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1 Sample spaces, random variables, events

Definition 1. Suppose we have an experiment whose outcome, denoted by small Greek letter ω,
depends on chance. The sample space of the experiment is the set of all possible outcomes.

We generally denote a sample space by the capital Greek letter Ω. The sample space is either
finite or infinite. If the sample space is infinite, it can be countably infinite or not. A set is countably
infinite if its elements can be ordered in a sequence so, looking at one element, one can tell which is
the next one. First we shall consider chance experiments with a finite number of possible outcomes,
that is

Ω = {ω1, ω2, . . . , ωn}.
For example, we roll a die and the possible outcomes are Ω = {1, 2, 3, 4, 5, 6} corresponding to

the side that turns up. That is, ω1 = 1, ω2 = 2, . . . , ω6 = 6. We toss a coin with possible outcomes
H (heads) and T (tails). That is Ω = {H,T} or ω1 = H and ω2 = T . If we toss a coin twice
one after another then the possible outcomes are Ω = {HH,HT, TH, TT}. If we pick a card at
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random from a deck of cards then the possible outcomes are Ω = {2−heart, 2− spade, 2− club, 2−
diamond, . . . , ace − heart, ace − spade, ace − club, ace − diamond}, a total of 52 outcomes. If we
choose a person at random on the streets of London, then there are more than 400, 000 possible
outcomes of our experiment. How you decide to describe them is up to you—you may use their
names (but some names may repeat) or just their SIN numbers. If you pick a person at random
from the whole planet, then we may safely assume that there are infinitely many possible outcomes.
If we select at random a grain of sand from a beach then we may safely assume that there are
infinitely many possible outcomes of the experiment.

After the experiment is performed, the outcome of the experiment ω is measured or just ob-
served and the value is of this measurement is denoted by X(ω). The value X(ω) is usually a real
number. Thus X is just a function from Ω to R.

For example, if we roll a die then we may be interested in the number of dots on the upper
side of the die. In that case the measurement is just counting the number of dots, that is X(1) = 1,
· · · , X(6) = 6. If we toss a coin twice then we may want to measure the number of times heads
comes up. Then X(HH) = 2, X(HT ) = 1, X(TH) = 1, X(TT ) = 0. If we select at random a grain
of sand from a beach and measure its width precisely then we may safely assume that the result
will be any number from the interval [0, 1], where 1 stands for 1 millimetre. In that case we have
infinitely many possible values of X—any number in [0, 1]. If we choose a person at random on the
streets of London we may be interested in their weight. Say we stop Mary, then X(Mary) = the
weight of Mary. It may be convenient to assume that the weight of a person can take any value in
the interval [1, 300] where the measuring unit is a kilogram.

Definition 2. The function X defined on the set Ω taking values in R is called a random variable.
1

And here comes the first shock: there is nothing random about a random variable X. It is just
a function from Ω that takes real numbers as values.

Definition 3. Any subset A of the sample space Ω is called an event.2

For example, we roll a die and the possible outcomes are Ω = {1, 2, 3, 4, 5, 6}. The event
A = {2, 4, 6} corresponds to the statement that the result of the roll is an even number. If the ran-
dom variable X is just counting the number of dots on the die, then the event A can also be described
by saying that X is even. If we toss a coin twice one after another then Ω = {HH,HT, TH, TT}.
The event “at least one tail came up” is A = {TH,HT, TT}. The event “no tail came up” is
B = {HH}. If we perform the experiment by tossing two coins and the result is HT , then we say
that the event A occurred or that the event B did not occur.

Since events are just subsets of Ω, we need to review the rules and notation for working with
sets.

1This is not entirely precise and more advanced courses in probability will state that the function X must satisfy
additional requirements, but for us this definition will be sufficient.

2This is not entirely precise and more advanced courses in probability will state that only certain subsets are
events and other subsets are not. For us this definition will be sufficient.
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2 Set operations

Let Ω be a set (a sample space). The symbol ∅ denotes the empty set, the set without any element.
Sometimes it is also denoted by {} (curly brackets with nothing between them). Let A and B be
subsets of Ω, denoted A ⊂ Ω and B ⊂ Ω. We say that A is subset of B, denoted by A ⊂ B if
whenever ω ∈ A we have ω ∈ B. Other notations are A ⊆ B, B ⊃ A, B ⊇ A. If A ⊂ B and B ⊂ A,
then A = B. Note that we always have ∅ ⊂ A and ∅ ⊂ B, that is, the empty set is a subset of any
set. If A ⊂ B and B ⊂ C, then A ⊂ C. Common operations with sets are

union: A ∪B := {ω ∈ Ω : ω ∈ A or ω ∈ B}
the set of all outcomes that are in A or in B or both;

intersection: A ∩B := {ω ∈ Ω : ω ∈ A and ω ∈ B}
the set of all outcomes that are in both A and B;

set-minus: A \B := {ω ∈ Ω : ω ∈ A and ω 6∈ B}
the set of all outcomes that are in A but not in B;

complement: Ac := {ω ∈ Ω : ω 6∈ A}.
the set of all outcomes that are not in A.

symmetric difference: A∆B := {ω ∈ Ω : ω ∈ A or ω ∈ B but ω 6∈ A ∩B}
the set of all outcomes that are in A or in B but not in both;

Often A \B is also denoted by A−B. Illustrate by Venn diagrams.

The rules for operating with union are

A ∪B = B ∪ A
A ∪ A = A

A ∪ ∅ = A

A ∪ Ω = Ω

if A ⊂ B then A ∪B = B.

We can have union of more than two events. If A1, . . . , An are events, then

n⋃
i=1

Ai := the set of outcomes in any of A1, A2, . . . , An.

We can have union of infinite number of events A1, A2, . . ., denoted by
⋃∞
i=1Ai. It does not matter

in what order we form the union of events:

A ∪B ∪ C = (A ∪B) ∪ C = A ∪ (B ∪ C).

The rules for operating with intersection are

A ∩B = B ∩ A
A ∩ A = A
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A ∩ ∅ = ∅
A ∩ Ω = A

if A ⊂ B then A ∩B = A.

We can have intersection of more than two events. If A1, . . . , An are events, then

n⋂
i=1

Ai := the set of outcomes in every A1, A2, . . . , An.

We can have intersection of infinite number of events A1, A2, . . ., denoted by
⋂∞
i=1Ai. It does not

matter in what order we form the intersection of events:

A ∩B ∩ C = (A ∩B) ∩ C = A ∩ (B ∩ C).

The rules for operating with complement are

(Ac)c = A

∅c = Ω

Ωc = ∅
A ∪ Ac = Ω

A ∩ Ac = ∅.

Let us show that if A ⊂ B, then Bc ⊂ Ac. Indeed, suppose A ⊂ B. We need to show that
Bc ⊂ Ac. Take any ω ∈ Bc, that is ω is not in B. But B contains all the elements of A, hence ω is
not in A also. That is ω ∈ Ac. We are done.

Exercise 4. Show that for any events A, B, and C, we have

(i) A \B = A ∩Bc;

(ii) A = (A ∩B) ∪ (A ∩Bc);

(iii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C);

(iv) (A ∪B)c = Ac ∩Bc;

(v) (A ∩B)c = Ac ∪Bc;

(vi) (A ∩ (B ∪ C))c = (Ac ∪Bc) ∩ (Ac ∪ Cc).

Show each item above both using a Venn diagram and with a rigorous proof (imitating the argument
in the paragraph above this exercise).

Definition 5. Two subsets A and B of Ω are called disjoint if A ∩ B = ∅. A sequence of subsets
A1, A2, A3, . . . of Ω is called disjoint, or pairwise disjoint, if the intersection of any two members of
the sequence is empty, that is, Ai ∩ Aj = ∅ for any i 6= j where i, j ∈ {1, 2, 3, . . .}.
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3 Finite and infinite sets

A set is finite, well, if it has finitely many elements, otherwise it is called infinite.

Lemma 6. Suppose Ω = {ω1, . . . , ωn} is a set with n elements. There are exactly 2n different
subsets (or events) of Ω.

Proof. A subset A of Ω can be specified by stating exactly which elements of Ω are in A and
which are not. Consider a 0, 1-vector (x1, . . . , xn) with n coordinates, that is xi ∈ {0, 1} for every
i = 1, 2, . . . , n. Every such vector describes a subset A of Ω. Indeed, we define ωi to be in A if
xi = 1 and ωi not to be in A if xi = 0. Conversely for any subset A of Ω there is a 0, 1-vector that
describes A in the above way. Since there are 2n different 0, 1 vectors with n coordinates, there are
2n subsets of Ω.

The set of all subsets of Ω will be denoted by 2Ω. For example, if Ω = {a, b, c} has three
elements then

2Ω = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
has 23 = 8 elements. Each element of 2Ω is a subset of Ω.

In the case when Ω has infinitely many elements, it has infinitely many subsets. Unfortunately,
some infinities are larger than other infinities. A set with infinitely many elements is called countably
infinite if its elements can be ordered in a sequence.

Example 7. The natural numbers form a countably infinite set since we can order them in a
sequence 1, 2, 3, . . .

Example 8. The integers (positive and negative) . . . − 3,−2,−1, 0, 1, 2, 3, . . . are also countably
infinite because we can order them as

0, 1,−1, 2,−2, 3,−3, . . .

Example 9. The rational numbers (those that can be written as a ratio of two integers, say 1/2
or 345/45, or −3/4) are also countably infinite. Note that the rational numbers are dense in the
sense that every interval (a, b), no matter how small or large contains a rational number. A priori,
by looking at the real number line one cannot tell what is the next rational number after, say
1/2. Their placement on the real number line does not show immediately how to order them in
a sequence. Here is how one can order them in a sequence. We will do that only for the positive
rational numbers for added simplicity.

1 2 3 4 5 · · ·
1 1/1 1/2 1/3 1/4 1/5 · · ·
2 2/1 2/2 2/3 2/4 2/5 · · ·
3 3/1 3/2 3/3 3/4 3/5 · · ·
4 4/1 4/2 4/3 4/4 4/5 · · ·
5 5/1 5/2 5/3 5/4 5/5 · · ·
...

...
...

...
...

...
. . .

6



We look at the diagonals in this table that go from north-east to south-west and list the numbers
in them one diagonal after another:

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, . . .

Many numbers in this sequence are repeated, for example 1/1 = 2/2 = 3/3 = 1 or 1/2 = 2/4. We
delete all repetitions leaving only the first instance of a repeated number to obtain

1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 5/1, . . .

We obtained a sequence of all positive rational numbers, which is what we wanted.

Lemma 10. Union of countably many sets each one of which has countably many elements is
countably infinite.

Proof. We have countably many sets, that is we can order them in a sequence A1, A2, A3, . . .
Each set Ai has countably many elements, say A1 = {a1, a2, a3, . . .}, A2 = {b1, b2, b3, . . .}, A3 =
{c1, c2, c3, . . .}, and so on. We need to show that we can order the elements of

⋃∞
i=1Ai in a sequence

as well. We use an idea analogous to the one presented above. Place the elements of the sets Ai in
rows one after another

1 2 3 4 5 · · ·
A1 a1 a2 a3 a4 a5 · · ·
A2 b1 b2 b3 b4 b5 · · ·
A3 c1 c2 c3 c4 c5 · · ·
A5 d1 d2 d3 d4 d5 · · ·
A6 e1 e2 e3 e4 e5 · · ·
...

...
...

...
...

...
. . .

We look at the diagonals in this table that go from north-east to south-west and list the numbers
in them one diagonal after another:

a1, a2, b1, a3, b2, c1, a4, b3, c2, d1, . . .

This sequence contains the all elements in the union
⋃∞
i=1Ai.

Definition 11. A random variable X defined on a sample space Ω is called discrete if X takes
a finitely many or countably many different values. If the random variable X takes more than
countably many different values, for example, if it takes any value in an interval (a, b), then X is
called continuous random variable.

Note that if Ω is finite or countably infinite set, then any random variable X on Ω is necessarily
discrete.

An argument very similar to the one in Example 9 shows the next property.

Proposition 12. If X and Y are two discrete random variables, then so is X + Y .

Proof. Let {x1, x2, . . .} be all the values that X takes. We can order them in a sequences (possibly
finite one) since X is discrete random variable. Let {y1, y2, . . .} be all the values that Y takes.
Then, the values that X + Y takes are given in the interior of the following table
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x1 x2 x3 x4 x5 · · ·
y1 x1 + y1 x2 + y1 x3 + y1 x4 + y1 x5 + y1 · · ·
y2 x1 + y2 x2 + y2 x3 + y2 x4 + y2 x5 + y2 · · ·
y3 x1 + y3 x2 + y3 x3 + y3 x4 + y3 x5 + y3 · · ·
y4 x1 + y4 x2 + y4 x3 + y4 x4 + y4 x5 + y4 · · ·
y5 x1 + y5 x2 + y5 x3 + y5 x4 + y5 x5 + y5 · · ·
...

...
...

...
...

...
. . .

We already know how to order all values xi + yj in a sequence.

Example 13. The real numbers are infinitely many and are more than countable. That is, the real
numbers cannot be ordered in a sequence. Let us see that the real numbers in the interval (0, 1)
cannot be ordered in a sequence. The decimal representation of every real number in (0, 1) is of the
form 0.a1a2a3 . . .. where the digits a1, a2, a3, . . . in the decimal representation are integers between
0 and 9. Suppose the real numbers in (0, 1) can be listed in a sequence

0.a1a2a3a4 . . .

0.b1b2b3b4 . . .

0.c1c2c3c4 . . .

0.d1d2d3d4 . . .

...

Consider a number 0.xyzt . . . constructed in such a way that x 6= a1, y 6= b2, z 6= c3, t 6= d4, and
so on. This number will be in the interval (0, 1) and will not be in the list since it differs from the
first number in the list by its first digit after the decimal point; it differs from the second number
in the list by its second digit, and so on. This contradiction shows that our assumption that the
real numbers in (0, 1) can be ordered in a sequence is wrong.

4 Definition of probabilities

We are observing (or performing) an event (or experiment) with random outcomes and we defined
Ω to be the set of all possible outcomes of the event. How should we assign probabilities (that is,
positive numbers) so that we “model” the random outcomes of the event? The most natural way
is to use proportions, as follows. Take an event A ⊂ Ω and perform the experiment many, many
times, say N times and count the number of times the outcome was in the set A. The ratio

the number of times the outcome is in the set A

N

is aways going to be a positive number. In particular, if A = Ω then we have

the number of times the outcome is in the set Ω

N
= 1.

Moreover, if A and B are two disjoint events, then

the number of times the outcome is in the set A ∪B
N
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=
the number of times the outcome is in the set A

N

+
the number of times the outcome is in the set B

N
.

So, if we want our notion of probabilities to “model” the proportion of times an event occurs, it
must have the above three properties. This naturally leads to the following definition.

Definition 14. A probability measure or probability distribution P on Ω is a function defined on 2Ω

taking real values that satisfies the following three properties

(i) P (Ω) = 1;

(ii) For every event A ⊂ Ω, P (A) ≥ 0;

(iii) For every sequence A1, A2, A3, . . . of disjoint events

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

Clearly, there are potentially many functions P that satisfy the above three properties so there
is much freedom in choosing a probability measure on Ω. Here is an example of a rather strange
measure, called point measure. Fix any point ω ∈ Ω and define P (A) = 1 if ω ∈ A and P (A) = 0
if ω 6∈ A. Check that this is also a measure.

We will discuss other ways for choosing a measure that “makes sense” in this course.

4.1 Properties of probabilities

There are some properties of the probability function that follow immediately from the definition.

Property 1. P (∅) = 0.

Proof. Let A1 := ∅, A2 := ∅, A3 := ∅, . . . This is a disjoint sequence of events. Their union is ∅. So
by the third property in Definition 14 we have

P (∅) = P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) =
∞∑
i=1

P (∅).

The only possible value of P (∅) that satisfies that equality is 0.

Property 2. If A1, A2, . . . , An are disjoint then

P
( n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai).
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Proof. LetAn+1 := ∅, An+2 := ∅, An+3 := ∅, . . . The whole sequence of eventsA1, A2, . . . , An, An+1, An+2, . . .
is disjoint and

⋃n
i=1Ai =

⋃∞
i=1Ai. Then

P
( n⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) =
n∑
i=1

P (Ai),

where in the last equality we used that P (∅) = 0.

Property 3. P (Ac) = 1− P (A).

Proof. The events A and Ac are disjoint and A ∪ Ac = Ω. So

P (A) + P (Ac) = P (A ∪ Ac) = P (Ω) = 1.

Property 4. If A ⊂ B then P (A) ≤ P (B).

Proof. Note that B = A ∪ (Ac ∩B) and that the events A and Ac ∩B are disjoint. Then

P (B) = P (A) + P (Ac ∩B) ≥ P (A),

where in the last inequality we used that P (Ac ∩B) ≥ 0.

Property 5. For every event A ⊂ Ω, we have 0 ≤ P (A) ≤ 1.

Proof. Since ∅ ⊆ A, by Properties 1 and 4, we get

0 = P (∅) ≤ P (A).

Since A ⊆ Ω, by Propertiy 4 and the definition of P , we get

P (A) ≤ P (Ω) = 1.

Combining the two inequalities completes the proof.

Property 6. For any events A,B ⊂ Ω, we have

P (A ∪B) = P (A) + P (B)− P (A ∩B).(1)

Proof. Note first that
A ∪B = (A ∩Bc) ∪ (A ∩B) ∪ (Ac ∩B)

and the sets in the above union: (A ∩ Bc), (A ∩ B), and (Ac ∩ B) are disjoint. Hence by the
properties of the probability measure

P (A ∪B) = P (A ∩Bc) + P (A ∩B) + P (Ac ∩B).(2)

Next, note that

A = (A ∩Bc) ∪ (A ∩B) and
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B = (A ∩B) ∪ (Ac ∩B),

Again, since the events (A ∩Bc), (A ∩B), and (Ac ∩B) are disjoint we have

P (A) = P (A ∩Bc) + P (A ∩B) and

P (B) = P (A ∩B) + P (Ac ∩B).

Adding these last equalities together we obtain

P (A) + P (B) = P (A ∩Bc) + P (A ∩B) + P (A ∩B) + P (Ac ∩B) = P (A ∪B) + P (A ∩B),

where in the last equality we used (2). We are done.

Formula (1) is called inclusion-exclusion formula for two events. There is a useful corollary of
the last property.

Corollary 15. For any events A,B ⊂ Ω, we have

P (A ∪B) ≤ P (A) + P (B).

Proof. Since P (A ∩ B) ≥ 0, removing this term from the right-hand side of (1) gives the desired
inequality.

It is important to keep in mind that there is nothing in the properties of a probability function
to prevent the existence of events A that are non-empty and P (A) = 0. In other words, the fact
that P (A) = 0 does not imply that A is the empty set. Similarly, the fact that P (A) = 1 does not
imply that A = Ω. That is, there may be events A ⊂ Ω for which P (A) = 1. In this regard, we
have the following properties.

Corollary 16. a) If A,B are events with P (A) = P (B) = 0, then P (A ∪B) = 0.
b) If A,B are events with P (A) = P (B) = 1, then P (A ∩B) = 1.

Proof. a) This follows from Corollary 15:

0 ≤ P (A ∪B) ≤ P (A) + P (B) = 0.

b) By Property 3, we have P (Ac) = P (Bc) = 0. Hence, by part a) we have P (Ac ∪ Bc) = 0. But
Ac ∪Bc = (A ∩B)c, and by Property 3 again we get

1− P (A ∩B) = P ((A ∩B)c) = 0.

We are done

We now apply the properties of a probability function in a particular situation.

Example 17. Suppose that P (A) ≥ 0.9, P (B) ≥ 0.8, and P (A∩B∩C) = 0. Show that P (C) ≤ 0.3.
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Solution. There are several ways to solve this problem. Here is one. Apply (but kind of in reverse)
the inclusion exclusion formula to the events (A ∩B) and C

P ((A ∩B) ∩ C) = P (A ∩B) + P (C)− P ((A ∩B) ∪ C).

The left-hand side is zero since (A ∩ B) ∩ C = A ∩ B ∩ C. Next, we apply the inclusion exclusion
formula to P (A ∩B) again:

0 = P (A ∩B) + P (C)− P ((A ∩B) ∪ C)

= P (A) + P (B)− P (A ∪B) + P (C)− P ((A ∩B) ∪ C).

Solving for P (C) gives

P (C) = P (A ∪B) + P ((A ∩B) ∪ C)− P (A)− P (B)

≤ P (A ∪B) + P ((A ∩B) ∪ C)− 0.9− 0.8 ≤ 1 + 1− 0.9− 0.8

= 0.3.

Suppose X is a random variable on Ω, that is X is a function X : Ω → R. We often use the
following shorthand notation. Let x ∈ R be a fixed number.

P (X = x) := P ({ω ∈ Ω : X(ω) = x}).
That is, the probability that the random variable X takes value x is the probability of the event
{ω ∈ Ω : X(ω) = x}.

4.2 Probabilities on finite sample spaces

Suppose that Ω = {ω1, . . . , ωn} is a sample space with n outcomes. What do we need to define
a probability measure P on Ω? Every event A in Ω has finitely many elements so it can be
expressed as the (finite) union of disjoint events each one of which has one elements. For instance,
if A = {ω1, ω2, ω3, ω4} then

A = {ω1} ∪ {ω2} ∪ {ω3} ∪ {ω4}.
By the rules of probability measures

P (A) = P ({ω1}) + P ({ω2}) + P ({ω3}) + P ({ω4}).
Thus, it is enough to define

pi := P ({ωi}) for all i = 1, 2, . . . , n

and we will be able to compute the probabilities of all events in Ω. For example, with A defined
above P (A) = p1 + p2 + p3 + p4. What properties should these numbers pi satisfy? By Definition 14
they must satisfy

pi ≥ 0 for all i = 1, 2, . . . , n
n∑
i=1

pi = 1.

Note that
∑n

i=1 pi = P (Ω).
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4.3 Probabilities on countably infinite sample spaces

Suppose that Ω = {ω1, ω2, ω3, . . .} is a sample space with countably infinite outcomes. What do
we need to define a probability measure P on Ω. Every event A in Ω has finitely many countably
infinitely many elements so it can be expressed as the finite union or countable union of disjoint
events each one of which has one elements. For instance, if A = {ωi1 , ωi2 , ωi3 , . . .} is a subset of Ω
then

A = {ωi1} ∪ {ωi2} ∪ {ωi3} ∪ · · · .
By the rules of probability measures

P (A) = P ({ωi1}) + P ({ωi2}) + P ({ωi3}) + · · · .

Thus, it is enough to define

pi := P ({ωi}) for all i = 1, 2, 3, . . . ,

and we will be able to compute the probabilities of all events in Ω. For example, with A defined
above P (A) = pi1+pi2+pi3+· · · . What properties should these numbers pi satisfy? By Definition 14
they must satisfy

pi ≥ 0 for all i = 1, 2, 3, . . . ,
∞∑
i=1

pi = 1.

Note that
∑∞

i=1 pi = P (Ω).

4.4 Probabilities on uncountably infinite sample spaces

We cannot assign probabilities to individual elements of Ω if Ω has uncountably many number of
elements, as we did in the finite and countable cases, as expect to get something sensible. To see
why, take for example Ω = (0, 1). Suppose for every x ∈ (0, 1) we assign a non-negative number
P ({x}) := px. Now check if P (Ω) = 1 as we did in the other two cases:

P (Ω) = P (∪x∈(0,1){x}) =
∑
x∈(0,1)

P ({x}) =
∑
x∈(0,1)

px.

There is no way to be sure that the last sum is 1, because the sum has uncountably many terms.
Ordinary Calculus works with finite sums or countable sums (called infinite series). When we try
to add uncountable many terms together many paradoxes may arise and we will avoid it.

Thus, to assign probabilities on uncountably infinite sample spaces we need fresh ideas. Two
such ideas will be discussed later in these notes: 1) a way to assign probabilities on sample spaces
of infinite sequences, and 2) assigning probabilities using density functions.
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4.5 The inclusion-exclusion formula

We now turn our attention to the generalization of the identity

P (A ∪B) = P (A) + P (B)− P (A ∩B)

holding for any two events A and B. The inclusion-exclusion formula says that, in order to find
the probability that at least one of n events Ai occurs, first add the probability of each event, then
subtract the probabilities of all possible two-way intersections, add the probability of all three-way
intersections, and so forth.

Theorem 18 (Inclusion-exclusion formula). Let P be a probability measure on a sample space Ω.
Then, for any n events A1, A2, . . . , An we have

P (A1 ∪ A2 ∪ · · · ∪ An) =
n∑
i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩ Aj) +
∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak)− · · ·

+ (−1)n−1P (A1 ∩ A2 ∩ · · · ∩ An)

Proof. We prove this formula by induction. If we want to prove that a statement holds for all values
of n = 1, 2, 3, . . ., then we first prove it for n = 1, then if assuming that the statement holds for
n = m we manage to prove it for n = m + 1, we are done. The inclusion exclusion formula does
hold trivially for n = 1 and even more, we have proved it before for n = 2. So assume now that it
holds for n = m, that is the probability P (A1 ∪ · · · ∪ Am) is given by the stated formula. We use
this to show the formula for m+ 1 events:

P
(m+1⋃

i=1

Ai

)
= P

(( m⋃
i=1

Ai

)
∪ Am+1

)
= P

( m⋃
i=1

Ai

)
+ P (Am+1)− P

(( m⋃
i=1

Ai

)
∩ Am+1

)
= P

( m⋃
i=1

Ai

)
+ P (Am+1)− P

( m⋃
i=1

(Ai ∩ Am+1)
)

We write out the formula for the two m-element unions, using the induction hypothesis:

=
( m∑
i=1

P (Ai)−
∑

1≤i<j≤m

P (Ai ∩ Aj) +
∑

1≤i<j<k≤m

P (Ai ∩ Aj ∩ Ak)− · · ·
)

+ P (Am+1)

−
( m∑
i=1

P (Ai ∩ Am+1)−
∑

1≤i<j≤m

P (Ai ∩ Aj ∩ Am+1) +
∑

1≤i<j<k≤m

P (Ai ∩ Aj ∩ Ak ∩ Am+1)− · · ·
)

=
m+1∑
i=1

P (Ai)−
∑

1≤i<j≤m+1

P (Ai ∩ Aj) +
∑

1≤i<j<k≤m+1

P (Ai ∩ Aj ∩ Ak)− · · ·

The induction is complete.
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4.6 Examples

Example 19. John and Mary are taking a mathematics course. The course has only three grades:
A, B, and C. The probability that John gets a B is 0.3. The probability that Mary gets a B is 0.4.
The probability that neither gets an A but at least one gets a B is 0.1. What is the probability
that at least one gets a B but neither gets a C?

Solution. Find the sample space first. John and Mary are taking the exam independently of each
other, so each one of them may receive any of the grades A, B, or C. There are 9 possible outcomes,
given in the table {

{A,A}, {A,B}, {A,C},
{B,A}, {B,B}, {B,C},
{C,A}, {C,B}, {C,C}

}
where the first grade is Johns and the second is Mary’s. You are given that

P ({{B,A}, {B,B}, {B,C}}) = 0.3

P ({{A,B}, {B,B}, {C,B}}) = 0.4

P ({{B,B}, {B,C}, {C,B}}) = 0.1.

We have to find P ({{A,B}, {B,B}, {B,A}}) =? In detail, we have

P ({{A,B}, {B,B}, {B,A}}) = P ({A,B}) + P ({B,B}) + P ({B,A})
=
(
P ({A,B}) + P ({B,B}) + P ({C,B})

)
+
(
P ({B,A}) + P ({B,B}) + P ({B,C})

)
−
(
P ({C,B}) + P ({B,B}) + P ({B,C})

)
= P ({{B,A}, {B,B}, {B,C}}) + P ({{A,B}, {B,B}, {C,B}})− P ({{B,B}, {B,C}, {C,B}})
= 0.3 + 0.4− 0.1 = 0.6.

Note that even though we do not know the probability of some of the intermediate events, by
grouping them together, we obtained events whose probability we know.

Example 20. Consider the experiment that consists of rolling a pair of dice.
a) What is the sample space?
b) What is the probability measure?
c) What is the probability that the result is a six and a one?
d) What is the probability that the sum of the dice is x, where x = 2, 3, . . . , 12?

Solution. a) The sample space is not{
{1, 1},{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6},

{3, 3}, {3, 4}, {3, 5}, {3, 6}, {4, 4}, {4, 5}, {4, 6}, {5, 5}, {5, 6}, {6, 6}
}

which is the set of all pairs of numbers between 1 and 6. (Having 15 elements.) Rather, the sample
space is the set of all ordered pairs of numbers between 1, and 6. (Having 36 elements.) Huh?
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What is the difference? The difference is that the sets {1, 2} and {2, 1} are the same, they both
contain the same elements. But the ordered pairs (1, 2) and (2, 1) are not the same. (Think about
the numbers 12 and 21, they are different. Numbers are ordered pairs of digits.) Thus, the sample
space is {

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

}
.

In math notation, the sample space is

Ω = {(i, j) : 1 ≤ i, j ≤ 6}.
b) Since each value of i is equally likely and there should be no connection between the dice, it
makes sense to assume that each pair is equally likely, that is,

pij := P ((i, j)) := 1/36.(3)

c) The event “the result is a six and a one” is {(1, 6), (6, 1)}, so

P ({(1, 6), (6, 1)}) = p16 + p61 = 2/36 = 1/18.

d) Let A be the event that the sum of the dice is x, where x = 2, 3, . . . , 12, that is A = {(i, j) :
i+ j = x}. The easiest way to find this is to list all cases.

If x = 2, then A = {(1, 1)} and P (A) = 1/36.
If x = 3, then A = {(1, 2), (2, 1)} and P (A) = 2/36.
If x = 4, then A = {(1, 3), (2, 2), (3, 1)} and P (A) = 3/36.
If x = 5, then A = {(1, 4), (2, 3), (3, 2), (4, 1)} and P (A) = 4/36.
If x = 6, then A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} and P (A) = 5/36.
If x = 7, then A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} and P (A) = 6/36.
If x = 8, then A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} and P (A) = 5/36.
If x = 9, then A = {(3, 6), (4, 5), (5, 4), (6, 3)} and P (A) = 4/36.
If x = 10, then A = {(4, 6), (5, 5), (6, 4)} and P (A) = 3/36.
If x = 11, then A = {(5, 6), (6, 5)} and P (A) = 2/36.
If x = 12, then A = {(6, 6)} and P (A) = 1/36.

If you play a betting game trying to guess the sum of two dice, then you should always bet
that the sum will be 7 since then the probability of being right is highest.

Example 21. In Example 20 one may consider another probability measure on the sample space.
Suppose that the two dice are entangled just like elementary particles may be entangled in Quantum
Mechanics. This means that if the first die lands on x the second die will also land on the same
number x. In that case the probability measure (3) will be

pij := P ((i, j)) =

{
1/6 if i = j,
0 if i 6= j.

In this case, each die is fair (the probability of each die landing on x is 1/6) but the pair is not.
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We now have some of the tools needed to accurately describe sample spaces and to assign
probability functions to those sample spaces. Nevertheless, in some cases, the description and
assignment process is somewhat arbitrary. Of course, it is to be hoped that the description of
the sample space and the subsequent assignment of a probability function will yield a model which
accurately predicts what would happen if the experiment were actually carried out. As the following
examples show, there are situations in which “reasonable” descriptions of the sample space do not
produce a model which fits the data.

In Feller’s book,3 a pair of models is given which describe arrangements of certain kinds of
elementary particles, such as photons and protons. It turns out experiments have shown that
certain types of elementary particles exhibit behavior which is accurately described by one model,
called “Bose-Einstein statistics,” while other types of elementary particles can be modelled using
“Fermi-Dirac statistics.” Feller says:

We have here an instructive example of the impossibility of selecting or justifying
probability models by a priori arguments. In fact, no pure reasoning could tell that
photons and protons would not obey the same probability laws.

We now give some examples of this description and assignment process.

Example 22. In the quantum mechanical model of the helium atom, various parameters can be
used to classify the energy states of the atom. In the triplet spin state (S = 1) with orbital angular
momentum 1 (L = 1), there are three possibilities, 0, 1, or 2, for the total angular momentum (J).
(It is not assumed that the reader knows what any of this means; in fact, the example is more
illustrative if the reader does not know anything about quantum mechanics.) We would like to
assign probabilities to the three possibilities for J . The reader is undoubtedly resisting the idea of
assigning the probability of 1/3 to each of these outcomes. She should now ask herself why she is
resisting this assignment. The answer is probably because she does not have any “intuition” (i.e.,
experience) about the way in which helium atoms behave. In fact, in this example, the probabilities
1/9, 3/9, and 5/9 are assigned by the theory. The theory gives these assignments because these
frequencies were observed in experiments and further parameters were developed in the theory to
allow these frequencies to be predicted.

