ui 6= 0.
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Because P2 also maps the zero entries of u one-to-one onto the zero entries
of x, the above construction is well defined.

In the last step we show that we can turn P into a signed permutation
matrix P(−) with the desired properties and such that |P(−)| = P . Suppose
π(i) = j (this of course means P j,i = 1), then
If ui = 0 and vi = 0 then we set P j,i

(−) = P j,i = 1.

If ui = 0 and vi 6= 0 then set P j,i
(−) = sign (vi)sign (yj).

If ui 6= 0 and vi = 0 then set P j,i
(−) = sign (ui)sign (xj).

If ui 6= 0 and vi 6= 0 then set again P j,i
(−) = sign (ui)sign (xj).

It is easily verified that x = P(−)u and y = P(−)v. ¥

5 Simultaneous Diagonalization

The reader can easily check the following elementary statement using the
singular value decomposition theorem.

Proposition 5.1 (Orthogonally Invariant & Absolutely Symmetric)
The following two properties of a function F : Mn,m → [−∞, +∞] are equiv-
alent:

(i) F is orthogonally invariant; that is, any matrices X in Mn,m, Un in
O(n), and Um in O(m) satisfy F (UT

n XUm) = F (X).

(ii) F = f ◦σ for some absolutely symmetric function f : Rn → [−∞, +∞]
that is, any vector x in Rn and matrix P in P(−)(n) satisfy f(Px) =
f(x).

Definition 5.2 (Singular Value Function) A singular value function is
an extended-real-value function defined on Mn,m of the form f ◦ σ for an
absolutely symmetric function f : Rn → [−∞, +∞].

Theorem 5.3 (Symmetricity) If a matrix Y in Mn,m is a regular, a lim-
iting, or a horizon subgradient of a singular value function F at a matrix X
in Mn,m, then X and Y satisfy XT Y = Y T X and Y T X = XT Y .

Proof. Take first Y ∈ ∂̂F (X) to be a regular subgradient. The orthogonal
invariance property of the singular value functions implies that the orbit

19



O(n,m).X is contained in the level set L = {Z ∈ Mn,m |F (Z) ≤ F (X)} of
F at X. Then using the Normal Cone Proposition (2.7) we get

Y ∈ (
TL(X))

)− ⊂ (
TO(n,m).X(X)

)−
=

(
TO(n,m).X(X)

)⊥
.

Since by the Normal Space Theorem (3.4) the tangent cone TX of the orbit
O(n,m).X at X is a linear space. Thus we get XT Y = Y T X and Y T X =
XT Y .

Next, let Y be a limiting subgradient of F at X. By the definition, there
is a sequence of matrices Xr in Mn,m approaching X with a corresponding

sequence of regular subgradients Yr in ∂̂F (Xr), approaching Y . By the above
paragraph we have

XT Y = lim
r

XT
r Yr = lim

r
Y T

r Xr = Y T X.

The relationship Y T X = XT Y is similar.
If Y is a horizon subgradient then there are sequences Yr approaching Y

and reals tr decreasing to 0 such that trYr approaches Y . Thus, together
with the sequence Xr in Mn,m approaching X we have

XT Y = lim
r

XT
r trYr = lim

r
trY

T
r Xr = Y T X. ¥

The above theorem together with Lemma 4.3 show that if a matrix Y
is a subgradient of some singular value function F at the matrix X, (where
X, Y ∈ Mn,m) then X and Y can be simultaneously diagonalized:

Y = UT
n

(
Diag P(−)σ(Y )

)
Um, X = UT

n

(
Diag σ(X)

)
Um,

where (Un, Um) is in O(n,m), and P(−) is a signed permutation matrix in
P(−)(n). Using the Subgradient Invariance Proposition (2.8) applied to the
space Mn,m with the action of the group O(n,m), we see that the matrix
Diag P(−)σ(Y ) must be a subgradient at Diag σ(X). All this shows how we
can simplify the problem of characterizing the nonsmooth subdifferentials of
a singular value function. We can see that it is enough to consider only the
case when X and Y are both diagonal (by that we mean Xi,j = 0 if i 6= j).
We make all these observations precise in the following sections. In the next
proposition we show the easy inclusion.
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Proposition 5.4 Any vectors x and y in Rn, and singular value function
f ◦ σ satisfy

Diag (y) ∈ ∂(f ◦ σ)(Diag x) ⇒ y ∈ ∂f(x).

