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Abstract—Certain characterization properties of time-varying periodic Poisson flows are studied
in terms of almost-lack-of-memory (ALM) distributions. Parameter estimation formulas are
derived. A method for verifying the hypothesis on the membership of a sample to the class
of ALM-distributions is developed. Algorithms for computing critical levels and power of the
likelihood ratio test by the Monte Carlo method are designed.

1. INTRODUCTION

Many natural phenomena, including flows in data transfer networks, communication systems, re-
liability models, ecological data descriptions, etc., as is known, depend on time. Several researchers
have noticed the periodic nature of the intensity of first-aid calls, telephone calls, inquires at dif-
ferent services, accidents, natural collisions etc. High intensity intervals alternate with relatively
low loads. Such intervals may be days, weeks, or even seasons. There are obvious reasons for the
phenomena due to the environmental medium and users of the network.

It is convenient to describe event flows in terms of point processes [1, 2]. A point process is an
ordered sequence of instants {Tn : Tn < Tn+1, n = 1, 2, . . . } of occurrence of events. The process

N(t) = max{n : Tn < t}, (1)

reckoning the number of events occurring in the interval [0, t) is called the counter of the point
process. The mean number Λ(t) = EN(t) of events in an interval [0, t) is called the intensity
function of the point process. Its derivative λ(t) = Λ′(t) (which is assumed to exist) is called the
intensity density, or simply the intensity of the process.

If the intervals between instants of occurrence of events Xn = Tn − Tn−1, n = 1, 2, . . . , T0 = 0,
form a sequence of identically distributed independent random variables, the process is said to be
a recurrent or renewal process. Such a process and its counter N(t) are uniquely generated by the
respective sequence of identically distributed independent random variables by the relation

Tn =
∑

1≤i≤n
Xi, T0 = 0.

Most results in queueing and stochastic network theory have been derived under this assumption
and pertain to the stationary operation of systems, i.e., characterize the performance of the system
“at infinity” as t→∞ by the relations

lim
t→∞

Λ(t)
E[Xn]t

= 1 and lim
t→∞

λ(t) =
1

E[Xn]
.

1 This work was supported in part by the Russian Foundation for Basic Research, projects nos. 01-07-90259 and
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Analytical results for flows on a finite time interval are not many in number. Practical needs
are ensured by numerical methods and imitation modeling. These approaches may aid in finding
an approximate solution to any practical problem, but are not adequate to meet the requirements
of in-depth theoretical analysis.

In this paper, we study time-varying, viz., periodic time-varying flows, confining ourselves to
the class of periodic time-varying Poisson flows. Consequently, the event flow intensity is a periodic
function, i.e., there exists a number c > 0 such that the intensity λ(t) satisfies the relation

λ(t+ c) = λ(t) for all t ≥ 0. (2)

The least of these numbers c is called the period or cycle of the process.
In Section 2, we use the well-known results of probability theory to introduce a procedure and a

random variable X generated by a time-varying Poisson flow such that the corresponding process
can be uniquely estimated by this procedure from a sequence of identically distributed independent
random variables having the same distribution as X. This relationship is used in Section 3 to
characterize a periodic time-varying Poisson flow in terms of its generating random variable X,
which, incidentally, has the property of partial lack of memory. In Sections 4 and 5, we examine
certain statistical properties of parameter estimates and testing of hypothesis for these distributions
based on observations on the corresponding process. In Sections 6 and 7, we describe algorithms
and computer programs for computing critical values and power of hypothesis testing criteria for a
wide class of ALM-distributions and give examples to illustrate the performance of these programs
in Section 8.

2. CHARACTERIZATION OF TIME-VARYING POISSON FLOWS

Let us consider a time-varying Poisson flow {N(t), t ≤ 0} defined by the following properties [3].
(i) Independence: numbers of points (events) in any disjoint intervals are independent.
(ii) Ordinariness: any interval [t, t + ∆t) of small length ∆t contains not more than one point

P{N(t + ∆t)−N(t) = 1} = λ(t)∆t + ¯̄o(∆t), where λ(t) ≥ 0, and

P{N(t + ∆t)−N(t) > 1} = ¯̄o(∆t) as ∆t→ 0.

