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Abstract

The geometric mean and the function (det(-))'/™ (on the m-by-m
positive definite matrices) are examples of “hyperbolic means”: func-
tions of the form p!'/™, where p is a hyperbolic polynomial of degree
m. (A homogeneous polynomial p is “hyperbolic” with respect to a
vector d if the polynomial ¢ — p(z 4 td) has only real roots for ev-
ery vector x.) Any hyperbolic mean is positively homogeneous and
concave (on a suitable domain): we present a self-concordant barrier
for its hypograph, with barrier parameter O(m?). Our approach is
direct, and shows, for example, that the function —mlog(det(:) — 1)
is an m?-self-concordant barrier on a natural domain. Such barriers
suggest novel interior point approaches to convex programs involving
hyperbolic means.

1 Introduction

1. Self-Concordant barriers. In 1988, Nesterov and Nemirovskii devel-
oped a general, polynomial time framework for convex programming prob-
lems, presented in their extensive monograph [9]. This framework for inte-
rior point methods relies on the notion of self-concordant barrier functions.
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These functions are special, convex penalty functions which intricately reg-
ulate their own behaviour and growth.

We begin by giving the definition of a self-concordant barrier function. Let E
be a finite-dimensional real vector space and () be an open nonempty convex
subset of E. A function F' : () — R is called a self-concordant barrier if it is
three times differentiable, convex and satisfies the conditions

(1) |D*F(x)[h,h, ]| < 2(D*F(x)h, h])*?,
(2) F(z") —» oo for any sequence " — x € 9Q), and
(3) [DF(x)[h]] < V4 (D*F(x)[h, )",

forall h € E, z € (). Here ¢ > 1 is a fixed constant depending on the func-
tion F only, and D*F(z)[h,....,h] = d" F(x+ th)‘ is the k-th directional

dt*
derivative at = along the direction h. The Constant_190is called the parameter
of the barrier function: smaller parameters ensure that the interior point
method using F' runs faster. For short we call F' a -self-concordant barrier.
If in addition cl@ is a cone and instead of conditions (1),(2), and (3) the
function F satisfies conditions (1),(2), and

(4) F(tx) = F(x) —dlog(t), for allz € Q, t >0,

we say F' is a ¥-normal barrier. In fact conditions (1),(2), and (4) imply
condition (3), see [9, Corollary 2.3.2].

Note 1.1 Observe that if F' is a J-self-concordant then kF is a kv-self-
concordant for any constant k& > 1.

One of the most important results in Nesterov and Nemirovskii [9] is that
a self-concordant barrier function exists for every open convex set (). They
construct such a function, called the universal barrier. The parameter ¢ in
their construction has magnitude O(dim E). Because 9 plays an important
role for the convergence speed of the underlying interior point method the
question of finding computable barrier functions with small parameters is of
fundamental interest.

A crucial example in contemporary optimization is the function — log det (-),

which is an n-self-concordant barrier for the cone of n X n symmetric positive
definite matrices, a set of dimension n(n 4+ 1)/2 (see [9]). In this work we
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show, for example, that —nlog(det (-) — 1) is a ‘shifted’ n?-self-concordant
barrier on a corresponding subset of the positive definite cone.

2. Hyperbolic Polynomials. Hyperbolic polynomials originate in the the-
ory of partial differential equations and are connected with the well-posedness
of the Cauchy problem. For more details about this theory we refer the reader
o [4], [6, §812.3-12.6], or for those only interested in a succinct exposition
of the main ideas, see [5]. There is recent interest within the optimization
community in hyperbolic polynomials because their roots exhibit some nice
convexity properties [3], and the polynomials themselves can be used to con-
struct self-concordant barriers with small parameters [5]. We now give the
necessary definitions for these polynomials.

A polynomial p on a finite-dimensional real vector space E is homogeneous
of degree m, if p(tx) = t"p(x), for all t € R and every € E. For such a
polynomial p and a direction d € E with p(d) # 0, we say that p is hyperbolic
with respect to d if the polynomial ¢ — p(a + td) (where ¢ is a scalar) has
only real zeros for every x € E. In this case for every € E, we can write
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where t;(x,d) = t;(x) are minus the roots of the polynomial ¢t — p(z + td).
Here are few examples of hyperbolic polynomials.