Corresponding results hold for regular and horizon subgradients.

Proof. We show first that the claim holds when Diag y is a regular sub-
gradient of f ◦ σ at Diag x. For vectors z in Rn close to the origin we have

f(x + z) = f(|x + z|)
= (f ◦ σ)(Diag x + Diag z)

≥ (f ◦ σ)(Diag x) + tr (Diag y)T (Diag z) + o(Diag z)

= f(|x|) + yT z + o(z)

= f(x) + yT z + o(z),

whence y ∈ ∂̂f(x).
Next, if Diag y ∈ ∂(f ◦ σ)(Diag x), then there is a matrix sequence Xr in

Mn,m approaching Diag x, with (f ◦ σ)(Xr) approaching (f ◦ σ)(Diag x), and

a sequence of regular subgradients Yr in ∂̂(f ◦ σ)(Xr) approaching Diag y.
By Theorem 5.3 there is a sequence of elements (U r

n, U r
m) of O(n,m) and a

sequence of matrices P r
(−) in P(−)(n) such that

(9) Xr = (U r
n)T

(
Diag P r

(−)σ(Xr)
)
U r

m and Yr = (U r
n)T

(
Diag σ(Yr)

)
U r

m

for every r. The Subgradient Invariance Proposition (2.8) now shows that
Diag σ(Yr) ∈ ∂̂(f ◦ σ)

(
Diag P r

(−)σ(Xr)
)
. Therefore by the first paragraph

σ(Yr) ∈ ∂̂f(P r
(−)σ(Xr)).

The groups O(n,m) and P(−)(n) are compact. So without loss of general-
ity we can assume that (U r

n, U r
m) approaches an element (Un, Um) in O(n,m)

and P r
(−) approaches P(−) in P(−)(n). Moreover because P(−)(n) is a discrete

group the elements of the sequence P r
(−) will be equal to P(−) for big enough

r’s. Hence from equation (9), taking the limit and rearranging we get

Un(Diag x)UT
m = Diag (P(−)σ(Diag x)), and

(10)
Un(Diag y)UT

m = Diag σ(Diag y).

Since P r
(−)σ(Xr) approaches P(−)σ(Diag x), with f(P r

(−)σ(Xr)) = f(σ(Xr))

approaching f(σ(Diag x)) = f(P(−)σ(Diag x)), and σ(Yr) ∈ ∂̂f(P r
(−)σ(Xr))

approaching σ(Diag y), then σ(Diag y) belongs to ∂f(P(−)σ(Diag x)).
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Combining Equation (10) and Proposition 4.8, there exists a signed per-
mutation matrix P̂(−) such that x = P̂(−)P(−)σ(Diag x), y = P̂(−)σ(Diag y).
Applying the Subgradient Invariance Proposition (2.8) again, this time to
the space Rn with the group P(−)(n), we get that y belongs to ∂f(x) as we
claimed.

In the case when Diag y is a horizon subgradient, the calculations are
analogous. ¥

6 Directional derivatives of singular values

As we said before Proposition 5.4, the opposite inclusion to the one stated
there is the more difficult one. It is our goal in this section to show that.
Once we show the opposite inclusion for regular subgradients, most of the
goal will be achieved. Thus the difficulty is in showing that for vectors x and
y in Rn and a singular value function f ◦ σ we have

(11) y ∈ ∂̂f(x) ⇒ Diag y ∈ ∂̂(f ◦ σ)(Diag x).

We need to state two more propositions. The first is obtained by com-
bining Theorem 4.3 with Example 7.6 in [12]. The second is Theorem 3.1 in
[9].

Proposition 6.1 (Characterization Of Convexity) Let the function f :
Rn → (−∞, +∞] be absolutely symmetric. Then the corresponding singular
value function f ◦ σ is convex on Mn,m if and only if f is convex.