5 Combinatorics

There are four main counting techniques that we will cover. In increasing order of difficulty, they
are

• Counting ordered objects when we choose with replacement;

• Counting ordered objects when we choose without replacement;

• Counting unordered objects when we choose without replacement;

• Counting unordered objects when we choose with replacement.
3W. Feller, Introduction to Probability Theory and Its Applications vol. 1, 3rd ed. (New York: John Wiley and

Sons, 1968), p. 41
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5.1 Counting ordered objects when we choose with replacement

Suppose there are n different objects and we need to make r selections. After we select an object
we record it and return it in, so that it can be selected again. The order in which the objects appear
is important. In how many ways can these r selections be made? Each time we select, there are n
possibilities, thus there are

nr

ways to make the selections in this case.

Example 23. How many six letter strings can be formed using the letters A, B, C, D, E, with
repetitions permitted. For example ABBACC counts just as well as ACCEDE, even though the
former is not an English word.

Solution. We must choose which letter to put in each of six different positions; thus 56 =
15, 625 answers the question.

Example 24. Show that there are at least two people in Columbus, Ohio, who have the same three
initials.

Solution. Assuming that each person has three initials, there are 26 possibilities for a person’s
1-st initial, 26 for the second, and 26 for the third. Therefore, there are 263 = 17, 576 possible sets
of initials. This number is smaller than the number of people living in Columbus, Ohio; hence,
there must be at least two people with the same three initials.

A slightly more general case is the following. Consider an experiment that takes place in r
stages and is such that the number of outcomes ni at the i-th stage is independent of the outcomes
of the previous stages. We want to count the number of ways that the entire experiment can be
carried out. There are n1 ways to carry out the 1st stage; for each of these n1 ways, there are n2

ways to carry out the second stage; for each of these n2 ways, there are n3 ways to carry out the third
stage, and so forth. Then the total number of ways in which the entire task can be accomplished is
given by the product

n1n2 · · ·nr.

Example 25. You are eating at Emile’s restaurant and the waiter informs you that you have (a)
two choices for appetizers: soup or juice; (b) three for the main course: a meat, fish, or vegetable
dish; and (c) two for dessert: ice cream or cake. How many possible choices do you have for your
complete meal?

It will often be useful to use a tree diagram when studying probabilities of events relating to
experiments that take place in stages and for which we are given the probabilities for the outcomes
at each stage. Suppose that at every outcome of every stage, we know what the probabilities are
for the different outcomes of the next stage to occur. How should we find the probabilities of the
final outcomes at the end of the r-th stage?

Example 26. Assume that the owner of Emile’s restaurant has observed that 80 percent of his
customers choose the soup for an appetizer and 20 percent choose juice. Of those who choose soup,
50 percent choose meat, 30 percent choose fish, and 20 percent choose the vegetable dish. Of those
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who choose juice for an appetizer, 30 percent choose meat, 40 percent choose fish, and 30 percent
choose the vegetable dish. Find the probabilities that a random customer will choose a particular
two course meal.

Let Ω = {ω1, . . . , ωn} be a finite sample space. A probability measure P on Ω is said to be
uniform if P ({ωk}) = 1/n for all k = 1, 2, . . . , n. In that case, calculating the probability of an
event A reduced to counting the number of elements in A.

P (A) = P
(
∪ω∈A {ω}

)
=
∑
ω∈A

P ({ω}) =
∑
ω∈A

1

n
=
|A|
n
,

where |A| denotes the number of elements of A.
In Example 26, choosing a customer at “random” means that every one has equal probability

of being selected. Thus, we can try to work with the uniform measure on the set of all customers.
Unfortunately, we do not know how many customers there are, that is, we do not know n. Instead,
we are given 6 disjoint events: the sets of customers who ordered soup-meat, soup-fish, soup-veggies,
juice-meat, juice-fish, and juice-veggies and the proportion of customers in each event. With this
information, we can think that the sample space is made up of these 6 elements having respective
probabilities: 0.8× 0.5, 0.8× 0.3, 0.8× 0.2, 0.2× 0.5, 0.2× 0.3, and 0.2× 0.2.

Definition 27 (Uniform distribution). Let n be a positive integer. Let X be the random variable
taking n possible values {1, 2, . . . , n}. We say that X has a uniform distribution if it satisfies
P (X = k) = 1/n for all k = 1, 2, . . . , n.

Note that calculating probabilities involving a uniform random variable reduces to counting.
Indeed, if A ⊂ {1, 2, . . . , n}, then

P (X ∈ A) = P
(
∪a∈A {X = a}

)
=
∑
a∈A

P (X = a) =
∑
a∈A

1

n
=
|A|
n
,

where |A| denotes the number of elements of A. That is, all we have to do to find P (X ∈ A) is
count the elements of A and then divide them by n.

Note that in order to work with the random variable X we do not really have to know the
sample space Ω on which it is defined. In fact, it could be finite or infinite. All that we need
and know are the probabilities of the events {X ∈ A} ⊂ Ω for a subset A of the range of X. (In
Definition 27, the range of X is the set {1, 2, . . . , n}.)

5.2 Counting ordered objects when we choose without replacement

Definition 28. Let A be any finite set. A permutation of A is a one-to-one mapping of A onto
itself.

To specify a particular permutation we list the elements of A and, under them, show where
each element is sent by the one-to-one mapping. For example, if A = {a, b, c} then a possible
permutation would be

σ :=

(
a b c
b c a

)
.
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By the permutation σ, a is sent to b, b is sent to c, and c is sent to a. The condition that the
mapping be one-to-one means that no two elements of A are sent, by the mapping, into the same
element of A. We can put the elements of our set in some order and rename them 1, 2,. . .,n. Then,
a typical permutation of the set A = {a1, a2, a3, a4} can be written in the form(

1 2 3 4
2 1 4 3

)
,

indicating that a1 went to a2, a2 to a1, a3 to a4, and a4 to a3. If we always choose the top row
to be 1, 2, 3, 4 then, to prescribe the permutation, we need only give the bottom row, with the
understanding that this tells us where 1 goes, 2 goes, and so forth, under the mapping. When this is
done, the permutation is often called a rearrangement of the n objects 1, 2, 3, . . ., n. For example,
all possible permutations, or rearrangements, of the numbers A = {1, 2, 3} are:

123, 132, 213, 231, 312, 321.

It is an easy matter to count the number of possible permutations of n objects. By our general
counting principle, there are n ways to assign the 1-st element, for each of these we have n− 1 ways
to assign the second object, n− 2 for the third, and so forth. This proves the following theorem.

Theorem 29. The total number of permutations of a set A of n elements is given by n! :=
n(n− 1)(n− 2) · · · 2 · 1.

The expression 0! is defined to be 1 to make certain formulas come out simpler.

Definition 30. Let A be an n-element set, and let r be an integer between 0 and n. Then a
r-permutation of A is an ordered listing of a subset of A of size r.

Using the same techniques as in the last theorem, the following result is easily proved. The
total number of r-permutations of a set A of n elements is given by

n(n− 1)(n− 2) · · · (n− r + 1).

If we multiply and divide the last expression by (n− r)! we see that

n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)! .

Note that when r = n, an n-permutation becomes just a permutation.

Example 31. Five people of a group of 100 are to receive one of five prizes, each prize having a
distinctive name. In how many ways can the five recipients be selected from the 100 candidates?

Solution. We are not told the names of the prizes, but they might just be ”First Prize,”
”Second Prize,” etc. It is thus clear that the problem of choosing in order five people to receive five
identical prizes is equivalent to the problem of choosing five people to receive five different prizes.
Thus our problem amounts to choosing r = 5 out of n = 100 people. The order counts since the
prizes are different and are ordered as first, second, and so on. The selection is without replacement
because one person may receive only one prize. The answer is thus 100!/95! = 9,034,502,400.
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5.3 Counting unordered objects when we choose without replacement

Let A be a set with n elements. We want to count the number of distinct subsets of the set A
that have exactly r elements. A set is an unordered object, that is, the order of its elements does
not matter. (Here r can be 0, 1, . . . up to n.) The number of distinct subsets with r elements that
can be chosen from a set with n elements is denoted by

(
n
r

)
and is pronounced “n choose r.” The

number
(
n
r

)
is called a binomial coefficient. This terminology comes from an application to algebra

which will be discussed later.

Example 32. Let A = {a, b, c} then the different subsets of A are

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

Hence
(

3
0

)
= 1,

(
3
1

)
= 3,

(
3
2

)
= 3, and

(
3
3

)
= 1.

Clearly, we always have (
n

0

)
=

(
n

n

)
= 1,

because there is exactly one subset of every set with 0 elements, namely the empty set, and exactly
one subset with n elements, namely the set itself.

Theorem 33. The binomial coeffcients are given by the formula(
n

r

)
=
n(n− 1) · · · (n− r + 1)

r!
.(4)

Proof. Each subset of size r of a set of size n can be ordered in r! ways. Each of these orderings is
a r-permutation of the set of size n. The number of r-permutations is n(n − 1) · · · (n − r + 1), so
the number of subsets of size r is

n(n− 1) · · · (n− r + 1)

r!
.

The above formula can be written as (
n

r

)
=

n!

r!(n− r)! ,(5)

which shows immediately that (
n

r

)
=

(
n

n− r

)
.(6)

Another point that should be made concerning formula (4) is that if it is used to define the binomial
coeffcients, then it is no longer necessary to require n to be a positive integer. The variable r must
still be a non-negative integer under this definition. This idea is useful when extending the Binomial
Theorem to general exponents (more on that later). The Binomial Theorem for non-negative integer
exponents is given shortly.
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Theorem 34. For integers n and r with 0 < r < n, the binomial coefficients satisfy(
n

r

)
=

(
n− 1

r

)
+

(
n− 1

r − 1

)
.

Proof. A mindless proof of this identity is to utilize formula (5):(
n− 1

r

)
+

(
n− 1

r − 1

)
=

(n− 1)!

r!(n− r − 1)!
+

(n− 1)!

(r − 1)!(n− r)! =
(n− r)(n− 1)! + r(n− 1)!

r!(n− r)!

=
n(n− 1)!

r!(n− r)! =

(
n

r

)
.

The last identity, together with the fact that
(
n
0

)
=
(
n
n

)
= 1, allows us to compute the binomial

coefficients inductively by the so-called Pascal triangle.(
0
0
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0

) (
1
1
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) (
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) (
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) (
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) (
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) (
3
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) (
4
1

) (
4
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) (
4
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) (
4
4

)(
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0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
...

...
...

...
...

...

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
...

...
...

...
...

...

Theorem 35 (Binomial theorem). The quantity (a+ b)n can be expressed in the form

(a+ b)n =
n∑
r=0

(
n

r

)
arbn−r.(7)

Proof. To see that this expansion is correct, write

(a+ b)n = (a+ b)(a+ b) · · · (a+ b).

When we multiply this out we will have a sum of terms each of which results from a choice of an
a or b for each of n factors. When we choose r a’s and (n − r) b’s, we obtain a term of the form
arbn−r . To determine such a term, we have to specify r of the n terms in the product from which
we choose the a. This can be done in

(
n
r

)
ways. Thus, collecting these terms in the sum contributes

a term
(
n
r

)
arbn−r.
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The following example gives a useful alternative view.

Example 36. In how many ways can you order n letters A and m letters B in a sequence?

Solution. At first it appears that this question asks us to count ordered objects, that is,
sequences, but first looks may be deceiving. A sequence of n letters A and m letters B is n + m
letters long. All that we have to do is choose where to place the letters A. That uniquely defines
the sequence since at the rest of the places we place the B’s. That is, we need to select n positions
out of the n+m positions. So the answer is(

n+m

n

)
.

Incidentally, this is equal to
(
n+m
m

)
— the number of sequences we would have gotten if we were

choosing the places of the letters B first. (See Formula (6).)

Poker players sometimes wonder why a four of a kind beats a full house. A poker hand is a
random subset of 5 elements from a deck of 52 cards. A hand has four of a kind if it has four cards
with the same value—for example, four sixes or four kings. It is a full house if it has three of one
value and two of a second—for example, three twos and two queens. Let us see which hand is more
likely.

Example 37. Compute the probability of obtaining four of a kind and full house in a random
poker hand.

Solution. Assuming that each poker hand is equally likely to occur, we work with the uniform
measure on the set of all poker hands. There are

(
52
5

)
pocket hands. How many hands have four of

a kind? There are 13 ways that we can specify the value for the four cards. For each of these, there
are 48 possibilities for the 5-th card. Thus, the number of four-of-a-kind hands is 13 · 48 = 624.
Since the total number of possible hands is

(
52
5

)
= 2598960, the probability of a hand with four of

a kind is 624/2598960 = 0.00024.
Now consider the case of a full house. How many such hands are there? There are 13 choices for

the value which occurs three times; for each of these there are
(

4
3

)
= 4 choices for the particular three

cards of this value that are in the hand. Having picked these three cards, there are 12 possibilities
for the value which occurs twice; for each of these there are

(
4
2

)
= 6 possibilities for the particular

pair of this value. Thus, the number of full houses is 13 · 4 · 12 · 6 = 3744, and the probability of
obtaining a hand with a full house is 3744/2598960 = 0.0014. Thus, while both types of hands are
unlikely, you are six times more likely to obtain a full house than four of a kind.

5.3.1 The multinomial theorem

Now, we generalize the arguments just presented. Choosing r objects out of n, without replacement,
amounts to dividing the objects into two categories — those that are chosen and those that are
not. In exactly the same way we can consider dividing the objects into more than two categories.
We do retain the condition that the number of objects in each category be determined in advance.
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Suppose that there are r categories, and that we plan to put n1 objects into the first category, n2

into the second, and so on. If we can do this at all, we must have

n1 + n2 + · · ·+ nr = n,

since each object is placed in just one category. For example, if n = 3 and r = 2 with n1 = 2
and n1 = 1, then there are three possible ways for dividing the three objects A,B, and C into two
groups with two objects in the first and one object in the second group:

Group 1 Group 2

{A,B}, {C};
{A,C}, {B};
{B,C}, {A}.

Example 38. Let n1, n2, . . . , nr be r non-negative integers such that n1 + n2 + · · ·+ nr = n. A set
of n distinct objects is to be divided into r distinct groups or sizes n1, n2, . . ., nr respectively. How
many different ways are there to do that?

Solution: There are
(
n
n1

)
ways to put n1 objects in the first group. For each choice for the first

group, there are
(
n−n1

n2

)
possible ways to put n2 (of the remaining objects) objects in the second

group. For each choice of the first two groups, there are
(
n−n1−n2

n3

)
possible choices for the third

group and so on. Hence there are(
n

n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(
n− n1 − n2 − · · · − nr−1

nr

)
=

n!

n1!(n− n1)!

(n− n1)!

n2!(n− n1 − n2)!

(n− n1 − n2)!

n3!(n− n1 − n2 − n3)!
· · · (n− n1 − n2 − · · · − nr−1)!

nr!(n− n1 − n2 − · · · − nr−1 − nr)!

=
n!

n1!n2! · · ·nr!
,

possible ways to do the selection.

Define the notation (
n

n1, n2, . . . , nr

)
:=

n!

n1!n2! · · ·nr!
.

These numbers are called multinomial coefficients because of their use in the following general
formula

Theorem 39 (Multinomial theorem). For any numbers a1, a2, . . . , ar we have

(a1 + a2 + · · ·+ ar)
n =

∑
(n1,n2,...,nr) s.t.
n1+n2+···+nr=n
n1≥0,...,nr≥0

(
n

n1, n2, . . . , nr

)
an1

1 a
n2
2 · · · anrr .(8)

The sum is over all non-negative integer vectors (n1, n2, . . . , nr) such that n1 + n2 + · · ·+ nr = n.
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We are not going to prove the Multinomial theorem, but every educated person should know
it. Note that when r = 2, Theorem 39 reduces to the binomial theorem because the multinomial
coefficients reduce to the binomial coefficients. Indeed, if n1 + n2 = n then(

n

n1, n2

)
=

n!

n1!n2!
=

n!

n1!(n− n1)!
=

(
n

n1

)
,

and an1
1 a

n2
2 = an1

1 a
n−n1
2 .

Another particular case that arises often is n = 2. In that case the multinomial formula reduces
to (why?)

(a1 + a2 + · · ·+ ar)
2 =

n∑
i=1

n∑
j=1

aiaj =
r∑
i=1

a2
i +

r∑
i=1

r∑
j=1
j 6=i

aiaj =
r∑
i=1

a2
i + 2

∑
i<j

aiaj,(9)

where the last sum is over all pairs of integers (i, j), each between 1 and r, such that i < j.
A very useful alternative view is given by the next example.

Example 40. In how many ways can the letters of the word MISSISSIPPI be arranged?

Solution. Clearly the order of the letters in a “word” is important, so it seems that the
question asks you to count ordered objects, but that is deceiving. There are 4 different letters: M
— repeated once; I — repeated 4 times; S — repeated 4 times; and P — repeated 2 times. There
are a total of 11 letters. The different letters are going to be our groups, that is r = 4. The positions
of the 11 letters are going to be our objects, that is n = 11. Next, we let n1 := 1, n2 := 4, n3 := 4,
and n4 := 2. Thus, we have

n1 + n2 + n3 + n4 = 11.

An arrangement of the letters, can be viewed as assigning the positions (the objects) to the letters
(the groups). For example, the arrangement MISSISSIPPI assigned (position) 1 to the first
group (M); assigned (positions) 2, 5, 8, and 11 to the second group (I); assigned (positions) 3, 4,
6, and 7 to the third group (S) and finally positions 9 and 10 to the fourth group (P ).

With this interpretation, we see that there are

n!

n1!n2!n3!n4!
=

11!

1!4!4!2!
= 34, 650

ways to arrange the letters.
Notice, finally, that Example 40 is a generalization of Example 36. Indeen, Example 40 asks

us to count the number of ways in which we can place one M , four I’s, four S’s, and two P ’s in a
sequence.

5.4 Counting unordered objects when we choose with replacement

Suppose there are r objects, from which we want to select n times. Every time we select an object,
we record it, and return it back, so that it could be selected again on the next selection. How many
different selections are there if we only care about how many times each object was selected? (That
is, we do not care about the order in which the objects are selected.) Let us look at an example.
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Example 41. In how many ways can 14 chocolate bars be distributed among five children? To see
how this fits into the current situation, think that each time we hand out one of the 14 bars, we
choose one of the five children to receive it. Thus, it this case, r = 5 and n = 14.

On a sheet of paper draw r bins. This can be achieved by drawing r−1 vertical lines. The first
bin is to the left of the left-most vertical line, the second bin is between the first and the second
vertical line, and so on. The r-th bin is to the right of the right-most vertical line. Next, we start
selecting. Every time an object is selected, we put a star in the bin corresponding to that object.
For convenience, we may order the stars on a horizontal row. When we finish with the selections,
we have stars and bars arranged in a row.

For example, say r = 5 and n = 12, then the arrangement

∗ ∗ | ∗ ∗ ∗ ∗|| ∗ ∗ ∗ | ∗ ∗∗

indicates that the first object was selected 2 times, the second — 4 times, the third — 0 times, and
the fourth — 3 times, and the fifth — 3 times.

Each way of making n selections from r objects, with replacement, disregarding the order of
selection, corresponds to just one such arrangement of the stars and bars. Conversely, each such
arrangement corresponds to a certain selection. Thus, the number we seek is simply the number of
ways to put the stars and bars in order. As noted above, there are r− 1 bars. Since there is a star
for each selection, there are n stars. The number of ways of arranging r − 1 bars and n stars in a
row was discussed in Example 36. It is(

n+ r − 1

r − 1

)
=

(
n+ r − 1

n

)
.

Here is a variation of the above argument.

Example 42. Find the number of different integer vectors (n1, n2, . . . , nr) satisfying

n1 + n2 + · · ·+ nr = n and ni > 0 for all i = 1, 2, . . . , r.

Solution. Think of the integer number n as the sum of n ones: n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

. We want

to find in how many ways we can divide the last sum into r non-empty groups. For example, if
n = 5 and r = 3, there are the following possibilities

1|1|111 1|11|11 1|111|1 11|1|11 11|11|1 111|1|1

corresponding to the solutions

(1, 1, 3) (1, 2, 2) (1, 3, 1) (2, 1, 2) (2, 2, 1) (3, 1, 1).

For n = 5 and r = 3 these are all positive integer solutions of n1 + n2 + n3 = 5. In general, from
the example above, we see that we have to select the positions of r − 1 dividers among the n − 1
spaces between adjacent 1’s. There are (

n− 1

r − 1

)
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ways to do that.

Yet another way to phrase the last example is: find the number of ways to distribute n indis-
tinguishable from each other objects into r different non-empty boxes.

In the binomial expansion (7) the sum is for j from 0 to n. That is, there are n+1 terms in the
sum. A natural question to ask is to find the number of terms in the sum (8). Here is the answer.

Example 43. Find the number of different integer vectors (n1, n2, . . . , nr) satisfying

n1 + n2 + · · ·+ nr = n and ni ≥ 0 for all i = 1, 2, . . . , r.

We give two different solutions since each one shows a different side of the problem.
Solution 1. Think of the integer number n as the sum of n ones: n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

. We

want to find in how many ways we can divide the last sum into r possibly empty groups. For
example, if n = 3 and r = 3, there are the following possibilities

||111 |111| 111|| |1|11 |11|1 1||11 1|11| 11|1| 11||1 1|1|1

corresponding to the solutions

(0, 0, 3) (0, 3, 0) (3, 0, 0) (0, 1, 2) (0, 2, 1) (1, 0, 2) (1, 2, 0) (2, 1, 0) (2, 0, 1) (1, 1, 1).

As before, we have r − 1 dividers, and n ones. But this time the dividers may appear next to each
other. (That corresponds to a 0 in the solution.) So, the question asks, in how many ways we can
order in a sequence r − 1 bars and n ones. The answer was given in Example 36. It is(

n+ r − 1

r − 1

)
.

Solution 2. From every non-negative solution of n1 +n2 + · · ·+nr = n we can obtain a positive
solution of m1 + m2 + · · · + mr = n + r by defining mi = ni + 1 for i = 1, 2, . . . , r. Conversely,
from every positive solution of m1 + m2 + · · · + mr = n + r we obtain a non-negative solution of
n1 +n2 + · · ·+nr = n by defining ni := mi−1 for i = 1, 2, . . . , r. This correspondence is one-to-one.
So, the number of non-negative solutions of n1 + n2 + · · · + nr = n is the same as the number of
positive solutions of m1 +m2 + · · ·+mr = n+ r. The number of the latter is given by Example 42
after replacing n by n+ r. It is (

n+ r − 1

r − 1

)
.

This concludes the example.

Another way to phrase the last example is: the number of ways to distribute n indistinguishable
from each other objects into r different boxes (some of them possibly empty).
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5.5 Binomial distribution

Definition 44 (Bernoulli trials). A Bernoulli trials process is a sequence of n chance experiments
such that

(i) Each experiment has two possible outcomes, which we may call success and failure.

(ii) The probability p of success on each experiment is the same for each experiment, and this
probability is not affected by any knowledge of previous outcomes. The probability q of failure
is given by q = 1− p.

Example 45. The following are Bernoulli trials processes:

(i) A coin is tossed ten times. The two possible outcomes are heads and tails. The probability
of heads on any one toss is 1/2.

(ii) An opinion poll is carried out by asking 1000 people, randomly chosen from the population,
if they favour the Equal Rights Amendment—the two outcomes being yes and no. The
probability p of a yes answer (i.e., a success) indicates the proportion of people in the entire
population that favour this amendment.

(iii) A gambler makes a sequence of 1-dollar bets, betting each time on black at roulette at Las
Vegas. Here a success is winning 1 dollar and a failure is losing 1 dollar. Since in American
roulette the gambler wins if the ball stops on one of 18 out of 38 positions and loses otherwise,
the probability of winning is p = 18/38 = 0.474.
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Figure 3.4: Tree diagram of three Bernoulli trials.

Bernoulli Trials

Our principal use of the binomial coefficients will occur in the study of one of the

important chance processes called Bernoulli trials.

Definition 3.5 A Bernoulli trials process is a sequence of n chance experiments

such that

1. Each experiment has two possible outcomes, which we may call success and

failure.

2. The probability p of success on each experiment is the same for each ex-

periment, and this probability is not affected by any knowledge of previous

outcomes. The probability q of failure is given by q = 1 − p.

2

Example 3.7 The following are Bernoulli trials processes:

1. A coin is tossed ten times. The two possible outcomes are heads and tails.

The probability of heads on any one toss is 1/2.

2. An opinion poll is carried out by asking 1000 people, randomly chosen from

the population, if they favor the Equal Rights Amendment—the two outcomes

being yes and no. The probability p of a yes answer (i.e., a success) indicates

the proportion of people in the entire population that favor this amendment.

3. A gambler makes a sequence of 1-dollar bets, betting each time on black at

roulette at Las Vegas. Here a success is winning 1 dollar and a failure is losing

Figure 1: Tree diagram of three Bernoulli trials
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To analyze a Bernoulli trials process, we choose as our sample space a binary tree and assign
a probability distribution to the paths in this tree. Suppose, for example, that we have three
Bernoulli trials. The possible outcomes are indicated in the tree diagram shown in Figure 1. The
outcomes of the process are all possible ordered triple of S’s and F’s. For example, ω3 represents
the outcomes SFS. The probabilities assigned to the branches of the tree represent the probability
for each individual trial. Since we have assumed that outcomes on any one trial do not affect those
on another, we assign the same probabilities at each level of the tree. Our frequency interpretation
of probability would lead us to expect a fraction p of successes on the first experiment; of these, a
fraction q of failures on the second; and, of these, a fraction p of successes on the third experiment.
This suggests assigning probability pqp to the outcome ω3. And so on.

We shall be particularly interested in the probability that in n Bernoulli trials there are exactly
j successes. We denote this probability by b(n, p, j). Let us calculate the particular value b(3, p, 2)
from our tree measure. We see that there are three paths which have exactly two successes and
one failure, namely ω2, ω3, and ω5. Each of these paths has the same probability p2q. Thus
b(3, p, 2) = 3p2q. Considering all possible numbers of successes we have

b(3, p, 0) = q3,

b(3, p, 1) = 3pq2,

b(3, p, 2) = 3p2q,

b(3, p, 3) = p3.

We can, in the same manner, carry out a tree measure for n experiments and determine b(n, p, r)
for the general case of n Bernoulli trials.

Theorem 46. Given n Bernoulli trials with probability p of success on each experiment, the
probability of exactly r successes is

b(n, p, r) =

(
n

r

)
prqn−r,(10)

where q = 1− p.

Proof. We construct a probability measure on the all outcomes of a n-stage binary tree as described
above. We want to find the sum of the probabilities for all sequences of n S’s and F ’s which have
exactly r successes and n− r failures. Each such path is assigned a probability prqn−r. How many
such paths are there? To specify a path, we have to pick, from the n possible trials, a subset of r to
be successes, with the remaining n− r outcomes being failures. We can do this in

(
n
r

)
ways. Thus

the sum of the probabilities is given by the right-hand side of (10).

Example 47. A fair coin is tossed six times. What is the probability that exactly three heads turn
up?

Solution. The answer is

b(6, 0.5, 3) =

(
6

3

)(1

2

)3(1

2

)3

=
20

64
= 0.3125.
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Example 48. A die is rolled four times. What is the probability that we obtain exactly one 6?

Solution. We treat this as Bernoulli trials with success = “rolling a 6” and failure = “rolling some
number other than a 6.” Then p = 1/6, and the probability of exactly one success in four trials is

b(4, 1/6, 1) =

(
4

1

)(1

6

)1(5

6

)3

= 0.386.

Definition 49 (Binomial distribution). Let n be a positive integer, and let p be a real number
between 0 and 1. Let X be the random variable taking n + 1 possible values {0, 1, 2, . . . , n}. We
say that X has a binomial distribution if it satisfies P (X = r) = b(n, p, r).

The reason why this distribution is called binomial is due to its close relationship with the
binomial theorem. A simple corollary of the binomial theorem we obtain that the probabilities of
the binomial distribution sum up to one. Indeed, let n be a positive integer and p be a real number
between 0 and 1, and let q := 1− p, then

n∑
r=0

b(n, p, i) =
n∑
r=0

(
n

r

)
prqn−r = (p+ q)n = 1n = 1.

In addition, we also have the following interesting relationships:(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= (1 + 1)n = 2n

and (
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)
= (1 + (−1))n = 0.

5.6 More examples

We learned four basic counting techniques. Some examples below will use them. The difficulty
usually lies in the fact that a problem often uses a mixture of these techniques. Sometimes differ-
ent mixtures lead to the correct solution. Seeing in what order to apply the four basic counting
techniques, and applying them properly is an art. To become better at it, you may want to try the
problems after Chapter 2 in [1], all problems there have answers at the end of the text.

Example 50. In how many ways can you place the 3 identical kangaroos in 7 adjacent cells so that
each kangaroo is alone in a cell, and no 2 kangaroos are neighbours? See the following figure.

Solution. There are 7 cells. So, after placing the 3 kangaroos, there will be 4 cells left and we
want these 4 cells to divide the kangaroos. The three kangaroos, define four “bins” around them
we have to place the cells. But we want the second and third bin to be non-empty. That is, we are
looking for the number of integer solutions of

n1 + n2 + n3 + n4 = 4 where n1 ≥ 0, n2 > 0, n3 > 0, n4 ≥ 0.
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The solutions of this system are in one-to-one correspondence with the solutions of the system

m1 +m2 +m3 +m4 = 6 where m1 > 0,m2 > 0,m3 > 0,m4 > 0.

(If you start with a solution of the first system, just add 1 to n1 and n4 to get a solution of the
second system. Conversely, if you start with a solution of the second system, just subtract 1 from
m1 and m4 to get a solution of the first system. See Solution 2 of Example 43). Now, Example 42
tells us that there are

(
5
3

)
= 10 solutions of the second system.

Example 51. In how many ways can you place the kangaroos Annie, Betty, and Clara in 7 adjacent
adjacent cells so that each kangaroo is alone in a cell, and no 2 kangaroos are neighbours?

Solution. Now the kangaroos are different, so placing them A B C is different than
placing them B C A . First, there are 3! ways to order (to permute) the three kangaroos.
Once we have fixed the order, then we start counting in how many different ways we can separate
them. The argument from the previous example applies to each of the 6 permutations of the
kangaroos. So, the answer to this problem is 6× 10 = 60.

Example 52. In a restaurant, six people ordered roast beef, three ordered turkey, two ordered pork
chops, and one ordered vegetarian. The 12 servings are brought from the kitchen and distributed
randomly among the people.

a) What is the probability that everyone gets the correct order?
b) What is the probability that no one gets the correct order?

Solution. The phrase “the 12 servings are brought from the kitchen and distributed randomly
among the people” means that all 12! permutations of the dishes are equally likely. That is, each
permutation of the dishes occurs with probability 1/12!.

a) We have to count, how many are the permutations in which every person gets their order.
The six beef dishes, can be delivered to the six people who ordered them in 6! possible ways. For
every such correct delivery, there are 3! ways in which the people who ordered turkey get turkey. For
each such correct delivery of the turkey, there are 2! ways in which the pork is delivered correctly,
and then only one way for the vegetarian. Thus, there are 6!3!2!1! permutations that deliver the
dishes correctly. Hence the probability that everyone gets the correct order is

6!3!2!1!

12!
=

8, 640

479, 001, 600
= 0.0000180375.

Incidentally, the answer can be written as 1/
(

12
6,3,2,1

)
.

b) We have to count, how many are the permutations in which nobody gets their order. Here
are the dishes

B1, B2, B3, B4, B5, B6, T1, T2, T3, P1, P2, V,

where B stands for a beef dish, T stands for a turkey dish, and V stands for the vegetarian. In
order for the beef guys not to obtain their dish, they must receive the other six dishes, which may
be permuted among them in 6! possible ways. This leaves us with six beef dishes to be given to the
six turkey, pork, and vegetarian clients of the restaurant. The beef dishes can be delivered to the
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six non-beef guys in another 6! ways. Thus, there are 6!6! permutations in which nobody gets their
order. The answer is

6!6!

