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Abstract

A function F on the space of n-by-n real symmetric matrices is
called spectral if it depends only on the eigenvalues of its argument.
Spectral functions are just symmetric functions of the eigenvalues. We
show that a spectral function is twice (continuously) differentiable at
a matrix if and only if the corresponding symmetric function is twice
(continuously) differentiable at the vector of eigenvalues. We give a
concise and usable formula for the Hessian.
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1 Introduction

In this paper we are interested in functions F of a symmetric matrix argument
that are invariant under orthogonal similarity transformations:

F (UT AU) = F (A), for all orthogonal U and symmetric A .
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Every such function can be decomposed as F (A) = (f ◦λ)(A), where λ is the
map that gives the eigenvalues of the matrix A and f is a symmetric function.
(See the next section for more details). We call such functions F spectral
functions (or just functions of eigenvalues) because de facto they depend
only on the spectrum of the operator A. Classical interest in such functions
arose from their important role in quantum mechanics [5], [13]. Nowadays
they are an inseparable part of optimization [9], and matrix analysis [2, 3]. In
modern optimization the key example is “semidefinite programming”, where
one often encounters problems involving spectral functions like log det(A),
the largest eigenvalue of A, or the constraint that A must be positive definite.

It turns out that many properties of the spectral function F stem from
the same properties of the underlying symmetric function f . Among them
are first-order differentiability [7], convexity [6], generalized first-order differ-
entiability [7, 8], analyticity [17], and various second-order properties [16],
[15], [14]. It is also worth mentioning the “Chevalley Restriction Theorem”,
which in this context identifies spectral functions that are polynomials with
symmetric polynomials of the eigenvalues. Second-order properties of ma-
trix functions are of great interest for optimization because the application
of Newton’s method, interior point methods [11], or second-order nonsmooth
optimality conditions [12] requires that we know the second-order behaviour
of the functions involved in the mathematical model.

The standard reference for the behaviour of the eigenvalues of a matrix
subject to perturbations in a particular direction is [4]. Second-order proper-
ties of eigenvalue functions in a particular direction are derived in [16]. The
problem that interests us in this paper is that of when a spectral function
is twice differentiable and when its Hessian is continuous. Analyticity is dis-
cussed in [17]: thus our result lies in some sense between the results in [6]
and [17].

We show that a spectral function is twice (continuously) differentiable
at a matrix if and only if the corresponding symmetric function is twice
(continuously) differentiable at the vector of eigenvalues. Thus in particular,
a spectral function is C2 if and only if its restriction to the subspace of
diagonal matrices is C2. We also give a concise and easy-to-use formula for the
Hessian: the results in [17], for analytic functions, are rather implicit. The
paper is self-contained and the results are derived essentially from scratch. In
a parallel paper [10] we give an analogous characterization of those spectral
functions that have a quadratic expansion at a point (but which may not be
twice differentiable).
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2 Notation and preliminary results

In what follows Sn will denote the Euclidean space of all n × n symmet-
ric matrices with inner product 〈A,B〉 = tr (AB) and for A ∈ Sn, λ(A) =
(λ1(A), ..., λn(A)) will be the vector of its eigenvalues ordered in nonincreas-
ing order. By On we will denote the set of all n×n orthogonal matrices. For
any vector x in Rn, Diag x will denote the diagonal matrix with the vector x
on the main diagonal, and x̄ will denote the vector with the same entries as
x ordered in nonincreasing order, that is x̄1 ≥ x̄2 ≥ · · · ≥ x̄n. Let Rn

↓ denote
the set of all vectors x in Rn such that x1 ≥ x2 ≥ · · · ≥ xn. Let also the
operator diag : Sn → Rn be defined by diag (A) = (a11, ..., ann). In the whole
paper {Mm}∞m=1 will denote a sequence of symmetric matrices converging to
0, {Um}∞m=1 will denote a sequence of orthogonal matrices. We describe sets
in Rn and functions on Rn as symmetric if they are invariant under coordi-
nate permutations. Thus f : Rn → R will denote a function, defined on an
open symmetric set, with the property

f(x) = f(Px) for any permutation matrix P and any x ∈ domain f.

We denote the gradient of f by ∇f or f ′, and the Hessian by ∇2f or f ′′. In
the whole work vectors are understood to be column vectors, unless stated
otherwise. Whenever we denote by µ a vector in Rn

↓ we make the convention
that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr , (k0 = 0, kr = n).

We define a corresponding partition

I1 := {1, 2, ..., k1}, I2 := {k1 + 1, k1 + 2, ..., k2}, ..., Ir := {kr−1 + 1, ..., kr},
and we call these sets blocks. We denote the standard basis in Rn by
e1, e2, ..., en, and e is the vector with all entries equal to 1. We also define
corresponding matrices

Xl := [ekl−1+1, ..., ekl ], for all l = 1, ..., r,

For an arbitrary matrix A, Ai will denote its i-th row (a row vector), and Ai,j

will denote its (i, j)-th entry. Finally, we say that a vector a is block refined
by a vector b if

bi = bj implies ai = aj for all i, j.

We need the following result.
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Lemma 2.1 Let f : Rn → R be a symmetric function, twice differentiable
at the point µ ∈ Rn

↓ , and let P be a permutation matrix such that Pµ = µ.
Then

(i) ∇f(µ) = P T∇f(µ), and

(ii) ∇2f(µ) = P T∇2f(µ)P .

In particular we have the representation

∇2f(µ) =




a11E11 + bk1J1 a12E12 · · · a1rE1r

a21E21 a22E22 + bk2J2 · · · a2rE2r
...

...
. . .