Proposition 6.2 (Gradient Formula) If a function f : Rn → (−∞, +∞]
is convex and absolutely symmetric, then the corresponding convex, orthogo-
nally invariant function f ◦ σ is differentiable at the matrix X if and only if
f is differentiable at σ(X). In this case

∇(f ◦ σ)(X) = UT
n

(
Diag∇f(σ(X))

)
Um,

for any matrices Un in O(n) and Um in O(m) with X = UT
n

(
Diag σ(X)

)
Um.

For each integer k = 0, 1, 2, ..., n we define the function Sk : Mn,m → R by

Sk(M) =
∑k

i=1 σi(M), the sum of the k largest singular values of the matrix
M . For convenience we define S0 = 0. It is well known result of Fan that Sk
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is convex (even sublinear) function on Mn,m (see for example Corollary 3.4.4
in [8]). Another way to see this is by using Proposition 6.1. We define a new
symbol Rn := (Rn

↓ ∩ Rn
+). To simplify the notation in the following several

lemmas, if x is a vector from Rn but the indexing refers to the element xn+1,
then we will assume that xn+1 = 0.

Lemma 6.3 The function f : Rn → R defined by f(x) =
∑k

i=1 x̂i (k ≤ n) is
differentiable at any point µ ∈ Rn such that µk > µk+1, and its derivative is

∇f(µ) =
k∑

i=1

ei.

Proof. Set v :=
∑k

i=1 ei. For all vectors x with sufficiently small norm we

have f(µ + x) =
∑k

i=1(µk + xk). So for all sufficiently small vectors x 6= 0,
f(µ+x)−f(µ)−〈v,x〉

‖x‖ = 0. Consequently ∇f(µ) =
∑k

i=1 ei. ¥

Lemma 6.4 Fix an integer k, 1 ≤ k ≤ n. For any real vector x in Rn such
that x̂k > x̂k+1 the function Sk is differentiable at Diag x with gradient

∇Sk(Diag x) = UT
n

(
Diag

k∑
i=1

ei

)
Um,

where Un, Um are any orthogonal matrices such that Diag x = UT
n (Diag x̂)Um.

Note 6.5 Of course one can choose the matrices Un and Um in such a way
that Un is a signed permutation matrix, P(−), and Um is the block diagonal
matrix Diag (|P(−)|, Im−n,m−n). In particular if x ∈ Rn we can take Un = In

and Um = Im.

Proof. The function f : Rn → R defined by f(y) =
∑k

i=1 ŷi is easily
seen to be absolutely symmetric and convex. From Lemma 6.3 it is also
differentiable at the point σ(Diag x) = x̂. So by Proposition 6.2 it follows
that f ◦σ is differentiable at Diag x. But (f ◦σ)(M) = Sk(M) for each M in
Mn,m, so Sk is differentiable at Diag x and the formula for its gradient follows
from Proposition 6.2 and Lemma 6.3. ¥

Lemma 6.6 For any vector w in Rn, the function wT σ is convex, and any
vector x in Rn satisfies Diag w ∈ ∂(wT σ)(Diag x).
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Proof. The absolutely symmetric continuous function f : Rn → R defined
by f(z) = wT ẑ is convex because it is the maximum of a family of convex
(linear in this case) functions

f(z) = max {wT P(−)z : P(−) ∈ P(−)(n)},

by Lemma 4.5. Then by Proposition 6.1 we obtain that f ◦ σ is convex. To
prove the claim about the gradient it is enough to show that any matrix Z
in Mn,m satisfies

tr (Diag w)(Z −Diag x) ≤ wT σ(Z)− wT x,

or in other words, tr (Diag w)Z ≤ wT σ(Z). This inequality follows from von
Neumann’s Theorem (4.6) ¥

For any vector x in Rn, we denote by P(−)(n)x the stabilizer of x in the
group P(−)(n), that is

P(−)(n)x = {P(−) ∈ P(−)(n) : P(−)x = x}.

The following lemma is an extension and generalization for singular values
of Lemma 5.3 in [11].

Lemma 6.7 If x is a vector in Rn, and w is a vector in Rn such that the
stabilizer P(−)(n)x is a subgroup of P(−)(n)w, then the function wT σ(·) is
differentiable at Diag x with

∇(wT σ)(Diag x) = Diag w.