12!
=

518, 400

479, 001, 600
= 0.00108225.

In this example, we were a bit lucky that the beef guys were exactly equal to the non-beef guys.
The problem would be more difficult if we had, say 5 beef guys and 2 vegetarians, with everything
else kept the same.

Example 53 (The game of craps). The game of craps is played by trowing two fair dice. The game
has two phases: “come-out” and “point”. In the “come-out” phase the player rolls the dice and a
roll with sum 2, 3 or 12 is called “craps” or “crapping out”, and the player loses. A “come-out”
roll of 7 or 11 is a “natural”, and the player wins. The other possible throws in the “come-out”
phase are those with sums: 4, 5, 6, 8, 9, and 10. If the shooter rolls one of these numbers on the
“come-out” roll, this establishes the “point” in the next phase. To win in the “point” phase, the
“point” number must be rolled again before a 7. What is the probability of a win?

Solution. Let us call the two phases phase one and phase two. To win one needs to win either
in phase one or in phase two. Denote these events by W1 and W2. So the event of winning is
W := W1 ∪W2 with the union being disjoint, hence P (W ) = P (W1) + P (W2). First, we have

P (W1) = P (throw sum 7 or 11) =
6

36
+

2

36
=

2

9
.

To win in the second phase, one needs to throw a number N ∈ {4, 5, 6, 8, 9, 10} in the first phase
and then in the second phase throw N again before 7. The event W2 can occur only if we throw
4 in phase one and then throw 4 before 7 in phase two; or if we throw 5 in phase one and then
throw 5 before 7 in phase two; and so on. Denote these events by W4,W5,W6,W8,W9,W10. Thus,
we have the disjoint union

W2 = W4 ∪W5 ∪W6 ∪W8 ∪W9 ∪W10.

We compute the probabilities of these six events.

P (W4) = P (N = 4 and then throw 4 before 7) = P (N = 4)P (throw 4 before 7)

=
3

36

3/36

3/36 + 6/36
=

1

36
.

For the last equality, we used Example 20 that the probabilities to throw 4, 5, 6, 7, 8, 9, 10 are
3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, respectively, and we used the result in Example 59. Analo-
gously, we compute

P (W5) =
4

36

4/36

4/36 + 6/36
=

2

45
;

P (W6) =
5

36

5/36

5/36 + 6/36
=

25

396
;

P (W8) =
5

36

5/36

5/36 + 6/36
=

25

396
;
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P (W9) =
4

36

4/36

4/36 + 6/36
=

2

45
;

P (W10) =
3

36

3/36

3/36 + 6/36
=

1

36
.

Thus

P (W ) =
2

9
+

1

36
+

2

45
+

25

396
+

25

396
+

2

45
+

1

36
=

244

495
= 0.49292.

Example 54 (The Birthday Problem). There are r random people in a room. What is the proba-
bility that two of them will have the same birthday?

Solution. Assume that there are 365 possible birthdays for each person (we ignore leap years).
Order the people from 1 to r. The fact that we select people at random is interpreted to mean
that a person’s birthday could be on any of the 356 days of the year with equal probability. That
is the probability that the first person is born on Jan 1, is 1/365. The sample space consists of all
possible sequences of length r of birthdays each chosen as one of the 365 possible dates. There are
365 possibilities for the 1-st element of the sequence, and for each of these choices there are 365 for
the second, and so forth, making 365r possible sequences of birthdays. The fact that we select r
people at random is interpreted to mean that the probability of any sequence of birthdays of length
r occurring in the room is 1/365r. Note that we have

P (two people will have the same birthday) = 1− P (they all have different birthdays).

It turns out that it is easier to calculate the second probability. We need to answer the following
question. How many sequences of length r are there with distinct integers from 1 to 365? For such
a sequence, we can choose any of the 365 days for the 1-st element, then any of the remaining 364
for the second, 363 for the third, and so forth, until we make r choices. For the r-th choice, there
will be 365− r + 1 possibilities. Hence, the total number of sequences with no duplications is

365 · 364 · 363 · · · (365− r + 1).

Hence

P (they all have different birthdays) =
365 · 364 · 363 · · · (365− r + 1)

365r
=

365!

365r(365− r)! ,
or

P (two people will have the same birthday) = 1− 365!

365r(365− r)! .

You may compute this formula with Maple to get values for different r’s:

r P
21 0.4436883351
22 0.4756953073
23 0.5072972342
24 0.5383442578
30 0.7063162426
40 0.8912318098
50 0.9703735796
60 0.9941226609
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At r = 23 the probability becomes more than 0.5 and at 60 people it is almost certain that two
people will have the same birthday.

In the birthday problem we assumed that all possible sequences of r birthdays have the same
probability. That is, the sequences of length r have uniform probability measure on them.

In the birthday problem, we have assumed that birthdays are equally likely to fall on any
particular day. Statistical evidence suggests that this is not true. However, it is intuitively clear
(but not easy to prove) that this makes it even more likely to have a duplication with a group of r
people.

The birthday problem becomes easier if we slightly modify it by requiring that exactly one pair
of people have the same birthday and the rest have different birthdays.

Example 55. There are r random people in a room. What is the probability that exactly two of
them will have the same birthday?

Solution. We need to count all sequences of length r of numbers from between 1 and 365 having
exactly one pair of equal elements. We can choose the pair having the same birthday in r(r− 1)/2
ways (why?), and once the pair is fixed their birthday may be on any of the 365 days of the year.
The next person in the sequence has to be born on a different day and that can happen in 364 ways,
for the next person, there are 363 possible remaining days, and so on for the last person there will
be (365− r + 2) possible days. Hence the number of our sequences is

r(r − 1)

2
365 · 364 · · · (365− r + 2) =

r(r − 1)

2

365!

(365− r + 1)!
.

Since a sequence of length r is chosen at random with equal probability, the probability of a sequence
to be selected is 1/365r. Thus, the answer to the problem is

r(r − 1)

2

365!

365r(365− r + 1)!
.

There are many interesting problems that relate to properties of a permutation chosen at
random from the set of all permutations of a given finite set. For example, since a permutation is a
one-to-one mapping of the set onto itself, it is interesting to ask how many points are mapped onto
themselves. We call such points fixed points of the mapping.

Example 56 (The fixed-point problem). Find the probability that a random permutation does not
contain a fixed point.

More picturesque versions of the fixed-point problem are:
1) In a restaurant n hats are checked and they are hopelessly scrambled; what is the probability

that no one gets his own hat back? (The hat check problem.)
2) You have arranged the books on your book shelf in alphabetical order by author and they

get returned to your shelf at random; what is the probability that exactly k of the books end up in
their correct position? (The library problem.)

Solution. Recall that a permutation is a one-to-one map of a set A = {a1, a2, . . . an} onto
itself. Let Ai be the event that the i-th element ai remains fixed under this map. We are going to
calculate

P (A1 ∪ A2 ∪ · · · ∪ An).
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using the inclusion-exclusion formula. The probability that a random permutation does not contain
a fixed point is

1− P (A1 ∪ A2 ∪ · · · ∪ An).

If we require that ai is fixed, then the map of the remaining (n− 1) elements provides an arbitrary
permutation of (n−1) objects. Since there are (n−1)! such permutations, P (Ai) = (n−1)!/n! = 1/n.
Note that this probability does not depend on i. In the same way, to have a particular pair (ai, aj)
fixed, we can choose any permutation of the remaining (n − 2) elements; there are (n − 2)! such
choices and thus

P (Ai ∩ Aj) =
(n− 2)!

n!
=

1

n(n− 1)
.

Note that this probability does not depend on i or j. Similarly, for any three events Ai, Aj, and
Ak, we have

P (Ai ∩ Aj ∩ Ak) =
(n− 3)!

n!
=

1

n(n− 1)(n− 2)
.

And so on. Now we substitute these probabilities in the inclusion-exclusion formula.

P (A1 ∪ A2 ∪ · · · ∪ An) =
n∑
i=1

1

n
−

∑
1≤i<j≤n

1

n(n− 1)
+

∑
1≤i<j<k≤n

1

n(n− 1)(n− 2)
− · · ·

+ (−1)n−1 1

n(n− 1)(n− 2) · · · 2 · 1

=

(
n

1

)
1

n
−
(
n

2

)
1

n(n− 1)
+

(
n

3

)
1

n(n− 1)(n− 2)
− · · ·

+ (−1)n−1

(
n

n

)
1

n(n− 1)(n− 2) · · · 2 · 1
= 1− 1

2!
+

1

3!
− · · ·+ (−1)n−1 1

n!
.

This is the probability that a randomly chosen permutation has at least one fixed point. Thus the
probability that a randomly chosen permutation has no fixed points is

P (no fixed points) = 1− P (at least one fixed point) =
1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
.

Recall from Calculus that

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · · .

Thus, when x := −1 we get

e−1 =
1

2!
− 1

3!
+ · · ·+ (−1)n

n!
+ · · · ≈ 0.3678794.

Therefore, the probability that there is no fixed point, i.e., that none of the n people gets his own
hat back, is equal to the sum of the first n terms in the expression for e−1. This series converges
very fast. After n = 9 the probability is essentially equal to e−1 to six significant figures.
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5.6.1 Sample spaces made of sequences

Example 57. Suppose you flip a fair coin once after another for ever. (The probability of obtaining
heads, or tails, on any flip is 1/2.)
a) What is the probability that you flip the first head on the N -th try?
b) What is the probability of getting a head on or before the k-th flip?
c) What is the probability that you flip a head on an even trial?

Solution. Flipping a coin one is modelled by the sample space {H,T} with probability measure
P (H) = P (T ) = 1/2. But now our big experiment consists of flipping a coin once after another for
ever. Thus, the result of the experiment is a sequence of H’s and T ’s. Hence, the set of all possible
outcomes, call it Ω∗, of the experiment is the set of all possible sequences of H’s and T ’s. This
sample space is uncountably infinite, so we cannot assign probability measure to it by assigning
a probability to each of its elements, see Subsection 4.4. We are going to describe now how to
assign probabilities to certain events in Ω∗ that is intuitive and, most importantly correct. (This
correctness claim has to be taken for granted in this course.) The events of Ω∗ are sets of sequences.

What is the natural probability to assign to the set of all sequences that start with an H?
Imagine that 1000 people flip a coin in a sequence for ever. Right after the first flip about 500 of
them will flip an H and the rest a T , what ever happens after that is not important for our event.
Thus, we assign probability 1/2 to this event.

What is the natural probability to assign to the set of all sequences that have an H on the
47-th position? Imagine that 1000 people flip a coin in a sequence for ever. What they flip on the
first try is not important for the event, nor is what they flip on the second flip and so on. But on
the 47-th flip about a half of the people will flip an H and the rest a T , and after that it is not
important again what will happen. Thus, we assign probability 1/2 to this event as well.

What is the natural probability to assign to the set of all sequences that have an H on the
2-nd position and a T on the 4-th position? Imagine that 1000 people flip a coin in a sequence for
ever. What they flip on the first try is not important for the event and about 500 of the people will
flip an H on the second attempt. The third flip is not important, while on the 4-th attempt about
a half of those 500 will flip a T . After that it is not important again what will happen. Thus, we
assign probability (1/2) · (1/2) = 1/4 to this event.

And so on.
a) What is the probability that you flip the first head on the N -th try? This means that

we are interested in the event, call it EN made up of all sequences that have a T on positions
1, 2, 3, . . . , N − 1 and an H on position N . Following the logic from above, we have imposed N
conditions for the outcome of the these N flips. So, the natural probability of this event is 1/2N .

b) What is the probability of getting an H on or before the k-th flip? This means that we are
interested in the event made up of all sequences that have an H for the first time on position 1, or
2, or . . . k. But this event is the disjoint union ∪ki=1Ei, so

P (∪ki=1Ei) =
k∑
i=1

P (Ei) = 1/2 + 1/4 + · · ·+ 1/2k = (2k − 1)/2k.

c) What is the probability that you flip an H on an even trial? This means that we are
interested in the event made up of all sequences that have an H for the first time on position 2, or
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4, or . . . 2k and so on. But this event is the disjoint union ∪∞i=1E2i, so

P (∪∞i=1E2i) =
∞∑
i=1

P (E2i) = 1/4 + 1/16 + 1/64 + · · ·

= 1/4
∞∑
i=0

(1/4)i = (1/4)/(1− 1/4) = 1/3.

The solution is complete.

Exercise 58. Suppose you flip an unfair coin once after another for ever. (The probability of
obtaining a head on any flip is 1/3.)
a) What is the probability that you flip the first head on the N -th try?
b) What is the probability of getting a head on or before the k-th flip?
c) What is the probability that you flip a head on an even trial?

Example 59. An experiment has outcomes Ω = {ω1, ω2, . . .} occurring with probabilities P (ωi) =
pi. Perform the experiment repeatedly. What is the probability that ωi occurs before ωj, where
i 6= j.

Solution. We have a little experiment with outcomes Ω = {ω1, ω2, . . .} occurring with probabilities
P (ωi) = pi, but we repeat it endlessly, one experiment after another. So, we end up with a big
experiment having an outcome that is a sequence of ω’s. The sample space of this big experiment
is the set of all possible sequences of ω’s. (Make sure you read Example 57 before you proceed.)

We are interested in the event, call it E, of all sequences in which ωi occurs before ωj. But
the first time ωi occurs in a sequence could be on position 1, or 2, or any. Let En be the event
consisting of all sequences in which ωi occurs for the first time on the n-th position and ωj does not
occur on any of the previous (n− 1) positions. Note that the events E1, E2, . . . are disjoint (that is
there is no sequence of ω’s that is in say E1 and E2) and

E =
∞⋃
i=1

Ei.

The probability that neither ωi nor ωj occurs in one little experiment is 1 − pi − pj. Thus, En is
the event consisting of all sequences in which neither ωi nor ωj occur on positions 1, 2, . . . , n − 1,
and ωi occurs on position n. Thus,

P (En) = (1− pi − pj)n−1pi.

Thus, we finally have

P (E) = P
( ∞⋃
n=1

En

)
=
∞∑
n=1

P (En) =
∞∑
n=1

(1− pi − pj)n−1pi

= pi

∞∑
n=1

(1− pi − pj)n−1 = pi
1

1− (1− pi − pj)
=

pi
pi + pj

.
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Example 60 (Problem of the points). Perform a sequence of binomial trials, resulting in a success
with probability p and a failure with probability 1 − p. What is the probability that r successes
occur before m failures?

Solution. There are only two outcomes at each trial: S and F but we perform a sequence of
such trials resulting is a sequence of S’s and F ’s. So, we are dealing with a big experiment having
an outcome that is a sequence of S’s and F ’s. The sample space of this experiment is the set of all
possible sequences of S’s and F ’s.

We are interested in the event, call it E, of all sequences in which r S’s occur before m F ’s.
Now, we claim that r successes occur before m failures, if and only if there are at least r

successes in the first r +m− 1 trials.
Indeed, if there are at least r successes in the first r + m − 1 trials, there could be at most

m− 1 failures in those r +m− 1 trials. Thus, r successes occur before m failures.
Suppose now that r successes occur before m failures, and mark the position where the r-th

success occurs. That is, there are already r successes so far and at most m− 1 failures. Say, there
are exactly k ≤ m− 1 failures. In the remaining trials r+ k+ 1, r+ k+ 2, . . . , r+m− 1 there may
be more successes. Hence in the first r +m− 1 trials there will be at least r successes.

Thus, our event E breaks down into a disjoint union of events, Ek, k = r, r + 1, . . . , r +m− 1,
where Ek is the event consisting of all sequences with exactly k successes in the first r+m−1 trials.
The rest of the trials in the sequence do not really matter now. Thus, P (Ek) = b(r + m− 1, p, k),
and we have

P (E) = P
( r+m−1⋃

k=r

Ek

)
=

r+m−1∑
k=r

P (Ek) =
r+m−1∑
k=r

b(r +m− 1, p, k)

=
r+m−1∑
k=r

(
r +m− 1

k

)
pk(1− p)r+m−1−k.

The last example occupies an important place in the history of probability theory. Imagine
two players put up stakes and play some game, with the stakes to go to the winner of the game.
An interruption requires them to stop before either has won, and when each has some sort of a
“partial score.” How should the stakes be divided? Suppose when the game was interrupted John
needed r more points to win it, while Mary needed m more points to win it. John wins each point
with probability p, and Mary wins each point with probability 1 − p. Then, the probability that
John wins the game is Pr,m :=

∑r+m−1
k=r b(r+m−1, p, k). Hence, when the game was interrupted, it

would be fair for John to receive a proportion of the stakes equal to Pr,m and the rest of the stakes
to go to Mary.

6 Conditional probability and independence

6.1 Conditional probability

Suppose that we toss two fair dice. There are 36 possible outcomes each one with probability of
occurring 1/36. Suppose that we observe that the first die is a 4. Given this information, what is
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the probability that the sum of the two dice is equal to 9? We reason as follows. Given that the
initial die is a 4, it follows that there can be at most 6 possible outcomes of our experiment, namely,
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), and (4, 6). Since each of these outcomes originally had the same
probability of occurring, the outcomes should still have equal probabilities. That is, given that the
first die is a 4, the (conditional) probability of each of the outcomes (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
and (4, 6) is 1/6, whereas the (conditional) probability of the other 30 points in the sample space is
now 0. Hence the desired probability will be 1/6. If we let A and B denote, respectively, the event
that the sum of the dice is 9 and the event that the first die is a 4, then the probability just obtained
is called the conditional probability that A occurs given that B has occurred and is denoted by

P (A|B).

Suppose now that A and B are given events in a sample space Ω with probability measure P .
Suppose we run an experiment and the event B occurs. Then, in order for A to occur it is necessary
that the outcome ω be a point in both A and B. That is, it must be in A∩B. Now, as we know that
B has occurred, it follows that B becomes our new or “reduced” sample space; hence the probability
that the event A ∩B occurs will equal the probability of A ∩B relative to the probability of B.

Definition 61. For any two events A and B, with P (B) 6= 0, we define the conditional probability
of A given B by

P (A|B) :=
P (A ∩B)

P (B)
.

We read P (A|B) as “the probability of A, given B.” We can rearrange the definition to give
the so-called multiplication rule:

P (A ∩B) = P (A|B)P (B).

The multiplication rule says that in order to find the probability of both events A ∩B, we need to
find the probability of B and then the probability of A given B. The multiplication rule also holds
when P (B) = 0, since that implies that P (A ∩B) = 0 as well.

Example 62. An experiment consists of rolling a fair die once. Let A be the event that the outcome
is 6, and let B be the event that the outcome is strictly bigger than 4. Suppose that the die is
rolled and we are told that the event B has occurred. This leaves only two possible outcomes: 5
and 6. In the absence of any other information, we would still regard these outcomes to be equally
likely, so the probability of A becomes 1/2, making P (A|B) = 1/2. Alternatively, the formula for
the conditional probability gives us

P (A|B) =
P (A ∩B)

P (B)
=

1/6

1/3
= 1/2.

Example 63. Mary is undecided as to whether to take a French course or a chemistry course. She
estimates that her probability of receiving an A grade would be 1/2 in a French course, and 2/3
in a chemistry course. If Mary decides to base her decision on the flip of a fair coin, what is the
probability that she gets an A in chemistry?
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Solution. Let A be the event that Mary takes chemistry and let B be the event that she
receives an A. Then

P (A ∩B) = P (A)P (B|A) =
1

2

2

3
=

1

3
.

Conditional probabilities behave just like probabilities. In fact P (·|B) is a probability measure
on the set B. Compare the following proposition with the three properties in Definition 14.

Proposition 64. The conditional probability P (·|B) satisfies the following properties.

(i) P (B|B) = 1;

(ii) For every event A ⊂ B, P (A|B) ≥ 0;

(iii) For every sequence A1, A2, A3, . . . of disjoint events

P
( ∞⋃
i=1

Ai

∣∣∣B) =
∞∑
i=1

P (Ai|B).

Prove the proposition as an exercise. For the third property use the fact that
(⋃∞

i=1 Ai

)
∩ B =⋃∞

i=1(Ai ∩B).

Hence, and this is very important, conditional probabilities satisfy the properties of probabili-
ties, given in Section 4.1. For example, for any three events A,B,C we have

P (A ∪B|C) ≤ P (A|C) + P (B|C)

but if A and B are disjoint, then there is equality above.
The multiplication rule can be generalized to n events.

Theorem 65 (Multiplication rule). For any events A1, A2, . . . , An, we have

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ A2 ∩ · · · ∩ An−1).

Proof. Apply the definition of conditional probability to the following identity

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)
P (A2 ∩ A1)

P (A1)

P (A3 ∩ A1 ∩ A2)

P (A1 ∩ A2)
· · · P (An ∩ A1 ∩ A2 ∩ · · · ∩ An−1)

P (A1 ∩ A2 ∩ · · · ∩ An−1)
.

6.2 Independence

The previous examples show that P (A|B) is not generally equal to P (A). In other words, knowing
that B has occurred generally changes the chances that A occurs. In the special cases where
P (A|B) is equal to P (A), we say that A is independent of B. Two events A and B are independent
if P (A|B) = P (A). Otherwise, they are called dependent. Note that if A and B are independent
then

P (A) = P (A|B) =
P (A ∩B)

P (B)
,

and so P (A ∩ B) = P (A)P (B). Often the last equality is used as a definition of independence to
avoid worrying about the case when P (B) = 0.
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Definition 66. Two events A and B are independent if P (A∩B) = P (A)P (B). If the last equality
does not hold then A and B are dependent.

Note that if A and B are independent, then, P (B) = P (A∩B)
P (A)

= P (B∩A)
P (A)

= P (B|A).

Example 67. We toss two fair dice. Let B denote the event that the first die equals 4.
a) Let A denote the event that the sum of the dice is 6.
b) Let A be the event that the sum of the dice is 7.
Are A and B independent events?

Solution. a) On the one hand we have P (A ∩ B) = P ({(4, 2)}) = 1/36, while on the other
hand P (A)P (B) = (5/36)(1/6) = 5/216. So the events A and B are dependent.
b) On the one hand we have P (A∩B) = P ({(4, 3)}) = 1/36, while on the other hand P (A)P (B) =
(6/36)(1/6) = (1/36). So the events A and B are independent.

Lemma 68. If A and B are independent then so are A and Bc.

Proof. Suppose A and B are independent. Since A = (A ∩ B) ∪ (A ∩ Bc) is a disjoint union, we
have

P (A) = P (A ∩B) + P (A ∩Bc) = P (A)P (B) + P (A ∩Bc).

Solving the last equality for P (A ∩Bc), we get

P (A ∩Bc) = P (A)(1− P (B)) = P (A)P (Bc).

This shows that A and Bc are independent.

Corollary 69. If A and B are independent then so are
a) A and Bc;
b) Ac and B;
c) Ac and Bc.

Example 70. Two fair dice are thrown. Let A denote the event that the sum of the dice is 7.
Let B denote the event that the first die equals 4 and let C be the event that the second die
equals 3. From Example 67 we know that A is independent of B, and the same reasoning shows
that A is independent of C. But surprisingly, we have that A is not independent of B ∩ C, since
P (A|B ∩ C) = 1 which is not equal to P (A) = 1/6.

When are more than two events independent? Intuitively, we want information about any of them
occurring not to change the probability that the rest occur.

Definition 71. The events A1, A2, . . . , An are independent if

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aim) = P (Ai1)P (Ai2) · · ·P (Aim),

for any subset of events {Ai1 , Ai2 , . . . , Aim} of the events {A1, A2, . . . , An}.
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For example, three events A, B, and C are independent if

P (A ∩B ∩ C) = P (A)P (B)P (C);

P (A ∩B) = P (A)P (B);

P (A ∩ C) = P (A)P (C); and

P (B ∩ C) = P (B)P (C).

The definition says that if the events A1, A2, . . . , An are independent then any number of those
events are also independent.

The following example describes three events A, B, and C such that A and B are independent;
A and C are independent; and B and C are independent; but the three events A,B, and C are
not independent. The problem is that information about B ∩ C occurring changes the probability
of A. This example is of great importance and explains why, when we have more than 2 events,
assuming pair-wise independence is not enough to conclude that they all are independent.

Example 72. Consider three fair coins that are tossed and the events

A := the second and the third coin show the same outcome;
B := the first and the third coin show the same outcome;
C := the first and the second coin show the same outcome;

Then, we have

P (A) = P ({HHH, HTT, THH, TTT}) =
1

2
,

P (B) = P ({HHH, THT, HTH, TTT}) =
1

2
,

P (C) = P ({HHH, TTH, HHT, TTT}) =
1

2
.

On the other hand, we have

P (A ∩B) = P ({HHH, TTT}) =
1

4
= P (A)P (B);

P (A ∩ C) = P ({HHH, TTT}) =
1

4
= P (A)P (C);

P (B ∩ C) = P ({HHH, TTT}) =
1

4
= P (B)P (C);

showing that any pair of events is independent. But now note that

P (A|B ∩ C) =
P (A ∩B ∩ C)

P (B ∩ C)
=
P ({HHH, TTT})
P ({HHH, TTT}) = 1 6= 1

2
= P (A).

Thus, information that B and C occurred, changes the probability of A. In that sense we cannot
consider the three events A,B, and C to be independent together as a triple. Note that we do not
have equality above, precisely because we do not have equality in

P (A ∩B ∩ C) = P ({HHH, TTT}) =
1

4
6= 1

8
= P (A)P (B)P (C).

That is why in Definition 71 we have to require that this equality holds.
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Here is a useful fact about independent events that we state without proof. The next lemma
generalizes Lemma 68.

Lemma 73. If the events A1, A2, . . . , An are independent, then
a) the events Ac1, A2, . . . , An are independent;
b) the events Ac1, A

c
2, . . . , An are independent; and so on.

Knowing any combination of independent events gives no information about the probability of
any other combination of events, as the next lemma shows.

Lemma 74. Suppose the events A1, A2, . . . , An are independent, then

P (A1 ∩ A2 ∩ · · · ∩ Am|Am+1 ∩ Am+2 ∩ · · · ∩ An) = P (A1 ∩ A2 ∩ · · · ∩ Am).

Proof. By the definition of conditional probability, we have

P (A1 ∩ A2 ∩ · · · ∩ Am|Am+1 ∩ Am+2 ∩ · · · ∩ An) =
P (A1 ∩ A2 ∩ · · · ∩ Am ∩ Am+1 ∩ Am+2 ∩ · · · ∩ An)

P (Am+1 ∩ Am+2 ∩ · · · ∩ An)

=
P (A1)P (A2) · · ·P (Am)P (Am+1)P (Am+2) · · ·P (An)

P (Am+1)P (Am+2) · · ·P (An)

= P (A1)P (A2) · · ·P (Am)

= P (A1 ∩ A2 ∩ · · · ∩ Am),

The People of the State of California vs. Collins was a 1968 jury trial in California, USA that
made notorious forensic use of mathematics and probability.[5]

Example 75 (People vs. Collins). Bystanders to a robbery in Los Angeles testified that the
perpetrators had been a black male, with a beard and moustache, and a caucasian female with
blonde hair tied in a ponytail. They had escaped in a yellow motor car.

After testimony from an “instructor in mathematics” about the multiplication rule for probabil-
ity, the prosecutor invited the jury to consider the probability that the accused pair, who fitted the
description of the witnesses, were not the robbers. Even though the “instructor” had not discussed
conditional probability, the prosecutor suggested that the jury would be safe in estimating:

Black man with beard 1 in 10
Man with moustache 1 in 4
White woman with pony tail 1 in 10
White woman with blonde hair 1 in 3
Yellow motor car 1 in 10
Interracial couple in a car 1 in 1000

The jury returned a verdict of guilty. Was the jury correct?
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Solution. First, we find the probability that a randomly chosen couple in Los Angeles matches
the description of the witnesses? Assuming that the events: “Black man with beard”, “Man with
moustache”, . . ., “Interracial couple in a car” are independent, then

P (A random couple matches the description) =
1

10

1

4

1

10

1

3

1

10

1

1000
=

1

12, 000, 000
.

Denote this probability by p, that is, p := 1/12, 000, 000. At the time of the trial there were
approximately n := 8, 000, 000 couples in Los Angeles area who could have possibly committed the
crime. (So, p is the probability that a randomly chosen couple from the population matches the
description.)

So, a priori, it seems that the jury was right to reach a guilty verdict since the probability of
a couple matching the description is so small. To go into the issue deeper, we will calculate the
probability that at least two couples in a large population have the characteristics, given that at
least one has the characteristics. Let

A := the event that at least one couple matches the description,
B := the event that at least two couples match the description,

We are going to calculate the probability P (B|A) that there is another couple that matches the
description, given that there is at least one couple that matches the description. Using that B ⊂ A,
we have

P (B|A) =
P (A ∩B)

P (A)
=
P (B)

P (A)
.

Calculating P (A) is easier, so we start with it. We imagine n binomial trials with with probability
of success p, and we want to know the probability of exactly one success. That is, we examine, the
n possible couples and we know that with probability p any one of them may match the description.
The probability of A is

P (A) = 1− P (Ac) = 1− P (no couple matches the descr) = 1− b(n, p, 0) = 1− (1− p)n.
The probability of B is

P (B) = 1− P (Bc) = 1− P (0 or 1 couples match descr.)

= 1− P (exactly 0 couple matches descr.)− P (exactly 1 couples match descr.)

= 1− b(n, p, 0)− b(n, p, 1)

= 1− (1− p)n − np(1− p)n−1.

Substituting into the conditional probability we obtain

P (B|A) =
P (B)

P (A)
=

1− (1− p)n − np(1− p)n−1

1− (1− p)n = 1− np(1− p)n−1

1− (1− p)n ≈ 0.2961.

Our results show that there is almost 30% chance that there is another couple with the given
characteristics, if there is one. Note that the a priori probability of B is P (B) = 0.1440765 almost
half of the conditional (posterior) probability P (B|A). So, the fact that there is one couple matching
the description on the stand, increases the probability that there is at least one more couple by over
two times The jury had to be more careful handing out the verdict.

The last example illustrates the so-called Prosecutor’s Fallacy. You may find more information
about it in the appendix.
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6.3 Bayes’ theorem

Definition 76. If A1, A2, . . . , An are disjoint events such that
⋃n
i=1 Ai = Ω then say say that the

events A1, A2, . . . , An partition Ω.

Lemma 77 (The law of total probability). Let the events A1, A2, . . . , An partition Ω and let B be
any other event. Then

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An).

Proof. Since the events A1, A2, . . . , An are disjoint, then so are the events B∩A1, B∩A2, . . . , B∩An
and since B =

⋃n
i=1B ∩ Ai, from the axioms of probability measure, we have

P (B) = P (B ∩ A1) + P (B ∩ A2) + · · ·+ P (B ∩ An)

= P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An).

The next example is analogous to Example 59. In fact, it can be solved in exactly the same
way but now we will give an alternative solution based on conditional probability.

Example 78. Suppose we perform an experiment in a sequence, independently, and suppose A
and B are two mutually exclusive (disjoint) events. What is the probability that event A occurs
before event B?

Solution. The events A and B are subsets of some sample space Ω with probability measure
P . Let C := Ω \ (A ∪ B), that is when the experiment is performed exactly one of A, B, or C
happens. Performing the experiment in a sequence is another, let us call it, big experiment. The
set of all possible outcomes of the big experiment are all sequences of letters A, B, or C. This is
the sample space of the big experiment, call it Ω∗. Let H ⊆ Ω∗ be the event that A occurs before
B, that is, the set of all sequences in Ω∗ in which the letter A occurs before B. Let E ⊆ Ω∗ be the
event that A occurs on the first trial of the experiment, that is, the set of all sequences in Ω∗ that
start with the letter A. Let F ⊆ Ω∗ be the event that B occurs on the first trial of the experiment,
that is, the set of all sequences in Ω∗ that start with the letter B. Let G ⊆ Ω∗ be the event that
neither A nor B occurs on the first trial of the experiment, that is, the set of all sequences in Ω∗

that start with the letter C. Note that the events E,F,G partition the sample space Ω∗ since they
are disjoint and exactly one of A,B, or C must always occur on the first trial of the experiment. Let
P ∗ be the probability measure on Ω∗ that we know how to compute on certain events, as described
in the examples in Subsection 5.6.1 Then by the law of total probability, on the one hand we have

P ∗(H) = P ∗(H|E)P ∗(E) + P ∗(H|F )P ∗(F ) + P ∗(H|G)P ∗(G).