Under these assumptions, the number of points in any interval [t, t+ s) is Poisson distributed

P{N(t + s)−N(t) = n} =
[Λ(t + s)− Λ(t)]n

n!
exp{−[Λ(t + s)− Λ(t)]}, t, s ≥ 0, n = 0, 1, . . . .

Furthermore, the function

Λ(t) =
t∫

0

λ(u)du, (3)

called the leading function of the process [3], is equal to the mean number of points of the process
in the interval [0, t), i.e., the intensity function of the corresponding point process. We take

Λ(t) <∞ for any t <∞ and Λ(t)→∞ as t→∞. (4)

A particular case of this process is the stationary Poisson process for which Λ(t) = λt.
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Note that the event inter-occurrence intervals of a time-varying Poisson flow are not independent
random variables. For example, their multidimensional distribution density is of the form

fX1,...,Xn(x1, . . . , xn) = λ(x1)e−Λ(x1)λ(x1 + x2)e−[Λ(x1+x2)−Λ(x1)]

× · · · × λ(x1 + x2 + · · · + xn)e−[Λ(x1+x2+···+xn)−Λ(x1+···+xn−1)]

= λ(x1) · · ·λ(x1 + x2 + · · ·+ xn)e−Λ(x1+x2+···+xn)

and can be expressed as the product of distribution densities of intervals, except for the one-
dimensional case, for which Λ(t) = λt and λ(t) = λ.

Therefore, points of a time-varying Poisson flow cannot be expressed as the sum of identically
distributed independent random variables. Nevertheless, there is a random variable X generated
by a time-varying Poisson flow N(t) and a procedure for which the time-varying Poisson flow in
turn is uniquely renewed by a sequence of identically distributed independent random variables
having the same distribution as X. We refer to such a random variable as the generating random
variable of the time-varying Poisson flow. To introduce the corresponding procedure and random
variable, we require the concept of records.

Definition 1. For a sequence of identically distributed independent random variables {Xn, n =
1, 2, . . . }, the recursive sequence of the random variable {Tn, n = 1, 2, . . . } for which

T1 = X1, Tn = Xνn with νn = min{k : Xk > Tn−1 = Xνn−1 for k > νn−1} (5)

is called the sequence of records of the sequence {Xn, n = 1, 2, . . . }.

The main assertion of this section is the existence of a random variable X generated by a time-
varying Poisson flow N(t) such that this time-varying Poisson flow with the properties described
above is renewed by the record sequence defined by a sequence of identically distributed independent
random variables having the same distribution as X.

Let us assume that λ(t) ≥ 0 is known and Λ(t) is defined by relation (3) and has properties (4).
Let us introduce a function

F (t) = 1− exp{−Λ(t)} = 1− exp

−
t∫

0

λ(u)du

 , t ≥ 0. (6)

If supplemented with F (t) = 0, t ≤ 0, this function has all properties of a distribution function.
Consequently, there exists a random variableX having this distribution function, F (t) = P{X ≤ t},
called the generating random variable of the time-varying Poisson flow N(t). Note that this random
variable X is continuous and has a distribution density, equal to

fX(t) = F ′(t) = λ(t) exp{−Λ(t)}, t ≥ 0, (7)

with carrier in [0,∞). Consequently, the random variable X can be used to define the time to
the occurrence of some event (or the time to the occurrence of some call) (in the terminology of
reliability theory, it can also be called the continuous operation time). In particular, the function

λX(t) =
fX(t)

1− FX(t)
= λ(t) (8)

can be regarded as the occurrence intensity of an event (arrival intensity of a call or failure hazard)
with accumulated intensity function

ΛX(t) =
t∫

0

λX(u)du = Λ(t).

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 10 2004



1600 DIMITROV et al.

Thus there is a complete correspondence between the main characteristics of an individual
call in a packet of statistically equivalent calls related to some time-varying Poisson flow and the
corresponding properties of the time-varying Poisson flow itself.

Conversely, let X be a continuous random variable, which defines the time to the occurrence of
an event of a flow with distribution function F (t) and distribution density f(t). Consider a sequence
of random variables {X1,X2, . . . } with distribution function F (t). Let us find a point process with
the help of the “records” of this sequence, i.e., the points of this process are constructed according
to relation (5). We can show (see [4, 5]) that this procedure yields a time-varying Poisson flow with
leading function Λ(t) and intensity λ(t).