(a) £ =R". The polynomial

n

p(e) =[]

=1

is hyperbolic with respect to the direction d = (1,...,1).
(b) E = R". The polynomial
ple) =ai =) o
=2
is hyperbolic with respect to the direction d = (1,0, ...,0).
(c) E =S (the set of n x n symmetric matrices). The polynomial

p(X)=det X



is hyperbolic with respect to the direction d = I.

(d) E = M,, x R (where M, , is the space of p X ¢ real matrices, and we
assume ¢ < p). The polynomial

p(X,r) =det(XTX —r’I,) (X € My, r €R)
is hyperbolic with respect to the direction d = (0,1).

We can construct many new hyperbolic polynomials from old ones (see [5],
for example). For example if p is hyperbolic of degree m with respect to d

and we write it as
m

p(x +1d) = pi(e)t',
=0
then each p;(x) is hyperbolic of degree m — i with respect to d, see [2, p. 130].
Applying this to example (a) gives us that all elementary symmetric polyno-

mials
ek(g;) = Z Tjy Ty g,

1<) <in <<y <n
are hyperbolic of degree k (k < n) with respect to d = (1,...,1).

3. Hyperbolicity cone. With every hyperbolic polynomial there is an
associated open convex cone. Let p be a hyperbolic polynomial of degree m
with respect to the direction d. The hyperbolicity cone of p with respect to d,
written C(p,d), is the set {& € E : p(x +td) # 0, Vt > 0}. In other words

C(p,d)y={z € E:t;(x)>0,1<i<m}.

Since t;(rz) = rt;(x) for all real r > 0, it is easy to see that C(p,d) is
indeed an open cone (that is, closed under positive scalar multiplication)
with closure

cdC(p,d)={x € E:t;(x)>0,1<:<m}.

The fact that it is also convex is deeper and we refer the reader to [4, Sec-
tion 2] or to the more recent paper [5, Theorem 3.1]. Another important fact
that can be found there is that if ¢ € C(p,d) then p is also hyperbolic with
respect to ¢ and C(p,d) = C(p,c¢). From now on the hyperbolicity cone will
be denoted C(p). We now return to the examples in the previous subsection
and identify the hyperbolicity cone in each case.
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(a) The hyperbolicity cone is the interior of the positive orthant:

{r eR":2;,>0,1<:<n}.

(b) The hyperbolicity cone is the Lorenz cone:

{xER”:«/x%—I—---xfl<x1}

(c) The hyperbolicity cone is the cone, ST, of n X n symmetric positive
definite matrices.

(d) The hyperbolicity cone is the interior of the operator norm epigraph
{(X,T) € Mp7q XR: |0-1(X)| < r, 1 S i S Q}v

where o1(X), ..., 0,(X) are the singular values of the matrix X [3, Sec-
tion 7.3].

2 Main Result

We begin with a lemma.

Lemma 2.1 For any real numbers ¢4, ..., t,,, the following inequality holds:

The next theorem is our key result.

Theorem 2.2 Let p be a hyperbolic polynomial (homogeneous of degree m)
with hyperbolicity cone C(p). Let a > 0 be a real number and

Csa(p) = {2 € C(p) : p(z) > a}.

Then the function
f(z) = —mlog(p(z) — a)

is an m?—self-concordant barrier on the set Cs,(p).
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Proof. The case ¢ = 0 was proved in [5].

Step 0. For x € Cs,(p) and h € R", we can write

m

p(a + th) = #7p (h + %:1;) - tmp(x)ﬁ G + t,»(h,:z;)) = plo) [T (1 + 0.

=1

What is important is that the roots ¢; = ¢;(h, x) don’t depend on the variable
t. Differentiating both sides of the above representation we get the directional
derivative of p(x) in the direction of h, which is used below repeatedly:

m

d t;

— th) = th —.

P ) =l )3
Step 1. Observe that in the case a # 0 we only need to prove self-concordance
for a = 1, because we can make the linear substitution 2 = a'/™y to obtain

f(al/my) = —mlog(p(y) — 1) — mlog(a).

(See for example [9, p.148].)