On the other hand we have P ∗(E) = P (A), P ∗(F ) = P (B), P ∗(G) = 1− P (A)− P (B) and

P ∗(H|E) = 1,

P ∗(H|F ) = 0,

P ∗(H|G) = P ∗(H).
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The first two conditional probabilities above are obvious. For the third note that if the first exper-
imental outcome is neither in A nor in B, then at that point the situation is exactly as when the
problem first started; namely, the experimenter will continue to perform the experiment until either
A or B occurs. The trials are independent, therefore, the outcome of the first trial will have no
effect on subsequent ones. Thus, P ∗(H|G) = P ∗(H ∩ G)/P ∗(G) = P ∗(H)P ∗(G)/P ∗(G) = P ∗(H).
Substituting everything into the law of total probability, we get

P ∗(H) = P (A) + P ∗(H)(1− P (A)− P (B)).

Solving for P ∗(H) gives

P ∗(H) =
P (A)

P (A) + P (B)
.

Theorem 79 (Bayes theorem). Let A1, A2, . . . , An be a partition of Ω with P (Ai) > 0, i =
1, 2, . . . , n. Let B be any event with P (B) > 0. Then

P (Ai|B) =
P (B|Ai)P (Ai)

P (B|A1)P (A1) + · · ·+ P (B|An)P (An)
.

Proof. By the definition of conditional probability, we have

P (Ai|B) =
P (Ai ∩B)

P (B)
=
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)

P (B|A1)P (A1) + · · ·+ P (B|An)P (An)
,

where for the last equality, we used the law of total probability to express the denominator.

The mutually exclusive sets A1, A2, . . . , An forming the partition of Ω are called states of
nature. One of them must occur after every experiment (since their union is Ω). The probabilities
P (A1), P (A2), . . ., P (An) are called prior probabilities and it is supposed that P (A1), P (A2), . . .,
P (An) are known.

Then, based on new information (obtained from an experiment telling us that B occurred) we
revise the prior probabilities to what are called posterior probabilities. The Bayes’ theorem tells
us how this revision can be done.

In other words, let B be an outcome of an experiment designed to help determine which is the
true state of nature (that is, which Ai has occurred), suppose P (B|Ai) is known, i = 1, ..., n. Then
the posterior probability of a state of nature, say Ai, given the experiment B is P (Ai|B).

Example 80. The AIDS incidence rate is 6 cases per 1, 000 Americans. Suppose that a person
selected randomly for testing, tests positive for AIDS. The test is known to be highly accurate
(99.9% for people with AIDS and 99% for people who do not). The AIDS incidence rate in the
general population is 6 cases in 1000 people. What is the probability that the person actually has
AIDS?

Soluton. Denote by AIDS the event that the person has AIDS and by noAIDS the complement
of this event. We are given that

P (AIDS) = 0.006 hence P (noAIDS) = 0.994.
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The two states of nature here are AIDS and noAIDS. We want to recalculate the probabilities of
these events, in view of the additional information that a test came up positive. Denote by POS
the event that the test is positive and by noPOS the complement of this event, that is, the test is
negative. The test accuracy information gives:

P (POS|AIDS) = 0.999 P (POS|noAIDS) = 0.01

We are primarily concerned with recomputing the new probability of the state of nature AIDS.

P (AIDS|POS) =
P (AIDS ∩ POS)

P (POS)
=

P (AIDS ∩ POS)

P (AIDS ∩ POS) + P (noAIDS ∩ POS)

=
P (AIDS)P (POS|AIDS)

P (AIDS)P (POS|AIDS) + P (noAIDS)P (POS|noAIDS)
(Bayes’ theorem)

=
0.006× 0.999

0.006× 0.999 + 0.994× 0.01
=

0.005994

0.005994 + 0.00994
= 0.38.

Thus, the probability that a person has AIDS given that he tested positive is 38%, a shockingly
low number in view of the perceived high accuracy of the test.

The conditional probability P (POS|noAIDS) = 0.01 is called false positive, the test is
positive but a conclusion based on it would be false. The conditional probability

P (not POS|AIDS) = 1− P (POS|AIDS) = 0.001

is called false negative, the test is negative but a conclusion based on it would be false.

Example 81. Suppose we have a box that contains one fair coin and one coin with a head on each
side. A coin is selected at random and is tossed. Heads is obtained. Find the probability that we
flipped the fair coin.

Solution. Let S1 be the event that the fair coin is tossed and let S2 be the probability that the
unfair coin was tossed. The events S1 and S2 form a partition of the sample space (whatever it is)
since the box does not contain anything else and exactly one coin is selected. Let E be the event
that heads is obtained when the coin is tossed. We need to find P (S1|E). By the Bayes’ theorem
we have

P (S1|E) =
P (S1 ∩ E)

P (E)
=

P (S1)P (E|S1)

P (S1 ∩ E) + P (S2 ∩ E)

=
P (S1)P (E|S1)

P (S1)P (E|S1) + P (S2)P (E|S2)
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)(1)
= 1/3.

Example 82. Suppose we have a box that contains one fair coin and one coin with a head on each
side. A coin is selected at random and is tossed twice. Both times heads were obtained. Find the
probability that we flipped the fair coin.
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Solution. Let S1 be the event that the fair coin is tossed and let S2 be the probability that the
unfair coin was tossed. The events S1 and S2 form a partition of the sample space (whatever it is)
since the box does not contain anything else and exactly one coin is selected. Let E be the event
that heads are obtained when the coin is tossed twice. We need to find P (S1|E). By the Bayes’
theorem we have

P (S1|E) =
P (S1 ∩ E)

P (E)
=

P (S1)P (E|S1)

P (S1 ∩ E) + P (S2 ∩ E)

=
P (S1)P (E|S1)

P (S1)P (E|S1) + P (S2)P (E|S2)
=

(1/2)(1/4)

(1/2)(1/4) + (1/2)(1)
= 1/5.

As more heads are observed, the probability that the coin is fair keeps decreasing. That makes
sense. If we keep observing heads, then it would seem more likely that we indeed have the two-
headed coin. One may verify as an exercise that if three consecutive heads are observed then the
probability of having selected the fair coin would be 1/9.

Example 83 (Monty Hall problem). Suppose you’re on Monty Hall’s Let’s Make a Deal! You are
given the choice of three doors, behind one door is a car, behind the others—goats. You pick a
door, say 1, Monty opens another door, say 3, which has a goat. Monty says to you “Do you want
to pick door 2?” Is it to your advantage to switch your choice of doors?

Solution. We will calculate the probability that you pick a door and you stay with it and then the
probability that you pick a door and switch. In the first case you pick a door at random from three
possible ones, so the probability to win the car is 1/3. Let Ei be the event that the car is behind
door i = 1, 2, 3. It is natural to assume that P (E1) = P (E2) = P (E3) = 1/3. Let Fi be the event
that the host reveals door i = 1, 2, 3. Note that the events E1, E2, E3 partition the sample space.
Since the prices are randomly permuted behind the doors, without loss of generality, suppose the
player chooses door 1. Then, P (F1) = 0 since the host cannot reveal the door that the contestant
chose; P (E2 ∩F2) = P (E3 ∩F3) = 0 since the host will not open the door with the car behind. We
assume that if the host has a choice between two doors to open, he will choose any one of them at
random with probability 1/2, that is, we assume P (F2|E1) = P (F3|E1) = 1/2.

We now calculate the probability that the player wins if he switches.

P (E3|F2) =
P (E3 ∩ F2)

P (F2)
=
P (F2|E3)P (E3)

P (F2)
=

P (F2|E3)P (E3)

P (F2|E1)P (E1) + P (F2|E2)P (E2) + P (F2|E3)P (E3)

=
1(1/3)

(1/2)(1/3) + 0(1/3) + 1(1/3)
=

1/3

1/2
=

2

3
.

So the probability of winning doubles if the player switches.

Exercise 84. Flip a fair coin repeatedly. What is the probability that the first sequence of heads
is exactly two heads long?
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7 Random variables

7.1 Density function

Suppose you are given a sample space Ω with a probability measure P . A random variable is a
function X : Ω→ R.

Definition 85. A random variable that takes on finite or at most a countable number of possible
values is said to be discrete. The probability mass function p(a) of X is defined by

p(a) := P (X = a) := P ({ω ∈ Ω : X(ω) = a}).

So, p(a) is just the probability that X takes the value a. If X takes only the values x1, x2, . . .,
then p(xi) ≥ 0 for all i = 1, 2, . . . and p(x) = 0 for all other x’s. Since X must take on one of the
values xi, we have

∞∑
i=1

p(xi) = 1.

Definition 86. If the random variable X takes uncountably many different values, for example, if
it can take any value in an interval (a, b), then X is called continuous random variable.

If X is a continuous random variable, then things are a little bit more complicated and that is
why we will consider only a special class of continuous random variables.

Definition 87. A random variable X is absolutely continuous if there is a non-negative function
f(x) defined on R such that for any interval [a, b] of values of X the following equality is true

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx.(11)

The function f(x) is called probability density of X, or p.d.f. of X, or just density of X.

The essential properties of a density function are

1.) f(x) ≥ 0 for all x, and

2.)
∫∞
−∞ f(x) dx = P (X ∈ (−∞,∞)) = 1.

If we let a = b in Equation (11), we obtain

P (X = a) =

∫ a

a

f(x) dx = 0.

This equation states that the probability a continuous random variable assumes any fixed value
is zero. Isn’t this a paradox? This does not mean that X can never assume value a, just that
if you pre-specify a you will never see that exact value, maybe due to measuring errors (you can
only measure with finite precision) or some other problem. In practice continuous measurements
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are usually rounded. When I say that I weigh 75kgs, I really mean that I weigh between 74.99 and
75.01 depending on the precision of my scales. Then

P (X is about 75) = P (74.99 ≤ X ≤ 75.01) =

∫ 75.01

74.99

f(x) dx

and the last integral is perhaps different from zero. Another oddity is that the pdf function is
not unique. You can change a pdf at a discrete (for example) set of points without changing the
integral. For example the following three functions give the same integrals

f(x) =

{
e−x x > 0,
0 x ≤ 0;

f(x) =

{
e−x x ≥ 0,
0 x < 0;

f(x) =


e−x x ≥ 0, x 6= 4,
10 x = 4,
0 x < 0;

Definition 88. We say that a continuous random variable X is uniformly distributed in the interval
[a, b] if its pdf is

f(x) =

{
1/(b− a) if x ∈ [a, b],
0 otherwise.

Let [c, d] ⊂ [a, b], from the definition, we compute

P (c ≤ X ≤ d) =

∫ d

c

1

b− a dx =
d− c
b− a.

Uniformly distributed random variables are used to model experiments whose outcomes are values
in an interval [a, b] and the probability that the outcome is in a subinterval [c, d] ⊂ [a, b] depends
only on the length of [c, d].

Notice that if a = 0 and b = 1/2, then f(x) = 1/(1/2− 0) = 2 for all x ∈ [0, 1/2]. But that is
a number bigger than 1 and probabilities are less than 1! This reinforces the fact that density are
not probabilities, the integral of the density gives probabilities.

It is important to remember that continuous random variables are two types: those that have
a probability density function and those that do not.

Example 89. Consider a random variable X whose values are the outcomes of the following exper-
iment. Throw a fair coin. If the outcome is H then pick a random number uniformly distributed in
[0, 1]. If the outcome is T then pick a random number from the set {2, 3} with probabilities 2/3, 1/3,
respectively. This random variable is continuous since it can take uncountably many values, namely
any value in [0, 1] ∪ {2, 3} but it is not absolutely continuous as we will see in the next section.

7.2 Cumulative distribution function

Definition 90. Let X be a random variable (discrete or continuous). The cumulative distribution
function of X is

F (x) = P (X ≤ x) for −∞ < x <∞.

For short we will call F (x) just the distribution of X or the cdf of X. It has the following
properties
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1.) F (x) is increasing function: if x1 ≤ x2 then F (x1) ≤ F (x2). Indeed, the event {X ≤ x1}
is a subset of the event {X ≤ x2} so the probability of the first is less-than-or-equal than the
probability of the second.

2.) limx→∞ F (x) = 1.
3.) limx→−∞ F (x) = 0.
4.) F (x) is continuous from the right. This means that if y approaches x with bigger values

(on the right), then F (y) approaches F (x). We write this as limy→x+ F (y) = F (x). In other words,
if y1 ≥ y2 ≥ y3 ≥ · · · is a decreasing sequence converging to x (note that necessarily x ≤ yn. ) then
F (yn) is a decreasing sequence converging to F (x).

Example 91. If X is a discrete random variable having a probability mass function p(1) = 1/6,
p(2) = 1/6, p(3) = 1/4, p(4) = 5/12, then its cdf is

F (x) =


0 if x < 1,
1/6 if 1 ≤ x < 2,
1/3 if 2 ≤ x < 3,
7/12 if 3 ≤ x < 4,
1 if 4 ≤ x.

Note that if is an absolutely continuous random variable with pdf f(x), then

F (x) =

∫ x

−∞
f(x) dx.(12)

Example 92. If X is uniformly distributed in [a, b], then

F (x) =


0 if x < a,
(x− a)/(b− a) if a ≤ x < b,
1 if b ≤ x.

The four properties of the cumulative distribution function completely characterize it.

Theorem 93. If a function F (x) satisfies the four properties after Definition 90 then there is a
random variable X with cumulative distribution function equal to F (x).

It is important to remember that not every random variable X has a probability density func-
tion, for example the discrete random variables do not have probability density function, they have
probability mass function. By our definition, if X is continuous, then it has to be absolutely contin-
uous to have probability density function. But, every random variable has cumulative distribution
function F (x) because by definition F (x) = P (X ≤ x) and the latter probability is a well-defined
number. The next rule for recognizing when a random variable has a probability density function
is very important.

If a random variable X has density, then by (12), its cumulative distribution function F (x) is
continuous. So, looking at the cumulative distribution function, if it has jumps, then the random
variable cannot be absolutely continuous.

Let us look at the cdf of the random variable X described in Exercise 89.
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Example 94. Consider the random variable X described in Exercise 89. Let Y be a random
variable representing the coin flip, that is Y takes values H and T with probabilities 1/2, 1/2
respectively. Let Z be a random variable uniformly distributed in [0, 1] and let T be a random
variable taking values {2, 3} with probabilities 2/3, 1/3, respectively. We consider several cases.

1) Let x < 0, then F (x) = P (X ≤ x) = 0 since the r.v. X never takes values smaller than 0.
2) Let 0 ≤ x ≤ 1, then {X ≤ x} = {Y = H} ∩ {Z ≤ x} where the last two events are

independent. Hence

F (x) = P (X ≤ x) = P ({Y = H} ∩ {Z ≤ x}) = P (Y = H)P (Z ≤ x) =
1

2

x− 0

1− 0
=
x

2
.

3) Let 1 ≤ x < 2, then {X ≤ x} = {X ≤ 1} and F (x) = P (X ≤ x) = P (X ≤ 1) = F (1) = 1/2,
where F (1) was computed in case 1.

4) Let 2 ≤ x < 3, then

{X ≤ x} = {X ≤ 2} = {X ≤ 1} ∪ {1 < X ≤ 2} = {X ≤ 1} ∪ {X = 2},

where the union is disjoint. Hence, F (x) = P ({X ≤ 1} ∪ {X = 2}) = P ({X ≤ 1}) + P ({X =
2}) = 1/2 + P ({X = 2}). Now, {X = 2} = {Y = T} ∩ {T = 2}, where the last two events are
independent, implying that P (X = 2) = P (Y = T )P (T = 2) = (1/2)(2/3) = 1/3. Thus, in this
case F (x) = 1/2 + 1/3 = 5/6.

5) Let 3 ≤ x, then

{X ≤ x} = {X ≤ 3} = {X ≤ 1} ∪ {1 < X ≤ 2} ∪ {2 < X ≤ 3} = {X ≤ 1} ∪ {X = 2} ∪ {X = 3}.

But we do not need the last union at all. Since X can takes only values that are always less-than-
or-equal to 3, we have F (x) = P (X ≤ 3) = 1.

We summarize all cases in

F (x) =


0 if x < 0,
x/2 if 0 ≤ x < 1,
1/2 if 1 ≤ x < 2,
5/6 if 2 ≤ x < 3,
1 if 3 ≤ x.

Since F (x) is not continuous (note that it always has to be right-continuous) we conclude that X
does not have a probability density function. So this is an example of a continuous random variable
that is not absolutely continuous.

As we know a cdf is always right continuous but it may not be left continuous. Since F is
increasing function F (x) ≤ F (a) for all x ≤ a. Hence taking the limit as x approaches a from the
left we obtain that

lim
x→a−

F (x) ≤ F (a).

The limit of F (x) as x approaches a number a from the left is denoted by F (a−), that is, we define
the notation

F (a−) := lim
x→a−

F (x)
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and the above observation may be written as

F (a−) ≤ F (a) for all a ∈ R.

The cumulative distribution function can answer all questions about a random variable X.

Lemma 95. If X is a random variable with cdf F (x) then

(i) P (X < a) = F (a−);

(ii) P (X = a) = F (a)− F (a−).

(iii) P (a < X ≤ b) = F (b)− F (a);

(iv) P (a < X < b) = F (b−)− F (a);

(v) P (a ≤ X < b) = F (b−)− F (a−);

(vi) P (a < X) = 1− F (a).

Proof. (i) We are going to take this property on faith, without proof and will use it to derive the
rest of the properties.

(ii) Since {X ≤ a} = {X = a}∪{X < a} with the union being disjoint, taking probabilities gives

F (a) = P (X ≤ a) = P (X = a) + P (X < a) = P (X = a) + F (a−).

Solve for P (X = a) to get the result.

(iii) Since {X ≤ b} = {a < X ≤ b} ∪ {X ≤ a} with the union being disjoint, taking probabilities
one concludes as in the previous case.

The reset of the items are left as an exercise.

If X is an absolutely continuous random variable, then X has a probability density function
and the cdf F (x) is continuous. Then, F (a−) = F (a) for all a ∈ R. From the lemma we see that

• P (X ≤ a) = P (X < a) = F (a);

• P (X = a) = 0;

• P (a < X ≤ b) = P (a ≤ X < b) = P (a < X < b) = P (a ≤ X ≤ b) = F (b)− F (a).

Henceforth, all continuous random variables that we consider will be absolutely continuous
random variables. That is why we will omit the word ‘absolutely’ and just call them continuous.

Suppose X is absolutely continuous random variable, that is, X has a probability density
function f(x). So how can we obtain f(x) if we know FX(x)? The answer lies in the integral
representation (12) of FX(x) and the fundamental theorem of calculus.
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Theorem 96 (The fundamental theorem of calculus). If f(x) is continuous and integrable function,
then the function

F (x) =

∫ x

−∞
f(y) dy

is differentiable and F ′(x) = f(x) for all x.

When we want to emphasize that a p.d.f. f(x) and a c.d.f. F (x) are those of a random variable
X, we write fX(x) and FX(x).

Example 97. Let X be a continuous random variable with p.d.f. f(x) and c.d.f. F (x). Find the
p.d.f. and the c.d.f. of the random variable Y := |X|.

Solution. Note that Y takes only positive values, so FY (y) = P (Y ≤ y) = 0 for y < 0. When
0 ≤ y we compute

FY (y) = P (Y ≤ y) = P (|X| ≤ y) = P (−y ≤ X ≤ y) = FX(y)− FX(−y).

To find fY (y) differentiate both sides of the above with respect to y, using that d
dy
FX(y) = fX(y):

fY (y) = fX(y) + fX(−y).

Example 98. Let X be a continuous random variable with p.d.f. f(x) and c.d.f. F (x). Find the
p.d.f. and the c.d.f. of the random variable Y := X2.

Solution. Note that Y takes only positive values, so FY (y) = P (Y ≤ y) = 0 for y < 0. When
0 ≤ y we compute

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√y ≤ X ≤ √y) = FX(
√
y)− FX(−√y).

To find fY (y) differentiate both sides of the above with respect to y, using that d
dy
FX(
√
y) =

fX(
√
y) 1

2
√
y
:

fY (y) =
1

2
√
y

(
fX(
√
y) + fX(−√y)

)
.

We conclude this section with an interpretation of the probability density function. As we said,
the value f(x) is not the probability that X will take value x. Instead we have the following

F (x+ h)− F (x) = P (x ≤ X ≤ x+ h)

Dividing both sides by h, and taking limit as h goes to 0, we obtain

f(x) = F ′(x) = lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

P (x ≤ X ≤ x+ h)

h
,

where we used the fundamental theorem of calculus, Theorem 96, to assertain the first equality.
Hence, for values of h close to 0

f(x)h ≈ P (x ≤ X ≤ x+ h).(13)

This is the intuitive meaning behind the p.d.f.
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8 Expected value & variance

One of the most important concepts in probability theory is that of the expectation of a random
variable.

Definition 99 (Expected value). Let X be a random variable. The expectation or the expected
value, or the mean of X, denoted by E[X], is defined as follows.

• If X is a discrete random variable with values {x1, x2, . . .} and probability mass function p(x)

E[X] :=
∞∑
i=1

xip(xi).

• If X is a continuous random variable with values in R and probability density function f(x)

E[X] :=

∫ ∞
−∞

xf(x) dx.

Often the expected value is denoted by µ, that is µ := E[X].

Note the similarities between the discrete and the continuous case: the sum becomes an integral
and the probability mass function becomes the probability density function. The expected value of
X is just the average of all the values that X takes. It is actually a weighted average with weights
determined by the probability mass function p(x) or the probability density function f(x).

Assume that the relative frequency interpretation of probabilities holds. That is, if we run
an experiment an infinite number of times, then for any event E, the proportion of time that E
occurs will be P (E). Now, consider a random variable X that takes values {x1, x2, . . . , xn} with
probabilities {p(x1), p(x2), . . . , p(xn)}. Think of X as representing our winings in a single game.
That is, with probability p(xi) we win xi units i = 1, 2, . . . , xn. It follows that if we continually
play this game, then the proportion of time that we win xi will be p(xi). As this is true for all
i = 1, 2, . . . , n, it follows that our average winnings per game will be

∑n
i=1 xip(xi) = E[X].

Example 100. Find E[X] where X is the outcome when we roll a fair die. The random variable
X takes values {1, 2, 3, 4, 5, 6} with probabilities p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6.
Thus

E[X] = 1(1/6) + 2(1/6) + · · ·+ 6(1/6) =
1 + 2 + 3 + 4 + 5 + 6

6
=

7

2
.

Example 101. Let A ⊂ Ω be an event and consider the random variable

X(ω) =

{
1 if ω ∈ A,
0 if ω 6∈ A.

The random variable X is discrete, it takes only two values {0, 1}, and is called the indicator
function of A. Its pdf is p(1) = P (X = 1) = P (A) and p(0) = P (X = 0) = P (Ac). Hence, the
expected value of X is

E[X] = 0p(0) + 1p(1) = P (A).
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Example 102. Let X be a binomial random variable, that is, it takes values {0, 1, 2, . . . , n} with
probabilities {

(
n
0

)
p0qn,

(
n
1

)
p1qn−1,

(
n
2

)
p2qn−2, . . . ,

(
n
n

)
pnq0}, where p, q ∈ [0, 1] with p + q = 1. Its

expected value is

E[X] =
n∑
i=0

i

(
n

i

)
piqn−i =

n∑
i=1

i

(
n

i

)
piqn−i =

n∑
i=1

n

(
n− 1

i− 1

)
piqn−i,

where we used the easy to verify fact that i
(
n
i

)
= n

(
n−1
i−1

)
valid for i ≥ 1. We continue by factoring

a p out and changing the summation index to j := i− 1, that is i = j + 1 :

E[X] = np

n∑
i=1

(
n− 1

i− 1

)
pi−1qn−i = np

n−1∑
j=0

(
n− 1

j

)
pjq(n−1)−j = np(p+ q)n−1 = np.

Example 103. Let X be a uniformly distributed random variable in the interval [a, b]. Then

E[X] =

∫ ∞
−∞

xf(x) dx =

∫ b

a

x

b− a dx =
1

2

1

b− a
(
x2
∣∣b
x=a

)
=

1

2

1

b− a(b2 − a2) =
a+ b

2
.

Suppose that X is a random variable and g is a function defined on R. (We require that the
domain of g includes the range of X.) The composition (g ◦X)(ω) = g(X(ω)) is a function on Ω,
hence a random variable. Often one needs to find the expected value of g(X). The next theorem
explains how this is done.

Theorem 104. Suppose that X is a random variable and g is a function defined on R. The expected
value of g(X), denoted by E[g(X)], is calculated as follows.

• If X is a discrete random variable with values {x1, x2, . . .} and probability mass function p(x)

E[g(X)] :=
∞∑
i=1

g(xi)p(xi).

• If X is a continuous random variable with values in R and probability density function f(x)

E[g(X)] :=

∫ ∞
−∞

g(x)f(x) dx.

Proof. The proof given is only in the case of a discrete random variable X. The proof proceeds by
grouping together all the terms in

∑∞
i=1 g(xi)p(xi) having the same value of g(xi). Suppose that

{y1, y2, . . .} represent the different values of g(xi), i = 1, 2, . . . Grouping all the g(xi) having the
same value gives

∞∑
i=1

g(xi)p(xi) =
∞∑
j=1

∑
over all i s.t.
g(xi)=yj

g(xi)p(xi) =
∞∑
j=1

yj
∑

over all i s.t.
g(xi)=yj

p(xi)

=
∞∑
j=1

yjP (g(X) = yj) = E[g(X)].
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Corollary 105. If a and b are constants, then E[aX + b] = aE[X] + b.

Proof. The proof in the discrete case is left as an exercise. In the continuous case, let the function
g(x) := ax+ b. By the last theorem we have

E[aX + b] = E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx =

∫ ∞
−∞

(ax+ b)f(x) dx =

∫ ∞
−∞

(axf(x) + bf(x)) dx

= a

∫ ∞
−∞

xf(x) dx+ b

∫ ∞
−∞

f(x) dx = aE[X] + b.

The expected value of a random variable X, E[X], is also referred to as the first moment of
X. The quantity E[Xk], for k ≥ 1, is called the k-th moment of X. Applying Theorem 104 with
function g(x) = xk, we obtain

• If X is a discrete random variable with values {x1, x2, . . .} and probability mass function p(x)

E[Xk] =
∞∑
i=1

xki p(xi).

• If X is a continuous random variable with values in R and probability density function f(x)

E[Xk] =

∫ ∞
−∞

xkf(x) dx.

Let us compute the second moment of the random variables in Examples 100, 101, 102, and
103.

Example 106. Find E[X2] where X is the outcome when we roll a fair die. The random variable
X takes values {1, 2, 3, 4, 5, 6} with probabilities p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6.
Thus

E[X2] = 12(1/6) + 22(1/6) + · · ·+ 62(1/6) =
12 + 22 + 32 + 42 + 52 + 62

6
=

91

6
.

Example 107. Let A ⊂ Ω be an event and consider the random variable

X(ω) =

{
1 if ω ∈ A,
0 if ω 6∈ A.

The random variable X is discrete, it takes only two values {0, 1}, and is called the indicator
function of A. Its pdf is p(1) = P (X = 1) = P (A) and p(0) = P (X = 0) = P (Ac). Hence, the
second moment of X is

E[X2] = 02p(0) + 12p(1) = P (A).
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Example 108. Let X be a binomial random variable, that is, it takes values {0, 1, 2, . . . , n} with
probabilities {

(
n
0

)
p0qn,

(
n
1

)
p1qn−1,

(
n
2

)
p2qn−2, . . . ,

(
n
n

)
pnq0}, where p, q ∈ [0, 1] with p + q = 1. Its

second moment is

E[X2] =
n∑
i=0

i2
(
n

i

)
piqn−i =

n∑
i=1

i2
(
n

i

)
piqn−i =

n∑
i=1

ni

(
n− 1

i− 1

)
piqn−i,

where we used the easy to verify fact that i
(
n
i

)
= n

(
n−1
i−1

)
valid for i ≥ 1. We continue by factoring

a p out and changing the summation index to j := i− 1, that is i = j + 1 :

E[X2] = np

n∑
i=1

i

(
n− 1

i− 1

)
pi−1qn−i = np

n−1∑
j=0

(j + 1)

(
n− 1

j

)
pjq(n−1)−j

=
(
np

n−1∑
j=0

j

(
n− 1

j

)
pjq(n−1)−j

)
+
(
np

n−1∑
j=0

(
n− 1

j

)
pjq(n−1)−j

)
= npE[Y ] + np(p+ q)n−1 = npE[Y ] + np,

where Y is a binomial random variable taking values {0, 1, 2, . . . , n− 1} with probabilities P (Y =
k) =

(
n−1
j

)
pjq(n−1)−j, for k = 0, 1, 2, . . . , n − 1. But we know what its expected value is E[Y ] =

(n− 1)p and substituting above, we finally obtain

E[X2] = np((n− 1)p+ 1).

Example 109. Let X be a uniformly distributed random variable in the interval [a, b]. Then

E[X2] =

∫ ∞
−∞

x2f(x) dx =

∫ b

a

x2

b− a dx =
1

3

1

b− a
(
x3
∣∣b
x=a

)
=

1

3

1

b− a(b3 − a3) =
b2 + ba+ a2

3
.

Let X be a random variable with expected value µ := E[X]. Since the expected value of X is
its average value, X takes values that are both smaller and larger than E[X]. A reasonable way of
measuring the possible variation of X would be to look at how far apart X would be from its mean
on the average. One possible way to measure this is to consider E[|X − µ|]. This quantity is the
average distance between X and µ. The absolute value makes it mathematically inconvenient to
deal with this quantity. More tractable quantity is the average squared difference between X and
its mean. Note that |X − µ|2 = (X − µ)2. Consider the function g(x) := (x − µ)2. The expected
value of g(X), calculate it using Theorem 104, is called the variance of X.

Definition 110. Let X be a random variable with mean µ. The variance of X, denoted Var (X)
is defined by

Var (X) := E[(X − µ)2].

Proposition 111 (Properties of variance). The variance of a random variable X has the following
properties.

(i) Var (X) ≥ 0;

(ii) Var (X) = E[X2]− (E[X])2;
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(iii) For any constants a and b we have Var (aX + b) = a2Var (X).

Proof. We present the proof only for discrete random variable. The situation for continuous random
variable is completely analogous. 1) Var (X) = E[(X − µ)2] =

∑∞
i=1(xi − µ)2p(xi) ≥ 0;

2) Continuing the development in part 1), we have

Var (X) = E[(X − µ)2] =
∞∑
i=1

(xi − µ)2p(xi) =
∞∑
i=1

(x2
i − 2xiµ+ µ2)p(xi)

=
∞∑
i=1

x2
i p(xi)− 2µ

∞∑
i=1

xip(xi) + µ2

∞∑
i=1

p(xi)

= E[X2]− 2µ2 + µ2

= E[X2]− µ2.

3) First recall that E[aX + b] = aE[X] + b = aµ+ b. By the definition of the variance, considering
the random variable aX + b we have

Var (aX + b) = E
[(

(aX + b)− E[aX + b]
)2]

= E
[(

(aX + b)− (aµ+ b)
)2]

= E
[
a2(X − µ)2

]
= a2E

[
(X − µ)2

]
= a2Var (X).

Using the second property in Proposition 111 we calculate the variance for the random variables
in Examples 100, 101, 102, and 103.

Example 112. Find E[X2] where X is the outcome when we roll a fair die. The random variable
X takes values {1, 2, 3, 4, 5, 6} with probabilities p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6.
The variance of X is

Var (X) = E[X2]− (E[X])2 =
(91

6

)
−
(7

2

)2

=
35

12
.

Example 113. Let A ⊂ Ω be an event and consider the random variable

X(ω) =

{
1 if ω ∈ A,
0 if ω 6∈ A.

The random variable X is discrete, it takes only two values {0, 1}, and is called the indicator
function of A. Its pdf is p(1) = P (X = 1) = P (A) and p(0) = P (X = 0) = P (Ac). The variance of
X is

Var (X) = E[X2]− (E[X])2 = P (A)− P (A)2 = P (A)(1− P (A)) = P (A)P (Ac).

Example 114. Let X be a binomial random variable, that is, it takes values {0, 1, 2, . . . , n} with
probabilities {

(
n
0

)
p0qn,

(
n
1

)
p1qn−1,

(
n
2

)
p2qn−2, . . . ,

(
n
n

)
pnq0}, where p, q ∈ [0, 1] with p + q = 1. The

variance of X is

Var (X) = E[X2]− (E[X])2 = np((n− 1)p+ 1)− (np)2 = np(1− p) = npq.
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Example 115. Let X be a uniformly distributed random variable in the interval [a, b]. The variance
of X is

Var (X) = E[X2]− (E[X])2 =
b2 + ab+ a2

3
−
(a+ b

2

)2

=
(a− b)2

12
.

