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Abstract

A function, F, on the space of n X n real symmetric matrices is
called spectral if it depends only on the eigenvalues of its argument,
that is F(A) = F(UAUT) for every orthogonal U and symmetric A
in its domain. Spectral functions are in one-to-one correspondence
with the symmetric functions on R™: those that are invariant under
arbitrary swapping of their arguments. In this paper we show that a
spectral function has a quadratic expansion around a point A if and
only if its corresponding symmetric function has quadratic expansion
around A(A) (the vector of eigenvalues). We also give a concise and
easy to use formula for the ‘Hessian’ of the spectral function. In the
case of convex functions we show that a positive definite ‘Hessian’ of
f implies positive definiteness of the ‘Hessian’ of F.

1 Introduction

In this work we investigate a property of functions F' on the real vector space
of symmetric matrices that are orthogonally invariant:

F(UTAU) = F(A), for all A symmetric and U orthogonal.
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Every such function can be decomposed as
F(A) = (f o M)(A),

where A is the map that gives the eigenvalues of the matrix A and f is
a permutation invariant function. (See the next section for more details.)
We call such functions F' spectral functions (or just functions of eigenvalues)
because de facto they depend only on the spectrum of the operator A.

In the past, such functions have been of interest for example to people
working in the field of quantum mechanics [7], [14]. With developments in
semidefinite programming, functions on eigenvalues became an inseparable
part of mathematical programming. Optimization problems now often in-
volve spectral functions like log det(A), the largest eigenvalue of the matrix
argument A, or the constraint that A must be positive definite and so on.
Remarkably, many properties of the function f are inherited by the spec-
tral function F. For example, this holds for differentiability and convexity
[8], various types of generalized differentiability [9], analyticity [19], various
second-order properties [18], [17], [16], and so on. Second-order properties
of matrix functions are of great interest for optimization because the appli-
cation of Newton’s method and recent interior point methods [11] require
that we know the second-order behaviour of the functions involved in the
mathematical model.

The standard reference for the behaviour of the eigenvalues of a matrix
subject to perturbations in a particular direction is [6]. Second-order prop-
erties of eigenvalue value functions in a particular direction are derived in
[18]. What interests us in this paper is a second-order property of spectral
functions subject to perturbation by an arbitrary matriz. Analytical proper-
ties subject to matrix perturbations are discussed in [19]. In some sense our
result about spectral functions having quadratic expansions lies between the
results in [8] and the results in [19]. In a parallel paper [10] we show that F
is twice differentiable if and only if f is, and also that F' € C? if and only
if f € C?. Having a quadratic expansion is a property that many functions
possess. For example a theorem of Alexandrov [1] states that every finite,
convex function on an open subset of R™ has quadratic expansion at almost
every point. Also, it is not necessary for a function to be twice differentiable
in order to have quadratic expansion. For example the function

[ @®sin(1/x), ifx#£0
f(“')_{o, ifz=0



has quadratic expansion around = = 0 but is not twice differentiable there.
While on the other hand being twice differentiable at = implies quadratic
expansion at x.

2 Notation and definitions

Let S™ be the Euclidean space of all nxn symmetric matrices with inner prod-
uct (A, B) = tr (AB), and for A € S™ denote by A(A)T = (A1 (A4), ..., \.(4))
the vector of its eigenvalues ordered in nonincreasing order. (All vectors in
this paper are assumed to be column vectors unless stated otherwise.) For
any vector z in R”, Diag = will denote the diagonal matrix with the vector =
on the main diagonal, and = will denote the vector with the same entries as
x ordered in nonincreasing order, that is z; > x5 > --- > x,. Let R denote
the convex cone of all vectors z in R™ such that z; > zo > --+- > z,. The
following definition explains the property that interests us in this paper.

Definition 2.1 We say that a function f : R™ — R has a weak quadratic
expansion at the point x if there exists a vector V f(x) and a symmetric
matriz V2 f(x) such that for small h € R"

Flo 4 B) = F(2) 4 F),B) + 50 T2 A @) + of [4]7),

and a strong quadratic expansion at the point x if

1
fla+h) = f@) +{V (@), ) + 5 (0 V2 f(2)h) + ORI,
The vector h is called a perturbation vector.

A few comments on this definition are necessary. Clearly having strong
quadratic expansion implies the weak quadratic expansion. We want to alert
the reader that a function may not be twice differentiable at the point = but
still possesses a strong quadratic expansion at that point. (See the example
at the end of the Introduction.) It is clear that if the function has quadratic
expansion at the point x then it is differentiable at = and its gradient is the
vector V f(a) from the above definition. If the function has weak quadratic
expansion, then there is a unique vector Vf(z) and a unique symmetric
matrix V?f(z) (Hessian) for which the expansion holds. There is a slight



abuse of notation when we call V2f(z) the Hessian of f, but no danger of
confusion exists because when f is in C? around z the symmetric matrix
V2f(z) is exactly the Hessian. Finally, another way to write the quadratic
expansion of a function f, consistent with [11], is

(1) fla+h) = f) + VA + 5V (@)K + O(A])