We now compute the directional derivatives of f along the direction A, using
the representation from above

flz+th)=—mlog (p(:z;) H(l + tt;) — 1) )

=1

For short we introduce the notation

(5) Oé:p(l')— y Cl :it“ Cz :it?, C3Z§:t?,
=1 =1 =1

and observe that in our situation o > 0. Elementary calculation shows

D) = -0 e,
D* f(x)[h, h] = m(og; 1)012 L mlat 1)02, and
D (ol = et O 2 o Imlot D e, 2mlet L,



We want to prove that inequalities (1) and (3) hold for every A € R™ and
v € Cs1(p).

Step 2. We start with inequality (3), which in the new notation is

1/2
Sm(m(oz—l—l)clz_l_m(oz—|—1)02> ‘

a? «a

Ci

e+

«

m?2 (a+1)

e

After squaring both sides and dividing by we get

(a+1)

«

(8%

so we want to show 41
«a —m
aflome e,
«a

The Cauchy-Schwarz inequality gives us C? < mCy so since m > 1 we obtain

a-+1—

1_
ugf <m e, <m0y,

o o

as required.

Step 3. Now we turn our attention to inequality (1). With the new notation,
this is

1 2)C? 3 HC,Cy 2 1)

et D@20 3a+1GC, | 2at1)C

3 2

o o o

3/2
<2 (m(a+ 1)012 Lmlat 1)Cz> .

o’ o

3

We multiply both sides by m to get

3/2

‘(oz +2)C} + 3aC,Cy + 20z203‘ < 2v/m(a+1) (C} + aCs)

Since this inequality is homogeneous in the vector (t1,tq, ..., 1), we may as-
sume without loss of generality that C; = +1. We distinguish two cases.

Step 3.a. Suppose we have Cy = +1. The inequality becomes

‘2 + a4+ 3aC, + 20z203‘ <2vma+m (14 0402)3/2-



We now square both sides and expand:

4 4+ o +90°C7 + 40'C3 + 4a + 1200, + 8a°Cs + 60°Cy + 40°Cs +
1263C,C5 < 4ma + 12ma?Csy + 12m0z3022 + 4moz4C§ + 4m + 12maCy
+ 12m0z2022 + 4moz3C§.

Regrouping gives
0 < (4mC3 —4C3)a* + (4mC3 +12mC; — 4Cs — 12C,C3)a”

(6) 4+ (12mC3 + 12mCy — 60, — 8C5 — 9C5 — 1)a’
+ (12mCy +4m — 12Cy — 4)a + (4m — 4).

We show now that all the coefficients are positive. Using Lemma 2.1 and the
fact m > 1, Cy > % this becomes clear for the coefficients of a*, a and the
constant term. Further, for the coefficient of o® using Lemma 2.1 we have

AmC3 4+ 12mC2 — ACs — 12C,C5 > 4mC2 + 12mC2 — 4C3* — 12037
= O3 (4mC3* + 12mCY* — 4 — 120y).

Consider the polynomial q(s) := 4ms® — 12s* + 12ms — 4. TIts derivative
q'(s) = 12(ms* — 2s + m) is nonnegative, so ¢ is increasing. Using the fact
that —— < 021/2 we get

M
1 4./ 12 12my/ 4
Q(Cl/2)2q< >: m___l_ mym  4m

2

Vm m m m m
_ A 1) 4 8y = 1) (=)

which shows that the coefficient of o® is positive. For the coefficient of o?,
using Lemma 2.1, we have

12mC2 + 12mCy — 6C, — 8C5 — 907 — 1

> 12mC2 + 12mCy — 6C, — 8C5/* — 902 — 1

= 9(m —1)C2 + 6(m — 1)Cy + (mCs — 1) + Cy(3mCy — 8C'* + 5m).
The quadratic polynomial 3ms? —8s+5m is strictly positive in the case when

m > 2, and using the fact that Cy > % this implies that the coefficient is
positive. In the case when m = 1 we have C;, = 1 and one immediately sees
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that the coefficient of o? is actually zero. The fact that all coefficients of the
quadric polynomial on the right hand side of inequality (6) are positive im-
plies that the inequality holds for all & > 0, which is what we wanted to prove.