...
ar1Er1 ar2Er2 · · · arrRrr + bkrJr


 ,

where the Euv are matrices of dimensions |Iu| × |Iv| with all entries equal to
one, (aij)

r
i,j=1 is a real symmetric matrix, b := (b1, ..., bn) is a vector which

is block refined by µ, and Ju is an identity matrix of the same dimensions as
Euu.

Proof. Just apply twice the chain rule to the equality f(µ) = f(Pµ) in
order to get parts (i) and (ii). To deduce the block structure of the Hessian,
consider the block structure of permutation matrices P such that Pµ = µ:
then, when we permute the rows and the columns of the Hessian in the way
defined by P , it must stay unchanged. ¥

Using the notation of this lemma, we define the matrix

B := ∇2f(µ)−Diag b = (aijEij)
r
i,j=1.(1)

Note 2.2 We make the convention that if the i-th diagonal block in the above
representation has dimensions 1 × 1 then we set aii = 0 and bki

= f ′′kiki
(µ).

Otherwise the value of bki
is uniquely determined as the difference between a

diagonal and an off-diagonal element of this block. Note also that the matrix
B and the vector b depend on the point µ and the function f .

Lemma 2.3 For µ ∈ Rn
↓ and a sequence of symmetric matrices Mm → 0 we

have that

λ(Diag µ + Mm)T = µT +
(
λ(XT

1 MmX1)
T , ..., λ(XT

r MmXr)
T
)

+ o(‖Mm‖).
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Proof. Combine Lemma 5.10 in [8] and Theorem 3.12 in [1]. ¥

The following is our main technical tool.

Lemma 2.4 Let {Mm} be a sequence of symmetric matrices converging to
0, such that Mm/‖Mm‖ converges to M . Let µ be in Rn

↓ and Um → U ∈ On

be a sequence of orthogonal matrices such that

Diag µ + Mm = Um

(
Diag λ(Diag µ + Mm)

)
UT

m, for all m = 1, 2, ....(2)

Then the following properties hold.

(i) The orthogonal matrix U has the form

U =




V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vr


 ,

where Vl is an orthogonal matrix with dimensions |Il| × |Il| for all l.

(ii) If i ∈ Il then

lim
m→∞

1−∑
p∈Il

(U i,p
m )

2

‖Mm‖ = 0.

(iii) If i and j do not belong to the same block then

lim
m→∞

(U i,j
m )

2

‖Mm‖ = 0.

(iv) If i ∈ Il then
V i

l

(
Diag λ(XT

l MXl)
)
(V i

l )T = M i,i.

(v) If i, j ∈ Il, and p 6∈ Il then

lim
m→∞

U i,p
m U j,p

m

‖Mm‖ = 0.
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(vi) For any indices i 6= j such that i, j ∈ Il,

lim
m→∞

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ = 0.

(vii) For any indices i 6= j such that i, j ∈ Il,

V i
l

(
Diag λ(XT

l MXl)
)
(V j

l )T = M i,j.

(viii) For any three indices i, j, p in distinct blocks,

lim
m→∞

U i,p
m U j,p

m

‖Mm‖ = 0.

(ix) For any two indices i, j such that i ∈ Il, j ∈ Is, where l 6= s,

lim
m→∞

(
µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ + µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)

= M i,j.

Proof.

(i) After taking the limit in equation (2) we are left with

(Diag µ)U = U(Diag µ).

The described representation of the matrix U follows.

(ii) Let us denote

hm =
(
λ(XT

1 MmX1)
T , ..., λ(XT

r MmXr)
T
)T

.(3)

We use Lemma 2.3 in equation (2) to obtain

Diag µ + Mm = Um(Diag µ)UT
m + Um(Diag hm)UT

m + o(‖Mm‖),
and the equivalent form

UT
m(Diag µ)Um + UT

mMmUm = Diag µ + Diag hm + o(‖Mm‖).
We now divide both sides of these equations by ‖Mm‖ and rearrange:

Diag µ− Um(Diag µ)UT
m

‖Mm‖ = − Mm

‖Mm‖ +
Um(Diag hm)UT

m

‖Mm‖ + o(1),(4)
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and

Diag µ− UT
m(Diag µ)Um

‖Mm‖ =
UT

mMmUm

‖Mm‖ − Diag hm

‖Mm‖ − o(1).(5)

Notice that the right hand sides of these equations converge to a finite
limit as m increases to infinity. If we call the matrix limit of the right
hand side of the first equation L, then clearly the limit of the second
equation is −UT LU .

We are now going to prove parts (ii) and (iii) together inductively, by
dividing the orthogonal matrix Um into the same block structure as U .
We begin by considering the first row of blocks of Um.

Let i be an index in the first block, I1. Then the limit of the (i, i)-th
entry in the matrix at the left hand side of equation (4) is

lim
m→∞

(
µk1

(
1−∑

p∈I1
(U i,p

m )
2
)
−∑r

s=2 µks

∑
p∈Is

(U i,p
m )

2
)

‖Mm‖ = Li,i.(6)

Now recall that

Li,i = −M i,i + V i
1 (Diag λ(XT

1 MX1))(V
i
1 )T ,

and because V1 is an orthogonal matrix, notice that

∑
i∈I1

Li,i = −tr (XT
1 MX1) +

∑
i∈I1

V i
1 (Diag λ(XT

1 MX1))(V
i
1 )T

= −tr (XT
1 MX1) +

∑
i∈I1

λi(X
T
1 MX1)

∑
j∈I1

(V j,i
1 )2

= −tr (XT
1 MX1) +

∑
i∈I1

λi(X
T
1 MX1)

= 0.