We give some less common notation which will be used throughout the
paper. It is taken directly from [18]. We are interested in quadratic expan-
sions of matrix functions f o A around a matrix A. (In all of our preliminary
results the matrix A will be a diagonal matrix, Diagp.) Let H € S™ be the
perturbation matrix. Fix a number m € N, 1 < m < n and let the “block
structure” of the vector A(A) be given by

MA) = =M (A) > > A (A) = = An(A) = - = Ay (A)
> A (A), (ko =0, k =n).
That is, the eigenvalue A, (A) lies in the I’th block of equal eigenvalues. Let
X = [2',...,2"] be an orthogonal matrix such that X7 AX = Diag A\(4) (so
z' is a unit eigenvector corresponding to \;(A)) and let
X; = [ah=+t M),
Let U; = [v!,...,oM F-1] be a (k; — ki_y ) x (k; — k_y ) orthogonal matrix such
that
UNX]THX)U, = Diag \(X] HX)).
Set Hy := X HX;, 1 <1< r, and suppose
MH) ==Xy (H) > 0> Ny (H) = A (L) -+
= Ny (Hi) > - Ny, (Hi), (o =1ty = ko — iy )

Finally let
iy = [+, o],

We should point out that X; = X;(A,m), and U;; = U ;(A, H, X, m) but
from now on we will write only X; and Uj ; to simplify the notation.

By A" we denote the Moore-Penrose generalized inverse of the matrix A.
For more information on the topic see [15, p.102]. But for our needs, because
we will be working only with symmetric matrices, the concept can be quickly
explained. First, (Diag :1;)3] is equal to 1/z; if i = 7 and z; # 0, and is 0
otherwise. Second, for any orthogonal matrix U, that diagonalizes A, we

have A" = (UDiag A(A)UT)! := U(Diag \(A4))TUT.
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3 Supporting results
Let A be in S™ and its eigenvalues have the following block structure
MA) == A (A) > M i (A) = - = Ay (A) > Ay ga (A) -+ A (A),

where k, = n. All our results rest on the fact that for every block [ = 1,...,r,
the following two functions have quadratic expansion at A

o () = Z Ai(r)

Si() = Z A ()

i=kj_1+1

We are going to give three justifications of this fact and two of them will show
that these functions are even analytic at A. For every index m = 1,...,n and
every block [ = 1,...,r define the functions

=1
ky

si(x) = Z :Z'lz

i=kj_1+1

The function f,, is the sum of the m largest entries in . The functions f,,
and s;(x) are symmetric. (A function f is symmetricif f(x) = f(Px) for any
permutation matrix P. We denote the set of all n X n permutation matrices
with P(n).) It is clear that if the point x is such that &, > Z,,41 then f,, is
linear near . In particular, for points  near A(A) the functions fi, () and
s1(x) are both polynomials in the entries of . Notice also that

ok (+) = (fr 0 A)(-)
Si(-) = (510 A)(-)-

The first justification comes from the following result in [10, Theorem 3.3].

Theorem 3.1 The symmetric function f : R™ — R is twice differentiable at
the point N(A) if and only if f o X is twice differentiable at the point A. M
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The second justification is from [19, Theorem 2.1].

Theorem 3.2 Suppose f:R" — R is a function analytic at the point A(A)
for some A in S™. Let also f(Px) = f(x) for every permutation matriz, P,

for which PA(A) = A(A). Then the function fo X is analytic at A. [ |

For the third justification we use the standard algebraic fact that every sym-
metric polynomial in several variables can be written as a polynomial in the
elementary symmetric functions. We also use the following result [2]. Until
the end of this section only, A;(X) will denote an arbitrary eigenvalue of a
matrix X, not necessarily the ¢’th largest one.

Theorem 3.3 (Arnold 1971) Suppose that A € C'™*" has q eigenvalues
AM(A), oy A(A) (counting multiplicities) in an open set Q@ C C, and the rest
n — q eigenvalues not in Q. Then for all matrices X in a neighbourhood
of A there are holomorphic mappings S : C*" — C¥* gnd T : C*" —
Cln=0x(n=4) sych, that

L S(X) 0
X is similar to ( 0 T(X) ),

and S(A) has eigenvalues A (A), ..., \(A). [ |

Using Arnold’s theorem we can prove that in fact the functions oy, and S
are holomorphic around A.

Theorem 3.4 For every symmetric polynomial p : C! w— C, the function
(po M) (S(X)) is holomorphic around A.

Proof. It suffices to prove the theorem in the case of an elementary
symmetric polynomial. By continuity of the eigenvalues, for every: =1,...,n
we can define functions A; : C"*" — C such that for matrices X near A,
{Ni(X)}, are the eigenvalues of X, {);(X)}L_, are the eigenvalues of S(X).
So the elementary symmetric functions of Aq(X), ..., Ay(X) are the coefficients
of the characteristic polynomial det (A — S(X)). Consequently they are
holomorphic around A. [ |



4 Quadratic expansion of spectral functions
Our goal in this section is to prove the main result of the paper.

Theorem 4.1 (Quadratic Expansion) The symmetric function f : R" —
R has a strong quadratic expansion at the point x = AY) (Y € S") if and
only if f o X has a strong quadratic expansion at'Y, with

V(feM(Y)[H] = tr(HDiagV f(u))

Vz(fo MY)[H, H] = Z inp ;;(M)iqu +
pyg=1
- Folw) = fo(w) -
D oyt >, e,
p£q Pyq:tpFhiq Hp = Ha
Hp=Hq
Where
p=AY)
H=UTHU
Y = U(Diag u)U"
b — as defined in Lemma 4.8.
The same statement holds for the weak quadratic expansion. [ |

We will only talk about strong quadratic expansions in this paper: the
development for the weak version is analogous. We need the following result

from [18, Remark 6].