Theorem 1. The instants of occurrence of events of any time-varying Poisson flow with leading
function Λ(t) are the records of a sequence of identically distributed independent random variables
{X} = {Xn, n = 1, 2, . . . } with distribution function F (x) (6). Conversely, any such sequence {X}
with distribution function F (x) generates a time-varying Poisson flow defined by the relation

N(t) = max{n : Tn ≤ t},
where T = {Tn, n = 1, 2, . . . } is the sequence of records of the initial sequence {X} (5).

Note that this theorem gives a new interpretation to the nature of the input flow of queueing
systems and networks. This procedure can be interpreted as follows: all calls arrive at the system
concurrently, but each with its own service commencement instant Xn. The dispatcher receives the
inquiry from the first call and admits it to the system at instant X1, while all other calls with an
earlier service commencement instant are lost. The customer with the first service commencement
instant greater than X1 is taken next for service, etc.

3. PERIODIC TIME-VARYING POISSON FLOWS AND ALM-DISTRIBUTIONS

In this section, we show the relationship between periodic time-varying Poisson flows and dis-
tributions with almost lack of memory (see [6–11]) (ALM-distributions), see [6–11]. We begin
with the general description of the lack of memory property of a random variable. Let us assume
that a random variable describes the inter-occurrence intervals of events at some outer medium,
which periodically changes with interval c > 0. Then the time axis can be subdivided into inter-
vals [0, c), [c, 2c), . . . , [mc, (m+1)c), . . . . We assume that the conditions of formation on each of the
intervals (cycles) are of identical randomness. Let a random variable Ym define the time interval
up to the occurrence of an event inside a given interval [mc, (m+ 1)c), m = 0, 1, . . . . Note that this
event may not occur in a given interval with some probability 0 < a < 1. Thus, the waiting time X
for the occurrence of the first event in a long time interval in the periodic phenomenon described
above is a random number of cycles on which the event had not occurred plus the time up to the
occurrence of this event in a separate cycle. Formally, the property of partial lack of memory of a
random variable is formulated by

Definition 2. A nonnegative nonvanishing random variable X is said to lack memory at a point
c > 0 if

P{X ≥ c+ x|X ≥ c} = P{X ≥ x} for all x ≥ 0. (9)

The point c is called the regeneration point of the random variable X and its distribution.

Remarks
(1) Obviously, this concept is meaningful only if 0 < P{X ≥ c} = a < 1.
(2) If a random variable X lacks memory at all positive points c, then it has either an exponential

(in the continuous case) or a geometric (in the discrete case) distribution. Moreover, we have
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Lemma 1. If a random variable X lacks memory at a point c > 0, then it lacks memory at all
points of the sequence {cm = mc}∞m=0.

Proof. By the condition of the lemma, the random variable X lacks memory at a point c > 0.
Assume that it lacks memory at all points ck = kc, k ≤ m. Then

P{X > cm+1 + x|X > cm+1} =
P{X > cm+1 + x, X > cm+1}

P{X > cm+1}

=
P{X > c+ cm + x|X > c}P{X > c}

P{X > cm+1|X > c}P{X > c}

=
P{X > cm + x|}

P{X > cm}
= P{X > cm + x|X > cm}. �

Furthermore, every random variable X has not more than one sequence for which the lack of
memory property holds, or it has an exponential distribution.

Lemma 2. A random variable X lacking memory at two points a > 0 and b > 0 also lacks
memory at all positive points ckl = kb− la, where k and l are (positive or negative) integers.

Proof. Assume that a < b. By Definition (7),

P{X > x} = P{X > b+ x|X > b} =
P{X > b+ x}

P{X > b}

=
P{X > b+ x, X > a}

P{X > b} +
P{X > b+ x, X ≤ a}

P{X > b}

=
P{X > a+ b− a+ x|X > a}P{X > a}

P{X > a+ b− a|X > a}P{X > a}

=
P{X > b− a+ x}

P{X > b− a} = P{X > b− a+ x|X > b− a}.

In the second equality, the probability of the second term is zero since the events within braces are
incompatible. The last inequality implies that the point b − a is also a regeneration point for the
random variable X. By Lemma 1, all positive numbers (kb− la) are also generation points. �

This lemma implies

Theorem 2. For a random variable X having two regeneration points a and b,
(i) if a and b commensurable, there exists a number c such that X lacks memory at the points

of a sequence cm = mc containing the points a and b,
(ii) if a and b are incommensurable, then the random variable X has an exponential distribution

(or a geometrical distribution in the discrete case).