We now sum equation (6) over all i in I1 to get

lim
m→∞

(
µk1

(
|I1| −

∑
i,p∈I1

(U i,p
m )

2
)
−∑r

s=2 µks

∑
i∈I1, p∈Is

(U i,p
m )

2
)

‖Mm‖ = 0.
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Notice here, that the coefficients in front of the µkl
, l = 1, 2, ..., r in the

numerator sum up to zero. That is,

|I1| −
∑

i,p∈I1

(
U i,p

m

)2 −
r∑

s=2

∑
i∈I1, p∈Is

(
U i,p

m

)2
= 0.

So let us choose a number α such that

(µ + αe)k1 > 0 > (µ + αe)k1+1,

and add α to every coordinate of the vector µ thus “shifting” it. The
coordinates of the shifted vector that are in the first block are strictly
bigger than zero, and the rest are strictly less than zero. By our com-
ment above, the last limit remains true if we “shift” µ in this way. If
we rewrite the last limit for the “shifted” vector, because all summands
are positive, we immediately see that we must have

lim
m→∞

|I1| −
∑

i,p∈I1
(U i,p

m )
2

‖Mm‖ = 0

and

lim
m→∞

∑
i∈I1, p∈Is

(U i,p
m )

2

‖Mm‖ = 0, for all s = 2, .., r.

The first of these limits can be written as

lim
m→∞

∑
i∈I1

(
1−∑

p∈I1
(U i,p

m )
2
)

‖Mm‖ = 0,

and because all the summands are positive, we conclude that

lim
m→∞

1−∑
p∈I1

(U i,p
m )

2

‖Mm‖ = 0, for all i ∈ I1.

The second of the limits implies immediately that

lim
m→∞

(U i,p
m )

2

‖Mm‖ = 0, for any i ∈ I1, p 6∈ I1.
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Thus we proved part (ii) for i ∈ I1 and part (iii) for the cases specified
above.

Here is a good place to say a few more words about the idea of the
proof. As we said, we divide the matrix Um into blocks complying with
the block structure of the vector µ (exactly as in part (i) for the matrix
U). We proved part (ii) and (iii) for the elements in the first row of
blocks of this division. What we are going to do now is prove the same
thing for the first column of blocks. In order to do this we fix an index
i in I1 and consider the (i, i)-th entry in the matrix at the left hand
side of equation (5), and take the limit:

lim
m→∞

µk1

(
1−∑

p∈I1
(Up,i

m )
2
)
−∑r

s=2 µks

∑
p∈Is

(Up,i
m )

2

‖Mm‖

= −(UT LU)i,i.(7)

Using also the block-diagonal structure of the matrix U , we again have
∑
i∈I1

(UT LU)i,i =
∑
i∈I1

Li,i = 0.

So we proceed just as before in order to conclude that

lim
m→∞

1−∑
p∈I1

(Up,i
m )

2

‖Mm‖ = 0, for all i ∈ I1,

and

lim
m→∞

(Up,i
m )

2

‖Mm‖ = 0, for any i ∈ I1, p 6∈ I1.(8)

We are now ready for the second step of our induction. Let i be an
index in I2. Then the limit of the (i, i)-th entry in the matrix at the
left hand side of equation (4) is

lim
m→∞

1

‖Mm‖
(
− µk1

∑
p∈I1

(
U i,p

m

)2
+ µk2

(
1−

∑
p∈I2

(
U i,p

m

)2
)
−

r∑
s=3

µks

∑
p∈Is

(
U i,p

m

)2
)

= Li,i.
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Analogously as above we have

∑
i∈I2

Li,i = 0,

so summing the above limit over all i in I2 we get

lim
m→∞

1

‖Mm‖
(
− µk1

∑
i∈I2, p∈I1

(
U i,p

m

)2
+ µk2

(
|I2| −

∑
i,p∈I2

(
U i,p

m

)2
)
−

r∑
s=3

µks

∑
i∈I2, p∈Is

(
U i,p

m

)2
)

= 0.

We know from (8) that

lim
m→∞

∑
i∈I2, p∈I1

(U i,p
m )

2

‖Mm‖ = 0.

So now we choose a number α such that

(µ + αe)k2 > 0 > (µ + αe)k2+1

and as before exchange µ with its shifted version. Just as before we
conclude that

lim
m→∞

1−∑
p∈I2

(U i,p
m )

2

‖Mm‖ = 0, for all i ∈ I2,

and

lim
m→∞

(U i,p
m )

2

‖Mm‖ = 0, for any i ∈ I2, p 6∈ I2.

We repeat the same steps for the second column of blocks in the ma-
trix Um and so on inductively until we exhaust all the blocks. This
completes the proof of parts (ii) and (iii).

(iv) For the proof of this part, one needs to consider the (i, i)-th entry of
the right hand side of equation (4). Because the diagonal of the left
hand side converges to zero (by (ii) and (iii)), taking the limit proves
the statement in this part.
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(v) This part follows immediately from part (iii).

(vi) Taking the limit in equation (4) gives

lim
m→∞

−
∑

s6=l

µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ − µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ = Li,j,

where Li,j is the (i, j)-th entry of the limit of the right hand side of
equation (4). Note that the coefficients of µks again sum up to zero:

∑

s6=l

∑
p∈Is

U i,p
m U j,p

m +
∑
p∈Il

U i,p
m U j,p

m = 0,

because Um is an orthogonal matrix. Now by part (v) we have

0 = lim
m→∞

−
∑

s6=l

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ = lim
m→∞

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ ,

as required, and moreover Li,j = 0.

(vii) The statement of this part is the detailed way of writing the fact, proved
in the previous part, that Li,j = 0.