Lemma 4.2 Fvery eigenvalue, A\ (Y'), of a symmetric matriz, Y, has the
following expansion in the direction of the symmetric matriz H:

A (Y +tH) = X (V) + A, (X HX)
(2)
t2
t 5 Akt QUK HQW (V)T = Y)THX,UL;) + O(F),

where the meaning of X; and Uy ; is explained in the previous section. |



Definition 4.3 (Lewis, [9]) We say that vector u € R™ block refines the
vector b € R™ if pu; = u; tmplies b; = b; for all 1,7 € {1,....,n}. Equivalently

Pu=u = Pb=>b forall P€ P(n).

Next we give a technical lemma that will allow us to cut on the notation
and skipped computations.

Lemma 4.4 Let p € R" be such that

Ml:...:[ukl >/’Lk1+1::/’Lk2>/’Lk2+1Mk‘r7 (ko:o, kT:n)7

and let vector b € R"™ be block refined by . Let H € S™ be an arbitrary matriz
and X;[eFi—1F1 . ek for every i = 1,...,r. Then we have the identities:

r b b
H, Zbki(/«‘ki—f — Diag /,L)THXin.T> - Z q h2

i=1 p7q'up>uq Hp = Ha
l n
H,> by (] — Diagp) HX; XT) = Z Z
=1
Mq#ﬂp

(H, by, (px, I — Diag ) HX, X[[) = Z Z

p=ki_1+1 q¢=1
Mq#ﬂp

Proof. The product X; X is an n x n matrix with zero entries, except
(X X[)ypP =1 for p = k;j_y +1,.... k. That is why the columns of HX; X/

are zero vectors, except the columns with indexes p = k;_y + 1, ..., k; which

are equal to the corresponding columns of H. The matrix by, (px, I — Diag u1)f
is equal to

by, by, by, by,
Diag( M M 0,...,0, G )
e SR U Fhi = Bkt Pk = Hks

Consequently we have

%
ko

r n b '
H,> by, (ju, I-Diag ) HX; X[ = > —p2

=1 =1 p=k;_1+1



I I
= =
M= [
N N
| |
N =
b
>
S gbw
_|_
= 51
(=
T lF
>
S =
~—— 8"
N

D =

D> Hq Hp = Ha

The other two identities can now be easily obtained as well. [ |

Our first goal is to find a formula for the Hessian of oy, 1 < [ < r.
We denote the standard basis in R” by e',e?,....e". As a byproduct in the
following lemma we derive a formula for the derivative of the function oy,
at the point Diag . This formula appeared many times in the literature:
see for example Corollary 3.10 in [5], or the proof of Corollary 3.3 in [8], or
formula (3.28) in [12].

Lemma 4.5 For a real vector ;1 € R", such that

H1 = = gy > P41 = 0 = kg > Mko41 0 ks (ko:ov kT:n)v

the function
ky
o ()= Nl
=1

s analytic at the matriz Diag p with first and second derivatives satisfying

ky
Vo, (Diagu)[H] = tr (H Diag ) e’)

kl n 2

h
Vo (Diag ), H] = 23 3 o
p=1 g=k;+1 ILLp Mq

!
= tr <2H Z(,,Lkif — Diag M)*HX,»X?),

=1

where X; = [eki-1H1 . ek,
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Proof. The fact that oy, is analytic at the point Diagp follows from
Section 3. Next, summing equations (2) with A = Diagpu, for m = 1,....k
and using the fact that X = I (so X; = [eki-1+1 . ¢k]), we get

k; l
o (Diagy +tH) =Y X(Diagu +tH) = oy, (Diagp) +t »_ tr (X[ HX;)
=1

=1

s; tig—tij—1

2 .
+5 Z Z Z X (UL XTH (I — Diag ) ' HX;Us ;) + O(#?)
i=1 j=1

ky
= O'kl(DiELg M) + t<D1ag Z €i7 H>

=1

S

2 _
+5 SNt (U XT H(pui, I — Diag ) HX,Us ;) + O(£).
=1 j7=1
We concentrate on the double sum above.

ZZtr 2UTXT /,LkiI—DiagM)THXzUz,j) =

=1 j7=1

! 5i
=3 Y tr (2X] H(u, I — Diag u)t HX;U; ;UT)

=1 j7=1
l 5
=1 J=1

l
=" tr (2X7 H (i, I — Diag ) HX;)

=1

<2H Z pir, I — Diag p)  HX; XT>

=1




The next to the last equality follows from Lemma 4.4, with b = (2,...,2),
while the last equality after canceling all terms with opposite signs. By
the uniqueness of the Hessian in the quadratic expansion of a function, we
conclude that the last expression above must be indeed the Hessian. [ |

Note 4.6 Notice that the Hessian above is positive definite quadratic form.
This is not a surprise since a well known result of Fan [/] says that o, 1s a
convex function for all m =1,...,n.