Proof. Suppose that the structure of vector x is

x1 = ... = xk1 > xk1+1 = ... = xk2 > ... > xkr+1 = ... = xkr+1 = 0, (kr+1 = n).

(The proof of the lemma is the same even if xn > 0.) Since the stabilizer
P(−)(n)x is a subgroup of P(−)(n)w, there exist reals β1, β2,...,βr,βr+1 with

wi = βj whenever kj−1 < i ≤ kj, j = 1, 2, ..., r,
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where βr+1 = 0 and we set k0 = 0. We obtain

wT σ(X) =
r+1∑
j=1

βj

kj∑

i=kj−1+1

σi(X) =
r+1∑
j=1

βj

(
Skj

(X)− Skj−1
(X)

)
.

Let P 1
(−) = In and P 2 = Im the identity matrices of the indicated dimension.

Then applying Lemma 6.4 and the note after it gives

∇(wT σ)(Diag x) =
r+1∑
j=1

βjI
T
n

(
Diag

kj∑
i=1

ei −Diag

kj−1∑
i=1

ei

)
Im

=

( r∑
j=1

βj Diag

kj∑

i=kj−1+1

ei

)

= Diag w,

as required. ¥

The following theorem is crucial for the proof of implication (11). Notice
that the adjoint of the linear map Diag : Rn → Mn,m is the map diag :
Mn,m → Rn, taking a matrix M to a vector with components Mi,i (1 ≤ i ≤ n).

Theorem 6.8 (Singular Value Derivatives) Any vector x in Rn and ma-
trix M in Mn,m satisfy

(12) diag M ∈ conv
(
P(−)(n)xσ

′(Diag x; M)
)
.

Proof. Assume first that xn = 0. Suppose again that the structure of the
vector x ∈ Rn is

x1 = ... = xk1 > xk1+1 = ... = xk2 > ... > xkr+1 = ... = xkr+1 = 0, (kr+1 = n).

The indexes define a partitioning of the integers {1, 2, ..., n} into consecutive
blocks

I1 = {1, 2..., k1}, I2 = {k1+1, k1+2, ..., k2}, ..., Ir+1 = {kr +1, kr +2, ..., kr+1}

Thus xi = xj if and only if the indices i and j belong to the same block and
xi ∈ Ir+1 if and only if xi = 0. We are also going to say that an entry of x
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belongs to a particular block if its index is in that block. With respect to
these blocks, write any vector y in Rn in the form

y =
r+1⊕
i=1

yi, where yi ∈ R|Ii| for each i.

The stabilizer P(−)(n)x consists of matrices permuting the entries of x in
a block Ii, (for every fixed i, 1 ≤ i ≤ r) among themselves (without sign
changes) and permuting the entries of x belonging to the block Ir+1 among
themselves (with possible sign changes).

Assume that relation (12) fails. Then there exists a hyperplane separating
diag M from conv

(
P(−)(n)xσ

′(Diag x; M)
)
. That is, some vector y in Rn

satisfies

(13) yT diag M > yT P(−)σ
′(Diag x; M), for all P(−) in P(−)(n)x.

Let ỹ denote the vector ⊕r
i=1y

i ⊕ ŷr+1. There is a vector v in Rn with equal
components within every block Ii (1 ≤ i ≤ r) and vj = 0 whenever j ∈ Ir+1

(that is, P(−)(n)x is a subgroup of P(−)(n)v) so that v+ỹ lies in Rn. Lemma 6.6
shows that

Diag (v + ỹ) ∈ ∂
(
(v + ỹ)T σ

)
(Diag x),

which in turn means that for any T in Mn,m and a real t, using the definition
of a convex subgradient for the matrix Diag x + tT

tr
(
(tT )T (Diag (v + ỹ))

) ≤ (
(v + ỹ)T σ

)
(Diag x + tT )− (

(v + ỹ)T σ
)
(Diag x).

Dividing by t and letting it go to 0+ we arrive at

(14) tr
(
T T (Diag (v + ỹ))

) ≤ (v + ỹ)T σ′(Diag x; T ),

for any matrix T in Mn,m. On the other hand, Lemma 6.7 shows that

(15) tr
(
T T (Diag v)

)
= vT σ′(Diag x; T ).