(viii) This part follows immediately from part (iii). (In fact the expression in
part (viii) is identical to the one in part (v), re-iterated with different
index conditions for later convenience.)

(ix) We again take the limit of the (i, j)-th entry of the matrices on both
sides of equation (4).

lim
m→∞

(
−

∑

t6=l,s

µkt

∑
p∈It

U i,p
m U j,p

m

‖Mm‖ − µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ −

µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)

= Li,j.

By part (viii) we have that all but the l-th and the s-th summand above
converge to zero. On the other hand

Li,j = lim
m→∞

(
− Mm

‖Mm‖ +
Um(Diag hm)UT

m

‖Mm‖
)i,j

= −M i,j + U i

(
lim

m→∞
Diag hm

‖Mm‖
)

(U j)T

= −M i,j,
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because U i and U j are rows in different blocks and (Diag hm)/‖Mm‖
converges to a diagonal matrix. ¥

Now we have all the tools to prove the main result of the paper.

3 Twice differentiable spectral functions

In this section we prove that a symmetric function f is twice differentiable
at the point λ(A) if and only if the corresponding spectral function f ◦ λ is
twice differentiable at the matrix A.

Recall that the Hadamard product of two matrices A = [Ai,j] and B =
[Bi,j] of the same size is the matrix of their elementwise product A ◦ B =
[Ai,jBi,j]. Let the symmetric function f : Rn → R be twice differentiable at
the point µ ∈ Rn

↓ , where

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr , (k0 = 0, kr = n).

We define the vector b(µ) = (b1(µ), ..., bn(µ)) as in Lemma 2.1. Specifically,
for any index i, (say i ∈ Il for some l ∈ {1, 2, ..., r}) we define

bi(µ) =

{
f ′′ii(µ), if |Il| = 1.

f ′′pp(µ)− f ′′pq(µ), for any p 6= q ∈ Il.

Lemma 2.1 guarantees that the second case of this definition doesn’t depend
on the choice of p and q. We also define the matrix A(µ):

Ai,j(µ) =





0, if i = j.

bi(µ), if i 6= j but i, j ∈ Il.

f ′i(µ)−f ′j(µ)

µi−µj
, else .

(9)

For simplicity, when the argument is understood by the context, we will write
just bi and Ai,j. The following lemma is Theorem 1.1 in [7].

Lemma 3.1 Let A ∈ Sn and suppose λ(A) belongs to the domain of the
symmetric function f : Rn → R. Then f is differentiable at the point λ(A)
if and only if f ◦ λ is differentiable at the point A. In that case we have the
formula

∇(f ◦ λ)(A) = U
(
Diag∇f(λ(A))

)
UT ,

for any orthogonal matrix U satisfying A = U
(
Diag λ(A)

)
UT .
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We recall some standard notions about twice differentiability. Consider
a function F from Sn to R. Its gradient at any point A (when it exists)
is a linear functional on the Euclidean space Sn, and thus can be identified
with an element of Sn, which we denote ∇F (A). Thus ∇F is a map from
Sn to Sn. When this map is itself differentiable at A we say F is twice
differentiable at A. In this case we can interpret the Hessian ∇2F (A) as a
symmetric, bilinear function from Sn × Sn into R. Its value at a particular
point (H, Y ) ∈ Sn × Sn will be denoted ∇2F (A)[H, Y ]. In particular, for
fixed H, the function ∇2F (A)[H, ·] is again a linear functional on Sn, which
we consider an element of Sn, for brevity denoted by ∇2F (A)[H]. When the
Hessian is continuous at A we say F is twice continuously differentiable at
A. In that case the following identity holds:

∇2F (A)[H, H] =
d2

dt2
F (A + tH)

∣∣∣∣
t=0

.

The next theorem is a preliminary version of our main result.

Theorem 3.2 The symmetric function f : Rn → R is twice differentiable
at the point µ ∈ Rn

↓ if and only if f ◦ λ is twice differentiable at the point
Diag µ. In that case the Hessian is given by

∇2(f ◦ λ)(Diag µ)[H] = Diag
(∇2f(µ)(diag H)

)
+A ◦H.(10)

Hence

∇2(f ◦ λ)(Diag µ)[H,H] = ∇2f(µ)[diag H, diag H] + 〈A, H ◦H〉.
Proof. It is easy to see that f must be twice differentiable at the point µ
whenever f ◦λ is twice differentiable at Diag µ because by restricting f ◦λ to
the subspace of diagonal matrices we get the function f . So the interesting
case is the other direction. Let f be twice differentiable at the point µ ∈ Rn

↓
and suppose on the contrary that either f ◦ λ is not twice differentiable at
the point Diag µ, or equation (10) fails. Define a linear operator ∆ by

∆(H) := Diag
(
(∇2f(µ)(diag H)

)
+A ◦H.

(Lemma 3.1 tells us that f ◦ λ is at least differentiable around Diag µ.) So,
for this linear operator ∆ there is an ε > 0 and a sequence of symmetric
matrices {Mm}∞m=1 converging to 0 such that

‖∇(f ◦ λ)(Diag µ + Mm)−∇(f ◦ λ)(Diag µ)−∆(Mm)‖
‖Mm‖ > ε
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for all m = 1, 2, .... Without loss of generality we may assume that the
sequence {Mm}∞m=1 is such that Mm/‖Mm‖ converges to a matrix M , because
some subsequence of {Mm}∞m=1 surely has this property. Let {Um}∞m=1 be a
sequence of orthogonal matrices such that

Diag µ + Mm = Um

(
Diag λ(Diag µ + Mm)

)
UT

m, for all m = 1, 2, ....