Proof. If the numbers a and b are commensurable, assume that a < b, i.e., ab = r = p
q < 1, where

r is a rational number and p and q are irreducible integers. Repeatedly applying the procedure
used in the proof of Lemma 2, we can show that the number c = b

q can be expressed as (kb − la)
with integral k and l, i.e., is a regeneration point by this lemma. Hence all positive numbers of the
type (kb − la) can be expressed as nb

q . Consequently, the numbers a = pc and b = qc also belong
to this sequence.

If the numbers a and b are incommensurable, then any number c can be expressed with any
degree of accuracy as a number of the type (kb − la). Therefore, every number is a regeneration
point of the random variable X and, by Remark 2, has an exponential distribution. �

This property prompts us to generalize Definition 2.
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Definition 3. The distribution of a nonnegative nonvanishing random variable X is said to be a
distribution with almost lack of memory (ALM-distribution) if there exists an infinite sequence of
numbers {cm = mc}∞m=0 such that

P{X ≥ cm + x|X ≥ cm} = P{X ≥ x} for all cm and any x ≥ 0. (10)

Theorem 3 describes the main characterization properties of the class of ALM-distributions. Its
proof is given in [6–8]. In the formulation given below, [x] denotes the largest integer not greater
than x and the parameter a here and in what follows has nothing common with the letter a used
in Lemma 2 and Theorem 2 to denote the regeneration point.

Theorem 3. A nonnegative nonvanishing random variable X (interpreted as the time up to the
occurrence of an event) has an ALM-distribution for the sequence {cm = mc}∞m=0 if and only if any
one of the following assertions holds:

(i) The distribution function of the random variable X is of the form

FX(x) = 1− a[x/c] (1− (1− a)FY (x− [x/c]c)) , (11)

where a = P{X ≥ c} and FY (.) is the distribution function of a random variable Y concentrated
on the interval [0, c).

(ii) The distribution density fX(x), x ≥ 0, of the continuous random variable X is of the form

fX(x) = (1− a)a[x/c] fY (x− [x/c]c), (12)

where a = P{X ≥ c} and fY (.) is the distribution density of a continuous random variable Y with
carrier [0, c).

The distribution fX(x) of a discrete random variable X is defined by the same formula, where
fY (.) is the distribution of a discrete random variable with carrier {0, 1, . . . , c− 1}.

(iii) The event occurrence intensity

λX(x) =
(1− a) fY (x− [x/c]c)

1− (1− a)FY (x− [x/c]c)
(13)

for the random variable X is a periodic function with period c.
(iv) The random variable X can be expressed as

X = Zc + cK, (14)

where the independent random variables Zc is concentrated on the interval [0, c) and the random
variable K has a geometric distribution with parameter a, pK(k) = (1− a)ak, k = 0, 1, . . . .

Note that the fourth property contains an equivalent representation for the class of ALM-
distributions, which is useful in modeling these distributions.

Finally, let us formulate a theorem establishing a relationship between periodic time-varying
Poisson flows and the class of ALM-distributions.

Theorem 4. The random variable generating a time-varying Poisson flow has a distribution with
lack of memory. Conversely, any random variable having an ALM-distribution generates a periodic
time-varying Poisson flow by the record procedure.
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Proof. By Theorem 1 on the relationship between time-varying Poisson flows and records of the
sequence of its generating random variable, it suffices to show that the random variable generating
the periodic time-varying Poisson flow has one of the properties (i)–(iv) stated in Theorem 3.
Indeed, this is true since the intensity of failures of a periodic time-varying Poisson flow is a
periodic function λ(t + c) = λ(t) and, by virtue of relation (6), its generating random variable X
has a distribution, which for mc ≤ t < (m+ 1)c can be expressed as

F (t) = 1− exp

−
t∫

0

λ(u)du

 = 1−

exp

−
c∫

0

λ(u)du


m exp

−
t−mc∫
0

λ(u)du


= 1− am(1− F (t−mc)),

which for a = exp{−
c∫
0
λ(u)du} is the same as (11).

On the other hand, according to (13), the intensity of occurrence of an event of the random
variable X with an ALM-distribution is a periodic function and, as a consequence of relation (8),
the corresponding time-varying Poisson flow is periodic. �

Now we describe certain statistical properties of ALM-distributions.