Subtracting equation (15) from inequality (14) gives

(16) tr
(
T T (Diag ỹ)

) ≤ ỹT σ′(Diag x; T ).

If we set diag M =: w = ⊕rw
r, then there is a matrix Q in P(−)(n)x satisfying

diag

(
QT M

( |Q| 0
0 Im−n,m−n

))
= ⊕r

i=1w
i ⊕ ŵr+1.
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Choosing the matrix T in inequality (16) to be T = QT M

( |Q| 0
0 Im−n,m−n

)

and using Lemma 3.5 repeatedly and Lemma 4.5 shows

yT w ≤ (⊕r
i=1 yi

)T (⊕r
i=1 wi

)
+ ŷr+1

T
ŵr+1

= tr
(
T T (Diag ỹ)

)

≤ ỹT σ′(Diag x; T )

= ỹT σ′(Diag x; M).

In the last equality we used the Subgradient Invariance Proposition (2.8) and
the fact that Q is in P(−)(n)x. But now choosing the matrix P(−) ∈ P(−)(n)x

in inequality (13) so that P T
(−)y = ỹ gives a contradiction.

Assume now xn > 0. Then the reader can verify that the proof works
again if we consider that the block Ir+1 is empty. That is, we write any
vector y in Rn in the form

y = ⊕r
i=1y

i, where yi ∈ R|Ii| for each 1 ≤ i ≤ r.

The stabilizer P(−)(n)x consists of matrices of permutations fixing each block

Ii, (1 ≤ i ≤ r). The vector ỹ denotes ⊕r
i=1y

i. There is a vector v in Rn with
equal components within every block Ii, (1 ≤ i ≤ r) so that...and so on. We
just omit the “r+1”-part of each vector until the end of the proof. ¥

Another result that we will need is that the singular value map σ can be
directionally expanded in a first order series. This expansion is uniform in
the perturbation matrix. In other words we have the following lemma.

Lemma 6.9 Given a matrix X in Mn,m, small matrices M in Mn,m satisfy

σ(X + M) = σ(X) + σ′(X; M) + o(M).

Proof. The above uniform first order directional expansion is true for any
convex function [6, Lemma VI.2.1.1]. In our case σi is the difference of the
two convex functions

∑i
j=1 σj and

∑i−1
j=1 σj (see Lemma 6.6). So it is true for

σi as well. ¥

Finally we prove the implication (11). Notice though, that first we require
x to be in Rn. In the corollary that follows we remove this condition.
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Theorem 6.10 For any vectors x in Rn and y in Rn, and any singular value
function f ◦ σ,

y ∈ ∂̂f(x) ⇒ Diag y ∈ ∂̂(f ◦ σ)(Diag x).

Proof. The orbit of y under the action of the stabilizer P(−)(n)x of x con-

tains only regular subgradients in ∂̂f(x), (this follows from the Subgradient
Invariance Proposition (2.8)). In other words we have P(−)(n)xy ⊂ ∂̂f(x).
Denote the convex hull of this orbit by Λ. Then the support function of λ is
given by

δ∗Λ(z) = max{zT P(−)y : P(−) ∈ P(−)(n)x}, for all z in Rn.

The support function is clearly sublinear (convex and positively homoge-
neous). It is also globally Lipschitz with constant ‖y‖.

Fix a real ε > 0. For any P(−) ∈ P(−)(n)x the definition of regular
subgradients implies, for small vectors z in Rn,

(17) f(x + z) ≥ f(x) + 〈P(−)y, z〉 − ε‖z‖.

Thus using the finiteness of P(−)(n)x we can conclude that for vectors z ∈ Rn

in a smaller neighbourhood around the origin we have

(18) f(x + z) ≥ f(x) + δ∗Λ(z)− ε‖z‖.