Lemma 4.7 For a real vector ;1 € R", such that

Hi = = [y > P41 = 0 = fky > Mgt " Mk, (kO:]-v kr :n)v
the function
ky
Si(+) = Z M)
m=k;_; +1

s analytic with first and second derivatives at the matriz Diag u, satisfying

ky
V Si(Diag p)[H] = 2pup, tr (H Diag » e’)

i=kj_1+1
kl kl n
VESiDiag[HH =2 37 h,+4 30 3 i,
pya=ki_1+1 p=ki_1+1 q¢=1 Fp Ha
HpFiig
= <H7 2*Xl*XITI_I*Xl*XIT +4/’Lkl (/’Lkl‘[_ DlagM)THXlXIT%

where X; = [efi-1+1 | ek,

9

Proof. The analyticity of S(-) at the point Diag u follows from Section 3.
Next, summing the squares of equations (2) with A = Diag u, form = 1,..., k
and using the fact that X = I (so X; = [eki-1+1 . ¢k]), we get

kl kl

Y A(Diagp+tH)= > (/«Lkl + A, (X HX))
m=k;_1+1 m=k;_1+1
£ 2
+ 3 Amki 50 20" X" H(px, I — Diag ) HX,Uy ;) + O(t3)>
ky
= (ki — kl—l)/l]zw + ¢ Z Afn_kl_l (XITHXI)
m=k;_1 +1

11



ky
2t > Amek, (XTHX))

m=k;_; +1

s trj—tij—1

P Y Y MU H(u, I — Diag p) HX,Uyy) + O(F).
7=1 =1
We recall the fact that for every symmetric n X n matrix () we have

Y NQ) =(Q.Q).
=1
We use this fact to evaluate the second summand in the formula above.

ky
Z Mo (XTHX)) = (XHX,, X HX)) = (H, X, X HX; X]").

m=k;_; +1
Observe as in Lemma 4.5 that for the fourth summand in the formula above
we have

s trj—tij—1

> Y NQULXTH(u, I - Diagp)' HXU,))

7=1 v=1

51
= tr UL X] H(ux, I — Diag ) HX, Uy ;)

=1

= tr (2X;" H(puy, I — Diag ) HX;).

Substituting everything in the original formula we get

ky

> AL(Diagu +tH) = (ky — ki )i, + (H, X XU HX,X]) +

m=k;_; +1

ky
2 (Ding Y €', H) + 2 (H, 2, T — Diag p) ' HX, X[') + O(#)
i=kj_1+1
ky
= (ki — ki )f, + 2t (Diag Y €', H) +
i=kj_1+1

2

t .
S (H, 2X, X[ HX, X[ + 4, (pr, I — Diag )T HX X[ + O(#2).

12



Using the third identity in Lemma 4.4, with b = 4u, we conclude that

kl kl n
VEIS(Diagp)[H H =2 Y 2,44 Y N g2
pg=ki_1+1 p=ki_1+1 q¢=1 Fp Ha

upFitg

By the uniqueness of the Hessian in the quadratic expansion of a function,
we conclude that the last expression above must be indeed the Hessian. W

Lemma 4.8 Let f : R" — R be a symmetric function having quadratic
expansion at the point y € R7, where

P = ey > ke = = [y > g s (ko =1, kr = n).

Then we can write

an By + by, Iy a2 By e av, By
sz(u) _ ag1 By agaFoy + b, Iy - agr By
ar1 Erl ar2Er2 e arrRrr —I' bkr -[r

where each Ey, is a matriz of all ones with dimensions (ky, — ky—1) X (ky, —
koo1), (aij)i%izy s a real symmetric matriz, b := (bi,....b,) is a real vector
which 1s block refined by p, and I, is a square identity matriz of the same
dimensions as E,. We also define the following matriz
A= V?f(p) — Diag (b, L1, oo by, 1) = (i3 Eij )i oy
Before we give the proof, some comments about the above representation
are necessary.

(i) We make the convention that if the i-th diagonal block in the above rep-
resentation has dimensions 1 x 1 then we set a;; = 0 and b, = f,;/lkl(/,c)
Otherwise the value of by, is uniquely determined as the difference be-
tween a diagonal and an off-diagonal element of this block.

(ii) Note that the matrix A as well as the vector b depend on the point
around which we form the quadratic expansion (in this case p) and on
the function f.

13



Proof. We have

Fluth) = f(p) + (V) h) + %Ut, VEf()h) + O([|R]1%).

Let P be a permutation matrix such that Py = y. Then
PP+ 1) = F(u) + (V£ (). PB) + 5P,V f(1)Ph) + O(| P
= $0) + (PTVF(0). 1) + 2(h, (P72 F()P)h) + O(|h]).

Using the fact that f is symmetric gives us that f(P(u+h)) = f(u + h) so
Vf(u) = PTV f(u). Subtracting the above two equalities we obtain

(3) Vif(u) = PPV?f(u)P, VP € P(n)s.t. Pu=p.

The claimed block structure of V2f(y) is now easy to check. |
Note 4.9 Observe that equation (3) holds for arbitrary u € R".