Without loss of generality we may assume that Um → U ∈ On, or otherwise
we will just take subsequences of {Mm}∞m=1 and {Um}∞m=1. The above in-
equality shows that for every m there corresponds a pair (or more precisely
at least one pair) of indices (i, j) such that

|(∇(f ◦ λ)(Diag µ + Mm)−Diag∇f(µ)−∆(Mm)
)i,j|

‖Mm‖ >
ε

n
.(11)

So at least for one pair of indices, call it again (i, j), we have infinitely many
numbers m for which (i, j) is the corresponding pair, and because if necessary
we can again take a subsequence of {Mm}∞m=1 and {Um}∞m=1 we may assume
without loss of generality that there is a pair of indices (i, j) for which the
last inequality holds for all m = 1, 2, .... Define the symbol hm again by
equation (3). Notice that using Lemma 3.1, Lemma 2.3, and the fact that
∇f is differentiable at µ, we get

∇(f ◦ λ)(Diag µ + Mm) = Um

(
Diag∇f(λ(Diag µ + Mm))

)
UT

m

= Um

(
Diag∇f(µ + hm + o(‖Mm‖))

)
UT

m
(12)

= Um(Diag (∇f(µ) +∇2f(µ)hm + o(‖Mm‖)))UT
m

= Um(Diag∇f(µ))UT
m + Um(Diag (∇2f(µ)hm))UT

m + o(‖Mm‖).
We consider three cases. In every case we are going to show that the left
hand side of inequality (11) actually converges to zero, which contradicts the
assumption.

Case I. If i = j, then using equation (12) the left hand side of inequality
(11) is less that or equal to

|U i
m

(
Diag∇f(µ)

)
(U i

m)T − f ′i(µ)|
‖Mm‖ +

|U i
m

(
Diag∇2f(µ)hm

)
(U i

m)T − (∇2f(µ)(diag Mm)
)

i
|

‖Mm‖ + o(1).
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We are going to show that each summand approaches zero as m goes to
infinity. Assume that i ∈ Il for some l ∈ {1, ..., r}. Using the fact that the
vector µ block refines the vector ∇f(µ) (Lemma 2.1, part (i)) the first term
can be written as

1

‖Mm‖

∣∣∣∣∣f
′
kl

(µ)
(
1−

∑
p∈Il

(
U i,p

m

)2
)
−

∑

s:s 6=l

f ′ks
(µ)

∑
p∈Is

(
U i,p

m

)2

∣∣∣∣∣ .

We apply now Lemma 2.4 parts (ii) and (iii) to the last expression.
We now concentrate on the second term above. Using the notation of

equation (1) (that is, ∇2f(µ) = B +Diag b) this term is less than or equal to

|U i
m

(
Diag (Bhm)

)
(U i

m)T − (
B(diag Mm)

)
i
|

‖Mm‖
(13)

+
|U i

m

(
Diag ((Diag b)hm)

)
(U i

m)T − (
(Diag b)(diag Mm)

)
i
|

‖Mm‖ .

As m approaches infinity, we have that U i
m → U i. We define the vector h to

be:

h := lim
m→∞

hm

‖Mm‖ =
(
λ(XT

1 MX1)
T , ..., λ(XT

r MXr)
T
)T

.

So taking limits, expression (13) turn into:

|U i
(
Diag (Bh)

)
(U i)T − (

B(diag M)
)

i
|

+|U i
(
Diag ((Diag b

)
h))(U i)T − (

(Diag b)(diag M)
)

i
|.

We are going to investigate each absolute value separately and show that
they are both actually equal to zero. For the first, we use the block structure
of the matrix B (see Lemma 2.1) and the block structure of the vector h to
obtain

(Bh)j =
r∑

s=1

aqstr (XT
s MXs), when j ∈ Iq.
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Using the fact that i ∈ Il and that Vl is orthogonal we get

U i
(
Diag (Bh)

)
(U i)T =

(
V i

l XT
l

)(
Diag (Bh)

)(
Xl(V

i
l )T

)

= V i
l

(
XT

l (Diag (Bh))Xl

)
(V i

l )T

=
( r∑

s=1

alstr (XT
s MXs)

)( |Il|∑
s=1

(V i,s
l )2

)

=
r∑

s=1

alstr (XT
s MXs)

= (Bdiag M)i,

which shows that the first absolute value is zero. For the second absolute
value, we use the block structure of the vector b, to write

(Diag b)h =
(
bk1λ(XT

1 MX1)
T , ..., bkrλ(XT

r MXr)
T
)T

.

In the next to the last equality below we use part (iv) of Lemma 2.4:

U i
(
Diag ((Diag b)h)

)
(U i)T =

(
V i

l XT
l

)(
Diag ((Diag b)h)

)(
Xl(V

i
l )T

)

= V i
l

(
XT

l (Diag ((Diag b)h))Xl

)
(V i

l )T

= V i
l

(
Diag bkl

λ(XT
l MXl)

)
(V i

l )T

= bkl
M i,i

=
(
(Diag b)(diag M)

)
i
.

We can see now that the second absolute value is also zero.

Case II. If i 6= j but i, j ∈ Il for some l ∈ {1, 2, ...r}, then using equation
(12) the left hand side of inequality (11) becomes

|U i
m

(
Diag∇f(µ)

)
(U j

m)T + U i
m

(
Diag (∇2f(µ)hm)

)
(U j

m)T − bkl
M i,j

m |
‖Mm‖ + o(1).