On the other hand, using the previous lemma (6.9), small matrices Z in Mn,m

must satisfy

‖σ(Diag x + Z)− x− σ′(Diag x; Z)‖ ≤ ε‖Z‖,

and hence, by inequality (18),

f
(
σ(Diag x+Z)

)
= f

(
x + (σ(Diag x + Z)− x)

)

≥ f(x)− ε‖σ(Diag x + Z)− x‖
+ δ∗Λ

(
σ′(Diag x; Z) + [σ(Diag x + Z)− x− σ′(Diag x; Z)]

)

≥ f(x)− ε‖Z‖
+ δ∗Λ

(
σ′(Diag x; Z) + [σ(Diag x + Z)− x− σ′(Diag x; Z)]

)

≥ f(x) + δ∗Λ
(
σ′(Diag x; Z)

)− (1 + ‖y‖)ε‖Z‖.
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In the second inequality we used the Lipschitz property of σ together with
the assumption x ∈ Rn, that is, σ(Diag x) = x. In the last inequality we used
the Lipschitz property of the support function δ∗Λ. Recall that the Singular
Value Derivatives Theorem (6.8) implies

(19) diag Z ∈ conv
(
P(−)(n)xσ

′(Diag x; Z)
)
.

The support function δ∗Λ(z) is invariant under the stabilizer P(−)(n)x acting
on the argument z since the set Λ is invariant. Thus

δ∗Λ
(
P(−)σ

′(Diag x; Z)
)

= δ∗Λ
(
σ′(Diag x; Z)

)
,

for any matrix P(−) in P(−)(n)x. This combined with the convexity of δ∗Λ and
relation (19), demonstrates

δ∗Λ(diag Z) ≤ δ∗Λ(σ′(Diag x; Z)).

Continuing the argument above we have

f(σ(Diag x + Z)) ≥ f(x) + δ∗Λ(diag Z)− (1 + ‖y‖)ε‖Z‖
≥ f(x) + yT diag Z − (1 + ‖y‖)ε‖Z‖
= f(x) + 〈Diag y, Z〉 − (1 + ‖y‖)ε‖Z‖,

where the number ε was arbitrary. The result follows. ¥

Corollary 6.11 (Diagonal Subgradients) For any vectors x and y in Rn

and any singular value function f ◦ σ,

y ∈ ∂f(x) ⇔ Diag y ∈ ∂(f ◦ σ)(Diag x).

Corresponding results hold for regular and horizon subgradients.

Proof. Again we will first show the corollary in the case when y is a regular
subgradient. Let P(−) be a signed permutation matrix in P(−)(n) such that
x̂ = P(−)x. By the Subgradient Invariance Proposition (2.8) the assumption

y ∈ ∂̂f(x) implies P(−)y ∈ ∂̂f(P(−)x). We now apply Theorem 6.10 to get

P(−)(Diag y)

( |P T
(−)| 0

0 Im−n,m−n

)
= Diag (P(−)y) ∈ ∂̂(f ◦ σ)(Diag (P(−)x))
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= ∂̂(f ◦ σ)

(
P(−)(Diag x)

( |P(−)| 0
0 Im−n,m−n

))
,

Apply again the Subgradient Invariance Proposition to get the result.
In the limiting subdifferential case, y ∈ ∂f(x), there is a sequence of vec-

tors xr in Rn approaching x, with f(xr) approaching f(x), and a sequence of
regular subgradients yr ∈ ∂̂f(xr) approaching y. Clearly Diag xr approaches
Diag x with f(σ(Diag xr)) approaching f(σ(Diag x)), and by the above argu-
ment, each matrix Diag yr is a regular subgradient of f ◦ σ at Diag xr. Since
Diag yr approaches Diag y, the result follows. The horizon subgradient case
is almost identical. ¥

7 The main result

The hard part is over. We now present the main result of the paper giving an
easy-to-use and easy-to-remember formula for the subdifferential of a singular
value function in terms of the subdifferential of the corresponding absolutely
symmetric function. The theorem just builds on the reduced case given in
Corollary 6.11.

Theorem 7.1 (Subgradients) The limiting subdifferential of a singular
value function f ◦ σ at a matrix X in Mn,m is given by the formula

∂(f ◦ σ)(X) = O(n, m)X .Diag ∂f(σ(X)),(20)

where

O(n,m)X = {(Un, Um) ∈ O(n,m) : (Un, Um).Diag σ(X) = X}.
The sets of regular and horizon subgradients satisfy corresponding formulae.