Lemma 4.10 Vector u block refines V2 f(u)p.

Proof. Suppose Py = pu. Then using twice Equation (3) and the above
note, we get

PV f(p)u = V2 f(p)Pp = P(PTV?f(u)P)u = V2 f(u)p. u
Lemma 4.11 Let i € R} be such that

P = = k> g = = iy > gt ik, (Fo =0, ke =),

Suppose (1 block-refines a vector b € R"™. Then b" X has the quadratic expan-
son:

b, —b
b'A(Diagp + H) =b"pu + (Diagh, Hy + > —L2—Lh2 .
pairgong 1P T Ha
Proof.  Because the vector p block-refines the vector b there exist reals

BB b with

b; = b whenever k; _y +1 <7<k, 1=1,2,...,m.

14



We obtain

-y S 0= Sl - )
=1 7=k;i—_14+1 i=1
Now applying Lemma 4.5 gives

b'A(Diagp + H) = bl(o(Diagp + H) — ox,_, (Diag pn + H))

=1

r k; k; l
= Zbi'(Z/«Lj + (Diag > ¢/, H) + (H,> (I — Diag u)' HX,X])
=1 = 7=1 =1

_ -1

SN - Dlagz I H) — (LY (T = Dig 0 HXXE) ) +O(| )
_7’ k; k; =

:Zbi( Z ; + (Diag Z e’ H)

=1

g=ki—1+1 g=ki—1+1

T (H, (g Diagm*ﬂxlxﬂ) Lo HI)

— "y + (Diag b, H) +(H. 3 by, (u, I — Diag ) HX,XT) + O(| H)

=1
b, —b
=b"p+ (Diagh, H) + > —2—Th2.
v P T Ha
The last equality above follows from Lemma 4.4. [ |

Lemma 4.12 Let f : R" — R be a symmetric function having quadratic
expansion at the point y € R7, where

i1 = = [y > kgt = = [y > fhggt o fke (Fo =0, ke =n).
Then the following matriz functions on S™,
(i) F(-):= V() A(),
(ii) H(-):==u"V2f()A(-),
(iii) G(-) = M)TV2F()A(),

15



have quadratic expansions at the matriz Diag .

Proof. Later we will need the formulae giving the quadratic expansions of
these functions derived in the following proof. Notice that the first two parts
follow immediately from the previous two lemmas. So we can write

FDiag + H) ~ V10w + (Diag VS0, 1)+ > DD
P tp>Hg P 4
H(Diag pu+ H) ~ p" V*f(u)pe + (Diag sz( )i >
T 2 Tx72
4 Z Vif );p /(Z Vv f(/«b))qth‘

Pyqittp> g

(iii) Because of the block structure of V2f(u) described in Lemma 4.8,
we have

T

ATV ()A() = Z aij(or (") = ony () (o (1) — o, ()
+ ibkﬁl('),

where the matrix (a;;)7 ,_;, vector b, and Sy(-) are defined in Lemma 4.8 and
Lemma 4.7. Now by Lemma 4.5

kl kl
o (Diagp+ H) — oy, (Diagu+ H) = > i+ (Diag > €' H)
i=kj_1+1 i=k;_1+1
1 .
+ §<H72(Mklf — Diag )' HX, X[") + O(|| H|*)

Z i + Z hii + Z e I — Dlag/,L)THG( ) >+O(||H||3)

i=kj_1+1 i=k;_1+1 i=k;_1+1

We can evaluate the first summand in the above representation of the function

G(-).

Y aij(on(Diagu + H) — on,_, (Diag u + H))

1,5=1

16



X (on, (Diag s + H) — o1,_, (Diag s + H)
= T Ap + (diag H)" A(diag H) + 2" A(diag H)
+2(H, Y uiAY(u;] = Diag p) Hel (/) ") + O(|| H|°)

7,7=1
= u" Ap + 2(Diag Ay, H) + (H, Diag A(diag H))
+2(H, > pi AV (I — Diagp)t Hel(e)T) + O(|| HP),
7,7=1
where diag: S™ — R" defined by diag (H) = (h11,..., hnn) is the conjugate
operator of Diag: R” — S™. On the other hand Lemma 4.7 gives us:

ky

> by, Si(Diagp + H) =) by, ((kl — kioOpi, +2u (Diag - > ¢ H)

=1 =1 i=kj_1+1

T (H, XiX] HXXT + 240 (o I — Ding ) HX,X[') ) L o(lHIP)

— 17 (Diag byt + 2(Diag (Ib), H) + (H, 3 by X, XT HX, X[)

=1

F(H.2 S (16 (il — Diag ) He ()T + O(| HP).

7,7=1
Adding these two formulae together we finally get:
MDiag p+ H)'V? f(1)M(Diag p + H) = " V2 f(u)pe + 2(Diag V2 f (), H)

+ (H,Diag A(diag H)) + (H,> b, X, X HX,X]")

=1

+(H,2Y (1" F(w)) (11 — Diag ) He' (e)") + O(|| H|J*)

=1

= u" V2 f()p + 2(Diag V7 f (), H) + (H, Diag A(diag H))

r T2 T2
Y b XNXTENXT 12 Y vf(’“‘);p_/(j‘ VI ey

I=1 Pyqitp> g

In the last equality we used Lemma 4.10 and Lemma 4.4. |
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Now we are ready to prove a preliminary case of Theorem 4.1, namely,
that it holds at X = Diagu, (1 € R}) and to give a formula for the Hessian
of fo\ at that point. The results for the gradient of fo A that we will obtain

along the way were first obtained in [9].