4. PARAMETER ESTIMATION

The parameters of an ALM-distribution can be estimated either by the maximum likelihood
or the moment method; both yield the same results [9–12]. We could not succeed in estimating
the parameter c. In applications, it is usually judged from “physical” considerations. Therefore,
assuming that it is known, we shall show that a simple estimate for the parameter a can be obtained
by the method of moments. As is known, the sample mean

X̄ =
1
n

∑
1≤i≤n

Xi

of a sample X1, . . . ,Xn is the best mean of the expectation of the random variable. From rela-
tion (14) we obtain

µX = EX = EZ + cEK = µZ + c
a

1− a.

In this relation, replacing the theoretical means by their sample analogs, which are their estimates,
we obtain

X̄ − Z̄
c

=
â

1− â or â =
X̄ − Z̄

c
(
1 + X̄−Z̄

c

) =
X̄ − Z̄

c+ X̄ − Z̄ ,

where
Z̄ =

1
n

∑
1≤i≤n

Zi with Zi = Xi −
[
Xi

c

]
for mc ≤ Xi < (m+ 1)c.

A similar estimate is obtained in [9] by the maximum likelihood method. Let X(1), . . . ,X(n) be
the ordered statistics of a random sample X1, . . . ,Xn from a general population with distribution
density (12). Then the likelihood function takes the form

l(x1, . . . , xn) = (1− a)nank̄
∏

0≤m≤r

∏
1≤j≤km+1

fY (x(Km+j) −mc), (15)

where km is the number of terms in the sample in the interval [mc, (m + 1)c), K0 = 0, Km =
∑
j<m

kj ,

k̄ = n−1∑
m
mkm, and r = [X(n)/c]. In [9], estimates of other parameters of ALM-distributions are

found by the maximum likelihood method.
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5. TESTING THE HYPOTHESIS ON ALM-DISTRIBUTIONS

Intuitively, it is clear that ALM-distributions must tend to an exponential distribution as c→ 0.
We now give a rigorous proof of this assertion.

Theorem 5. If c → 0 and a → 1 so that 1 − a ≈ λc, where λ is a positive constant, then the
limit of an ALM-distribution is an exponential distribution with parameter λ.

Proof. By Theorem 4, the Laplace–Stieltjes transform of an ALM-distribution is of the form

ϕX(s) = ϕY (s)
1− a

1− a exp{−cs} . (16)

Since the carrier of the random variable Y is the interval [0, c], we find that ϕY (s) → 1 as c → 0.
The second factor in expression (16) for ϕX(s) satisfies the relation

1− a
1− aexp{−cs} =

1− a
1− a(1− cs+ (cs)2/2− · · · ) =

1
1 + cs

1−a + o(c)
→ 1

1 + s
λ

=
λ

λ+ s
.

Hence taking the limit as c→ 0 in the last expression, since
1− a
c
→ λ, we arrive at the assertion

of the theorem. This assertion is also implied by the theorem on the continuous dependence of
Laplace–Stieltjes transforms and their originals. �

According to this theorem, it is worthwhile to use exponential distributions as a competitive
hypothesis in studying the class of ALM-distributions with a sequence cm = mc. On the other hand,
the parameter c is often known from the nature of the investigated phenomenon. Therefore there is
justification for comparing different ALM-distributions for the same value of the parameter c and
different distribution densities on a cycle. Preliminary results of such an investigation are reported
in [13–15]. Below we state their generalizations and give examples.

Let x1, . . . , xn be a user sample of a general population with unknown distribution density f(x).
Consider the problem of testing the zero hypothesis H0: f(x) = f0(x) against the alternative hy-
pothesis H1: f(x) = f1(x).

According to the Neumann-Pearson theorem, the most powerful criterion for testing a simple
hypothesis H0 against an alternative H1 is the likelihood ratio test. Since observations are inde-
pendent, the critical domain for this test can expressed as

W =

(x1, . . . , xn) :
f1(x1, . . . , xn)
f0(x1, . . . , xn)

=
∏

1≤i≤n

f1(xi)
f0(xi)

> t

 , t > 0. (17)

The significance level α and power π of this test are

α = PH0{W} = PH0{(X1, . . . ,Xn) ∈W},
π = PH1{W} = PH1{(X1, . . . ,Xn) ∈W}.