Proof. The Diagonal Subgradients Corollary (6.11) shows that for any
vector y in ∂f(σ(X)) we have

Diag y ∈ ∂(f ◦ σ)(Diag σ(X))

Now, for any element (Un, Um) of O(n,m) such that UT
n (Diag σ(X))Um = X,

the Subgradient Invariance Proposition (2.8) implies

UT
n (Diag y)Um ∈ ∂(f ◦ σ)(UT

n (Diag σ(X))Um) = ∂(f ◦ σ)(X).
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All this shows the inclusion ∂(f ◦ σ)(X) ⊇ O(n,m)X .Diag ∂f(σ(X)).
For the opposite inclusion, take a subgradient Y in ∂(f ◦ σ)(X). By the

Symmetricity Theorem (5.3) it satisfies the relationships: Y T X = XT Y and
Y XT = XY T . Hence by Lemma 4.3 there exists an element (Un, Um) in
O(n,m) and a signed permutation matrix P(−) in P(−)(n) such that

X = UT
n (Diag σ(X))Um and Y = UT

n (Diag P(−)σ(Y ))Um.

Then the Subgradient Invariance Proposition (2.8) shows

Diag P(−)σ(Y ) ∈ ∂(f ◦ σ)(Diag σ(X)),

whence P(−)σ(Y ) ∈ ∂f(σ(X)), by the Diagonal Subgradient Corollary. The
arguments for regular and horizon subgradients are similar. ¥

Note 7.2 Analogous result also holds for the Clarke subgradients - see [15].

Corollary 7.3 (Unique Regular Subgradients) A singular value func-
tion f ◦σ has a unique regular subgradient at a matrix X in Mn,m if and only
if f has a unique regular subgradient at σ(X).

Proof. If f ◦σ has a unique regular subgradient at a matrix X then clearly
f has a unique regular subgradient at the vector σ(X).

To show the opposite, suppose f has unique regular subgradient y at
σ(X). Then by the subdifferential formula (20) we get that every matrix in
the convex set ∂̂(f ◦σ)(X) 6= ∅ has the same norm, namely ‖y‖, and therefore
this set has just one element. ¥

Corollary 7.4 (Fréchet Differentiability) A singular value function f◦σ
is Fréchet differentiable at a matrix X in Mn,m if and only if f is Fréchet
differentiable at σ(X).

Proof. A function h is Fréchet differentiable at a point if and only if both
h and −h have unique regular subgradients there. Thus this corollary follows
from Corollary 7.3 ¥

Corollary 7.5 (Regularity) Suppose the absolute symmetric function f is
finite at σ(X) (for a matrix X in Mn,m). Then the singular value function
f ◦ σ is regular at X if and only if f is regular at σ(X).
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Proof. Recall that f ◦ σ is lower semicontinuous around X if and only if
f is lower semicontinuous around σ(X).

The definition of regularity [16, Corollary 8.11] states that f is regular
at σ(X) if and only if if it is lower semicontinuous around σ(X) and the
following conditions hold

∂f(σ(X)) = ∂̂f(σ(X)) 6= ∅, and(21)

(∂̂f(σ(X)))∞ = ∂∞f(σ(X)).(22)

On the other hand f◦σ is regular at X if and only if it is lower semicontinuous
around X and the following conditions hold

∂(f ◦ σ)(X) = ∂̂(f ◦ σ)(X) 6= ∅, and(23)

(∂̂(f ◦ σ)(X))∞ = ∂∞(f ◦ σ)(X).(24)

By formula (20) and its regular analogue, condition (21) implies condition
(23). Conversely, by the Subgradient Invariance Proposition (2.8), condition
(23) is equivalent to

∂(f ◦ σ)(Diag σ(X)) = ∂̂(f ◦ σ)(Diag σ(X)),

and condition (21) follows by the Diagonal Subgradient Corollary (6.11).
Notice that the set of regular subgradients is always closed and convex.