Theorem 4.13 Let f : R" — R be a symmetric function having quadratic
ezpansion at the point pn € R, where

1= =y > k= = ey > kg ik, (Ko =0, k=),
Then f o A has quadratic expansion at the point Diag y, with

V(f o X)(Diag )] = tx (HDing T f 1)

v (fo )\)(Dlaglu H H Z hpp pq

p,q=1
— fali)
+ Z byh2, Z —, R
M;fi(lzlq Pq:ppFilg I

(With vector b defined by Lemma 4.8.)

Note 4.14 Corollary 4.15 will show that the requirement that € R can be
omitted. For a matriz representation of the above formula combine equation
(4) below, and the first identity in Lemma 4.4.

Proof. We are given that

f@) = flp) + V) (@ —p)+ %(l‘ — )"V () (x — p) + Ol — ),
so after letting = = A(Diag i + H) and using the fact that
A(Diag u + H) = MDiag 1) + O(|| H|)
we get
(f o A)(Diagp+ H) = f(p) + V f(1)" M(Diag pu + H) =V f(u)"
+ 5\ (Ding jp + H)TV2 ()M (Ding o+ H) — "2 (1) (Diag o + H)
ST F o+ O HI).

18



Substituting the three expressions in the proof of Lemma 4.12 we obtain
(foX)(Diagu+ H) = (f o A)(Diag p) + (Diag V f (), H)

1 : : -
(4) + 5 (H. Diag A(diag H) + > b XX HXX])

=1

vy B o)

Pyqittp> g
Recall that X; = [eM-1F1, ... ¢¥]. In order to obtain the representation given
in the theorem one has to use the definition of A and b = (b4, ..., b,) given in
Lemma 4.8 and the note that follows it. [ |

Proof of Theorem 4.1. Suppose f has quadratic expansion at the
point A(Y), and choose any orthogonal matrix U = [u'...u"] that gives
the ordered spectral decomposition of ¥V, V = U(Diag )\(Y))UT. Here we
actually have A = A(AN(Y)) and b; = b;(A(Y)). While in formula (4) we had
A = A(p) and b; = b;(i), to make the formulae here easier to read we will
write again simply A and b;. Then we have, using Formula (4) and some

easy manipulations,

(f o MY +H) = (f o) (Diag \(Y) 4+ UTHU)

= (f o M)(Y) + (Diag VF(A(Y)),UT HU)
+ %(UTHU, Diag A(diag U" HU) + Y b X, X/ UTHUX, X]")
=1
'ONY)) — fINY
£ Y BT o)
Ap(Y)>Aq(Y)
where X; = [eki-1+1 | k], |

Corollary 4.15 Theorem 4.13 holds for arbitrary pn € R", where

(5) b(u) := Ph(j).

and P is a permutation matriz, such that PT = fi.
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Proof.  Pick a permutation matrix P such that PTy = i and let 7 be
the associated with it permutation, that is fi = (tir(1), .. ,/,L,T(n)), or in other
words Pe' = ™). We have that f has quadratic expansion at the point u,
that is

Fl+0) = Fl)+ (T 7). ) + 0, V2 F(u)B) + O(AIP).
Using the fact that f is symmetric we obtain
Fla+PTh) = f(PT(u+h)) = f(u+h)

= () +{Vf(p) h) + %<h,v2f<u>h> +O([[h]1)

= (1) +{PT F0), PThY + 5(PTh, PV (1) PPTR) + O(| PTHP).

So f has quadratic expansion at the point j1 as well, and we have the rela-
tionships:

V() =PIV f(u)

V2 f(ji) = PV ()P
We have Diagpu = P(Diagji)PT. Applying Theorem 4.1 with ¥ = Diagpu
and U = P, and using Equations (6) and (5) we get

(6)

V2(f o \)(Diag p)[H, H] = Z hua [)Pen(q)n(a)
p,q=1
) Foli) = folm) )
+ Z bp(lu) —I_ Z M ﬂ(p)ﬂ(q)
_p#q RBpFilq e
Hp=Hq
( )
= Z hop o (1) haq + Z by Z R
p,q=1 Mp Mq HpFliq

The invariance of the formula for the gradient is shown in a similar manner.
See also [9]. |
5 Strictly convex functions

As we mentioned in the introduction, a symmetric function f is convex if
and only if f o A is convex. The analogous result also holds for for essential
strict convexity [|. Here we study yet a stronger property.
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In this section we show that if a symmetric, convex function f has a
quadratic expansion at the point @ = A(Y) then the symmetric matrix
V2f(x) is positive definite, if and only if the same is true for the bilinear
operator V*(f o A)(Y).

Lemma 5.1 If a function f : R® — R s symmetric, strictly convez, and
differentiable at the point u

1= = > = = ey > k1 ks (ky = n).
then its gradient satisfies
Fo(w) = £3(1)
Hp — Hq

> 0 forall p, q such that p, # p,.