In computations, it is more convenient to use the natural logarithm of the product in (17). For
this purpose, let us introduce the natural algorithm of the likelihood ratio, which, for the sake of
brevity, is called the statistic of the test

W = ln
∏

1≤i≤n

f1(xi)
f0(xi)

=
∑

1≤i≤n
(ln f1(xi)− ln f0(xi)) . (18)

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 10 2004



PERIODIC POISSON PROCESSES 1605

Applying the Monte Carlo method, we compute the critical value tα of the significance level α
and power π of the test. A suitable algorithm is described in the next section.

For a large sample, the distribution of the statistic W is asymptotically normal. Therefore,
to compute the significance level and power of the test, we can use a normal approximation and
restrict to estimation of the first two moments of the corresponding distributions. To illustrate the
performance of this approach, let us denote the random variables

U = ln f1(X)− ln f0(X), V = ln f1(Y )− ln f0(Y ), (19)

by U and V , where X and Y are random variables with distribution density f0(.) and f1(.) for
the hypotheses H0 and H1, respectively. Let µU , µV , and σ2

U , σ2
V denote their mean and variance,

respectively. For large samples, the statistic W (18) under zero and alternative hypotheses has a
normal distribution with parameters nµU , nσ2

U , and nµV , nσ2
V respectively. Therefore, the critical

value tα of the test statistic for a given significance level α can be found from the equation

α = PH0{W > tα} = PH0

{
W − nµU
σU
√
n

> tα −
nµU
σU
√
n

}
= 1− Φ

(
tα −

nµU
σU
√
n

)
or

tα −
nµU
σU
√
n

= z1−α,

where z1−α is the (1− α)th quantile of the standard normal distribution. Hence the critical value
tα for a given critical level α is

tα = nµU + z1−ασU
√
n. (20)

Accordingly, the power of the test is

π = PH1{W > tα} = PH1

{
W − nµV
σV
√
n

>
tα − nµV
σV
√
n

}
= 1− Φ

(
tα − nµV
σV
√
n

)
= 1− Φ

(
µU − µV
σV

√
n+ z1−α

σU
σV

)
. (21)

This relation shows that the power of the test largely depends on the difference between the
expectations of the random variables U and V .

The parameters µU , µV , and σ2
U , σ2

V for certain particular cases can be computed in closed form.
In the general case, they can also be estimated by the Monte Carlo method and estimates, instead
of their exact values, can be used. Suitable algorithms for computing the tails of (additional)
empirical distribution functions under the zero H0 and alternative H1 hypotheses for both cases
are described below.

6. ALGORITHMS

In this section, we describe algorithms for computing the distributions of the test statistic W
under the zero and alternative hypotheses. The first algorithm can be used for a sample of any
size. The second algorithm is applicable only to sufficiently large samples (for example, n > 30).
Both algorithms use the Monte Carlo method.

Algorithm 1.

Beginning. Choose the distribution densities f0(.) and f1(.) for the zero and alternative hypoth-
esis, and sample size n.
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Step 1. Generate N independent random samples (x(j)
1 , . . . , x

(j)
n ), j = 1, 2, . . . , N , of size n with

independent elements from a general population with distribution density f0(.) and compute the
values of the test statistic

w
(j)
0 = w

(
x

(j)
1 , . . . , x(j)

n

)
=

∑
1≤i≤n

(
ln f1(x(j)

i )− ln f0(x(j)
i )
)
. (22)

Step 2. Compute the tail of the empirical distribution function

F̄0,N (t) =
1
N

{
number of quantities w

(j)
0 > t

}
, t > 0. (23)

Step 3. Generate N independent random samples (y(j)
1 , . . . , y

(j)
n ), j = 1, 2, . . . , N , of size n with

independent elements from a general population with distribution density f1(.) and compute the
values of the test statistic w(j)

1 by formula (22), using y
(j)
i for x(j)

i .

Step 4. Compute the tail of the empirical distribution function F̄1,N (t) by (23), replacing w(j)
0

by w(j)
1 .

Step 5. For a given user sample (x1, . . . , xn), compute the value w of the test statistic (18)

w = w(x1, . . . , xn) =
∑

1≤i≤n
(ln f1(xi)− ln f0(xi)) .