Definition 116. The square root of the variance, that is
√

Var (X), is called the standard deviation
of X.

We conclude this section with general formulas that may be used for computing the expected
value and the variance of a random variable X.

If the random variable X has probability density function f(x), then

E[X] =

∫ ∞
−∞

xf(x) dx,

E[X2] =

∫ ∞
−∞

x2f(x) dx.

Hence for the variance of X we get

Var (X) = E[X2]− (E[X])2 =

∫ ∞
−∞

x2f(x) dx−
(∫ ∞
−∞

xf(x) dx
)2

.

But what if X does not have a probability density function f(x)? We said that the cumulative
distribution function F (x) of a random variable X can answer all questions about X. Hence it is
not surprising that we have the formulas, summarized in Proposition 117 and Proposition 118. We
are not going to prove them and we are not going to use these formulas anywhere else in the course,
but they are worth mentioning nonetheless.

Proposition 117. For a non-negative random variable X with cumulative distribution function
F (x), and any k > 0, we have

E[Xk] =

∫ ∞
0

kxk−1(1− F (x)) dx.

In particular, for k = 1 and k = 2 we have

E[X] =

∫ ∞
0

(1− F (x)) dx and E[X2] = 2

∫ ∞
0

x(1− F (x)) dx.

Proposition 118. For any random variable X with cumulative distribution function F (x), we have

E[X] =

∫ ∞
0

P (X > x) dx−
∫ ∞

0

P (X < −x) dx

=

∫ ∞
0

(1− F (x)) dx−
∫ ∞

0

F (−x−) dx.

In particular, if X is absolutely continuous random variable (F (x) is a continuous function), then

E[X] =

∫ ∞
0

(1− F (x)) dx−
∫ ∞

0

F (−x) dx.
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Definition 119. The moment generation function M(t) of a random variable X is defined by

M(t) = E[etX ], for all t ∈ R.

To calculate the moment generating function of a random variable X, we use Theorem 104
with g(x) = etx where we treat t as a fixed parameter. Thus, if X is a discrete random variable
with values {x1, x2, . . .} and probability mass function p(x) then

M(t) =
∞∑
i=1

etxip(xi);

and if X is a continuous random variable with values in R and probability density function f(x)

M(t) =

∫ ∞
−∞

etxf(x) dx.

The function M(t) is called moment generating because the k-th moment of X can be obtained by
differentiating M(t) k-times and then evaluating the result at t = 0.

Assumption 120. Assume that we may interchange the differentiation and expectation operators.
That is, assume that, when X is a discrete random variable

d

dt

( ∞∑
i=1

etxip(xi)
)

=
∞∑
i=1

d

dt
etxip(xi)

and when X is continuous

d

dt

(∫ ∞
−∞

etxf(x) dx
)

=

∫ ∞
−∞

d

dt
etxf(x) dx.

This assumption, basically means that when differentiating M(t) we can do it as follows

M ′(t) =
d

dt
M(t) =

d

dt
E[etX ] = E

[ d
dt
etX
]

= E[XetX ].

Evaluating the result at t = 0, we get the first moment of X, or its expected value:

M ′(0) = E[X].

Differentiating M ′(t) we have

M ′′(t) =
d

dt
M ′(t) =

d

dt
E[XetX ] = E

[ d
dt
XetX

]
= E[X2etX ].

Evaluating the result at t = 0, we get the second moment of X:

M ′′(0) = E[X2].

We may continue like that, to obtain

M (k)(t) = E[XketX ] and M (k)(0) = E[Xk].
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Example 121. Let X be a binomial random variable, that is, it takes values {0, 1, 2, . . . , n} with
probabilities {

(
n
0

)
p0qn,

(
n
1

)
p1qn−1,

(
n
2

)
p2qn−2, . . . ,

(
n
n

)
pnq0}, where p, q ∈ [0, 1] with p + q = 1. The

moment generating function of X is

M(t) = E[etX ] =
n∑
k=0

etk
(
n

k

)
pkqn−k =

n∑
k=0

(
n

k

)
(etp)kqn−k = (pet + q)n.

Example 122. Let X be a uniformly distributed random variable in the interval [a, b]. The moment
generating function of X is

M(t) = E[etX ] =

∫ ∞
−∞

etxf(x) dx =

∫ b

a

etx

b− a dx =
etx

t(b− a)

∣∣∣b
x=a

=
etb − eta
t(b− a)

.

Given a random variable X, its moment generating function is sometimes denoted by MX(t) and
its cumulative distribution function by FX(x). We know already that FX(x) contains all information
about X, that is, we can answer all probability questions about X using FX(x), see Lemma 95.
The surprising fact is that MX(x) also contains all the information about X. That is, the moment
generating function determines uniquely the cumulative distribution function.

Theorem 123 (Uniqueness theorem). Suppose that random variables X and Y have moment
generating functions MX(t) and MY (t) respectively. If MX(t) = MY (t) for all values of t, then X
and Y have the same cumulative distribution functions, that is FX(x) = FY (x) for all values of x.

The proof of the Uniqueness Theorem is difficult and will be omitted.

9 Important distributions

9.1 The Poisson Distribution

Definition 124. A random variable X taking the values {0, 1, 2, 3, . . .} is called a Poisson random
variable with parameter λ > 0 if

p(i) := P (X = i) = e−λ
λi

i!
, for i = 0, 1, 2, . . . .

The above definition indeed defines a probability mass function since

∞∑
i=0

p(i) =
∞∑
i=0

e−λ
λi

i!
= e−λ

∞∑
i=0

λi

i!
= e−λeλ = 1.

The Poisson random variable has a tremendous range of applications in diverse areas because it
may be used as an approximation for a binomial random variable with parameters (n, p) when n is
large and p is small enough so that np is a moderate size. We will prove that shortly. The Poisson
random variable is very frequently used to count data when there is no upper limit on the count.
For example, it is used to model the number of customers arriving each day; the number of decays
in a radioactive material; the number of cases of a rare disease in a large population; the number
of vacancies occurring during a year in the Supreme Court; the number of typos on a page from a
book; and so on.
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Theorem 125. Let X be a Poisson random variable with parameter λ, then its moment generating
function is M(t) = eλ(et−1). Consequently, we have E[X] = λ and Var [X] = λ.

Proof. For the moment generating function, we have

M(t) = E[etX ] =
∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(etλ)k

k!
= e−λeλe

t

= eλ(et−1).

Differentiate M(t) two times and after each differentiation set t = 0 to find the first two moments
of X:

M ′(t) = eλ(et−1)λet and M ′′(t) = eλ(et−1)(λet)2 + eλ(et−1)λet.

Hence E[X] = M ′(0) = λ and E[X2] = M ′′(0) = λ2 + λ. Now we can compute the variance

Var [X] = E[X2]− (E[X])2 = λ.

There are two ways of looking at a Poisson random variable and these two ways are tightly
connected with each other. The first way is that a Poisson random variable is the limit of a
sequence of binomial random variables whose parameters satisfy a condition. Imagine we run a
binomial experiment with n trials and probability of success on each trial is pn. Let X be the
number of successes in these n trials, and say we are interested in the probability that there are k
success, P (X = k) =

(
n
k

)
pkn(1−pn)n−k. When the number of trials n in the binomial experiment gets

large it will become more and more difficult to calculate the probability P (X = k). Fortunately,
if at the same time the probability of success pn declines so that the product npn converges to a a
finite number λ, then the probability P (X = k) also converges to the nice formula of the Poisson
distribution.

We need the following lemma which is a standard fact from Calculus, we include it without a
proof.

Lemma 126. If lim
n→∞

an = a ∈ R then lim
n→∞

(
1 +

an
n

)n
= ea.

The next theorem shows that a Poisson random variable with parameter λ may be used as an
approximation for a binomial random variable with parameters (n, p) when n is large and p is small
enough and so that np is approximately equal to λ. This is our first limiting theorem. At the end
of this course we will encounter more limiting theorems.

Theorem 127 (Poisson’s theorem). Let λ > 0 and suppose that the product npn converges to λ as
n approaches infinity. Then

lim
n→∞

(
n

k

)
pkn(1− pn)n−k = e−λ

λk

k!
for all k = 0, 1, 2, ...

Proof. Fix an integer k ≥ 0. Then(
n

k

)
pkn(1− pn)n−k =

n(n− 1) · · · (n− k + 1)

k!
pkn(1− pn)n−k
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=
1

k!

n(n− 1) · · · (n− k + 1)

nk
(npn)k(1− pn)n−k

=
1

k!

[
(1)
(

1− 1

n

)
· · ·
(

1− k − 1

n

)]
(npn)k

(
1− npn

n

)n
(1− pn)−k.(14)

Taking the limit at n goes to infinity, note that lim
n→∞

(npn)k = λk and that

lim
n→∞

(1)
(

1− 1

n

)
· · ·
(

1− k − 1

n

)(
1− λ

n

)−k
= 1.

Next, use Lemma 126 with an := −npn to conclude that

lim
n→∞

(
1− npn

n

)n
= e−λ.

Finally, since npn converges to the finite number λ as n approaches infinity, we conclude that pn
converges to 0 as n approaches infinity. Hence

lim
n→∞

(1− pn)n = 1.

Taking the limit as n approaches infinity in (14) and substituting the last four limits into (14)
concludes the proof.

The above theorem explains why the Poisson distribution is frequently used. Suppose that there
is a small probability p that each letter typed on a page will be misprinted and let there be n letters
per page. Hence the number of misprints on a page will have a binomial distribution, but since
p is small and n is large by the Poisson theorem, the binomial distribution will be approximately
Poisson with parameter λ = np.

As another example, suppose each person in a city has small probability of reaching age 100.
Also, each person entering a store may be thought of as having some small probability of buying a
package of dog biscuits, and so on.

The condition “npn converges to λ as n approaches infinity” is just the mean, npn, of the
binomial distribution converging to the mean, λ, of the Poisson distribution.

Example 128. Consider an experiment that consists of counting the number of α-particles given
off in a 1-second interval by 1 gram of radioactive material. If we know from past experience that,
on the average, 3.2 such α-particles are given off, what is a good approximation to the probability
that no more than 2 α-particles will appear?

Solution. Think of the gram of radioactive material as consisting of a large number n of
atoms, each of which has equal small probability of disintegrating and sending off an α-particle in
one second, then we see that, to a very close approximation, the number of α-particles given off will
be a Poisson random variable with parameter λ = 3.2. Hence the desired probability is

P (X ≤ 2) = e−3.2 + 3.2e−3.2 + e−3.2 (3.2)2

2
≈ 0.3799.

We now describe the second way of looking at a Poisson random variable.
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Definition 129 (Poisson process). Suppose that events are occurring at random points of time (or
space), and assume that for a constant λ > 0 the following hold true:

(i) For any interval (a, a+ h) of length h

lim
h→0

P (exactly 1 event occurs in (a, a+ h))

h
= λ.(15)

(ii) Events occur independently of each other in non-overlapping time (or space) intervals.

In that case, we say that the events occur according to a Poisson process with rate λ.

The first condition in the definition of a Poisson process says that when h is close to 0, we have
P (exactly 1 event occurs in (a, a+ h)) ≈ λh. More precisely, the limit (15) says that

P (exactly 1 event occurs in (a, a+ h)) = λh+ o(h),(16)

where the function o(h) is such that o(h)/h approaches 0 as h approaches 0. That is, all that we
know about the function o(h) is that is makes equality (16) hold, and that it approaches 0 much
faster than h.

Theorem 130. Suppose an event occurs according to a Poisson process. Let X be the number of
times that the event occurred in the time interval [0, t], then

P (X = k) = e−λt
(λt)k

k!
.

Intuitive explanation. To find the probability of k events occurring in a time interval [0, t], divide
the interval [0, t] into n non-overlapping subintervals each of length t/n. Then

P (exactly 1 event occurs in one of the subintervals) = λ(t/n) + o(t/n).

By the second condition, the events occur independently in the different subintervals so, letting
pn := λ(t/n) + o(t/n), we have

P (exactly k events occurs in [0, t] with at most 1 event in each subinterbal) = b(n, pn, k).(17)

Thus,

P (exactly k events occurs in [0, t]) = lim
n→∞

b(n, pn, k).(18)

Now

npn = n
(
λ(t/n) + o(t/n)

)
= λt+ no(t/n) = λt+ t

o(t/n)

t/n
.

The property of the o(h) function implies that o(t/n)
t/n

approaches 0 as n goes to infinity. (Note that

in that case t/n approaches 0.) Thus, npn approaches λt as n goes to infinity. Using the Poisson
theorem, we take the limit in (18) as n approaches infinity, to conclude that

P (exactly k events occurs in [0, t]) = lim
n→∞

b(n, pn, k) = e−λt
(λt)k

k!
.(19)

This concludes the intuitive explanation of the theorem.
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We see that in a unit time interval, t = 1, the number of events has Poisson distribution with
average λ, while in a time interval of length t, the number of events has Poisson distribution with
average λt.

Example 131. Suppose that we are told that the number of potholes on Richmond Street follows
a Poisson process with a rate of 3 potholes per km.
a) What is the probability that we will see at most 1 pothole on a 3 km stretch of Richmond Street?
b) What is the probability that we will see at least 3 pothole on a 3 km stretch of Richmond Street?

Solution. Let X represent the number of potholes on a 3 km stretch of Richmond Street. The
random variable X follows a Poisson distribution with a mean, λ = 3× 3 = 9. Remember that we
expected to see 3 for every km, so if we travel 3 km, then we would expect to see 9.

P (X = x) = p(x) =
e−99x

x!
, x = 0, 1, 2, . . .

a)

P (X ≤ 1) = P (X = 0) + P (X = 1) =
e−990

0!
+
e−991

1!
= e−9(1 + 9) = 0.0012341

b)

P (X ≥ 3) = 1−
(
P (X = 0) + P (X = 1) + P (X = 2)

)
= 1− e−990

0!
− e−991

1!
− e−992

2!
= 1− e−9(1 + 9 + 92/2) = 0.99377

Example 132. Suppose that earthquake occurrences in Canada are a Poisson process with average
of 2 earthquakes per week.

(a) Find the probability that 3 earthquakes occur during the next 2 weeks.

(b) Find the probability that at least 3 earthquakes occur during the next 2 weeks.

Solution. First we are going to offer the naive approach to solving part a) of this problem.
a) The probability that k earthquakes occur in any week is p(k) = e−22k/k!. The event that

that 3 earthquakes occur during the next 2 weeks is the disjoint union:

{3 quakes 1st week and 0 in 2nd week} ∪ {2 quakes 1st week and 1 in 2nd week}
∪ {1 quakes 1st week and 2 in 2nd week} ∪ {0 quakes 1st week and 3 in 2nd week}.

By part (ii) in Definition 129, taking probabilities we get

P ( 3 quakes occur in next 2 weeks) = e−2 23

3!
e−2 20

0!
+ e−2 22

2!
e−2 21

1!
+ e−2 21

1!
e−2 22

2!
+ e−2 20

0!
e−2 23

3!
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= 0.19536681.

The last computation can easily become huge and much more cumbersome if the complexity of the
problems increases slightly. So, an alternative approach is to use Theorem 130, to observe that since
the earthquakes follow a Poisson process, the average occurrences in a two week period is 2×2 = 4.
Thus,

P ( 3 quakes occur in next 2 weeks) = e−4 43

3!
= 0.19536681.

Note that both approaches give the same answer (why?).
b) Let X be the number of earthquakes in the next two weeks. X has a Poisson distribution with

average 2λ = 4.. Hence, P (X ≥ 3) = 1−P (X = 0)−P (X = 1)−P (X = 2) = 1−e−4−4e−4−42

2
e−4 =

1− 13e−4.

Example 133. Suppose that earthquake occurrences in Canada are a Poisson process with average
of λ earthquakes per week. Let Y be a random variable measuring the time starting from now,
until the next earthquake. Find the cumulative distribution function of Y .

Solution. Let Y denote the amount of time in weeks until the next earthquake. Note that, Y is
greater than t if and only if no earthquake occurs in the next t weeks. The number of earthquakes
in the next t weeks, denote that number by Z, has a Poisson distribution with average λt. Thus

P (Y > t) = P (Z = 0) = e−λt,

and
P (Y ≤ t) = 1− P (Y > t) = 1− e−λt.

Example 133 is very important. It shows that if an event occurs according to a Poisson process
with parameter λ, then the time Y between two consecutive occurrences of the event is a random
variable with cdf F (t) = 1− e−λt. The next subsection is devoted to those random variables.

The final issue that we want to address is how good is the approximation in the Poisson theorem.
An estimate of the error of the approximation is given without proof in the next result.

Theorem 134. The following bound holds∣∣∣(n
k

)
pkn(1− pn)n−k − e−npn (npn)k

k!

∣∣∣ ≤ np2
n.

The last theorem says that if npn is close to λ then e−npn (npn)k

k!
will be close to e−λ λ

k

k!
. That is,

the last expression will be a good approximation for
(
n
k

)
pkn(1 − pn)n−k with the error being about

np2
n ≈ λ2/n. In short, the Poisson approximation is good, when npn is not a large number, but n

is.
If npn is a large number, then the binomial distribution is best approximated by a normal

distribution, as we will see in Theorem 156.
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9.2 The exponential distribution

Definition 135. A continuous random variable X is called exponential if its probability density
function is given by

f(x) =

{
λe−λx if x ≥ 0
0 if x < 0,

for some positive constant λ. We say that X is exponentially distributed with parameter λ.

First note that the integral of the probability density function is 1. Indeed∫ ∞
−∞

f(x) dx =

∫ ∞
0

λe−λx dx = −e−λx
∣∣∣∞
x=0

= 1.

The cumulative distribution function of an exponential random variable is

F (t) = P (X ≤ t) =

∫ t

0

λe−λx dx = −e−λx
∣∣∣t
x=0

= 1− e−λt,

if t ≥ 0, and F (t) = 0 if t < 0.
The moment generating function of an exponential random variable is

M(t) = E[etX ] =

∫ ∞
0

etxλe−λx dx =
λ

t− λe
(t−λ)x

∣∣∣∞
x=0

=

{
− λ
t−λ if t < λ

∞ if t ≥ λ.

The first two derivatives of M(t) are

M ′(t) =
λ

(t− λ)2
and M ′′(t) = − 2λ

(t− λ)3
.

Hence, we have

M ′(0) =
1

λ
and M ′′(0) =

2

λ2

and from here

E[X] = M ′(0) =
1

λ
and Var [X] = E[X2]− (E[X])2 = M ′′(0)− (M ′(0))2 =

2

λ2
−
(1

λ

)2

=
1

λ2
.

As shown in Example 132, the exponential distribution is the distribution of the amount of time
until a specific event in a Poisson process occurs. For exmple, the amount of time (starting from
now) until an earthquake occurs, or until a new war breaks out, or until a telephone call you
receive turns out to be a wrong number are all random variables that tend in practice to have
exponential distributions. The examples are all about an amount of time, but the variable may also
measure distance, area, and so on. For example, the length of road until the next pothole may be
a exponentially distributed random variable.

Example 136. The length of a phone call in minutes is an exponential random variable with
parameter λ = 0.1. Suppose someone arrives immediately ahead of you at a public telephone
booth. What is the probability that you will have to wait (a) more than 10 minutes; (b) between
10 and 20 minutes.
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Solution. Let X be the amount of time it takes the person in the booth to finish their phone call.
(a) P (X > 10) = 1 − P (X ≤ 10) = e−0.1·10 ≈ 0.37. (b) P (10 < X < 20) = F (20) − F (10) =
e−1 − e−2 = 0.23.

Theorem 137. The exponential distribution is the only one non-negative continuous distribution
with the following memoryless property

P (X > x+ y|X > y) = P (X > x) for any x, y ≥ 0.

Proof. Using the definition of conditional probability we calculate

P (X > x+ y|X > y) =
P ({X > x+ y} ∩ {X > y})

P (X > y)
=
P (X > x+ y)

P (X > y)
=

1− F (x+ y)

1− F (y)

=
eλ(x+y)

eλy
= eλx = 1− F (x) = P (X > x).

The only thing left to prove is that the exponential distribution is the only non-negative one with
this property. We omit that part of the proof.

Suppose that the lifetime of a randomly selected light bulb is exponentially distributed random
variable X. The memoryless property says that the probability that the light bulb works for at least
x+ y years, given that it has survived y years, is the same as the initial probability that it survives
for at least x years. In other words, if the light bulb is working after y years, the distribution of the
remaining amount of time that it will work is the same as the original lifetime distribution (that is,
it is as if the light bulb does not remember that it has already been in use for a time y).

Example 138. The number of miles that a car can run before its battery wears out is exponentially
distributed with an average value of 10, 000 miles. If a person desires to take a 5, 000-mile trip,
what is the probability that he or she will be able to complete the trip without having to replace
the battery?

Solution. By the memoryless property of the exponential distribution, the remaining life-
time (in thousands of miles) of the battery is exponential with parameter λ = 1/10, no mat-
ter how many miles the car has on it now with the current battery. The desired probability is
P (remaining lifetime > 5) = 1− F (5) = e−5λ ≈ 0.6.

9.3 The geometric distribution

Definition 139. Let p ∈ (0, 1) be a fixed number. A discrete random variable X taking values
{1, 2, 3, . . .} with probabilities P (X = k) = (1− p)k−1p is called a geometric random variable with
parameter p.

Note that the probability mass function sums up to 1. Indeed

∞∑
k=1

P (X = k) =
∞∑
k=1

(1− p)k−1p = p
∞∑
k=1

(1− p)k−1 =
p

1− (1− p) = 1.
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Geometric random variables occur most often when performing independent trials, each having
a probability p, p ∈ (0, 1), of being a success. Let X equal the number of trials required until a
success occurs. Then X is a geometric random variable with parameter p. (Why?) The geometric
distribution is the discrete equivalent of the exponential distribution.

The moment generating function is

M(t) = E[etX ] =
∞∑
k=1

etk(1− p)k−1p = pet
∞∑
k=1

(
et(1− p)

)k−1
=

{
pet

1−et(1−p) if et(1− p) < 1

∞ if et(1− p) ≥ 1.

Note that, taking logarithm on both sides of the condition et(1−p) < 1 makes it into t < − log(1−p).
This means that we can differentiate M(t) for values of t close to 0:

M ′(t) =
etp

(1− et(1− p))2
and M ′′(t) =

etp(1 + et(1− p))
(1− et(1− p))3

.

From here we get

E[X] = M ′(0) =
1

p
and Var [X] = E[X2]− (E[X])2 = M ′′(0)− (M ′(0))2 =

1− p
p2

.

Example 140. An urn contains n white and m black balls. Balls are randomly selected, one at
a time with replacement, until a black one is obtained. Then the number of draws is a geometric
random variable with parameter p = m/(n+m).

The geometric distribution also has the memoryless property.

Lemma 141. The geometric distribution has the memoryless property

P (X = k + `|X > k) = P (X = `) for any non-negative integers k, ` ≥ 1.

Proof. We only need to calculate the conditional probability:

P (X = k + `|X > k) =
P ({X = k + `} ∩ {X > k})

P (X > k)
=
P (X = k + `)

P (X > k)
=

(1− p)k+`−1p∑∞
i=k+1(1− p)i−1p

=
(1− p)k+`−1p

(1− p)kp∑∞i=0(1− p)i =
(1− p)k+`−1p

(1− p)kp[1/(1− (1− p))] =
(1− p)k+`−1p

(1− p)k

= (1− p)`−1p = P (X = `).

Corollary 142. The geometric distribution has the memoryless property

P (X > k +m|X > k) = P (X > m) for any k, ` ≥ 1.

Proof. Sum the equalities P (X = k + `|X > k) = P (X = `) for all ` = m+ 1,m+ 2, . . . to obtain:

P (X > k +m|X > k) =
∞∑

`=m+1

P (X = k + `|X > k) =
∞∑

`=m+1

P (X = `) = P (X > m).

One should compare the last corollary with Theorem 137. It says that if you are wayting for
the first success, it does not matter how long you have already been waiting.
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9.4 The negative binomial distribution

Definition 143. Let p ∈ (0, 1) be a fixed number and let r be a fixed positive integer. A discrete
random variable X taking values {r, r+ 1, r+ 2, r+ 3, . . .} with probabilities P (X = k) =

(
k−1
r−1

)
(1−

p)k−rpr is called a negative binomial random variable with parameters r and p.

Negative binomial random variables occur most often when performing independent trials, each
having a probability p, p ∈ (0, 1), of being a success. Here is what I mean. Let X equal the number
of trials required until r successes occur. Then X is a negative binomial random variable with
parameters r and p. (Why?)

Note that when r = 1, the negative binomial distribution becomes geometric distribution.

The number of trials needed to obtain r successes can be expressed as Y1 + Y2 + · · ·+ Yr where
Y1 equals the number of trials required for the first success, Y2 the number of additional trials after
the first success until the second success occurs, Y3 the number of additional trials until the third
success, and so on. As the trials are independent and all have the same probability of a success,
it follows that Y1, Y2, . . . , Yr are all geometric random variables and independent. (We will talk
about independent random variables later, but at the moment we will use two of their properties
to shorten the presentation.)

Theorem 144. a) If Y1, Y2, . . . , Yr are independent random variables and g : R→ R is a function,
then g(Y1), g(Y2), . . . , g(Yr) are also independent random variables.

b) If Z1, Z2, . . . , Zr are independent random variables then E[Z1Z2 · · ·Zr] = E[Z1]E[Z2] · · ·E[Zr].

Let X be a negative binomial random variable. Then X = Y1 + Y2 + · · ·+ Yr, where the latter
are independent geometric random variables. The moment generating function of X is

M(t) = E[etX ] = E[et(Y1+Y2+···+Yr)] = E[etY1etY2 · · · etYr ] = E[etY1 ]E[etY2 ] · · ·E[etYr ]

=

{ (
pet

1−et(1−p)

)r
if et(1− p) < 1

∞ if et(1− p) ≥ 1,

where we used Theorem 144, part a) with g(x) = etx, then part b), and the formula for the moment
generating function of a geometric random variable.

Now, notice that

M(0) = E[1] =
∞∑
k=r

P (X = k) =
∞∑
k=r

(
k − 1

r − 1

)
(1− p)k−rpr.

Since, from the formula for M(t), we have M(0) = 1, we proved that the sum of the probabilities
of a negative binomial random variable is 1.

Next, we differentiate M(t) for values of t close to 0:

M ′(t) =
( etp

1− et(1− p)
)r r

1− et(1− p) and M ′′(t) =
( etp

1− et(1− p)
)r r(r + et(1− p))

(1− et(1− p))2
.

From here we get

E[X] = M ′(0) =
r

p
,
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E[X2] = M ′′(0) =
r(r + 1− p)

p2
, and

Var [X] = E[X2]− (E[X])2 =
r(1− p)
p2

.

Example 145 (The Banach match problem). A chain-smoking man carries 2 matchboxes, one in
his left-hand pocket and one in his right-hand pocket. Each matchbox contains N matches. Every
time he lights up a cigarette he takes a match from a random pocket. Consider the moment when
the man first discovers that one of his matchboxes is empty. What is the probability that there are
exactly ` matches in the other box, ` = 0, 1, . . . , N?

Solution. Each pocket is equally likely to be selected. Let Y be the number of matches left in
one pocket when the other one is discovered to be empty. The problem asks us to find P (Y = `).
The event {Y = `} is the union of two disjoint events.

{Y = `} = {Y = ` & the right pocket is discovered empty}∪{Y = ` & the left pocket is discovered empty}.

Let us look at the first event first. The event {Y = ` & the right pocket is empty} occurs precisely
when the left pocket was selected N − ` times (that many matches were removed from it) and the
right pocket was selected N + 1 times (N matches are removed from it and then on the N + 1 time
it was discovered that it was empty). Selecting a pocket is a binomial trial and let us say that a
success is when the right pocket is selected. Thus, the event {Y = ` & the right pocket is empty}
occurs exactly when the (N + 1)-th success occurs on the (N − `) + (N + 1) = 2N − `+ 1 trial. Let
X be a negative binomial random variable with parameters p = 1/2 and r = N + 1. Then,

P (Y = ` & the right pocket is discovered empty) = P (X = 2N − `+ 1) =

(
2N − `
N

)(1

2

)2N−`+1

.

Clearly, by symmetry

P (Y = ` & the right pocket is discovered empty) = P (Y = ` & the left pocket is discovered empty).

So,

P (Y = `) = 2P (Y = ` & the right pocket is discovered empty) =

(
2N − `
N

)(1

2

)2N−`
.

9.5 The hypergeometric distribution

Example 146. You have an urn with 3 white and 4 black balls. You pick two balls at random
(with replacement). What is the probability that you picked 2 white balls?

The probability that the first ball is white is 3/7. The probability that the second ball is white

is 3/7. So the answer is:
(

3
7

)(
3
7

)
= 9

49
. If you consider that the two trials (selection of balls) are

independent, then the probability of success in each trial is the same. This is a binomial experiment.
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Example 147. You have an urn with 3 white and 4 black balls. You pick two balls at random
(without replacement). What is the probability that you picked 2 white balls?

The probability that the first ball is white is 3/7. The probability that the second ball is white

is 2/6. So the answer is:
(

3
7

)(
2
6

)
= 1

7
. The probability of success in each trial is different. This is

a hypergeometric experiment!

Example 148. You have an urn with 3 white and 4 black balls. You pick two balls at random
(without replacement). What is the probability that you picked exactly one white balls?

We have to compute p(wb) + p(bw) =? The probability that the first ball is white is 3/7. The

probability that the second ball is black is 4/6. So p(wb) =
(

3
7

)(
4
6

)
= 2

7
.

The probability that the first ball is black is 4/7. The probability that the second ball is white

is 3/6. So p(bw) =
(

4
7

)(
3
6

)
= 2

7
.

Answer: p(wb) + p(bw) = 2
7

+ 2
7

= 4
7
.

Consider the experiment of choosing a random sample of size n (without replacement) from an
urn containing N balls, of which m are white and N −m are black. Let X equal the number of
white balls selected. Clearly, we must require that

1 ≤ n ≤ N and 0 ≤ m ≤ N.

What are the possible values of X? X cannot be bigger than n or m, that is,

X ≤ min{n,m}.
Next, if X is the number of white balls in the sample, then X ≥ 0, and the black balls are n−X.
Hence n−X ≤ N −m, that is n+m−N ≤ X. Putting the lower bounds together we have

max{0, n+m−N} ≤ X.

Now, let k ∈ {max{0, n+m−N}, . . . ,min{n,m}}, the probability that there are k white balls in
the sample is (why?)

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) .

Extending the definition of the binomial coefficients(
a

b

)
:= 0 if a < b or if b < 0,

we have

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) for all k = 0, 1, . . . , n.

(Indeed, if k < max{0, n+m−N} then
(
m
k

)(
N−m
n−k

)
= 0 and hence P (X = k) = 0; and if min{n,m} <

k then again
(
m
k

)(
N−m
n−k

)
= 0 and hence P (X = k) = 0 again.) Since, at the end of the experiment,

X will take precisely one value in {0, 1, . . . , n} with certainty, we have

n∑
k=0

(
m
k

)(
N−m
n−k

)(
N
n

) = 1.

We make the following definition.
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Definition 149. Let n,m,N be positive integers satisfying 0 ≤ m ≤ N and 1 ≤ n ≤ N . A discrete
random variable X taking values {0, 1, . . . , n} with probabilities

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) for all k = 0, 1, . . . , n.

is called a hypergeometric random variable with parameters n,N , and m.

The mean of the hypergeometric distribution is computed later in Example 172. Again both
the mean and the variance are computed in (36) on page 106. For the moment, we state them
without a proof:

E[X] =
nm

N
and Var [X] =

N − n
N − 1

nm

N

N −m
N

.(20)

9.6 The normal distribution

The normal distribution, also known as the Bell Curve, is the most frequently used distribution in
statistics because of the central limit theorem, that we will study later. The central limit theorem,
is one of the two most important results in probability theory. It gives a theoretical base to
the often noted empirical observation that, in practice, many random phenomena obey, at least
approximately, a normal probability distribution. Some examples of this behaviour are the height
of a man, the velocity in any direction of a molecule in gas, and the error made in measuring a
physical quantity.

Definition 150. A continuous random variable X is normal, or simply that X is normally dis-
tributed, with parameters µ and σ2 if the probability density function of X is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , for all x ∈ R.(21)

To denote that X is a normal random variable with parameters µ and σ2, we write X ∼ N(µ, σ2).