Proof. Because f is strictly convex and differentiable at i, for every € R”
(1 # @) we have that (see for example [13, Theorem 2.3.5])

(Vf(u),z—p) < flz) = fp).

Suppose p, # (- Let P be the permutation matrix that transposes p and ¢
only. Then we have

Fo) = Fol) iy = 1) = (N f(u), Pu— ) < f(Pp)— f(p)=0. W

Lemma 5.2 Let f : R" — R be a symmetric function having quadratic
expansion at p, where

1= = > = = ey > k1 ks (ky = n).
If the Hessian V2 f(u) is positive definite then vector b = (by,...,b,), defined

in Lemma 4.8, has strictly positive entries.

Proof. It is well known that every principal minor in a positive definite
matrix is positive definite. Fix an index 1 < <mn. If g;_y > p; > pt;41 then
from the representation of the matrix V?f(u) in Lemma 4.8 and the note
after it, it is clear that b; > 0. Suppose now that 7 is in a block of length at
least 2. Then some principal minor of V2f(u) of the form

a + b; a
a a + b;

is positive definite, and the result follows. [ |
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Theorem 5.3 Let f : R" — R be a symmetric, strictly conver function
having quadratic expansion at p

fr = = Uy > k1 == g > kgt [y (kr = n).

Then the symmetric matriz V?f(u) is positive definite if and only if the
bilinear operator V*(f o X)(Diag ) is positive definite.

Note 5.4 In fact by Alexandrov’s Theorem, if a function is convex it has
quadratic expansion at almost every point of its domain [1].

Proof. Suppose first that the symmetric matrix V2 f(u) is positive definite.
Take a symmetric matrix H # 0. Then we have

Z B Fog (1) haq > 0,

p,q=1

because V2 f(u) is positive definite,

2 ET: bkl Z h;q Z 07
=1

ki_1 <p<q<k;

follows from Lemma 5.2, and

2 Z flﬂp f;( )h2>0

Pyqiltp > g

which follows from Lemma 5.1. Now because H # 0 at least one of the above
inequalities will be strict.

In the other direction the argument is easy: take H = Diagz, for 0 #
z € R” in the formula for V2(f o \)(Diag yt) given in Theorem 4.13 to get
immediately z7V2f(u)z > 0. [ |

Theorem 5.5 If f : R" — R is a symmetric, strictly convex function having
quadratic expansion at the point Y, then V2 f(M(Y)) is positive definite if and
only if V*(f o A)(Y) is

Proof. The proof of this theorem is now clear since V?(foX)(Y') is positive
definite if and only if V*(f o X)(Diag A(Y)) is. [
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6 Examples

Example 6.1 Let g be a function on a scalar argument. Consider the fol-
lowing separable symmetric function with its corresponding spectral function:

1’1,..., Zg
= zjg(A v
i=1

Then if ¢ has quadratic expansion at the points x4, ..., z, so does f at @ =
(1, ..., ¥n) and we have

V)= (g'(x1), ... g (xn))T,
V?f(x) = Diag(¢"(21),....¢"(xn)),
b(x) = (g"(x1), . g (20)) "

Suppose g has quadratic expansion at each entry of the vector u € RY that
satisfies

fr = = Uy > k1 == g > kgt [y (kr = n).

Then Theorem 4.13 says that

V2(f o \)(Diag 1) [H, H] = Zg" w2+ 3 o

p#£q
Hp=Hq
gl(ﬁ‘p) _gl(ﬂq) 2
by dlosli,
P@HpFEliq P 1
_ Z 24 Z q Mp Mq)hz
Pyq:p=Fiq D@ lpFig Ha

Let us define the following notation consistent with [3, Section V.3]. For any
function h defined on a subset of R define

LOETETIN
e ) _{ (o), ifaig.
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If A is a diagonal matrix with diagonal entries ay,...,a,,, we denote by hl'(A)
the n x n symmetric matrix matrix whose (i, j)-entry is Al(ay, a;). I Y is
Hermitian and Y = U(Diag A(Y))UT, let Al(Y) = UL (Diag \(Y))UT.

Using this notation, for the function h = ¢’, we clearly have

V2(f o A)(Diag )| H, H] = (H, h"(Diag o) o H),

7
O s o \Y)IE, H] = (U HU. W (Ding NY)) 0 (U HD),
where Y = U(Diag \(Y))UT, and X oY = (2i9i5)7 j= is the Hermitian
product of matrices X and Y.

This result is not surprising. Let us extend the domain of the function
h to include a subset of the Hermitian matrices in the following way. If

A = Diag (ay, ..., ) is a diagonal matrix whose entries are in the domain of
h, we define h(A) = Diag (h(aq), ..., h(ay)). If'Y is a Hermitian matrix with
eigenvalues aq, ..., o, in the domain of h, we choose e unitary matrix U such

that Y = UAUT and define h(Y) = Uh(A)UT. In this way we can define
h(Y') for all Hermitian matrices with eigenvalues in the domain of h. Then
the formulae for the gradient in Theorem 4.1 says that for h = ¢’ we have

V(foA(Y) = h(Y).

That is why Equations (7) are just the formulas for the derivative VA given
in Theorem V.3.3 in [3].