Compute the significance level of the user sample (p-value) α = α(w) for rejecting the zero hypoth-
esis H0 in favor of the alternative H1 with function F̄0,N (x) in the form

α(w) = F̄0,N (w).

Compute the critical value tα and power π of the test with functions F̄0,N (x) and F̄1,N (x) in the
form

tα = F̄
(−1)
0,N (α), π = F̄1,N (tα).

Step 6. Print the results:
• the critical value tα and significance level α(w) = F̄0,N (w) of the user sample for rejecting the

zero hypothesis H0 in favor of the alternative hypothesis H1,
• the test power π = F̄1,N (tα),
• the curve of the significance level function α(t) = F̄0,N (t), and
• the curve of the test power function π(t) = F̄1,N (t).
End.
Decision on the rejection of the zero hypothesis in favor of the alternative hypothesis is taken

by comparing the p-value of the user statistic of significance level α.
This algorithm generates desired results due to the strong law of large numbers, which asserts

that the empirical distribution function converges to the theoretical distribution with probability 1
with the growth of the observation number N , which in this algorithm can chosen as large as we
please.

For user samples of a sufficiently large size, we can apply the central limiting theorem to simplify
the algorithm perceptibly. According to this theorem, the sum of identically distributed indepen-
dent random variables tends to a normal distribution with the growth of the number of terms.
Therefore, to compute the distributions of the test statistic under zero and alternative hypotheses
for large user samples, we can use a normal approximation and restrict to estimation of its first
two moments. A suitable algorithm is described below.
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Algorithm 2.

Beginning. Choose the distribution densities f0(.) and f1(.) for the zero and alternative hy-
potheses and sample size n.

Step 1. Generate N independent random variables x1, . . . , xN from a general population with
distribution density f0(.) and compute the value uj of the statistic U (19)

uj = u(xj) = ln f1(xj)− ln f0(xj) (24)

and the corresponding sample mean ū and variance S2
u

ū =
1
N

∑
1≤j≤N

uj , S2
u =

1
N

∑
1≤j≤N

u2
j − (ū)2 = ū2 − (ū)2. (25)

Step 2. Generate N independent random variables y1, . . . , yN from a general population with
distribution density f1(.), compute the value vj of the statistic V (19) by formula (24), replacing xj
by yj and compute the corresponding sample mean v̄ and variance S2

v by formulas similar to (26).
Step 3. For a given significance level α, compute by (19) the critical value tα for rejecting the

zero hypothesis H0 in favor of the alternative hypothesis H1

tα = nū+ z1−αSu
√
n,

where z1−α is the (1− α)th quantile of the standard normal distribution.
Step 4. Compute the power π of the test by (20)

π = 1− Φ
(
ū− v̄
Sv

√
n+ z1−α

Su
Sv

)
.

Step 5. For a given user sample (x1, . . . , xn), compute the value of the test statistic

w = w(x1, . . . , xn) =
∑

1≤i≤n
(ln f1(xi)− ln f0(xi)) .

Compute the significance level of the user sample (p-value) α = α(w) for rejecting the zero hypoth-
esis H0 in favor of the alternative hypothesis H1:

α(w) = PH0{W > w} = 1− Φ
(
w − nū
S2
u

√
n

)
.

Step 6. Print the results:
• the critical value tα and significance level of the user sample α = α(w) for rejecting the zero

hypothesis H0 in favor of the alternative hypothesis H1,
• the power π of the test,
• the function of the significance level α(t) = 1− Φ

(
t−ū
Su
√
n

)
, and

• the test power function π(t) = 1−Φ
(
t−nv̄
Sv
√
n

)
.

End.

For supporting the decision of the problem on hypothesis testing for ALM-distributions, we
developed an applied program packet ALM-soft in C++ using the WINDOWS tools. It has a user
graphic interface for input and output of results and routines for modeling different distributions
with or without the ALM property (uniform, exponential, normal, Gamma, Weilbull, logarithmic
normal, and other distributions), computing the corresponding statistics, and plotting their curves.
The packet can applied for a single computation or parametric computation (in a cycle). Results
can be displayed as tables or curves, depending on the variations of parameters (in particular, a,
α, etc.), and their ranges.

This packet was used in the examples given below.
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7. EXAMPLES

We give three model examples to illustrate the application of our algorithms and their software.