This density function is a bell-shaped curve that is symmetric about µ, that is, f(µ+t) = f(µ−t)
for all t ∈ R. Before we establish that f(x) is indeed a probability density function. We take care
of a technical lemma.

Lemma 151. The following identity holds.∫ ∞
−∞

e−
y2

2 dy =
√

2π.

Proof. Denote the integral by I:

I :=

∫ ∞
−∞

e−
y2

2 dy.

We perform a trick to calculate the value of I, defined by the last integral.

I2 =

∫ ∞
−∞

e−
y2

2 dy

∫ ∞
−∞

e−
z2

2 dz =

∫ ∞
−∞

∫ ∞
−∞

e−
y2+z2

2 dydz.
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Evaluate the double integral by means of a change of variables to polar coordinates. That is, let
y = r sin θ and z = r cos θ. The Jacobian of this transformation is r, so dydz = rdθdr. The region
over which we integrate (−∞,∞)× (−∞,∞) is transformed into (0,∞)× [0, 2π). We continue

I2 =

∫ ∞
0

∫ 2π

0

e−
r2

2 r dθdr = 2π

∫ ∞
0

e−
r2

2 r dr = 2π
(
− e− r

2

2

∣∣∣∞
r=0

)
= 2π.

Since I ≥ 0, we get that I =
√

2π.

Lemma 152. Function (21) is indeed a probability density function.

Proof. Clearly f(x) ≥ 0 for all x. We only need to show that
∫∞
−∞ f(x) dx = 1, that is, that

1√
2πσ

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx = 1.

After the change of variables y = (x − µ)/σ (implying that dx = σdy), and using Lemma 151, we
get

1√
2πσ

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx =
1√
2π

∫ ∞
−∞

e−
y2

2 dy = 1.

The cumulative distribution function is

F (x) :=
1√
2πσ

∫ x

−∞
e−

(x−µ)2

2σ2 dx(22)

and there is no closed form formula for this integral in the case of the normal density function. Its
values are typically obtained from pre-calculated tables or with the use of computers.

The moment generating function of a normal random variable with parameters µ and σ2 is

M(t) = e

(
µt+σ2t2

2

)
.

Its first two derivatives are

M ′(t) = e

(
µt+σ2t2

2

)
(µ+ σ2t),

M ′′(t) = e

(
µt+σ2t2

2

)(
(µ+ σ2t)2 + σ2

)
.

Using them, we can find the expected value and the variance.

E[X] = M ′(0) = µ,

E[X2] = M ′′(0) = µ2 + σ2,

Var [X] = E[X2]− (E[X])2 = σ2.

Lemma 153. If X is normally distributed with parameters µ and σ2, then Y := aX+b is normally
distributed with parameters aµ+ b and a2σ2, provided that a 6= 0.
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Proof. We only deal with the case a > 0, since the case a < 0 is similar. Let FX(x) and FY (x) be
the c.d.f.’s of X and Y respectively. Then

FY (x) = P (Y ≤ x) = P (aX + b ≤ x) = P
(
X ≤ x− b

a

)
= FX

(x− b
a

)
.

To obtain the probability density of Y , we differentiate both sides with respect to x, using Theo-
rem 96:

fY (x) =
1

a
fX

(x− b
a

)
=

1√
2πaσ

e−
(x−ba −µ)2

2σ2 =
1√

2πaσ
e
− (x−(aµ+b))2

2(aσ)2 .

This shows that Y is normally distributed with parameters aµ+ b and a2σ2.

Important corollary of the last lemma is that if X is normally distributed with parameters µ
and σ2, then Z := (X − µ)/σ is normally distributed with parameters 0 and 1. And vice versa,
if Z is normally distributed with parameters 0 and 1, then σZ + µ is normally distributed with
parameters µ and σ2. A normally distributed random variable Z with parameters 0 and 1 is called
standard normal. Its probability density function is

fZ(x) =
1√
2π
e−x

2/2.

Note that fZ(x) = fZ(−x) showing that the standard normal p.d.f. is symmetric with respect to 0
(its mean). Letting X := σZ+µ be normally distributed with parameters µ and σ2 the relationship

fX(x) =
1

σ
fZ

(x− µ
σ

)
(see the proof of Lemma 153) shows that the p.d.f. of X is obtained from that of Z by shifting the
latter µ units to the right (if µ > 0 or to the left if µ < 0) and “squishing” it by a factor σ, so the
larger σ is the larger the squishing is. In general, the rules are depicted on Figure 2.

Traditionally, the cumulative distribution function of a standard normal random variable is denoted
by Φ(z). That is, we define

Φ(z) :=
1√
2π

∫ z

−∞
e−x

2/2 dx.(23)

the values of Φ(z) can be obtained from tables or using a computer software. There a two types of
tables available: standard normal table and cumulative normal table. The cumulative normal table,
see Figure 3, lists the values of the probabilities of the kind Φ(z) = P (Z ≤ z) for different values
of z. Sometimes, for brevity, cumulative normal tables list only the values of Φ(z) = P (Z ≤ z)
for positive z. In that case, the values of Φ(z) for negative z can be obtained using the following
identity.

Lemma 154. For any z ∈ R, we have Φ(−z) = 1− Φ(z).
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Figure 2: The shape of the normal distribution
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Table A.4 (Normal table) 

 

Figure 3: The cumulative normal table
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Proof. Using the fact that the p.d.f. of Z is symmetric with respect to 0, we get

Φ(−z) = P (Z ≤ −z) = P (Z ≥ z) = 1− P (Z ≤ z) = 1− Φ(z).

The Standard normal table, see Figure 4, lists the values of the probabilities of the kind
P (0 ≤ Z ≤ z) for positive values of z. The values of z in the table range from 0.00 to 3.09 in
increments of 0.01. z values accurate to tenths are listed in the far left column. The hundredths
digit of z is listed across the top of the table. The areas under the normal curve between 0 and z
are given in the body of the table.

Figure 4: The standard normal table

For example, the standard normal table gives us that P (0 ≤ Z ≤ 1) = 0.3413 and that
P (0 ≤ Z ≤ 1.96) = 0.4750. Using the symmetry of the distribution function of Z and the fact that
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P (Z ≤ 0) = P (0 ≤ Z) = 0.5, Figure 5 shows how to find the probabilities

P (−1 ≤ Z ≤ 1) = P (−1 ≤ Z ≤ 0) + P (0 ≤ Z ≤ 1) = 2P (0 ≤ Z ≤ 1),

P (−1 ≤ Z) = P (−1 ≤ Z ≤ 0) + P (0 ≤ Z) = P (0 ≤ Z ≤ 1) + 0.5 = 0.3413 + 0.5 = 0.8413,

P (1 ≤ Z) = P (0 ≤ Z)− P (0 ≤ Z ≤ 1) = 0.5− 0.3413 = 0.1587.

How about computing probabilities for general normally distributed random variable X with pa-

Figure 5: Examples of standard normal probabilities

rameters µ and σ2? We use the fact that then Z := (X−µ)/σ is standard normal random variable.

Example 155. If X is a normal random variable with parameters µ = 2 and σ2 = 9, find P (|X−3| >
5).

Solution. P (|X − 3| > 5) = P ({X − 3 > 5} ∪ {X − 3 < −5}) = P (X − 3 > 5) + P (X − 3 <
−5) = P (X > 8) + P (X < −2) since the two events are disjoint. Next

P (X > 8) = P
(X − 2

3
>

8− 2

3

)
= P (Z > 2) = 1− Φ(2) = 1− 0.9772 = 0.0228;

P (X < −2) = P
(X − 2

3
<
−2− 2

3

)
= P (Z < −1.333) = Φ(−1.333) = 1− Φ(1.333) = 1− 0.9082 = 0.0918.

Where at the end in both cases we used the cumulative normal table. Putting everything together,
we obtain

P (|X − 3| > 5) = P (X > 8) + P (X < −2) = 0.0228 + 0.0918 = 0.1146.

Next, we present our second limit theorem.
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Theorem 156 (DeMoivre-Laplace limit theorem). Let X be the number of successes in a binomial
experiment with n trials and probability of success p. Then, for any x ∈ R we have

P
(X − np√

npq
≤ x

)
→ P (Z ≤ x),

as n approaches ∞, where Z is the standard normal random variable and q := 1− p.
The theorem is a special case of the central limit theorem, and we will not present a proof.
Now, we have two approximations to binomial probabilities: the Poisson theorem, which yields

a good approximation when n is large and np is moderate, and the DeMoivre-Laplace theorem.
A good rule of thumb is that the approximation in the DeMoivre-Laplace theorem is good when
npq ≥ 10. See Figure 6.

Figure 6: Normal approximation of the binomial

Example 157. Let X be the number of times that a fair coin, flipped 50 times, lands heads. Find
the probability that X = 23. Use the normal approximation and then compare it to the exact
solution.

Solution. First check that npq = 50(1/2)(1/2) = 12.5 ≥ 10, so that the normal approximation
to the binomial will be good. Next, we need to calculate P (X = 23) but instead we will apply the
the DeMoivre-Laplace theorem to calculate P (22.5 ≤ X ≤ 23.5). These, two probabilities are equal
since X takes only integer values. But it will make a difference in the approximation. This is step
called continuity correction, since we use a continuous distribution to approximate a discrete one.
Next np = 25 and

√
npq = 3.5355, we apply the DeMoivre-Laplace theorem:

P (X = 23) = P (22.5 ≤ X ≤ 23.5) = P
(22.5− 25

3.5355
≤ X − 25

3.5355
≤ 23.5− 25

3.5355

)
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≈ P (−0.71 ≤ Z ≤ −0.42) = 0.3372− 0.2389 = 0.0983.

The actual answer, using the binomial probability distribution with n = 50, p = 0.5, and x = 23 is
0.0959617. Pretty good approximation!

Figure 7 gives several examples how to apply the continuity correction in other cases.

 5.5 Approximating the Binomial Distribution by Using the Normal Distribution 175

FIGURE 5.30  Approximating the Binomial Probability P(X 5 23) by Using the Normal Curve When m 5 np 5 25 
and s 5 1npq 5 3.5355
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P(X � 23) approximately equals 
the area between 22.5 and 23.5.

we fi nd that P(22.5 # X # 23.5) 5 P(20.71 # Z # 20.42) 5 0.2611 2 0.1628 5 0.0983. 
Therefore, we estimate that the binomial probability P(X 5 23) is 0.0983.

Example 5.9 The Wine Case

A wine maker is test-marketing a new bottle for one of its popular brands of Chardonnay. The 
new bottle will have a screwcap instead of a cork. The consumer will be able to enjoy a glass of 
Chardonnay and not have to worry about whether or not a corkscrew is handy. The screwcap 
design will mean that the bottles will have to be redesigned, but corkers will no longer be needed. 
It turns out that the screwcap will be slightly less expensive than having a cork. However, the 
new screwcap may alienate some customers. A company study has shown that that its introduction 

 Making the proper continuity correction can sometimes be tricky. A good way to approach 
this is to list the numbers of successes that are included in the event for which the binomial 
probability is being calculated. Then assign the appropriate area under the normal curve to 
each number of successes in the list. Putting these areas together gives the normal curve area 
that must be calculated. For example, again consider the binomial random variable X with n 5 50 
and p 5 0.5. If we wish to fi nd P(27 # X # 29), then the event 27 # X # 29 includes 27, 
28, and 29 successes. Because we assign the areas under the normal curve corresponding to 
the intervals [26.5, 27.5], [27.5, 28.5], and [28.5, 29.5] to the values 27, 28, and 29, respec-
tively, then the area to be found under the normal curve is P(26.5 # X # 29.5). Table 5.3 
gives several other examples.

 Numbers of Successes Normal Curve Area (with
Binomial Probability Included in Event Continuity Correction)
P(25 , X # 30) 26, 27, 28, 29, 30 P(25.5 # X # 30.5)
P(X # 27) 0, 1, 2, . . . , 26, 27 P(X # 27.5)
P(X . 30) 31, 32, 33, . . . , 50 P(X $ 30.5)
P(27 , X , 31) 28, 29, 30 P(27.5 # X # 30.5)

TABLE 5.3 Several Examples of the Continuity Correction (n 5 50)
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1st Pass 

Figure 7: Continuity correction

In summary, there are three steps that one needs to perform when approximating binomial
distribution with normal: 1) check that npq ≥ 10; 2) apply continuity correction to the event whose
probability one computes; 3) apply the DeMoivre-Laplace theorem.

9.7 Gamma distribution

The gamma function is defined by

Γ(t) =

∫ ∞
0

e−xxt−1 dx.

This integral is hard to evaluate for all values of t, but for some we can do it. Integration by parts
of the integral in the definition of Γ(t) yields

Γ(t) = −e−xxt−1
∣∣∣∞
x=0

+ (t− 1)

∫ ∞
0

e−xxt−2 dx = (t− 1)

∫ ∞
0

e−xxt−2 dx = (t− 1)Γ(t− 1).

Thus, for integer values of t, say t = n, applying the above argument repeatedly, we obtain

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)(n− 2)Γ(n− 2) = · · · = (n− 1)(n− 2) · · · (3)(2)Γ(1).

Since Γ(1) =
∫∞

0
e−x dx = 1 it follows that for all integer n

Γ(n) = (n− 1)!

Hence, the gamma function extends factorials to all real numbers except the negative integers and
zero. At those values the gamma function blows up to infinity. See Figure 8 for the graph of the
gamma function.

It is curious to mention that
Γ(1/2) =

√
π.
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Figure 8: The graph of the gamma function

Definition 158. A continuous random variable has gamma distribution with parameters k > 0 and
λ > 0, if its probability density function is

f(x) =

{
λe−λx(λx)k−1

Γ(k)
if x > 0,

0 if x ≤ 0.

To see that f(x) is indeed a probability density function, note that f(x) ≥ 0 and

1

Γ(k)

∫ ∞
0

λe−λx(λx)k−1 dx =
1

Γ(k)

∫ ∞
0

e−yyk−1 dy =
1

Γ(k)
Γ(k) = 1.

where we performed the change of variables y = λx.

Note that when k = 1 the density of the gamma distribution reduces to that of the exponential
distribution. So the gamma distribution is a generalization of the exponential one. Now recall
Definition 129 of a Poisson process with rate λ together with Example 133. The next example
is an extension of Example 133 and gives an interpretation of the gamma distribution when the
parameter k is equal to an integer n.

Example 159. Given a Poisson process with rate λ, let X be the the amount of time one has to
wait until a total of n events have occurred. Show that X has a gamma distribution with parameters
n and λ.

Solution. Let Tn denote the time at which the n-th event occurs and note that Tn is less than
or equal to x if and only if the number of events that have occurred by time x is at least n. That
is, with N(x) equal to the number of events in [0, x], we have

P (Tn ≤ x) = P (N(x) ≥ n) =
∞∑
j=n

P (N(x) = j) =
∞∑
j=n

e−λx(λx)j

j!
,
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where the last equality follows by the fact that the number of events in [0, x] has a Poisson distribu-
tion with parameter λx. To obtain the density function of Tn, we need to differentiate P (Tn ≤ x)
with respect to x.

f(x) =
∞∑
j=n

e−λxj(λx)j−1λ

j!
−
∞∑
j=n

λe−λx(λx)j

j!

=
∞∑
j=n

λe−λx(λx)j−1

(j − 1)!
−
∞∑
j=n

λe−λx(λx)j

j!

=
λe−λx(λx)n−1

(n− 1)!
.

Hence Tn is the gamma distribution with parameters n and λ.

The gamma distribution with k = n, an integer, is also called n-Erlang distribution. The gamma
distribution with λ = 1/2 and k = n/2 (n being a positive integer) is called the χ2

n (read “chi-
squared”) distribution with n degrees of freedom. As we will see later, the chi-squared distribution
arises in practice as being the distribution of the error involved in attempting to hit a target in
n-dimensional space when each coordinate error is normally distributed.

Note that when k = 1 the gamma distribution reduces to exponential.

The moment generating function of a gamma random variable is

M(t) =
1

(1− t/λ)k
for t < λ.(24)

The first two derivatives of M(t) are

M ′(t) =
k

λ

1

(1− t/λ)k+1
and M ′′(t) =

k(k + 1)

λ2

1

(1− t/λ)k+2
.

Hence, we have

M ′(0) =
k

λ
and M ′′(0) =

k(k + 1)

λ2

and from here

E[X] = M ′(0) =
k

λ
and Var [X] = E[X2]− (E[X])2 = M ′′(0)− (M ′(0))2 =

k

λ2
.

9.8 Beta function

The beta function is defined for s > 0, t > 0 by

B(s, t) =

∫ 1

0

zt−1(1− z)s−1 dz(25)

The property that we are going to need is the identity

B(s, t) =
Γ(s)Γ(t)

Γ(s+ t)
(26)

holding for all s > 0, t > 0.
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10 Jointly distributed random variables

So far we only dealt with one random variable at a time. But often two or more random variables
are at play at the same time.

Definition 160. Let X and Y be random variables defined on the same sample space Ω. The joint
cumulative distribution function of X and Y is defined by

F (x, y) := P (X ≤ x, Y ≤ y).

Here, the event {X ≤ x, Y ≤ y} is {ω ∈ Ω : X(ω) ≤ x and Y (ω) ≤ y}. Before we move on to
the properties of the joint c.d.f. we need a lemma about a property of any probability measure P
on a sample space Ω.

A sequence A1, A2, A3, . . . of events is called increasing sequence if

A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · ·

conversely, it is called decreasing sequence if

A1 ⊃ A2 ⊃ A3 ⊃ · · · ⊃ An ⊃ An+1 ⊃ · · ·

If a sequence A1, A2, A3, . . . of events is increasing, then the union of all events in the sequence

∞⋃
n=1

An

is the smallest event that contains everyAi from the sequence. Conversely, if a sequenceA1, A2, A3, . . .
of events is decreasing, then the intersection of all events in the sequence

∞⋂
n=1

An

is the largest event that is contained in every Ai from the sequence.

Proposition 161 (Probability as a continuous set function). Let P be a probability measure on
a sample space Ω. If a sequence A1, A2, A3, . . . of events in Ω is increasing, then the union of all
events in the sequence has probability

P
( ∞⋃
k=1

Ak

)
= lim

k→∞
P (Ak).

If a sequence A1, A2, A3, . . . of events in Ω is decreasing, then the intersection of all events in the
sequence has probability

P
( ∞⋂
k=1

Ak

)
= lim

k→∞
P (Ak).
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Proof. Suppose the sequence A1, A2, A3, . . . of events in Ω is increasing. In order to evaluate

P
(⋃∞

k=1Ak

)
, we are going to partition the event

⋃∞
k=1Ak (that is, express is as a disjoint union)

into events whose probability we know. Define the events

B1 := A1, B2 := A2 \ A1, B3 := A3 \ A2, . . . and so on.

That is Bk = Ak \ Ak−1 contains those points in Ak that are not in any of the previous sets
A1, A2, . . . , Ak−1. It is easy to see that the events B1, B2, B3, . . . are disjoint and

∞⋃
k=1

Ak =
∞⋃
k=1

Bk and An =
n⋃
k=1

Bk for all n ≥ 1.

We are ready to calculate

P
( ∞⋃
k=1

Ak

)
= P

( ∞⋃
k=1

Bk

)
=
∞∑
k=1

P (Bk) = lim
n→∞

n∑
k=1

P (Bk) = lim
n→∞

P
( n⋃
k=1

Bk

)
= lim

n→∞
P (An).

For the second equality we used property (iii) in Definition 14, while for the last equality we used
that An =

⋃n
k=1 Ak.

The proof of the second part is left as an exercise.

The proposition allows us to prove one of the characteristic properties of the cumulative dis-
tribution function, see property 4) on page 51.

Corollary 162. Let FX(x) be the c.d.f. of a random variable X, then

lim
x→∞

FX(x) = 1 and lim
x→−∞

FX(x) = 0.

Proof. Let x1, x2, x3, . . . be a sequence converging to infinity. Define the events Ak := {X ≤ xk},
for k = 1, 2, 3, . . ., they form an increasing sequence of events, and moreover

⋃∞
k=1 Ak = Ω. Thus,

by the proposition

1 = P (Ω) = P
( ∞⋃
k=1

Ak

)
= lim

k→∞
P (Ak) = lim

k→∞
P (X ≤ xk) = lim

k→∞
FX(xk).

This proves that limx→∞ FX(x) = 1. The other statement is left as an exercise.

The cumulative distribution function of X can be obtained from F (x, y). Let y1, y2, y3, . . . be
a increasing sequence converging to infinity. By Proposition 161, we have

FX(x) = P (X ≤ x) = P (X ≤ x, Y ≤ ∞) = P (
∞⋃
k=1

{X ≤ x, Y ≤ yk}) = lim
k→∞

P ({X ≤ x, Y ≤ yk}).

This shows that
FX(x) = lim

y→∞
F (x, y)
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Analogously, we can recover FY (y):

FY (y) = lim
x→∞

F (x, y).

The distribution functions FX and FY are referred to as the marginal distributions of X and Y . All
probability statements about X and Y can be answered in terms of the joint distribution function.
For example, to compute the probability that X is greater than x and Y is greater than y, we argue
as follows

P (X > x, Y > y) = 1− P ({X > x, Y > y}c) = 1− P
(
({X > x} ∩ {Y > y})c

)
= 1− P

(
{X > x}c ∪ {Y > y}c

)
= 1− P

(
{X ≤ x} ∪ {Y ≤ y}

)
= 1−

(
P (X ≤ x) + P (Y ≤ y)− P

(
{X ≤ x} ∩ {Y ≤ y}

))
= 1−

(
P (X ≤ x) + P (Y ≤ y)− P (X ≤ x, Y ≤ y)

)
= 1− FX(x)− FY (y) + F (x, y).

Exercise 163. Show that for any x1 < x2 and y1 < y2 one has

P (x1 < X ≤ x2, y1 < Y ≤ y2) = F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1).

We defined the joint c.d.f. of two random variables, but what about their joint probability
density (reps. mass) function?

Definition 164 (Discrete joint p.m.f.). Let X and Y be two discrete random variables. The
function

p(x, y) := P (X = x, Y = y)

is called their joint probability mass function.

Suppose X is discrete and takes values {x1, x2, x3, . . .}. Note that the events {X = x1}, {X =
x2}, {X = x3}, . . . are disjoint and have union Ω, that is they partition the sample space. Similarly,
if Y is discrete and takes values {y1, y2, y3, . . .} the events {Y = y1}, {Y = y2}, {Y = y3}, . . .
partition the sample space. In addition, any event, say {X = x} can be expressed as a disjoint
union

{X = x} =
∞⋃
k=1

(
{X = x} ∩ {Y = yk}

)
Taking probability of both sides shows how the (marginal) probability mass function of X can be
recovered from p(x, y):

pX(x) = P (X = x) =
∞∑
k=1

p(x, yk).

Similarly, the (marginal) probability mass function of Y can be recovered from p(x, y)

pY (y) = P (Y = y) =
∞∑
k=1

p(xk, y).
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Example 165 (The multinomial distribution). A sequence of n independent and identical exper-
iments is performed. Suppose that each experiment can result in any one of r possible outcomes,
with probabilities p1, p2, . . . , pr respectively, p1 + p2 + · · ·+ pr = 1. An outcome of this experiment
may be viewed as a sequence of length n whose elements are the integers from 1 to r. For example,
the sequence (1, 4, 3, . . . , 5) indicates that the first experiment resulted in outcome 1, the second in
outcome 4, the third in outcome 3, and so on, the n-th in outcome 5. The sample space Ω is the
set of all such sequences and ω will denote such a sequence of length n.

Note that when r = 2 this set up reduces to the familiar binomial experiment, where we counted
the number of successes in n experiments. There were two possible outcomes of each experiment
‘success’ (outcome 1) and ‘failure’ (outcome 2).

What is the probability measure on Ω? Let ω be a sequence of length n in which 1 appears n1

times, 2 appears n2 times, and so on, r appears pr times. Since the experiments are independent,
the natural way to define the probability measure is

P (ω) := pn1
1 p

n2
2 · · · pnrr .(27)

Let Xk be the number of experiments that resulted in outcome k, for k = 1, 2, . . . , r. That is
given a sequence ω ∈ Ω, Xk(ω) is equal to the number of times k appears in the sequence. This
defines r random variables and note that for any ω ∈ Ω we have

X1(ω) +X2(ω) + · · ·+Xr(ω) = n.

Each of these random variables by itself, say Xk, is a binomial random variable with parameters n
and pk. So, we know that

P (Xk = m) =

(
n

m

)
pmk (1− pk)n−m for all m = 1, 2, . . . , n.

Now we want to investigate how all random variables X1, X2, . . . , Xr interact with each other.
Let n1, n2, . . . , nr be non-negative integers. We want to find the probability P (X1 = n1, X2 =

n2, . . . , Xr = nr), that is, the probability of the event that the outcome k occurred nk times, for all
k = 1, 2, . . . , r. First of all, the event

{X1 = n1, X2 = n2, . . . , Xr = nr}

is empty if n1 + n2 + · · ·+ nr 6= n. So, suppose that n1 + n2 + · · ·+ nr = n. The event is made up
of all sequences of length n in which 1 appears n1 times, 2 appears n2 times and so on r appears
nr times. Each such sequence is nothing else but dividing the integers {1, 2, . . . , n} (the position
in the sequence) into r distinct groups: in the first group we have all positions where 1 appears in
the sequence; in the second group we have all positions where 2 appears in the sequence; and so
on. Thus, in the first group there are n1 elements , in the second group we have n2 elements and
so on. Thus, from Example 38 we know that there are

(
n

n1,n2,...,nr

)
such sequences and each one has

probability (27). Multiplying the number of such sequences by that probability we find

P (X1 = n1, X2 = n2, . . . , Xr = nr) =

(
n

n1, n2, . . . , nr

)
pn1

1 p
n2
2 · · · pnrr
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=
n!

n1!n2! · · ·nr!
pn1

1 p
n2
2 · · · pnrr .

What we found is the joint probability mass function of the random variables X1, X2, . . . , Xr.

Exercise 166. Define n1 := n− n2 − · · · − nr. Calculate the sum∑
n2,...,nr≥0
n2+···+nr≤n

(
n

n1, n2, . . . , nr

)
pn1

1 p
n2
2 · · · pnrr .

Definition 167 (Continuous joint p.d.f.). Let X and Y be two continuous random variables. We
say that X and Y are jointly (absolutely) continuous if there is a function f(x, y) ≥ 0 defined for
all (x, y) ∈ R2 and such that for each set C ⊆ R2 satisfies

P ((X, Y ) ∈ C) =

∫ ∫
(x,y)∈C

f(x, y) dxdy.

The function f(x, y) is called the joint probability density function.

Remember that it is possible to have two continuous random variables that are not jointly
continuous!

Some sets in R2 are nice, these are the rectangles: if A and B are subsets of R, then the set
C = {(x, y) ∈ R2 : x ∈ A, y ∈ B} is a rectangle. The probability of the pair (X, Y ) to be in the
rectangle C is

P ((X, Y ) ∈ C) = P (X ∈ A, Y ∈ B) =

∫
B

∫
A

f(x, y) dxdy,

in particular, the joint cumulative distribution function of X and Y is given by

F (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
f(s, t) dtds,

and from the fundamental theorem of calculus we obtain

f(x, y) =
∂2

∂x∂y
F (x, y).(28)

Now, if you know the joint density f(x, y) of X and Y , how to find the density of, say, X? Let A
be an event and compute

P (X ∈ A) = P (X ∈ A, Y ∈ (−∞,∞))

=

∫ ∞
−∞

∫
A

f(x, y) dxdy =

∫
A

∫ ∞
−∞

f(x, y) dydx

=

∫
A

(∫ ∞
−∞

f(x, y) dy
)
dx.
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This shows that the function in the big parenthesis is a p.d.f. of X, that is

fX(x) =

∫ ∞
−∞

f(x, y) dy.

Analogously, we have

fY (x) =

∫ ∞
−∞

f(x, y) dx.

Finally, note that since Ω = {X ∈ (−∞,∞), Y ∈ (−∞,∞)}, taking probability on both sides gives

1 = P (Ω) = P (X ∈ (−∞,∞), Y ∈ (−∞,∞)) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dxdy.

Example 168. Let the joint p.d.f. of X and Y be given by

f(x, y) =

{
2e−xe−2y if x > 0, y > 0.
0 otherwise.

Find a) P (X > 1, Y < 1); b) P (X < Y ); c) P (X < 5).

Solution. a) Define the sets A = {x ∈ R : x > 1} and B = {y ∈ R : y < 1}. Then the event
{X > 1, Y < 1} is the same as the event {X ∈ A, Y ∈ B}. Then,

P (X > 1, Y < 1) = P (X ∈ A, Y ∈ B) =

∫ 1

−∞

∫ ∞
1

f(x, y) dxdy =

∫ 1

0

∫ ∞
1

2e−xe−2y dxdy

= 2

∫ ∞
1

e−x dx

∫ 1

0

e−2y dy = 2
(
− e−x

∣∣∣∞
x=1

)(
(−1/2)e−2y

∣∣∣1
y=0

)
= e−1(1− e−2).

b) Define the set C = {(x, y) ∈ R2 : x < y} = {(x, y) ∈ R2 : −∞ < y < ∞,−∞ < x < y}. Then
the event {X < Y } is the same as the event {(X, Y ) ∈ C}. Then

P (X < Y ) = P ((X, Y ) ∈ C) =

∫ ∫
(x,y)∈C

f(x, y) dxdy =

∫ ∞
0

∫ y

0

2e−xe−2y dxdy

= 2

∫ ∞
0

e−2y
(∫ y

0

e−x dx
)
dy = 2

∫ ∞
0

e−2y(1− e−y) dy

= 2

∫ ∞
0

e−2y dy − 2

∫ ∞
0

e−3y dy = 1− 2/3 = 1/3.

c) In this case

P (X < 5) = P (X ∈ (−∞, 5), Y ∈ (−∞,∞)} =

∫ 5

0

∫ ∞
0

2e−xe−2y dydx = 2

∫ 5

0

e−x dx

∫ ∞
0

e−2y dy

= (1− e−5)(1− 0) = 1− e−5.

The next theorem is should be compared with Theorem 104.

Theorem 169. Suppose that X and Y are random variables and g(x, y) is a function defined on
R2. The expected value of g(X, Y ), denoted by E[g(X, Y )], is calculated as follows.
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• If X and Y are discrete random variables taking values {x1, x2, . . .} and {y1, y2, . . .} respec-
tively, and having joint probability mass function p(x, y), then

E[g(X, Y )] :=
∞∑
i=1

∞∑
j=1

g(xi, yj)p(xi, yj).

• If X and Y are continuous random variables with values in R and joint probability density
function f(x, y), then

E[g(X, Y )] :=

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y) dxdy.

Corollary 170. Let X and Y be random variables. Suppose that E[X] and E[Y ] are both finite
numbers. Then

E[X + Y ] = E[X] + E[Y ].

Proof. Consider the function g(x, y) = x+ y. Then

E[X + Y ] =

∫ ∞
−∞

∫ ∞
−∞

(x+ y)f(x, y) dxdy =

∫ ∞
−∞

∫ ∞
−∞

xf(x, y) dxdy +

∫ ∞
−∞

∫ ∞
−∞

yf(x, y) dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xf(x, y) dydx+

∫ ∞
−∞

∫ ∞
−∞

yf(x, y) dxdy

=

∫ ∞
−∞

x
(∫ ∞
−∞

f(x, y) dy
)
dx+

∫ ∞
−∞

y
(∫ ∞
−∞

f(x, y)
)
dxdy

=

∫ ∞
−∞

xfX(x)dx+

∫ ∞
−∞

yfY (y)dy

= E[X] + E[Y ].

It is straightforward to generalize the last corollary to n random variables

E[X1 +X2 + · · ·+Xn] = E[X1] + E[X2] + · · ·+ E[Xn].(29)

Corollary 171. If the random variables X and Y satisfy X ≥ Y , then E[X] ≥ E[Y ].

Proof. Since X − Y ≥ 0, it follows that E[X − Y ] ≥ 0 or 0 ≤ E[X − Y ] = E[X] + E[−Y ] =
E[X]− E[Y ].

In general, it is not true that E[XY ] = E[X]E[Y ], but we will see in the next section that
E[XY ] = E[X]E[Y ] whenever X and Y are independent random variables.