Example 6.2 Now we specialize the above example even more. The follow-
ing spectral function finds a lot of applications in semidefinite programming.

Consider the symmetric and strictly convex function and its corresponding
spectral function:

fro Ry == loga;,
=1

foAd:AeS! — —InDet (A).

(Where S% denotes the set of all positive definite symmetric matrices.) Then
Theorem 4.13 says that for 4 € R} such that

P = ey > ke = [y > g [ (kr = n),
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we have

‘ n_p2 B2 B2
V(o N)(Diagp)[HH) =3 24 3 Lq H7 0
p=1 My p#q My P@HpFEliq HrHa
Hp=Hq
_ n,n h]zjq
Hplq

p,g=1,1

= tr ((Diag )" H(Diag u)~ " H).

The last equality may easily be verified. In general, for arbitrary symmetric
matrix A and an orthogonal matrix U such that UT AU = Diag A\(A), we get

V(f o A)(A)[H, H] = tr (A" HA"H).

This agrees with the previously known formula for the second derivative of
the function —In Det (A). (See for example [11, Proposition 5.4.5].) Moreover
the result in Section 5 tells us that

A >0 implies tr (AT'HA™'H) >0 forall 0# H € S",
this result can also be verified directly.

Example 6.3 Consider the following symmetric function and its correspond-
ing spectral function:

or(x) = pth largest element of {zy,zs...,2,},
A(A) = i th largest eigenvalue of A.

The function ¢g(x) is linear near every point = such that
Th—1 > Tk > The1,

since locally we have ¢p(x) = ,,, for the index m such that z,, is the kth
largest coordinate of z. In particular if z € R} then k = m. So

Vér(z) =™, Vi(z) =0, by, (z) = 0.
Then Theorem 4.13 says that for u € R such that
Hk—-1 > [k > Uk,
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we have

V2 (Diag 1) [ H, H] = V*(f o \)(Diag o) [ H, H]

:226 ! hig

Hk — Hq

g=1
q#k

= 2tr (") H(uy, — Diag p) He").

This agrees with the result in [6, p. 92].

7 The Eigenvalues of V?(f o \)

A natural question one may ask is: Is there any relationship between the
eigenvalues of V2f(A(Y")) and those of V2(f o M\)(Y)? This section shows
that in general such a relationship will be quite weak. Let Y be a symmetric
matrix such that

MY )= =2 (V) > > N (V) = = (V) = - = A (V)
> (Y), (ko =0, ky = n).

Using the representation given in Theorem 4.13 and Corollary 4.15 one can

see that the eigenvalues of V2(f o A)(Y) are
o (N(VEFAMY)))i=1,....n}.

e 20y, is an eigenvalue for every [ = 1, ..., with multiplicity (kj—ki—1 ) (ki —
kg —1)/2.

. 2f;il(>\(Y))—J‘;QS(>\(Y))
A (V) =2p, (V)
for every ordered pair (A, (Y), Ak, (Y)) such that A, (Y) > A, (V).

is an eigenvalue with multiplicity (k—ki—1)(ks—Fks—1)

So we can immediately conclude that

Amax (V2(F 0 M)(Y)) = Amax (V2F(A(Y)))

(8) Amin (VZF(A(Y))) = Amin (V2(f 0 A)(Y)).

We are going to show now that the above inequalities may be strict.
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Example 7.1 Consider the convex function

x? 4+ y2 n cos 2x + cos 2y

fla,y) = 1 2 ,

and the point
p=(2r, 7)€ RL

Then

_ sinos sin? ¢ 0
Vi(z,y)= (  sinzy ) , Vif(x,y) = ( 0 sin’y )

4

N N8

Using the representation in Theorem 4.13 we get

V2f(u) =0, V?*(foX)(Diagu)[H, H) = hi,,
hll h12
H= ( his ho ) :

Amax (V2(f o M) (Diag 1)) = 1 > Anax (V2 f(1)) = 0.

where

Then clearly

In order to demonstrate a strict inequality between the smallest eigenvalues
one needs to consider the function —f(x,y) at the same point .

Even though we may not have equalities in (8) at a particular matrix
Y, if we consider the eigenvalues of VZf(A(Y')) and V2(f o A)(Y) over a
symmetric, convex set we can see that they vary within the same boundaries.
More precisely we have the following theorem. To make its proof precise, we

need the main result from [10] saying that: A symmetric function f is C? if
and only if f o \ is.

Theorem 7.2 Let C be a conver and symmetric subset of R™, and let f :
C + R be symmetric, C* function. Then

(9) min Amin(Vf(y)) = yQin Amin(V(f 0 A)(Y)).
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Proof.
Amin(V2f(y)) > a, Vye O

& v (5= 51 ) =0 veC
@V2<<f—g|| : ||2> oA)(Y) ~0, VYV €C

@w(foA— 9. ||§)<Y> S0, WY e
E Anin(VE(fo N)(Y)) > a, VY € C. |

Remark 7.3 (i) The above proof stays the same if * >' and > are changed
to ¢ >' and > respectively.

(1t) If we multiply both sides of Equation (9) by —1 we will get

(V1) = | A AT © N)(Y)).

Acknowledgments. We thank John Borwein and Heinz Bauschke for
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