Example 1. Testing the hypothesis on the membership of a sample to an exponential distribution
on a line against the hypothesis of its membership to an ALM-distribution with an exponential
distribution on a cycle.

It is readily seen that if the parameters of the density of the ALM-exponential distribution f0(x)
are chosen such that

c > 0, a = e−λc, fY (x) =
λe−λx

1− e−λc , (26)

then the random variable X with ALM-distribution (12) has an exponential distribution on the
whole line with distribution density λe−λx. Any other choice for the parameter a 6= e−λc would
yield an ALM-distribution f1(x) different from the exponential distribution on the whole line.

For this example, let us test the hypothesis H0 on the membership of a sample to an exponential
distribution on the whole line

H0 : f(x) = f0(x) = λe−λx

against the alternative hypothesisH1 of its membership to an ALM-distribution with an exponential
distribution on a cycle

H1 : f(x) = f1(x) = (1− a)a[x
c

]λe−λ(x−[x
c

]c).

The parameters were chosen as follows: λ = c = 1 and a0 = e−1 for the distribution density f0(x)
and the same parameters λ = c = 1 with a variable parameter a1 for the alternative hypothesis
with f1(x). Algorithms 1 and 2 were used in experiments. The results are shown in Figs. 1a–1c.
Figure 1a shows the tails of the empirical distribution functions F̄0(t) (bottom curve) and F̄1(t)
(top curve) for a0 = e−1 and a1 = 0.5 and small samples. Figures 1b and 1c show the test power
function as a function of the parameters a = a1 and π = π(a) for small and large samples computed
by algorithms 1 and 2, respectively.

Example 2. Comparison of two ALM-distributions with uniform distribution on a cycle.

In this example, we tested the zero hypothesis on the membership of a sample to an ALM-
distribution with uniform distribution on a cycle H0 : f(x) = f0(x) = (1 − a0)a

[x
c

]
0

x
c against the

alternative H1 : f(x) = f1(x) with the same distribution, but with a variable parameter a = a1.
The distribution parameters for this example were chosen as follows: c = 1 and a0 = 0.5.

The results are shown in Figs. 2a–2c, which are similar to Figs. 1a–1c. Figure 2a shows the tails
of empirical distribution functions F̄0(t) (bottom curve) and F̄1(t) (top curve) for a0 = 0.5 and
a1 = 0.3 and small samples. Figures 2b and 2c show the test power function as a function of a = a1

and π = π(a) for small and large samples computed by algorithms 1 and 2.

Example 3. Test the hypothesis on the membership of an ALM-distribution sample with uniform
distribution on a cycle against the hypothesis of its membership to an ALM-distribution with arcsin-
distribution on a cycle.

For this example, we tested the zero hypothesis H0 on the membership of an ALM-distribution
sample with uniform distribution on a cycle H0 : f(x) = f0(x) = (1 − a0)a

[x
c

]
0

x
c against the
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– – p

p

Fig. 1. Tails of empirical distribution functions and test power function of Example 1.

– –
p� p�

Fig. 2. Tails of empirical distribution functions and test power function of Example 2.

– –
p� p�

Fig. 3. Tails of empirical distribution functions and test power function of Example 3.

alternative hypothesis H1 on its membership to an ALM-distribution with arcsin distribution on
a cycle with variable parameter a = a1. The density of this distribution is f1(x) = 1

π
√
x(1−x)

,

0 ≤ x ≤ 1. The distribution parameters for this example were chosen as before c = 1 and a0 = 0.7.
The results are shown in Figs. 3a–3c, which are similar to the previous figures. Figure 3a shows
the tails of the empirical distribution functions F̄0(t) and F̄1(t) for a0 = 0.7 and a1 = 0.3 and small
samples. Figures 3b and 3c show the test power function as a function of a = a1 and π = π(a) for
small and large samples generated by algorithms 1 and 2.

8. CONCLUSIONS

Time-varying periodic flows of events occur in numerous applications, particularly in data trans-
fer networks, communication systems, reliability models, ecological data descriptions, etc. A new
characterization for a periodic time-varying Poisson flow of events is elaborated in terms of dis-
tributions with almost lack of memory property. Statistical parameter estimation and testing of
hypothesis for such distributions are studied. Algorithms and their software realizations are de-
scribed. Examples are given to illustrate the application of the developed program software.
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