Step 3.b. Suppose on the other hand we have C; = —1. The inequality
becomes

‘(—2) —a—3aCy + 20z203‘ <2vma+m (14 ozCz)3/2.
Again we square both sides and expand to obtain

4 4+ o +90°C; + 40'C3 + 4a + 1200, — 8a*Cs + 6a°Cy — 40°Cs —
120°C,C5 < 4ma + 12ma’Csy + 12ma3022 + 4moz4C§ + 4m + 12maCy
+ 12m0z2022 + 4moz3C§.

Regrouping gives

0< (4mC§ — 4C§)0z4 + (4mC§ + 12m022 +4C5 + 120203)a3
+ (12mC3 + 12mCy — 6Cy + 8C5 — 9C5 — 1)a’
+ (12mCs 4+ 4m — 12C3 — 4)a + (4m — 4).

Now, if C3 > 0 then we can see analogously (even more simply than in Step
4.a) that all coeflicients of the quadric polynomial are positive. If C5 < 0

then we use Lemma 2.1 to obtain C5 > _C;a/z and again proceed as in Step
4a. N

3 Examples and Applications

3.1 Examples

Following our examples from section 1, we obtain the following applications
of the main result.

(a) For any natural number m the function

flz1, ., tm) = —mlog (H x; — 1)

=1



is an m?2-self-concordant barrier on the set
{xERm:Haji>1,xi>0,1§i§m}.
=1

In particular when m = 2 this result follows from Proposition 5.3.2 in

[9].

(b) The function
fla.y) = =2log(y* — ||=||* — 1)

is a 4-self-concordant barrier on the set
{.2) eRx Ry > V[alP +1}

This result can also be found in [9]. (See the paragraph following the
proof of Proposition 5.4.3 and make the linear substitution ¢ — z — 1,
y — z+ 1 in the function V.)

(¢) A more interesting example is the function
f(X)=—mlog(det X — 1),
which is an m?-self-concordant barrier on the set
{X e ST, rdetX > 1}
(d) The function
f(X,r) = —2¢log(det (XTX —r2I,) — 1)
is a (2¢)*self-concordant barrier on the set
{(X,r) € M,y x R:det (XTX —r2I,) > 1}.

3.2 Application: hyperbolic means

A hyperbolic mean is a function of the form p(x)'/™, where p is a hyperbolic
polynomial of degree m, and the domain is the hyperbolicity cone C(p).
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Hyperbolic means are positively homogeneous and concave [5, Lemma 3.1].
Examples include the geometric mean ([]i, z;)"/™, and the function

X € 87, s (det X)'/m.

A natural approach to applying interior point methods to convex programs
involving hyperbolic means is to use a self-concordant barrier for the hypo-
graph of the mean, the convex cone

H(p)={(z,t) eR"xR:2 € C(p), 0 <t™ < p(x)}.
The following result provides such a barrier.

Theorem 3.1 For a suitable positive real u (for example g = 400), if p is a
hyperbolic polynomial of degree m then

(o11) = =y (1og (B 1) + 2101

tm
is a 2um?-normal barrier for the hypograph, H(p), of the hyperbolic mean.

Proof. Apply Proposition 5.1.4 in [9] to Theorem 2.2. N
As a simple-minded illustration, suppose we want to solve the problem

sup  p(a)m + (c,z)
st. Ax =050
x € C(p),

for some linear map A and given b and c¢. Rewrite this problem in the
equivalent form

sup t+ {c,x)
st t < p(x)m
Az =b
z € C(p),

and finally into the form



where ¢ := (¢,1), ¥ := (x,t), A(x,t) := Ax. We have an easily computable
self-concordant (logarithmically homogeneous) barrier for the cone H(p), so
we can design an interior point algorithm to solve this hyperbolic mean max-
imization problem. Using this result we can as well easily model convex
programs with constraints involving hyperbolic means, since x € C(p) satis-
fies an inequality of the form

<C,$> - p(x)l/m <b
if and only if there exists positive real ¢ satisfying
(c,x)y —t < b, t" < p(x).

In [9, p.239], Nesterov and Nemirovskii show how to model convex programs
involving the geometric mean or (det (-))'/™ by semidefinite programming.
It is interesting to compare their approach to this idea. Their approach
involves additional variables (O(m?) variables to model det (-)'/™, for exam-
ple), whereas this idea is direct and applies to any hyperbolic mean. On the
other hand, extremely efficient algorithms are now available for semidefinite
programming (see for example [1], [10]).