Example 172 (Mean of a hypergeometric random variable). n balls are randomly selected from
an urn containing N balls of which m are white and the rest are black. Find the expected number
of white balls selected.
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Solution. Let X denote the number of white balls selected. Enumerate the white balls from 1
to m. Define the variables Xi to be 1 if i-th white ball is in the sample of n balls; and 0 otherwise.
Then, X = X1 +X2 + · · ·+Xm. By Example 101 we have that

E[Xi] = P (Xi = 1) = P (the i-th white ball is selected) =

(
N−1
n−1

)(
N
n

) =
n

N
.

Thus,

E[X] = E[X1] + E[X2] + · · ·+ E[Xm] =
nm

N
.

We now give an intuitive interpretation of the joint probability density function. Using Exer-
cise 163 and formula (28), an argument similar to the one leading to (13) shows that

f(x, y) = lim
h→0

P (x ≤ X ≤ x+ h, y ≤ Y ≤ y + h)

h2

implying that for values of h close to 0, we have

f(x, y)h2 ≈ P (x ≤ X ≤ x+ h, y ≤ Y ≤ y + h).

We omit the details. Finally, we list the important properties of the joint cumulative distribution
function.

Proposition 173. Let F (x, y) be the joint c.d.f. of two continuous random variables. Then, F (x, y)
is a continuous function on R2 and

(i) lim
x,y→−∞

F (x, y) = 0, lim
x,y→∞

F (x, y) = 1;

(ii) F (x1, y) ≤ F (x2, y) if x1 ≤ x2, F (x, y1) ≤ F (x, y2) if y1 ≤ y2;

(iii) lim
x→∞

F (x, y) = FY (y), lim
y→∞

F (x, y) = FX(x),

11 Independent random variables

To simplify the notation the event {X ∈ A}∩{Y ∈ B} will be denoted simply by {X ∈ A, Y ∈ B}.

Definition 174. Two random variables X and Y are called independent if for any two sets A, and
B of real numbers, the events {X ∈ A} and {Y ∈ B} are independent. We write this with the
formula

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for any A,B ⊂ R.

In general, n random variables X1, X2, . . . , Xn, are said to be independent if, for any sets of real
numbers A1, A2, . . . , An, the events {X1 ∈ A1}, {X2 ∈ A2}, . . ., {Xn ∈ An} are independent. That
is

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = P (X1 ∈ A1)P (X2 ∈ A2) · · ·P (Xn ∈ An)

holds for any sets of real numbers A1, A2, . . . , An
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If X and Y are independent, then their joint c.d.f. has the following property

F (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) = FX(x)FY (y).

It can be shown (proof omitted) that, the opposite statement also holds. That is, if F (x, y) =
FX(x)FY (y) for every x and y, then X and Y are independent. If X and Y are discrete random
variables, then the definition of independence simply says that the joint probability mass function
satisfies

p(x, y) = pX(x)pY (y).

The same is true for continuous random variables and the next theorem tells us how to recognize if
two random variables are independent by only looking at their joint probability density function—if
one can “separate” the variables in the joint p.d.f. then X and Y are independent.

Theorem 175. Suppose X and Y are jointly continuous with joint p.d.f. f(x, y). Then, X and Y
are independent if and only if the joint p.d.f. has the form f(x, y) = h(x)g(y) for any x, y.

In the theorem, the functions h(x) and g(y) are not necessarily the marginal p.d.f.’s of X and
Y , but are close to them in the sense that there are constants C1 and C2 with C1C2 = 1 such that

fX(x) = C1h(x) and fY (y) = C2g(y).

Corollary 176. Suppose X and Y are jointly continuous with joint p.d.f. f(x, y). Then, X and
Y are independent if and only if f(x, y) = fX(x)fY (y).

Corollary 177. Let X and Y be independent random variables. Then, for any functions g and h,
we have

E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Proof. Consider the function p(x, y) = g(x)h(y). Then, by Theorem 169, we have

E[g(X)h(Y )] = E[p(X, Y )] =

∫ ∞
−∞

∫ ∞
−∞

p(x, y)f(x, y) dxdy =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX(x)fY (y) dxdy

=
(∫ ∞
−∞

g(x)fX(x) dx
)(∫ ∞

−∞
h(y)fY (y) dy

)
= E[g(X)]E[h(Y )],

where at the end we used Theorem 104.

Take g(x) = x and h(y) = y in the last corollary, to obtain that if X and Y are independent
random variables, then E[XY ] = E[X]E[Y ]. These observations can be generalized and we do it
without a proof.

Theorem 178. If X1, X2, . . . , Xn are independent random variables, then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn].

The converse of the theorem is not true. That is, if E[XY ] = E[X]E[Y ] we cannot conclude
that X and Y are independent as in the following example.
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Example 179. Let X be a random variable such that

P (X = 0) = P (X = 1) = P (X = −1) =
1

3
.

Let Y be a random variable such that

Y =

{
0 if X 6= 0,
1 if X = 0.

Since XY = 0, we have E[XY ] = 0. We also have

E[X] = 0P (X = 0) + 1P (X = 1) + (−1)P (X = −1) = 0.

Hence E[XY ] = E[X]E[Y ]. But X and Y are dependent. Indeed

P (X = 1, Y = 0) = P (X = 1)P (Y = 0|X = 1) = (1/3)(1) = 1/3

and
P (X = 1) = 1/3 and P (Y = 0) = P (X 6= 0) = P (X = 1) + P (X = −1) = 2/3

implying that
P (X = 1, Y = 0) = 1/3 6= (1/3)(2/3) = P (X = 1)P (Y = 0).

Example 180. A man and a woman decide to meet at a certain location. If each person indepen-
dently arrives at a time uniformly distributed between 12 noon and 1 pm, find the probability that
the first to arrive has to wait longer than 10 minutes.

Solution. Let X and Y denote the time of arrival of the man and the woman, respectively,
measured in minutes starting from 12 noon. We need to calculate the probability P (X+ 10 < Y ) +
P (Y +10 < X) and since X and Y are completely interchangeable, that sum is just 2P (X+10 < Y ).
Next, the p.d.f. of X is fX(x) = 1/60 for x ∈ [0, 60] and 0 otherwise. Similarly, the p.d.f. of Y is
fY (y) = 1/60 for y ∈ [0, 60] and 0 otherwise. Since X and Y are independent, f(x, y) = 1/602 for
x ∈ [0, 60] and y ∈ [0, 60], and 0 otherwise. So we calculate

2P (X + 10 < Y ) = 2

∫ ∫
x+10<y

f(x, y) dxdy = 2

∫ 60

10

∫ y−10

0

1/602 dxdy =
2

602

∫ 60

10

(y − 10) dy =
25

36
.

Example 181. Let X, Y , Z be independent and uniformly distributed over [0, 1]. Find that
probability that X is not-smaller than the product of Y and Z.

Solution. Each random variable has a p.d.f. f(x) = 1 for x ∈ [0, 1] and 0 otherwise. Since
they are independent their joint p.d.f. is f(x, y, z) = f(x)f(y)f(z) = 1 for x, y, z ∈ [0, 1]. Thus

P (X ≥ Y Z) =

∫ ∫ ∫
x≥yz

f(x, y, z) dxdydz =

∫ 1

0

∫ 1

0

∫ 1

yz

1 dxdydz

=

∫ 1

0

∫ 1

0

(1− yz) dydz =

∫ 1

0

(
1− z

2

)
=

3

4
.

We conclude this part with a useful fact about independence. We are not going to prove it.

Theorem 182. If X1, X2, . . . , Xn are independent random variables and g1, g2, . . . , gn are functions
on R, then the random variables g1(X1), g2(X2), . . . , gn(Xn) are also independent.
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11.1 Sums of independent random variables

This subsection deals with the following problem. If you know the distribution of X and Y and
they are independent, find the distribution of X + Y .

11.1.1 Discrete random variables

Example 183. Let X and Y be independent binomial random variables with parameters (n, p)
and (m, p) respectively. Calculate the distribution of X + Y .

Solution. X represents the number of successes in n independent trials, each of which results
in a success with probability p. Similarly, Y represents the number of successes in m independent
trials, each trial being a success with probability p. Hence, as X and Y are assumed independent,
it follows that X + Y represents the number of successes in n + m independent trials when each
trial has a probability p of being a success. Therefore, X + Y is a binomial random variable with
parameters (n+m, p).

Example 184. Let X and Y be independent Poisson random variables with parameters λ and µ
respectively. Calculate the distribution of X + Y .

Solution. Each X and Y take values 0, 1, 2, . . ., hence X + Y takes values 0, 1, 2, . . . as well.
We need to calculate P (X + Y = n) for n = 0, 1, 2, . . . . First, note that the event {X + Y = n}
is a disjoint union of the events {X = k, Y = n − k}, where k = 0, 1, 2, . . . , n. Second, taking
probabilities, we have

P (X + Y = n) =
n∑
k=0

P (X = k, Y = n− k) =
n∑
k=0

P (X = k)P (Y = n− k),

using that X and Y are independent. Continue with the formula for the p.m.f. of the Poisson
random variable.

P (X + Y = n) =
n∑
k=0

e−λ
λk

k!
e−µ

µn−k

(n− k)!
= e−λ−µ

n∑
k=0

λkµn−k

k!(n− k)!

=
e−λ−µ

n!

n∑
k=0

λkµn−k
n!

k!(n− k)!
=
e−λ−µ

n!
(λ+ µ)n.

That is, the p.m.f. of X + Y is the same as the one of a Poisson random variable with parameter
λ+ µ.

11.1.2 Continuous random variables

If X and Y are (absolutely) continuous random variables, then the c.d.f. of X + Y is

FX+Y (t) = P (X + Y ≤ t) =

∫ ∫
x+y≤t

f(x, y) dxdy =

∫ ∫
x+y≤t

fX(x)fY (y) dxdy

=

∫ ∞
−∞

∫ t−y

−∞
fX(x)fY (y) dxdy =

∫ ∞
−∞

fY (y)
(∫ t−y

−∞
fX(x) dx

)
dy
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=

∫ ∞
−∞

fY (y)FX(t− y) dy.

To obtain the p.d.f. of X + Y we need to differentiate FX+Y (t) with respect to t. Using the above
calculation, we obtain

fX+Y (t) =
d

dt
FX+Y (t) =

d

dt

∫ ∞
−∞

fY (y)FX(t− y) dy =

∫ ∞
−∞

d

dt

(
fY (y)FX(t− y)

)
dy

=

∫ ∞
−∞

fY (y)fX(t− y) dy.(30)

The above two formulas show how, knowing the p.d.f. and the c.d.f. of X and Y we can find the
p.d.f. and the c.d.f. of X+Y . This covers the case when both X and Y are (absolutely) continuous
random variables. The case when X and Y are both discrete is more straightforward as the previous
examples show.

Example 185. If X and Y are independent random variables, both uniformly distributed in [0, 1],
find the p.d.f. of X + Y .

Solution. First of all, note that X + Y takes values in [0, 2], so its p.d.f. may be non-zero
there. Using the formula above, we calculate.

fX+Y (t) =

∫ ∞
−∞

fY (y)fX(t− y) dy =

∫ 1

0

fX(t− y) dy,

where we used that fY (y) = 1 if y ∈ [0, 1] and 0 otherwise. Continuing, we need to consider two
cases. If t ∈ [0, 1] then ∫ 1

0

fX(t− y) dy =

∫ t

0

1 dy = t.

If t ∈ [1, 2] then ∫ 1

0

fX(t− y) dy =

∫ 1

t−1

1 dy = 2− t.

Putting it all together gives

fX+Y (t) =

{
t if 0 ≤ t ≤ 1,
2− t if 1 ≤ t ≤ 2.

Graph this function to see why the distribution of X + Y is called triangular distribution.

Example 186. Suppose X and Y are independent random variables. If X has gamma distribution
with parameters s, λ and Y has gamma distribution with parameters t, λ, show that X + Y has
gamma distribution with parameters s+ t, λ.
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Solution. It is given that

fX(x) =

{ 1
Γ(s)

λe−λx(λx)s−1 if 0 < x <∞,
0 otherwise,

and

fY (y) =

{ 1
Γ(t)

λe−λy(λy)t−1 if 0 < y <∞,
0 otherwise.

Using the formula for the density of X + Y , we get (note that if the argument y in fX(u − y) is
bigger than u, then fX(u− y) = 0, in addition, if y ≤ 0 then fY (y) = 0)

fX+Y (u) =

∫ ∞
−∞

fY (y)fX(u− y) dy =
1

Γ(s)Γ(t)

∫ u

0

λe−λy(λy)t−1λe−λ(u−y)(λ(u− y))s−1 dy

=
e−λuλs+t

Γ(s)Γ(t)

∫ u

0

yt−1(u− y)s−1 dy

=
e−λuλs+tus+t−1

Γ(s)Γ(t)

∫ 1

0

zt−1(1− z)s−1 dz,

where the last integral is obtained after the change of variables z = y/u with dz = dy/u. Now,
recalling the definition of the beta function (25) and its property (26), we continue

fX+Y (u) =
e−λuλs+tus+t−1

Γ(s)Γ(t)
B(s, t) =

e−λuλs+tus+t−1

Γ(s+ t)
=

1

Γ(s+ t)
λe−λu(λu)s+t−1.

This is precisely the p.d.f. of a gamma random variable with parameters s+ t and λ.

Using the previous example, it is a simple inductive argument to see that if Xi, for i =
1, 2, 3, . . . , n, are independent gamma random variables with parameters ti and λ, then X1 +X2 +
· · ·+Xn is a gamma distributed random variable with parameters t1 + t2 + · · ·+ tn and λ.

Example 187. Let X1, X2, . . . , Xn be independent exponential random variables with parameter
λ. Recall that an exponential random variable with parameter λ is the same as a gamma random
variable with parameters 1 and λ. Thus, by the previous example X1 +X2 + · · ·+Xn is a gamma
random variable with parameters n and λ. Note that this is also the essence of Example 159.

Example 188. If X and Y are independent, normally distributed, random variables, with param-
eters µX , σ

2
X and µY , σ

2
Y , then X + Y is normally distributed with parameters µX + µY , σ

2
X + σ2

Y .

Solution. We consider first a simpler case. Suppose that µX = 0 and σ2
X = σ2, while µY = 0

and σ2
Y = 1. Then

fX+Y (t) =

∫ ∞
−∞

fY (y)fX(t− y) dy =

∫ ∞
−∞

( 1√
2πσ

e−
(t−y)2

2σ2

)( 1√
2π
e−

y2

2

)
dy

=
1

2πσ
e−

t2

2σ2

∫ ∞
−∞

e−
y2(1+σ2)−2ty

2σ2 dy =
1

2πσ
e−

t2

2σ2 e
t2

2σ2(1+σ2)

∫ ∞
−∞

e
− t2

2σ2(1+σ2) e−
y2(1+σ2)−2ty

2σ2 dy

=
1

2πσ
e
− t2

2(1+σ2)

∫ ∞
−∞

e
− y

2(1+σ2)2−2ty(1+σ2)+t2

2σ2(1+σ2) dy
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=
1

2πσ
e
− t2

2(1+σ2)

∫ ∞
−∞

e
− (y(1+σ2)−t)2

2σ2(1+σ2) dy.

Change the variable in the integral by letting x := y(1+σ2)−t√
σ2(1+σ2)

leading to dx = 1+σ2√
σ2(1+σ2)

dy or

dy = σ√
1+σ2dx. Then,

fX+Y (t) =
1

2π
√

1 + σ2
e
− t2

2(1+σ2)

∫ ∞
−∞

e−
x2

2 dx =
1√

2π(1 + σ2)
e
− t2

2(1+σ2) ,

where the last integral was calculated in Lemma 151. We recognize the last function as the p.d.f.
of a normal random variable with mean 0 and variance (1 + σ2).

We now consider the general case. Consider the representation

X + Y = σY

(X − µX
σY

+
Y − µY
σY

)
+ µX + µY .(31)

Now (X − µX)/σY is normal with mean 0 and variance σ2
X/σ

2
Y , while (Y − µY )/σY is normal with

mean 0 and variance 1. Hence, by the particular case above

X − µX
σY

+
Y − µY
σY

is normal with mean 0 and variance 1 + σ2
X/σ

2
Y . Thus, X + Y is normal with mean µX + µY and

variance σ2
Y (1 + σ2

X/σ
2
Y ) = σ2

X + σ2
Y .

Using the last example, it is straightforward to see that the sum of n normal random variables
is normal with mean equal to the sum of the means and variance equal to the sum of the variances.

Example 189. Let Z be a standard normal random variable. Find the probability density function
of Z2.

Solution. Recall that

fZ(z) =
1√
2π
e−

z2

2 .

We use the result from Example 98. Let Y := Z2, then for y ≥ 0 we have

fY (y) =
1

2
√
y

(
fZ(
√
y) + fZ(−√y)

)
=

1

2
√
y

2√
2π
e−

y
2 =

1
2
e−

y
2

(
1
2
y
) 1

2
−1

√
π

.

Since Y ≥ 0 we find that its density function fY (y) must be equal to zero for y < 0. The reason we
wrote the last expression in such a fancy form is so that we can recognize the d.p.f. of the gamma
distribution with parameters

(
1
2
, 1

2

)
.

Suppose now that Z1, Z2, . . . , Zn are independent standard normal random variables. By Exam-
ple 189, each one of the random variables Z2

1 , Z
2
2 , . . . , Z

2
n has gamma distribution with parameters(

1
2
, 1

2

)
. Next, applying Theorem 182 to Z1, Z2, . . . , Zn and the function g1(z) = g2(z) = · · · =

gn(z) = z2, we see that the random variables Z2
1 , Z

2
2 , . . . , Z

2
n are independent. And finally, using

Example 186, we see that the sum

Y := Z2
1 + Z2

2 + · · ·+ Z2
n
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has gamma distribution with parameters
(
n
2
, 1

2

)
and hence its p.d.f. is

fY (y) =


1
2
e−

y
2

(
1
2
y
)n

2 −1

Γ
(
n
2

) if 0 < y,

0 otherwise.

This distribution is so important in statistics that it was given a name.

Definition 190 (Chi-quared). If Z1, Z2, . . . , Zn are independent standard normal random variables,
then the distribution of

Y := Z2
1 + Z2

2 + · · ·+ Z2
n

is called chi-squared with n degrees of freedom. Often the chi-squared distribution is denoted by χ2.

Using (24) we obtain the moment generating function of the chi-squared distribution with n
degrees of freedom

Mχ2(t) =
1

(1− 2t)n/2
for t <

1

2
.(32)

11.1.3 Using moment generation functions

Recall the notion of moment generating function.

Theorem 191. Let X1, X2, . . . , Xn be independent random variables, and let Y := X1 +X2 + · · ·+
Xn. Then

MY (t) = MX1(t)MX2(t) · · ·MXn(t).

Proof. By the definition of a moment generating function

MY (t) = E[etY ] = E[etX1etX2 · · · etXn ].

Applying Theorem 182 with g(x) = etx we conclude that the random variables etX1 , etX2 , . . . , etXn

are independent. Thus by Theorem 178 we conclude

MY (t) = E[etX1 ]E[etX2 ] · · ·E[etXn ] = MX1(t)MX2(t) · · ·MXn(t).

Most of the examples of this section, say Example 188, about the distribution of a sum of
two independent random variables, could be done using the above theorem and our knowledge of
the moment generating functions of the most important distributions. One would also need to use
Theorem 123. But the approach presented is more general and applies in more situations, since not
every random variable has moment generating function. Try to redo the examples using moment
generating functions. Here is an instance of how the method is applied by redoing Example 188.

Example 192. If X and Y are independent, normally distributed, random variables, with param-
eters µX , σ

2
X and µY , σ

2
Y , then X + Y is normally distributed with parameters µX + µY , σ

2
X + σ2

Y .
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Solution. Recall the formula for the m.g.f. of a normal random variable with mean µ and
variance σ2, given in Subsection 9.6:

M(t) = e

(
µt+σ2t2

2

)
.

According to Theorem 191

MX+Y (t) = MX(t)MY (t) = e

(
µX t+

σ2Y t
2

2

)
e

(
µY t+

σ2Y t
2

2

)
= e

(
(µX+µY )t+

(σ2X+σ2Y )t2

2

)
.

Since this is the m.g.f. of a normal random variable with mean µX + µY and variance σ2
X + σ2

Y , by
Theorem 123 it follows that X + Y is a normal r.v. with those parameters.

This method appears much simpler than the one used in Example 188 but that is an illusion.
The calculations done in Example 188 are of the same difficulty as those that one needs to do in
order to calculate the m.g.f. of the normal r.v., something that we did not in Subsection 9.6.

12 Covariance and correlation

12.1 Covariance

Definition 193. The covariance between X and Y , denoted Cov [X, Y ], is defined by

Cov [X, Y ] = E[(X − E[X])(Y − E[Y ])].

The definition, as stated, emphasized the intuition behind the notion of covariance. It is the
average joint deviation of X and Y from their respective means. But, by expanding the right-hand
side of the definition we can simplify it.

Cov [X, Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY −XE[Y ]− Y E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ] = E[XY ]− E[X]E[Y ].

This shows that if X and Y are independent random variables, then E[XY ] = E[X]E[Y ] implying
that Cov [X, Y ] = 0. The converse is not true. Take the random variables considered in Example 179.
They satisfy E[XY ] = E[X]E[Y ], equivalently Cov [X, Y ] = 0, but they are dependent. Below are
the properties of covariance.

Proposition 194. (i) Cov [X, Y ] = Cov [Y,X];

(ii) Cov [X,X] = Var [X];

(iii) Cov [aX, Y ] = aCov [X, Y ];

(iv) Cov [X, aY ] = aCov [X, Y ];

(v) Cov [
∑n

i=1Xi,
∑m

j=1 Yj] =
∑n

i=1

∑m
j=1 Cov [Xi, Yj];
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Proof. The first three parts are easy exercises. To simplify the notation for the fourth part, let
µi := E[Xi] and νi := E[Yi]. Then

Cov
[ n∑
i=1

Xi,
m∑
j=1

Yj

]
= E

[( n∑
i=1

Xi −
n∑
i=1

µi

)( m∑
j=1

Yj −
m∑
j=1

νi

)]
= E

[ n∑
i=1

(Xi − µi)
m∑
j=1

(Yj − νi)
]

= E
[ n∑
i=1

m∑
j=1

(Xi − µi)(Yj − νi)
]

=
n∑
i=1

m∑
j=1

E[(Xi − µi)(Yj − νi)],

where the last equality follows from (29).

With the notion of covariance, we can enhance our understanding of the variance.

Corollary 195. (i) For any random variables X1, X2, . . . , Xn

Var
[ n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi] +
n∑
i=1

n∑
j=1
j 6=i

Cov [Xi, Xj].

(ii) For any independent random variables X1, X2, . . . , Xn

Var
[ n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi].

Proof. We use the fact that Var [X] = Cov [X,X] and then the last part of the proposition.

Var
[ n∑
i=1

Xi

]
= Cov

[ n∑
i=1

Xi,
n∑
i=1

Xi

]
=

n∑
i=1

m∑
j=1

Cov [Xi, Xj] =
n∑
i=1

Var [Xi] +
n∑
i=1

n∑
j=1
j 6=i

Cov [Xi, Xj].

For the second part, just recall that if Xi and Xj are independent, then Cov [Xi, Xj] = 0.

Combining the second part of Corollary 195 with part (iii) of Proposition 111 we get that for
independent r.v.s X1, X2, . . . , Xn and any constants a1, a2, . . . , an

Var
[ n∑
i=1

aiXi

]
=

n∑
i=1

a2
iVar [Xi].(33)

Let X1, X2, . . . , Xn be independent random variables having the same cumulative distribution
function F (x). In particular, they have the same mean and variance. Such a sequence of random
variables is called a sample from the distribution F . The sample mean is defined by

X̄ :=

∑n
i=1Xi

n
.

Let the common expected value be µ := E[Xi], i = 1, 2, 3 . . . . Note that the expected value is a
constant, while the sample mean is a random variable! The sample variance is defined by

S2 :=

∑n
i=1(Xi − X̄)2

n− 1
.

Let the common variance be σ2 := Var [Xi], i = 1, 2, 3 . . . . Note that the variance of Xi is a constant,
while the sample variance is a random variable. Note also that the denominator in the definition
of S2 is n− 1 not n as one might have expected. We will see why in a moment.
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12.1.1 Examples and applications

Example 196 (Sample mean and sample variance). Calculate the mean and the variance of the
sample mean and the mean of the sample variance.

Solution. We have to do three things. a) The mean of X̄. Using (29) we get

E[X̄] =
n∑
i=1

E
[Xi

n

]
=

1

n

n∑
i=1

E[Xi] = µ.

b) The variance of X̄. Using (33) with constants ai = 1/n, i = 1, 2, . . ., we get

Var [X̄] =
n∑
i=1

Var
[Xi

n

]
=

1

n2

n∑
i=1

Var [Xi] =
σ2

n
.

c) The mean of S2. We start by adding and subtracting µ in each square in the definition of S2,
after that we expand the square.

(n− 1)S2 =
n∑
i=1

(Xi − X̄)2 =
n∑
i=1

(
(Xi − µ)− (X̄ − µ)

)2

=
n∑
i=1

(Xi − µ)2 +
n∑
i=1

(X̄ − µ)2 − 2(X̄ − µ)
n∑
i=1

(Xi − µ)

=
n∑
i=1

(Xi − µ)2 + n(X̄ − µ)2 − 2(X̄ − µ)
n∑
i=1

(Xi − µ)

Note that
∑n

i=1(Xi − µ) = n(X̄ − µ) and substitute it above.

(n− 1)S2 =
n∑
i=1

(Xi − µ)2 + n(X̄ − µ)2 − 2n(X̄ − µ)2 =
n∑
i=1

(Xi − µ)2 − n(X̄ − µ)2.(34)

Now take expectation from both sides to obtain the following.

(n− 1)E[S2] =
n∑
i=1

E[(Xi − µ)2]− nE[(X̄ − µ)2] = nσ2 − nVar [X̄] = nσ2 − σ2 = (n− 1)σ2.

Thus, we conclude that
E[S2] = σ2.

The above example is a fundamental first step in statistics. Event in nature that appears to
be random has unknown to us probability distribution. If we want to estimate the average value
and the variance of the event we draw a random sample and measure it. That is represented by
the independent random variables X1, X2, . . . , Xn having the same cumulative distribution function
F (x). That is, our sample is X1(ω), X2(ω), . . . , Xn(ω). We calculate the sample mean X̄(ω) and
the sample variance S2(ω) and we would like to say that these values are close to the real µ and
σ2. Part a) of the example says that on average our sample mean will be equal to µ. Part b) of
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the example says how far away on average will the sample mean be from µ. Moreover, part b) of
the example says that the larger the sample size, n, the smaller the variance of X̄. Hence, samples
with larger size will have sample means that are more likely to be close to the real value µ. Part c)
says something similar to part a) but for the unknown parameter σ2. Part c) says that the sample
variance will on average be equal to σ2. We say that X̄ is an estimator for µ and S2 is an estimator
for σ2. If the mean of an estimator is equal to the constant that it is supposed to estimate, then we
say that it is an unbiased estimator. In the above examle, both X̄ and S2 are unbiased estimators.
That is precisely the reason why in the definition of S2 the denominator is n− 1 and not n.

Sample mean and sample variance of normal distribution. Let X1, X2, . . . , Xn be
independent, normal random variables, each with mean µ and variance σ2. From a problem on the
assignment we know that (1/n)Xk is normal with mean µ/n and variance σ2/n2. Using Example 192
we conclude that the sample mean

X̄ :=

∑n
i=1Xi

n

is a normal random variable with mean µ and variance σ2/n. From here we can go a step further
to conclude something that we will need below, namely that

X̄ − µ
σ/
√
n

is a standard normal random variable, that is, it is a normal random variable with mean 0 and
variance 1.

Our next goal is to determine the distribution of the sample variance S2. For that purpose we
need the following important theorem which we state without a proof.

Theorem 197. Let X1, X2, . . . , Xn be independent, normal random variables, each with mean µ
and variance σ2. Then, the sample mean X̄ and the sample variance S2 are independent random
variables.

Exercise 198. Use Theorem 197, under the same assumptions, and Theorem 182, to show that

a)
(
Xi−µ
σ

)2

for i = 1, 2, . . . , n are independent random variables, and

b) (n− 1)S2/σ2 and
(
X̄−µ
σ/
√
n

)2

are independent random variables.

The left-hand side and the right-hand side of (34) give an important identity

(n− 1)S2 =
n∑
i=1

(Xi − µ)2 − n(X̄ − µ)2.

Dividing both sides by σ2 and reordering we get

(n− 1)S2

σ2
+
(X̄ − µ
σ/
√
n

)2

=
n∑
i=1

(Xi − µ
σ

)2

(35)
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Now let Y := (n−1)S2

σ2 , we want to find the distribution of Y . For that goal we use moment generating

functions. Since
(
X̄−µ
σ/
√
n

)2

is the square of a standard normal random variable, by Definition 190

it has a chi-squared distribution with 1 degree of freedom. Thus, by (32) its moment generating

function is (1−2t)−1/2 for t < 1/2. By Exercise 198, Y is independent of
(
X̄−µ
σ/
√
n

)2

so by Theorem 191

the moment generating function of the left-hand side of (35) is MY (t)(1−2t)−1/2. On the right-hand
side of (35) we have a sum of squares of n standard normal random variables. By Definition 190
it has a chi-squared distribution with n degree of freedom, and by (32) the moment generating
function of the right-hand side is (1− 2t)−n/2 for t < 1/2. Thus, we get the equation

MY (t)(1− 2t)−1/2 = (1− 2t)−n/2.

Solving it for MY (t) we get MY (t) = (1 − 2t)−(n−1)/2. This is the moment generating function
of a chi-squared random variable with (n − 1)-degrees of freedom. By the uniqueness theorem,
Theorem 123, the distribution of Y is chi-squared with (n− 1)-degrees of freedom. We summarize
everything in the following result.

Theorem 199. Let X1, X2, . . . , Xn be independent, normal random variables, each with mean µ
and variance σ2. Let X̄ be the sample mean and S2 be the sample variance. Then, X̄ and S2 are
independent random variables. The sample mean X̄ is normal with mean µ and variance σ2/n;
while (n− 1)S2/σ2 is a chi-squared random variable with (n− 1) degrees of freedom.

Sampling from a finite population. Suppose we want to find out the proportion p of
people in the population who are in favour of a particular political candidate. The number p is
called population proportion. Suppose the population has N individuals, they have fixed opinion,
and let vk be 1 if the k-th person in the population is in favour; and 0 otherwise. (The vk’s are
constants.) That is, we have p =

(∑N
k=1 vk

)
/N . Of course, we know the value on N but not the

values of the vk’s and thus we do not know p. If we could interview every single individual in the
population there would be nothing more to do. Since that is practically infeasible, we want to
estimate the unknown proportion p. For that purpose we interview n randomly selected individuals
and count how many of them are in favour and divide the result by n. This ratio, called sample
proportion, is our estimate for the population proportion p. We want to find out how far, on average,
will the sample proportion be from the true value of the population proportion. Thus, our sample
space Ω is the set of all possible subsets of people numbered {1, 2, . . . , N} of size n. The probability
that a particular sample of size n is picked is 1/

(
N
n

)
. Let ω be a subset of {1, 2, . . . , N} of size n and

let S(ω) be the number of people in ω who are in favour. Then the sample proportion S(ω)/n is
the point estimate for the value of p. We want to find out what is the expectation and the variance
of S/n. (Thus, the population proportion is a constant, while the sample proportion is a random
variable.) For that purpose, we represent S as a sum of simpler random variables.

Let Xi be a random variable that equals 1 if the i-th person is in the sample and 0 otherwise.
Then,

S =
N∑
k=1

vkXk.
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Let us examine the variables Xk separately first. We have

E[Xk] = 1P (Xk = 1) + 0P (Xk = 0) =

(
N−1
n−1

)(
N
n

) =
n

N
;

E[X2
k ] = 12P (Xk = 1) + 02P (Xk = 0) =

n

N
.

In addition, or any k 6= `, we have

E[XkX`] = 1P (Xk = 1, X` = 1) + 0P (Xk = 1, X` = 0) + 0P (Xk = 0, X` = 1) + 0P (Xk = 0, X` = 0)

=

(
N−2
n−2

)(
N
n

) =
n(n− 1)

N(N − 1)
.

These allow us to calculate the next quantities

Var [Xk] = E[X2
k ]− (E[Xk])

2 =
n

N

(
1− n

N

)
=
n(N − n)

N2
;

Cov [Xk, X`] = E[XkX`]− E[Xk]E[X`] =
n(n− 1)

N(N − 1)
− n

N

n

N
= − n(N − n)

N2(N − 1)
.