Using the fact that µ block refines vector ∇f(µ), we can write the first
summand in the absolute value as

1

‖Mm‖
( ∑

s 6=l

f ′ks
(µ)

∑
p∈Is

U i,p
m U j,p

m + f ′kl
(µ)

∑
p∈Il

U i,p
m U j,p

m

)
.
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We use parts (v) and (vi) of Lemma 2.4 to conclude that this expression
converges to zero. We are left with

|U i
m

(
Diag (∇2f(µ)hm)

)
(U j

m)T − bkl
M i,j

m |
‖Mm‖ .

Substituting above ∇2f(µ) = B + Diag b we get

|U i
m

(
Diag (Bhm)

)
(U j

m)T + U i
m

(
Diag ((Diag b)hm)

)
(U j

m)T − bkl
M i,j

m |
‖Mm‖ .

Recall the notation from Lemma 2.1 used to denote the entries of the matrix
B. Then the limit of the first summand above can be written as

lim
m→∞

|U i
m

(
Diag (Bhm)

)
(U j

m)T |
‖Mm‖ = |U i

(
Diag (Bh)

)
(U j)T |

=
r∑

s=1

(( r∑

l=1

asl tr (XT
l MXl)

) ∑
p∈Is

U i,pU j,p

)

= 0,

because clearly
∑

p∈Is
U i,pU j,p = 0 for all s ∈ {1, 2, ...r}. We are left with the

following limit

lim
m→∞

|U i
m

(
Diag ((Diag b)hm)

)
(U j

m)T − bkl
M i,j

m |
‖Mm‖

= |U i
(
Diag ((Diag b)h)

)
(U j)T − bkl

M i,j|.

Using Lemma 2.4 part (vii) we observe that the last absolute value is zero.

Case III. If i ∈ Il and j ∈ Is, where l 6= s, then using equation (12), the left
hand side of inequality (11) becomes (up to o(1))

|U i
m

(
Diag∇f(µ)

)
(U j

m)T + U i
m

(
Diag∇2f(µ)hm

)
(U j

m)T − f ′kl
(µ)−f ′ks

(µ)

µkl
−µks

M i,j
m |

‖Mm‖ .

We start with the second term above. Its limit is

lim
m→∞

U i
m

(
Diag (∇2f(µ)hm)

)
(U j

m)T

‖Mm‖ = U i
(
Diag (∇2f(µ)h)

)
(U j)T = 0,

17



because in our case, U i has nonzero coordinates where the entries of U j are
zero. We are left with

lim
m→∞

∣∣∣∣∣
U i

m

(
Diag∇f(µ)

)
(U j

m)T

‖Mm‖ − f ′kl
(µ)− f ′ks

(µ)

µkl
− µks

M i,j
m

‖Mm‖

∣∣∣∣∣ .(14)

We expand the first term in this limit.

U i
m

(
Diag∇f(µ)

)
(U j

m)T

‖Mm‖ = f ′kl
(µ)

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ +

f ′ks
(µ)

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ +
∑

t 6=l,s

f ′kt
(µ)

∑
p∈It

U i,p
m U j,p

m

‖Mm‖ .

Using Lemma 2.4 part (viii) we see that the third summand above converges
to zero as m goes to infinity. Part (ix) of the same lemma tells us that

lim
m→∞

M i,j
m

‖Mm‖ = lim
m→∞

(
µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ + µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)

.

In order to abbreviate the formulae we introduce the following notation

βl
m :=

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ , for all l = 1, 2, ..., r.

Substituting everything in (14) we get the following equivalent limit:

lim
m→∞

∣∣∣∣
(
f ′kl

(µ)βl
m + f ′ks

(µ)βs
m

)
− f ′kl

(µ)− f ′ks
(µ)

µkl
− µks

(
µkl

βl
m + µksβ

s
m

)∣∣∣∣ .

Simplifying we get

lim
m→∞

(βl
m + βs

m)
f ′ks

(µ)µkl
− f ′kl

(µ)µks

µkl
− µks

.

Notice now that
r∑

l=1

βl
m = 0, for all m,

because Um is an orthogonal matrix and the numerator of the above sum is
the product of its i-th and the j-th row. Next, Lemma 2.4, part (viii) says
that

lim
m→∞

∑

t 6=l,s

βt
m = 0,
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so
lim

m→∞
(βl

m + βs
m) = 0,

which completes the proof. ¥

We are finally ready to give and prove the full version of our main result.

Theorem 3.3 Let A be an n×n symmetric matrix. The symmetric function
f : Rn → R is twice differentiable at the point λ(A) if and only if the spectral
function f ◦ λ is twice differentiable at the matrix A. Moreover in this case
the Hessian of the spectral function at the matrix A is

∇2(f ◦ λ)(A)[H] = W
(
Diag

(∇2f(λ(A))diag H̃
)

+A ◦ H̃
)
W T ,

where W is any orthogonal matrix such that A = W
(
Diag λ(A)

)
W T , H̃ =

W T HW , and A = A(λ(A)) is defined by equation (9). Hence

∇2(f ◦ λ)(A)[H,H] = ∇2f(λ(A))[diag H̃, diag H̃] + 〈A, H̃ ◦ H̃〉.
Proof. Let W be an orthogonal matrix which diagonalizes A in an ordered
fashion, that is

A = W
(
Diag λ(A)

)
W T .

Let Mm be a sequence of symmetric matrices converging to zero, and let Um

be a sequence of orthogonal matrices such that

Diag λ(A) + W T MmW = Um

(
Diag λ(Diag λ(A) + W T MmW )

)
UT

m.

Then using Lemma 3.1 we get

∇(f ◦ λ)(A + Mm)

= ∇(f ◦ λ)
(
W (Diag λ(A) + W T MmW )W T

)

= ∇(f ◦ λ)
(
WUm(Diag λ(Diag λ(A) + W T MmW ))UT

mW T
)

= WUm

(
Diag∇f(λ(Diag λ(A) + W T MmW ))

)
UT

mW T .