4 Relationship with Giler’s result

As we mentioned above, in [5] Giiler proved that —log(g(z)) is an n-self-
concordant barrier on C(¢q) for any hyperbolic polynomial ¢ of degree n.
(Giiler attributes the observation to Renegar.) In this concluding section we
want to show that our result cannot be deduced as an elementary consequence
of this fact. In other words we want to show that we cannot take a self-
concordant barrier of the above type, restrict it to an affine subspace and
obtain the self-concordance of —mlog(p(z) — 1).

Consider the following special case of Theorem 2.2:

—310g(:1;3 — 1) is self-concordant on (1, 400).

To deduce this from [5] we would need a hyperbolic polynomial ¢ with respect
to d with hyperbolicity cone C(¢q) and vectors a and b such that

(#* —1)® = g(a + zb), for all z € R, and
l<zeRe a+abe C(g).
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When = = 0 we immediately get ¢(a) = —1. We can also conclude that
b e clC(q) - a closed convex cone. Since d € C(q), an open convex cone, we
have for all small enough real € > 0, that b+ ed € C(q), so the polynomial
q is hyperbolic with respect to b 4 ed as well. That is, for all small enough
€ > 0 the polynomial (in x) ¢(a + 2(b + ed)) has only real, nonzero roots.
Clearly if g(a + zb) = (2® — 1)® then n > 9. We divide both sides of this
equality by 2", and setting ¢ := 1/z obtain

qlat +b) = "7 — 3776 £ 3" — 4" = "7 (1 — #7)3.

Using the fact that g(a + 2(b+ ed)) has nonzero roots and applying the same
substitution as above we get that the polynomial (in t) ¢ — ¢(at + b + ed)
has only real roots. Now, for € close to zero, the degree of the polynomial
g(at + b+ ed) is constant, and so its roots approach the roots of ¢(at + b) as
e approaches zero. This is a contradiction with the fact that g(at + b) has a
complex root.

5 An alternative approach

Our approach here originated with [7]. A subsequent approach, due to [§],
uses more powerful theory to obtain a broader version of Theorem 2.2. Here
we describe briefly the details. Let ) be a open, pointed, convex cone and
let the function F : @ — R satisfy conditions (1), (2), and (3). We need the
following definition [9, Definition 5.1.2].

Definition 5.1 Let 8 be a nonnegative real. A function A: Q) — R is called
B-compatible with the barrier F if

(i) Ais C*smooth on Q.
(i1) A is concave with respect to cl Q.

(i) For all € @, h € E, we have

D3 A(z)[h, h,h] < —33D* A(x)[h, h]/D?F(x)[h, h].

We also need the following result, a special case of [9, Proposition 5.1.7].
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Theorem 5.2 Assume A is S-compatible with F', with 8 > 1. Then the
function

U(z) = B*{—log(1 + A(x)) + F(x)}
is a 3%(J + 1)-self-concordant barrier on the domain {z € Q|A(z) > —1}.

A calculation shows that A(z) := —ef®) is a /) + 20-compatible with F,
so setting # = v/ + 20 we have that

U(x) = —(VJ +20) log(e_F(x) - 1),

is a (9 +20)(¥ + 1)-self-concordant barrier on the domain {z € Q|F(x) < 0}.
When p is a hyperbolic polynomial of degree m and F(z) = —log(p(x)) we
have J = m and the above result follows from Theorem 2.2 using Note 1.1
with k& = (J 4+ 20)/9. (In fact Theorem 2.2 does a bit better.) We conclude
with the equivalent of Theorem 3.1.

Theorem 5.3 For a suitable positive real p (for example p = 400), if
—log H(x) is a ¥-normal barrier on @ then

(2,1) 5 —2(d + 20) <10g (Ht(f) - 1) +2(0 + 1)10g(t)> :

is a 242 (9 +20)(J +1)-normal barrier on the domain {(:L', )]0 < 0 < H(:z;)} )

Proof. Notice first that H(tz) = t’H(x) for all + € Q, * > 0. Then let
F(z) := —log H(x) in the above paragraph and apply Proposition 5.1.4 in
[9] to the function ¥(z). W
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