Thus, the regular subgradients version of formula (20) states that the sets on
both sides of the equality are convex. This allows us to apply the Recession
Lemma (2.9) to obtain the second equality below, and assuming that (22)
holds, we get

(∂̂(f ◦ σ)(X))∞ = [O(n,m)X .Diag ∂̂f(σ(X))]∞

= O(n,m)X .[Diag ∂̂f(σ(X))]∞

= O(n,m)X .Diag [∂̂f(σ(X))]∞

= O(n,m)X .Diag ∂∞f(σ(X))

= ∂∞(f ◦ σ)(X).

So condition (22) implies condition (24), by the horizon version of formula
(20) used in the last equality.

On the other hand, by the Subgradient Invariance Proposition (2.8), con-
dition (24) is equivalent to

(∂̂(f ◦ σ)(Diag σ(X)))∞ = ∂∞(f ◦ σ)(Diag σ(X)).
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Using the Diagonal Subgradients Corollary again and the above equality we
obtain

Diag (∂̂f(σ(X)))∞ = (Diag ∂̂f(σ(X)))∞

= (∂̂(f ◦ σ)(Diag σ(X)) ∩DiagRn)∞

= (∂̂(f ◦ σ)(Diag σ(X)))∞ ∩DiagRn

= ∂∞(f ◦ σ)(Diag σ(X)) ∩DiagRn

= Diag ∂∞f(σ(X)).

Condition (22) follows. ¥

Corollary 7.6 (Strict Differentiability) A singular value function f ◦ σ
is strictly differentiable at a matrix X in Mn,m if and only if the function f
is strictly differentiable at σ(X).

Proof. Theorem 9.18 in [16] states that a function f is strictly differentiable
at σ(X) if and only if it is continuous there and both f and −f are regular
at σ(X) Thus the corollary follows by the Regularity Corollary (7.5) just
proved. ¥

The Subgradients Theorem (7.1) can be written in graphical form. The
graph of the subdifferential is the set

Graph ∂f = {(x, y) ∈ Rn × Rn : y ∈ ∂f(x)}.

Define a binary operation ∗ : O(n,m)× (Rn × Rn) → Mn,m ×Mn,m by

(Un, Um) ∗ (x, y) = ((Un, Um).Diag x, (Un, Um).Diag y).

Corollary 7.7 (Subdifferential Graphs) The graph of the subdifferential
of a singular value function f ◦ σ is given by the formula

Graph ∂(f ◦ σ) = O(n,m) ∗Graph ∂f.

Analogous formulae hold for the subdifferentials ∂̂, ∂∞.

Proof. We first show that the left hand side is contained in the set on the
right. Suppose the pair (X,Y ) is in Graph ∂(f ◦ σ). This happens exactly
when Y ∈ ∂(f ◦ σ)(X). Using the Subgradients Theorem (7.1), this implies
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that there is a vector y in ∂(f(σ(X)) and an element (Un, Um) in O(n,m)X

satisfying Y = (Un, Um).Diag y. Hence (X, Y ) = (Un, Um).(σ(X), y).
For the converse inclusion take a pair of vectors (x, y) in Graph ∂f and

an element (Un, Um) in O(n,m). Since y lies in ∂f(x) we have Diag y ∈ ∂(f ◦
σ)(Diag x), by the Diagonal Subgradients Corollary (6.11). The Subgradient
Invariance Proposition implies (Un, Um).Diag y ∈ ∂(f ◦ σ)((Un, Um).Diag x),
or in other words (Un, Um) ∗ (x, y) ∈Graph ∂(f ◦ σ). The arguments for the
other subdifferentials are analogous. ¥

The regular subgradients of a convex function are exactly the usual convex
subgradients. It is also known that in the case of an absolutely symmetric
function f , f is convex if and only if f ◦ σ is. (See [12, Theorem 4.3 and
Example 7.5].) With this notes in mind the following corollary is easily
deduced from the Subgradients Theorem (7.1). An independent proof can
be found in [9, Corollary 2.5].

Corollary 7.8 (Convex Subgradients) Let the function f be absolutely
symmetric and convex. Consider the corresponding convex singular value
function f ◦ σ. The matrix Y is a (convex) subgradient of f ◦ σ at X if and
only if σ(Y ) is a (convex) subgradient of f at σ(X) and the two matrices X
and Y admit simultaneous ordered singular value decomposition.
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