We also have that

∇(f ◦ λ)(A) = W
(
Diag∇f(λ(A))

)
W T ,

and W T MmW → 0, as m goes to infinity. Because W is an orthogonal matrix
we have ‖WXW T‖ = ‖X‖ for any matrix X. It is now easy to check the
result by Theorem 3.2. ¥
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4 Continuity of the Hessian

Suppose now the symmetric function f : Rn → R is twice differentiable
in a neighbourhood of the point λ(A) and its Hessian is continuous at the
point λ(A). Then f ◦ λ as we saw above will be twice differentiable in a
neighbourhood of the point A, and in this section we are going to show that
∇2(f ◦ λ) is also continuous at the point A.

We define a basis, {Hij}, on the space of symmetric matrices. If i 6= j
all the entries of the matrix Hij are zeros, except the (i, j)-th and (j, i)-th,
which are one. If i = j we have one only on the (i, i)-th position. It suffices
to prove that the Hessian is continuous when applied to any matrix of the
basis. We begin with a lemma treating in some sense all special cases at
once.

Lemma 4.1 Let µ ∈ Rn
↓ be such that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr , (k0 = 0, kr = n).

and let the symmetric function f : Rn → R be twice continuously differen-
tiable at the point µ. Let {µm}∞m=1 be a sequence of vectors in Rn converging
to µ. Then

lim
m→∞

∇2(f ◦ λ)(Diag µm) = ∇2(f ◦ λ)(Diag µ).

Proof. For every m there is a permutation matrix Pm such that P T
mµm =

µm. (See the beginning of Section 2 for the meaning of the bar above a
vector.) But there are finitely many permutation matrices (namely n!) so we
can form n! subsequences of {µm} such that any two vectors in a particular
subsequence can be ordered in descending order by the same permutation
matrix. If we prove the lemma for every such subsequence we will be done.
So without loss of generality we may assume that P T µm = µm for every m,
and some fixed permutation matrix P . Clearly for all large enough m, we
are going to have

µm
k1

> µm
k1+1, µm

k2
> µm

k2+1, · · · , µm
kr−1

> µm
kr−1+1,

Consequently the matrix P is block-diagonal with permutation matrices on
the main diagonal, and dimensions matching the block structure of µ, so
Pµ = µ. Consider now the block structure of the vectors {µm}. Because

20



there are finitely many different block structures, we can divide this sequence
into subsequences such that the vectors in a particular subsequence have the
same block structure. If we prove the lemma for each subsequence we will
be done. So without loss of generality we may assume that the vectors {µm}
have the same block structure for every m. Next, using the formula for the
Hessian in Theorem 3.3 we have

∇2(f ◦ λ)(Diag µm)[Hij] =

P
(
Diag

(∇2f(µm)diag (P T HijP )
)

+A(µm) ◦ (P T HijP )
)
P T ,

and Lemma 2.1 together with Theorem 3.2 give us

∇2(f ◦ λ)(Diag µ)[Hij] = Diag
(∇2f(µ)diag Hij

)
+A(µ) ◦Hij

= P
(
Diag

(∇2f(µ)diag (P T HijP )
)

+

A(µ) ◦ (P T HijP )
)
P T .

These equations show that without loss of generality it suffices to prove the
lemma only in the case when all vectors {µm} are ordered in descending
order, that is, the vectors µm all block refine the vector µ. In that case we
have

∇2(f ◦ λ)(Diag µm)[Hij] = Diag
(∇2f(µm)diag Hij

)
+A(µm) ◦Hij,

and

∇2(f ◦ λ)(Diag µ)[Hij] = Diag
(∇2f(µ)diag Hij

)
+A(µ) ◦Hij.

We consider four cases.

Case I. If i = j then

lim
m→∞

∇2(f ◦ λ)(Diag µm)[Hij] = lim
m→∞

Diag
(∇2f(µm)ei

)

= Diag
(∇2f(µ)ei

)

= ∇2(f ◦ λ)(Diag µ)[Hij],

just because ∇2f(·) is continuous at µ.
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Case II. If i 6= j, but belong to the same block for µm, then i, j will be in
the same block of µ as well and we have

lim
m→∞

∇2(f ◦ λ)(Diag µm)[Hij] = lim
m→∞

bi(µ
m)Hij

= bi(µ)Hij

= ∇2(f ◦ λ)(Diag µ)[Hij],

again because ∇2f(·) is continuous at µ.

Case III. If i and j belong to different blocks of µm but to the same block
of µ, then

lim
m→∞

∇2(f ◦ λ)(Diag µm)[Hij] = lim
m→∞

f ′i(µ
m)− f ′j(µ

m)

µm
i − µm

j

Hij,

and

∇2(f ◦ λ)(Diag µ)[Hij] = bi(µ)Hij.

So we have to prove that

lim
m→∞

f ′i(µ
m)− f ′j(µ

m)

µm
i − µm

j

= f ′′ii(µ)− f ′′ij(µ).

(See the definition of bi(µ) in the beginning of Section 3.) For every m we
define the vectors µ̇m and µ̈m coordinatewise as follows

µ̇m
p =

{
µm

p , p 6= i
µm

j , p = i
, µ̈m

p =





µm
p , p 6= i, j

µm
j , p = i

µm
i , p = j.