Thus, we find

E[S] =
N∑
k=1

E[vkXk] =
N∑
k=1

vkE[Xk] =
n

N

N∑
k=1

vk = np,

and using part (i) of Corollary 195, we get

Var [S] =
N∑
k=1

Var [vkXk] +
N∑
k=1

N∑
`=1
` 6=k

Cov [vkXk, v`X`]

=
N∑
k=1

v2
kVar [Xk] +

N∑
k=1

N∑
`=1
`6=k

vkv`Cov [Xk, X`]

=
n(N − n)

N2

N∑
k=1

v2
k −

n(N − n)

N2(N − 1)

N∑
k=1

N∑
`=1
`6=k

vkv`

=
n(N − n)

N2(N − 1)

(
(N − 1)

N∑
k=1

v2
k −

N∑
k=1

N∑
`=1
` 6=k

vkv`

)

=
n(N − n)

N2(N − 1)

(
N

N∑
k=1

v2
k −

( N∑
k=1

v2
k +

N∑
k=1

N∑
`=1
`6=k

vkv`

))

=
n(N − n)

N2(N − 1)

(
N

N∑
k=1

v2
k −

( N∑
k=1

vk

)2)
,
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where for the last equality, we used (9). Recall now that
∑N

k=1 vk = Np and since vk is equal to 0

or 1, we have v2
k = vk, that is

∑N
k=1 v

2
k = Np. Substituting above, we continue

Var [S] =
n(N − n)

N2(N − 1)

(
N2p−N2p2

)
=
n(N − n)

(N − 1)
p(1− p).

Finally, we have

E
[S
n

]
=

1

n
E[S] = p,

Var
[S
n

]
=

1

n2
Var [S] =

(N − n)

n(N − 1)
p(1− p).

In conclusion, we see that S/n is an unbiased estimator for p, and the larger the sample size the
smaller the variance of the sample proportion. That is, there is a bigger chance that S/n will be
close to p. In particular, if n = N , then the variance is 0, that is, S/n = p, which should be the
case.

Suppose in the population proportion example, there are m people in the population who are
in favour, that is p = m/N . We now rename a few objects. The ‘people’ will be called ‘balls’. Those
‘in favour’ are the ‘white balls’. Those ‘against’ are the ‘black balls’. We select n balls at random
and S denotes the number of white balls. Then S has hypergeometric distribution and according
to the above its mean and variance are

E[S] = np =
nm

N
;

(36)

Var [S] = n2 (N − n)

n(N − 1)
p(1− p) =

(N − n)

(N − 1)

nm

N

N −m
N

.

12.2 Correlation

Suppose X and Y are two random variables with strictly positive variance: Var [X] > 0 and
Var [Y ] > 0. Then the correlation between X and Y , denoted by ρ[X, Y ] is defined by

ρ[X, Y ] :=
Cov [X, Y ]√

Var [X]Var [Y ]
.

Proposition 200. For any two random variables X and Y with strictly positive variance: Var [X] >
0 and Var [Y ] > 0, we have

−1 ≤ ρ[X, Y ] ≤ 1.

Proof. Let σ2
X and σ2

Y be the variances of X and Y respectively. Then

0 ≤ Var
[ X
σX

+
Y

σY

]
=

Var [X]

σ2
X

+
Var [Y ]

σ2
Y

+ 2
Cov [X, Y ]

σXσY
= 2(1 + ρ[X, Y ]).

From here we conclude that ρ[X, Y ] ≥ −1. Analogously, we have

0 ≤ Var
[ X
σX
− Y

σY

]
=

Var [X]

σ2
X

+
Var [Y ]

σ2
Y

− 2
Cov [X, Y ]

σXσY
= 2(1− ρ[X, Y ]).

From here we conclude that ρ[X, Y ] ≤ 1.
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Figure 9: Different correlation cases between X and Y

In fact, since Var [Z] = 0 implies that Z is constant with probability 1 (this intuitive fact
will be rigorously proved later), we see from the proof of the proposition that ρ(X, Y ) = 1 implies
that Y = a + bX, where b = σY /σX > 0 and ρ(X, Y ) = −1 implies that Y = a + bX, where
b = −σY /σX < 0.

Exercise 201. Show that if Y = a+ bX then ρ(X, Y ) is either 1 or −1 depending on the sign of b.

Thus, the correlation coefficient is a measure of the degree of linearity between X and Y . A
value of ρ(X, Y ) near 1 or −1 indicates a high degree of linearity between X and Y , whereas a
value near 0 indicates a lack of such linearity. A positive value of ρ(X, Y ) indicates that Y tends
to increase when X does, whereas a negative value indicates that Y tends to decrease when X
increases. If ρ(X, Y ) = 0, then X and Y are said to be uncorrelated.

Figure 9 depicts the points (X(ω), Y (ω)) in the plane for all possible values of ω ∈ Ω and dif-
ferent pairs of random variables X and Y . For each data set, the correlation is calculated and given
above it. Note that the correlation reflects the noisiness and direction of a linear relationship (top
row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships
(bottom). The figure in the center has a slope of 0 but in that case the correlation coefficient is
undefined because the variance of Y is zero.

Exercise 202. Let X1, X2, · · · , Xn be independent and identically distributed random variables
having variance σ2. Show that Cov [Xi − X̄, X̄] = 0.
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13 Limit theorems

Note that from the definition of expected value, we have that if a random variable X is non-
negative, then E[X] ≥ 0. This implies that if X ≥ Y then X − Y ≥ 0, and taking expectation we
have E[X]− E[Y ] = E[X − Y ] ≥ 0, that is E[X] ≥ E[Y ].

Proposition 203 (Markov’s inequality). If X ≥ 0 is a random variable, then for any number t ≥ 0
we have

P (X ≥ t) ≤ E[X]

t
.

Proof. Fix t, and let the random variable I be the indicator function of the event {X ≥ t}, that is

I(ω) =

{
1 if X(ω) ≥ t,
0 otherwise.

Since X ≥ 0, we have I ≤ X/t. Taking expectations of both sides, we get E[I] ≤ E[X/t] = E[X]/t.
Using Example 101, we have E[I] = P (X ≥ t), and we are done.

Corollary 204 (Chebyshev’s inequality I). If X is a random variable with mean µ and variance
σ2, then for any value of k > 0, we have

P (|X − µ| ≥ k) ≤ σ2

k2
.

Proof. Apply Markov’s inequality to the non-negative random variable (X − µ)2 and t = k2:

P ((X − µ)2 ≥ k2) ≤ E[(X − µ)2]

k2
.

It remains to note that the inequality (X − µ)2 ≥ k2 is equivalent to |X − µ| ≥ k and that
E[(X − µ)2] = σ2.

Corollary 205 (Chebyshev’s inequality II). If X is a random variable with mean µ and variance
σ2, then for any value of n > 0, we have

P (X ∈ [µ− nσ, µ+ nσ]) ≥ 1− 1

n2
.

Proof. One can rewrite Chebyshev’s inequality as follows. First let k := nσ, where n > 0 to obtain

P (|X − µ| ≥ nσ) ≤ 1

n2

Second, observe that

P (µ− nσ ≤ X ≤ µ+ nσ) = P (|X − µ| ≤ nσ) = 1− P (|X − µ| > nσ) ≥ 1− 1

n2
.

The inequality follows from here.
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For example, let X be the grade a student from this class receives on the midterm exam. The
average score on the mideterm is 72% and the standard deviation is 4.7. Thus, with n = 2, the
second Chebyshev’s inequality says that at least 1− 1/n2 = 75% of the students have a score in the
interval [µ−nσ, µ+nσ] = [62.6%, 81.4%]. Interval like that, that contains a specified percentage of
the population values (the values that a random variable may take) is called a tolerance interval.

Chebyshev’s theorem applies to any random variable X no matter what is its distribution.
That is why it is a very conservative estimate. This means that 1 − 1/n2 does not increase very
fast compared to the length of the interval [µ− nσ, µ+ nσ]. If we have additional information, for
example, we know that X is normally distributed, then we have the following much better tolerance
interval.

Proposition 206 (The empirical rule). If X is a normal random variable with mean µ and variance
σ2, then for any value of n > 0 we have

P (X ∈ [µ− nσ, µ+ nσ]) ≥ 1−
√

2

π

1

nen2/2
.

Proof. Recall that Z := (X − µ)/σ is a standard normal random variable, and recall the definition
of the cumulative distribution function Φ(x) of Z, see (23). we have

P (X ∈ [µ− nσ, µ+ nσ]) = P
(
− n ≤ X − µ

σ
≤ n

)
= P (−n ≤ Z ≤ n) = P (Z ≤ n)− P (Z ≤ −n)

= Φ(n)− Φ(−n) = Φ(n)− (1− Φ(n)) = 1− 2(1− Φ(n))

≥ 1− 2
1√
2π

1

n
e−n

2/2,

where we used (without proof) the inequality

1− Φ(n) ≤ 1√
2π

1

n
e−n

2/2,

holding for all n > 0.

For example, let X be the grade a student from this class receives on the midterm exam.
Suppose that X has a normal (or approximately normal) distribution. The average score on the
mideterm is 72% and the standard deviation is 4.7. Thus, with n = 2, the empirical rule says that

at least 1 −
√

2
π

1

nen
2/2

= 94.60% of the students have a score in the interval [µ − nσ, µ + nσ] =

[62.6%, 81.4%].
So, is X normally distributed? Figure 10 represents the relative frequency histogram of the

midterm test scores. For example, a bit over 11% of the students scored in the (70%, 75%] range;
and a bit over 8% of the students scored in the (80%, 85%] range; and so on. The relative frequency
histogram indicates that the distribution of X is not normal. There is a peak at 60% and a peak at
80% and the distribution does not appear to be symmetric. So the second Chebyshev’s inequality
should be used rather than the empirical rule.
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ID Last Name First Name Quiz 1 out of 12 Quiz 2 out of 12 MidTerm out of 30 Midterm percentages Upper Class Limits
250642013 Adejuyigbe Ibukunoluwa 6 11 23 76.67%
250317688 Ahn Chan 8.5 10 23.5 78.33% 35% 1 1.94%
250625507 Aiyar Siddharth 8 12 24 80.00% 40% 2 0.00%
250554207 Akinbolue Oluwadamilola 3.5 6.5 45% 3 1.94%
250656000 Bai Lu 5.5 10 18.5 61.67% 50% 4 2.91%
250521144 Bakhtine Nikolai 5 8 23 76.67% 55% 5 5.83%
250554057 Balasundharam Vybhavi 10 12 29.5 98.33% 60% 6 12.62%
250520251 Baobaid Wadhah 6 7.5 22 73.33% 65% 7 10.68%
250545141 Beynen James 4 6 9 30.00% 70% 8 8.74%
250618660 Bhatia Shubham 8 11 26 86.67% 75% 9 11.65%
250498520 Bulley Tyler 5 7 23 76.67% 80% 10 13.59%
250560893 Burchall Larsen 7 16 53.33% 85% 11 7.77%
250660137 CHOI Pan 4.5 12 23.5 78.33% 90% 12 8.74%
250503130 Callegaro Patrick 4.5 10 24 80.00% 95% 13 8.74%
250579916 Chan Dorothy 8 10 17 56.67% 100% 14 4.85%
250631902 Chen Lin 4.5 8 12 40.00%
250626604 Chen Si 3.5 10 18.5 61.67%
250530749 Chen Yahui 4 8 8 26.67%
250523086 Chi Minhao 5.5 5 20 66.67%
250621284 Dmetrichuk Michael 4 7 19.5 65.00%
250564064 Donahue Lauren 5 9 21.5 71.67%
250433523 Drakos Nicole 8 10 24 80.00%
250567995 Dunn Joshua 7 11 20 66.67%
250636926 Fosado Pennetti Erick 4 12 25 83.33%
250605923 Gao Ningyuan 5 6.5 17.5 58.33%
250611496 Gardi Michael 5.5
250585320 Gill Karen 3.5 9.5
250665780 Gilmour Robert 7.5 12 22.5 75.00%
250648315 Gu Miao 8.5 12 21.5 71.67%
250652533 He Shiyu 10.5 12 25 83.33%
250520882 Ho Philip 8.5 12 27.5 91.67%
250657536 Hu Chenyang 11.5 12 28 93.33%
250643869 Hu Junrui 12 27.5 91.67%
250713789 Huang Can
250713791 Huang Jianing
250593737 Huo Yuxi 4 12 23 76.67%
250370045 Hussein Sabeeha 5.5 12 27.5 91.67%
250580850 Jankowski Julia 4.5 11 17.5 58.33%
250607415 Jean-Jacques Marcus 5 11 21.5 71.67%
250532900 Jia Fan 4.5 17 56.67%
250610533 Jin Ming 7.5 12 28 93.33%
250587721 Johnston Cindy 5 11 23.5 78.33%
250451741 Kabangwe Stanley 5.5 10 23.5 78.33%
250318050 Kang Sang 5.5 11 29 96.67%
250477799 Kang Youngeun 5 9 21 70.00%
250515361 Katebi Arnold 3
250585292 Kelly John
250600245 Kowalchuk Shaylyn 3.5 9 19 63.33%
250625836 Kuang Shan 7 11 27 90.00%
250651472 Kuang Xiaomeng 8 11.5 18 60.00%
250651060 Kunka Robert 5.5 12 19 63.33%
250569116 Kwan Ngai (Pearl) 5 8 17.5 58.33%
250576703 Kwong Gar 4.5 8 17 56.67%
250603769 Lan Nan 8 12 27 90.00%
250417217 Lee Jong 7 8 18 60.00%
250537787 Lee Justin 6 6.5 19.5 65.00%
250711400 Leung Sin Yuk 7 6 14 46.67%
250639345 Li Jin 8.5 12 27 90.00%
250657538 Li Yanxi 9 12 25.5 85.00%
250623235 Liu Xin 3 10 26.5 88.33%
250650258 Liu Xingguang 10 10.5 20.5 68.33%
250581287 Liu Zi 6.5 5.5 17 56.67%
250648699 Long Kristen 5 12 21.5 71.67%
250560966 Martin Jaryn 6 7.5 12 40.00%
250624514 Matharu Pritpal 4 9 15.5 51.67%
250408928 Mcphee Melissa
250642378 Mikic Marko 2 18.5 61.67%
250616839 Mindell Tyler 5 8 16 53.33%
250624165 Misra Marlon 6.5 11.5 18.5 61.67%
250574489 Mistry Hitesh 5 6 17.5 58.33%
250652519 Morrison Jean-Michel 5 12 17 56.67%
250513664 Muthurajah David 7.5 10 15.5 51.67%
250638747 Nie Cong 7.5 11 24 80.00%
250581019 Park Jun 6 6 13.5 45.00%
250657543 Pei Xiaoyu 6 12 25 83.33%
250628084 Pu Xinyi 7.5 11 25.5 85.00%
250600090 Ren Sijing 5 11 22 73.33%
250559171 Rice Alan 3 14.5 48.33%
250628928 Ruzic Sonja 7.5 10 21.5 71.67%
250634105 Shen Monta 8 11 25.5 85.00%
250589233 Sikesdi Brittany 6.5 10 20 66.67%
250531072 Simone Sharon 3.5 11 20 66.67%
250579556 Song Rebecca 6.5 10 22.5 75.00%
250655397 Spofford Emma 3 16 53.33%
250621646 Tai-Pow Neil 8 12 28.5 95.00%
250650261 Tan Zhenni 8 12 23 76.67%
250526875 Thompson Ashley 7.5 10 19 63.33%
250567436 Tin Elliott 8 11 25 83.33%
250622839 Tsang Alexander 7.5 11 30 100.00%
250462992 Van Damme Bryan 4.5 3.5 21 70.00%
250627298 Wang Colan 7.5 10 25 83.33%
250536877 Wang Huakang 3.5 15 50.00%
250648624 Wang Michael 6.5 10 18.5 61.67%
250652777 Wang Yajun 10 12 28.5 95.00%
250605704 Wang Zheng 4 12 22 73.33%
250623917 Wilmot Andrew 6 7.5 18.5 61.67%
250632129 Wong Timothy 7.5 11 26 86.67%
250498727 Xia Lin 6.5 12 22.5 75.00%
250640725 Xiao Han 8 12 26 86.67%
250429155 Xu John 6.5 6 20.5 68.33%
250496962 Xu Tianqi 9 11 23.5 78.33%
250594716 Yampolsky Peter 7.5 12 29 96.67%
250628079 Yang Chen 8.5 12 27 90.00%
250564224 Ying Siyan 8 12 28 93.33%
250520024 Yoo Younggook 10 11 26 86.67%
250595360 Zhang Lei 10 10 17.5 58.33%
250657978 Zhang Mengxiao 6 12 28.5 95.00%
250647164 Zhang Tingxuan 5.5 11.5 21 70.00%
250713784 Zhang Yijia
250657548 Zheng Han 7.5 11.5
250625848 Zhou Guanying 9 11 29 96.67%
250589793 Zhou Zhuohui 4 7 18 60.00%
250523833 Zivanov Madeline 10.5 22.5 75.00%
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Figure 10: Relative frequency histogram of the midterm test scores

The next corollary says that if the variance of a random variable is zero, then without loss of
generality this random variable may be treated as a constant.

Corollary 207. Let X be a random variable with mean µ. If Var [X] = 0 then P (X = µ) = 1.

Proof. By Chebyshev’s inequality we have, for any n ≥ 1, that

P (|X − µ| ≥ 1/n) ≤ σ2n2 = 0,

that is P (|X −µ| ≥ 1/n) = 0 for all n ≥ 1. Define the events An := {|X −µ| ≥ 1/n} and note that
An ⊆ An+1. Hence these events form an increasing sequence of events. Their union is

∞⋃
n=1

An = {|X − µ| > 0} = {X 6= µ}.

Thus, by Proposition 161, we have

0 = lim
n→∞

P (|X − µ| ≥ 1/n) = lim
n→∞

P (An) = P
( ∞⋃
n=1

An

)
= P (X 6= µ).

Alternatively, this is the same as P (X = µ) = 1.

A particular case of the next theorem can also be considered a corollary of the Chebyshev’s
inequality.
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Theorem 208 (The weak law of large numbers). Let X1, X2, . . . be a sequence of independent
identically distributed random variables, each with mean E[Xi] = µ. Then, for any number ε > 0,
we have

P
(∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣ ≥ ε
)
→ 0(37)

as n approaches infinity.

Proof. We only proof the result when the variance, σ2, of Xi is also finite. Since

E
[X1 +X2 + · · ·+Xn

n

]
= µ and Var

[X1 +X2 + · · ·+Xn

n

]
=
σ2

n
,

applying the Chebyshev’s inequality, gives

0 ≤ P
(∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣ ≥ ε
)

=
σ2

nε2
.

Letting n approach infinity, the last probability is sandwiched between 0 and something that ap-
proaches zero. So, it must approach zero as well.

Note that (37) may also be written as: for any number ε > 0, we have

P
(∣∣∣X1 +X2 + · · ·+Xn − nµ

n

∣∣∣ ≤ ε
)
→ 1(38)

as n approaches infinity.

Theorem 209 (Strong law of large numbers). Let X1, X2, . . . be a sequence of independent identi-
cally distributed random variables, each with mean E[Xi] = µ. There is an event A with probability
P (A) = 1 such that for every ω ∈ A we have

X1(ω) +X2(ω) + · · ·+Xn(ω)

n
→ µ

as n approaches infinity.

In other words, we say that (X1 + X2 + · · · + Xn)/n converges to µ with probability 1 as n
approaches infinity.

Suppose that a sequence of independent trials of some experiment is performed. Let E be an
event and denote by P (E) the probability that E occurs on any particular trial. Define the random
variable Xi to be 1 if E occurs on the i-th trial and to be 0 otherwise. Then (X1 +X2 + · · ·+Xn)/n
is the proportion of times that E occurs, and the strong law of large numbers says that in the limit
the proportion of times that E occurs is E[Xi] = P (E).
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13.1 The central limit theorem

The central limit theorem is one of the most remarkable results in probability theory. It states
roughly that the sum of a large number of independent random variables has a distribution that
is approximately normal. That not only provides a simple method for computing approximate
probabilities for sums of independent random variables, but also helps explain the remarkable fact
that the empirical frequencies of so many natural populations exhibit bell-shaped (that is, normal)
curves.

Theorem 210 (The central limit theorem). Let X1, X2, . . . be a sequence of independent identically
distributed random variables, each with mean E[Xi] = µ and variance Var [Xi] = σ2. Then, for any
number ε > 0, we have

P
(X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ ε
)
→ Φ(ε),

as n approaches infinity, where the function Φ was defined in (23).

For example, let Xi be a equal to 1 with probability p ∈ [0, 1]; and 0 with probability q := 1−p.
Such a random variable is called Bernoulli random variable. Suppose X1, X2, . . . are independent.
Then, the sum X1 +X2 + · · ·+Xn is the number of successes in n independent trials, each resulting
in success with probability p and failure with probability 1 − p. Thus, X := X1 + X2 + · · · + Xn

is a binomial random variable with parameters n and p. In addition, we have E[Xi] = p and
Var [Xi] = pq. Thus, by the central limit theorem we have

P
(X1 +X2 + · · ·+Xn − np√

pq
√
n

≤ ε
)
→ Φ(ε),

as n approaches infinity; or equivalently

P
(X − np√

npq
≤ ε
)
→ Φ(ε),

as n approaches infinity. This is precisely the statement of Theorem 156.

Example 211. An astronomer is interested in measuring, in light years, the distance from his
observatory to a distant star. Although the astronomer has a measuring technique, he knows that,
because of changing atmospheric conditions and normal error each time a measurement is made it
will not yield the exact distance but merely an estimate. As a result the astronomer plans to make
a series of measurements and then use the average value of these measurements as his estimated
value of the actual distance. If the astronomer believes that the values of the measurements are
independent and identically distributed random variables having a common mean d (the actual
distance) and a common standard deviation of 2 (light years), how many measurements need he
make to be at least 95% certain, that his estimated distance is accurate to within ±0.5 light year?

Solution. Let X1, X2, . . . , Xn be the n observations that the astronomer decides to make.
To be 95% certain means that if the astronomer takes 100 samples of size n (that is 100 × n
measurements in total) roughly 95 samples of size n will have an average

X1 +X2 + · · ·+Xn

n
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that is within 0.5 light years of d. Thus, we a looking for the value of n such that

0.95 ≤ P
(
− 0.5 ≤ X1 +X2 + · · ·+Xn

n
− d ≤ 0.5

)
= P

(
− 0.5 ≤ X1 +X2 + · · ·+Xn − nd

2
√
n

2√
n
≤ 0.5

)
= P

(
−
√
n

4
≤ X1 +X2 + · · ·+Xn − nd

2
√
n

≤
√
n

4

)
≈ P

(
−
√
n

4
≤ Z ≤

√
n

4

)
= Φ

(√n
4

)
− Φ

(
−
√
n

4

)
= 2Φ

(√n
4

)
− 1.

Thus, Φ
(√

n
4

)
≥ 0.975 and from the cumulative normal table, we find that

√
n

4
≥ 1.96 or n ≥ 61.47.

The astronomer needs to make 62 observations.
Of course, the central limit theorem does not tell us how large should n be so that the approx-

imation above is good. In fact the speed of convergence in the central limit theorem depends on
the distribution of Xi, which in this case is unknown. One way to insure ourselves is to overshoot
and make way more measurements than it is probably necessary, as shown by a use of Chebyshev’s
theorem. Since

E
[X1 +X2 + · · ·+Xn

n

]
= d and Var

[X1 +X2 + · · ·+Xn

n

]
=

4

n

the Chebyshev’s inequality gives

P
(∣∣∣X1 +X2 + · · ·+Xn

n
− d
∣∣∣ ≥ 0.5

)
≤ (4/n)

(0.5)2
.

This time we want to make the probability on the left-hand side be smaller than 0.05 (why?). The
Chebyshev’s inequality tells us that this would be the case when

(4/n)

(0.5)2
≤ 0.05.

Solving for n, gives n ≥ 320.

Example 212. The number of students that enroll in a psychology course is a Poisson random
variable with mean 100. The professor in charge of the course has decided that if the number
enrolling is 120 or more he will teach the course in two separate sections, whereas if fewer than 120
students enroll he will teach all of the students together in a single section. What is the probability
that the professor will have to teach two sections?

Solution. The exact solution e−100
∑∞

i=120 100i/i! does not readily yield a numerical answer.
However, by recalling that a Poisson random variable with mean 100 is the sum of 100 independent
Poisson random variables with mean 1, we can use the central limit theorem to find an approximate
solution. Let X denote the number of students that enroll in the course. Using the fact that the
mean and the variance of a Poisson random variable with parameter 1 are 1, we get

P (X ≥ 120) = P
(X − 100(1)√

100(1)
≥ 120− 100√

100

)
≈ P (Z ≥ 2) = 1− Φ(2) = 0.0228.
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14 Conditional distributions

Recall that for any two events A and B the conditional probability of A given B is defined by

P (A|B) =
P (A ∩B)

P (B)
,

provided that P (B) > 0. If P (B) = 0 then event B practically never occurs so it does not make
sense to talk about the probability of A given that B has occurred.

Let X and Y be discrete random variables with joint p.m.f. p(x, y) and marginal p.m.f. pX(x)
and pY (y). If pY (y) > 0, then we define the conditional probability mass function of X given that
Y = y by

pX|Y (x|y) := P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
p(x, y)

pY (y)

Note that if X and Y are independent then p(x, y) = pX(x)pY (y) implying that pX|Y (x|y) = pX(x)
for every y.

If X and Y are continuous random variables with joint probability density function f(x, y)
and marginal p.d.f. fX(x) and fY (y) then define the conditional probability density function of X,
given that Y = y (provided that fY (y) > 0), by

fX|Y (x|y) :=
f(x, y)

fY (y)
.

Note again that if X and Y are independent then f(x, y) = fX(x)fY (y) implying that fX|Y (x|y) =
fX(x) for every y.

What we actually did was defined a new random variable Z, often denoted as ‘X|Y = y’, with
p.d.f. fZ(x) := fX|Y (x|y). The random variable Z takes the same values as X but with re-weighted
probabilities. That the function fX|Y (x|y), in the argument x, is indeed a p.d.f. follows from the
fact that it is non-negative and∫ ∞

−∞
fX|Y (x|y) dx =

∫ ∞
−∞

f(x, y)

fY (y)
dx =

1

fY (y)

∫ ∞
−∞

f(x, y) dx =
1

fY (y)
fY (y) = 1.

The situation in the jointly discrete case is similar.

Example 213. Suppose X and Y are independent random variables that are binomial(m, p) and
binomial(N−m, p), respectively. Calculate the probability mass function of X, given that X+Y =
n.

Solution. We know from class that X + Y is binomial(N, p). Since P(X = k,X + Y = n) =
P(X = k, Y = n− k) = P(X = k)P(Y = n− k), we have

P(X = k|X + Y = n) =
P(X = k,X + Y = n)

P(X + Y = n)
=

P(X = k)P(Y = n− k)

P(X + Y = n)

=

(
m
k

)
pk(1− p)m−k

(
N−m
n−k

)
pn−k(1− p)(N−m)−(n−k)(

N
n

)
pn(1− p)N−n
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=

(
m
k

)(
N−m
n−k

)(
N
n

) .

This answer is already striking since it does not depend on p, but more shockingly, this is the
hypergeometric distribution. This is the conditional distribution of X given that X + Y = n is the
same as the number of white balls that we get when we draw n balls (without replacement) from
an urn, containing N balls, of which m are white and the rest N −m are black.

All this means that the conditional p.m.f. of X, given that X + Y = n is hypergeometric with
parameters n, N , and m.

Example 214. Suppose that the joint density of X and Y is given by

f(x, y) =

{
e−x/ye−y

y
if x > 0 and y > 0,

0 otherwise.

Find P (X > 1|Y = y).

Solution. The probability P (X > 1|Y = y) should be understood as P (‘X|Y = y’ > 1), so
we need to find the density function of ‘X|Y = y’, that is the function fX|Y (x|y). So, first we need
to find the marginal density of Y :

fY (y) =

∫ ∞
0

e−x/ye−y

y
dx = e−y

∫ ∞
0

e−x/y

y
dx = e−y

(
− e−x/y

∣∣∣∞
x=0

)
= e−y(−0 + 1) = e−y.

Thus, the conditional density of X given that Y = y:

fX|Y (x|y) :=
f(x, y)

fY (y)
=
e−x/ye−y/y

e−y
=
e−x/y

y
.

We should keep in mind that this formula is valid for x > 0 and y > 0, otherwise fX|Y (x|y) = 0.
(Note incidentally, that Z := (X|Y = y) is an exponential random variable with parameter 1/y.)
We can now compute the desired probability

P (X > 1|Y = y) =

∫ ∞
1

fX|Y (x|y) dx =

∫ ∞
1

e−x/y

y
dx = −e−x/y

∣∣∣∞
x=1

= e−1/y.

Note in the last example, that the expression P (X > 1|Y = y) is to be understood as the
probability that the random variable X|Y = y is bigger than 1.

On the other hand, if X and Y are (jointly) continuous random variables, then P (X = 1|Y =
y) = 0 since this is the probability that the (continuous) random variable X|Y = y is equal to 1.

Finally, the expression P (X > 1|Y ≥ y) is to be understood as the probability of the event
{X > 1} given that the event {Y ≥ y} occurred. That is, for y > 0 we have

P (X > 1|Y ≥ y) =
P (X > 1, Y ≥ y)

P (Y ≥ y)
=

∫∞
y

∫∞
1
f(x, t) dxdt∫∞

y
fY (t) dt

=

∫∞
y

∫∞
1

e−x/te−t

t
dxdt∫∞

y
e−t dt
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=

∫∞
y
e−t
( ∫∞

1
e−x/t

t
dx
)
dt

e−y
=

∫∞
y
e−te−1/tdt

e−y
.

The last integral is not easy to evaluate exactly. Using a computer, one can evaluate the last integral
for particular values of y. For example

P (X > 1|Y ≥ 1) = 0.207.
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15 Appendix A: The Prosecutor’s Fallacy

The following example is taken from [10].

Suppose a city has a population of 1, 000, 000 people. Suppose one of them commits a crime.
Suppose eye-witness testimony provides police with information that leads to 10 suspects and
eventually one of them is charged with the crime and brought to trial. The prosecutor makes
the following argument: If this person is innocent, the probability that he matches the eye-witness
description is very very small. It is therefore unlikely that this person is actually innocent. In other
words, assuming the defendant was actually innocent, the chance of his matching the eye-witness
description is just too small to believe he is not guilty. Therefore, he must be guilty. Using the
language of conditional probability, the prosecutor is saying the following: Let M := the event the
defendant matches the eye-witness description and let I := the event that the defendant is innocent.
Now the prosecutor says, because P (M |I) is small, we should not believe his is actually innocent.

With the numbers in this example, the prosecutor would argue, P (M |I) = 9/999, 999 =
0.000009, because, assuming there are 999, 999 innocent people, there are only 9 that are innocent
and match the description. This is a very small probability. There is only a 0.0009% probability
that, if the defendant were innocent, he would match the eye-witness description. Therefore, if
the defendant were innocent, the chance of matching the description is too small to believe he is
innocent. Therefore, he must be guilty.

The fallacy is in a misunderstanding of conditional probability. A skilled prosecutor could easily
persuade an uneducated jury with such an argument, arriving at a conviction based on rhetorical
skills and a mathematical trick.

The jury must actually decide the following: “What is the probability the defendant is innocent
given that he matches the eye-witness description? Thats different from the question “What is the
probability the defendant matches the description given that he is innocent? A good lawyer could
easily make the two sound the same. The jury must actually consider the conditional probability
P (I|M). That is, what is the probability of innocence given that the defendant matches the
description? In this case, P (I|M) = 9/10 = 0.90 = 90%. That is, assuming the defendant matches
the eye-witness evidence, there is still a 90% chance that he is innocent. That completely changes
the argument. Reversing order in which we write the probability, our poor defendant has gone from
looking almost certainly guilty to almost certainly innocent!

The lesson is that we need to be careful with conditional probability and that being sloppy can
have some really serious consequences.

To see some real life examples where this has really happened read about the Sally Clark case
in Britain (1998) , the OJ Simpson case (1995) and People vs. Collins (1968).

Acknowledgements. I am thankful to Robert James Lee, Melissa Mccorriston, and Liuyan
Li for pointing out numerous typos and inconsistencies.
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