Because µi = µj we conclude that both sequences {µ̇m}∞m=1 and {µ̈m}∞m=1

converge to µ, because {µm}∞m=1 does so. Below we are applying the mean
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value theorem twice:

f ′i(µ
m)− f ′j(µ

m)

µm
i − µm

j

=
f ′i(µ

m)− f ′i(µ̇
m) + f ′i(µ̇

m)− f ′j(µ
m)

µm
i − µm

j

=
(µm

i − µm
j )f ′′ii(ξ

m) + f ′i(µ̇
m)− f ′j(µ

m)

µm
i − µm

j

= f ′′ii(ξ
m) +

f ′i(µ̇
m)− f ′i(µ̈

m) + f ′i(µ̈
m)− f ′j(µ

m)

µm
i − µm

j

= f ′′ii(ξ
m) +

(µm
j − µm

i )f ′′ij(η
m) + f ′i(µ̈

m)− f ′j(µ
m)

µm
i − µm

j

= f ′′ii(ξ
m)− f ′′ij(η

m),

where ξm is a vector between µm and µ̇m, and ηm is a vector between µ̇m and
µ̈m. Consequently ξm → µ, and ηm → µ. Notice that vector µ̈m is obtained
from µm by swapping the i-th and the j-th coordinate. Then using the first
part of Lemma 2.1 we see that f ′i(µ̈

m) = f ′j(µ
m). Finally we just have to take

the limit above and use again the continuity of the Hessian of f at the point
µ.

Case IV. If i and j belong to different blocks of µm and to different blocks
of µ, then

lim
m→∞

∇2(f ◦ λ)(Diag µm)[Hij] = lim
m→∞

f ′i(µ
m)− f ′j(µ

m)

µm
i − µm

j

Hij

=
f ′i(µ)− f ′j(µ)

µi − µj

Hij

= ∇2(f ◦ λ)(Diag µ)[Hij],

because ∇f(·) is continuous at µ and the denominator is never zero. ¥

Now we are ready to prove the main result of this section.

Theorem 4.2 Let A be an n×n symmetric matrix. The symmetric function
f : Rn → R is twice continuously differentiable at the point λ(A) if and only
if the spectral function f ◦λ is twice continuously differentiable at the matrix
A.
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Proof. We know that f ◦ λ is twice differentiable at A if and only if f
is twice differentiable at λ(A), so what is left to prove is the continuity of
the Hessian. Suppose that f is twice continuously differentiable at λ(A) and
that f ◦ λ is not twice continuously differentiable at A. That is, the Hessian
∇2(f ◦ λ) is not continuous at A. Take a sequence, {Am}∞m=1, of symmetric
matrices converging to A such that for some ε > 0 we have

‖∇2(f ◦ λ)(Am)−∇2(f ◦ λ)(A)‖ > ε,

for all m. Let {Um}∞m=1 be a sequence of orthogonal matrices such that

Am = Um

(
Diag λ(Am)

)
UT

m.

Without loss of generality we may assume that Um → U , where U is orthog-
onal and then

A = U
(
Diag λ(A)

)
UT .

(Otherwise we take subsequences of {Am} and {Um}.) Using the formula for
the Hessian given in Theorem 3.3 and Lemma 4.1 we can easily see that

lim
m→∞

∇2(f ◦ λ)(Am)[H] = ∇2(f ◦ λ)(A)[H],

for every symmetric H. This is a contradiction.
The other direction follows from the chain rule after observing

f(x) = (f ◦ λ)(Diag x).

This completes the proof. ¥

5 Example and Conjecture

As an example, suppose we require the second directional derivative of the
function f ◦ λ at the point A in the direction B. That is, we want to find
the second derivative of the function

g(t) = (f ◦ λ)(A + tB),

at t = 0. Let W be an orthogonal matrix such that A = W (Diag λ(A))W T .
Let B̃ = W T BW . We differentiate twice:

g′′(t) = ∇2(f ◦ λ)(A + tB)[B,B].
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Using Lemma 3.1 and Theorem 3.3 at t = 0 we get

g(0) = f(λ(A))

g′(0) = tr
(
B̃ Diag∇f(λ(A))

)

g′′(0) = ∇2(f ◦ λ)(λ(A))[diag B̃, diag B̃] + 〈A, B̃ ◦ B̃〉

=
n∑

i,j=1

f ′′ij(λ(A))(B̃i,i)(B̃j,j) +
∑
i 6=j

λi=λj

bi(B̃
i,j)2

+
∑

i,j
λi 6=λj

f ′i(λ(A))− f ′j(λ(A))

λi(A)− λj(A)
(B̃i,j)2,

In principle, if the function f is analytic, this second directional derivative
can also be computed using the implicit formulae from [17]. Some work shows
that the answers agree.

As a final illustration, consider the classical example of the power series
expansion of a simple eigenvalue. In this case we consider the function f
given by

f(x) = x̄k := the k-th largest entry in x,

and the matrix
A = Diag µ,

where µ ∈ Rn
↓ and

µk−1 > µk > µk+1.

Then we have
f ′(µ) = ek, and f ′′(µ) = 0,

so for the function g(t) = λk(Diag µ + tB) our results show the following
formulae (familiar in perturbation theory and quantum mechanics):

g(0) = µk

g′(0) = Bk,k

g′′(0) =
∑

j 6=k

1

µk − µj

(Bk,j)2 +
∑

i6=k

−1

µi − µk

(Bi,k)2

= 2
∑

j 6=k

1

µk − µj

(Bk,j)2.

This agrees with the result in [4, p. 92].
We conclude with the following natural conjecture.
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Conjecture 5.1 A spectral function f ◦ λ is k-times differentiable at the
matrix A if and only if its corresponding symmetric function f is k-times
differentiable at the point λ(A). Moreover, f ◦ λ is Ck if and only if f is Ck.
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