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Abstract—We introduce a Matlab mprec arbitrary precision
library with applications to numerical analysis. For maximum
efficiency arithmetic operators and algebraic functions are im-
plemented in the mpreal class. The examples are chosen to reflect
the diversity of types of problems for which multiple precision
can play a useful role.

I. INTRODUCTION

The numerical algorithms in arbitrary precision arises in
many applications of science and engineering. We have written
an interface code, defined Matlab classes, and linked them to
a compiled form of the ARPREC C++ source code [1].

For computational efficiency most of the basic arbitrary
precision (AP) Matlab functions use the interface to C++. In
addition we incorporate algorithms for ordinary differential
equations, and for some advance functions such as Newton’s
iterations, Lambert W function, and numerical inversion of
the Laplace transform that provides higher accuracy and per-
formance. The accuracy of AP calculations can be changed by
initializing certain algorithmic parameters.

II. IMPLEMENTATION OF THE mprec PACKAGE

The mprec package includes the following basic operations
and functions [2]:

• Arithmetic operations, common transcendental func-
tions, including cos, sin, tan, arccos, arcsin, arctan,
exp, ln, log, Erf, gamma and other functions

• Supports AP datatypes: mp real,mp int and
mp complex, vectors and matrix calculations

• Definitions of useful mathematical constants such as
e, log2e, log10e, ln2, ln10, π, π/2, π/4, 1/π, 2/π,
2/
√
π,
√
2, 1/

√
2

• Matlab Code mpreal class to incorporate AP opera-
tions and functions in a natural mathematical expres-
sions

• C++ code for AP computing, high performance and
full portability

• Common numerical algorithms ( solving complex
equations, Newton’s iterations, ordinary differential
equations, etc)

• Special routines for Matlab interface with C++: to
compute fundamental mathematical constant and spe-
cial values such as π, e, ln2, epsilon; utilize and ex-
ecute string containing Matlab expressions, and con-
vert C++ output arguments from the expressions into
strings

The mprec multiple precision function library is a collec-
tion of Matlab m-files for AP floating point calculations. In
general, it is possible to write m-files for each arithmetic and
algebraic operations. But this requires having to rewrite each
software application which introduces significant debugging
difficulties. Another important aspect to consider is the possi-
bility of rewriting some of the fundamental applications with
high performance capabilities by making only minor changes.
In this regard, a more efficient approach, is to incorporate these
conversions for mathematical operations as in mathematical
convention, using the Matlab operator overloading features of
object-oriented programming.

The mprec numbers are typically denoted by x, y, z, and the
string variables are denoted by s. The software supports input,
of real and complex numbers. Some of the basic operations
are as follows.

To create a mprec class within the Matlab environment
and provide useful functionality the following methods are
implemented:

• Overloaded basic arithmetic operations: addition (+),
substraction (-), multiplication (*), division (/) and
power(∧).

• Overloaded mathematical function, such as roots,
sin, cos, exp, log and some advanced functions and
fundamental algorithms, as newton (Newton’s it-
erations), lambertw (Lambert W function), gavste
(Gaver-Stehfest algorithm for inverse Laplace trans-
form), and rk4 (Runge-Kutta method for Ordinary
differential equations).

• Overloaded relational operations: equal (==), not equal
(!=), less then (<), greater then (>), less than or equal
(<=), greater than or equal (>=).

See Tab. I for a basic list.

In the next sections we present some applications, where
the extended precision allows for construction of efficient
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TABLE I. BASIC ARBITRARY PRECISION ARITHMETIC AND

ALGEBRAIC OPERATIONS IMPLEMENTED IN mpreal CLASS

No Function Operation Data Type

1. z = x + y z = x + y x, y, z AP complex
2. z = x - y z = x - y x, y, z AP complex
3. z = x × y z = x × y x, y, z AP complex
4. z = x / y z = x / y x, y, z AP complex
5. z = sin(x) z = sin(x) x, z AP real
6. z = cos(x) z = cos(x) x, z AP real
7. z = asin(x) z = arcsin(x) x, z AP real
8. z = acos(x) z = arccos(x) x, z AP real
9. z = atan(x) z = arctan(x) x, z AP real
10 z = exp(x) z = ex x, z AP complex
11. z = log(x) z = ln(x) x, z AP real
12 z = sqrt(x) z =

√
x x, z AP real

13. z = x∧n z = xn x, z AP real, n integer
14. z = x∧y z = xy x, y, z AP real
15. z = double(x) Conversion x string, z double
16. z = char(x) Conversion x AP, string, z AP complex
17. z = char(x) Conversion x AP, string, z AP complex

TABLE II. TABLE OF LAPLACE AND INVERSE TRANSFORMS FOR TEST

FUNCTIONS USED IN NUMERICAL CALCULATIONS

F01(s) = s−1/2e−s−1
f01(t) = (πt)−1/2 cos (2t1/2)

F02(s) = (s + 1/2)−1 f02(t) = e−t/2

F03(s) = ((s + 0.2)2 + 1)−1 f03(t) = e−0.2t sin(t)

F04(s) = s−2 f04(t) = t

F05(s) = (s2 + 1)−1 f05(t) = sin(t)

F06(s) = (s2 − 1)(s2 + 1)−2 f06(t) = t cos(t)

F07(s) = (s + 1/2)1/2− f07(t) = (e−t/4 − e−t/2)×
(s + 1/4)1/2 (4πt3)−1/2

F08(s) = e−4s1/2 f08(t) = 2e−4/t(πt3)−1/2

F09(s) = tan−1(s−1) f09(t) = t−1 sin(t)

F10(s) = e−1/s√
s

f10(t) =
cos(2

√
t)√

π∗t)

algorithms.

III. GAVER-STEHFEST ALGORITHM FOR INVERSE

LAPLACE TRANSFORM

The numerical inversion of Laplace transform arises in
many areas of science and engineering. Stehfest [3] derived
the Gaver-Stehfest algorithm for the numerical inversion of
Laplace transforms. For most of the more interesting problems,
however, numerical inverting often has numerical accuracy
problems [4], [5], [6]). As such, small rounding errors in
computation may significantly offset the results, rendering
these algorithms impractical to apply. With extended precision,
we are able to add additional significant figures, and in doing
so produce results that converge to the solution without falling
victim to the serve truncation that may happen in standard
double arithmetic.

This demonstration applies the algorithm to determine the
inverse Laplace transforms of ten test functions to various type
numerical accuracy. The inverse functions and corresponding
test functions are presented in Tab. II. The first nine function
are taken from [4], and the last one from [5].

The Gaver-Stehfest method uses the summation:

f(t) ≈ ln2/t
N∑

n=1

KnF (nln2/t). (1)

The Kn coefficients only depend on the number of expan-
sion terms, N (which must be even), they are:

TABLE III. CALCULATION ERRORS OF THE INVERSE LAPLACE

TRANSFORM IN DOUBLE PRECISION FOR THE FUNCTIONS IN TAB. II.
VALUES 1.7E-4 ≡ 1.7× 10−4

N = 8 N = 16 N = 18 N = 32

F01 1.2E+0 1.7E-4 3.6E-4 8.0E+5

F02 1.7E-1 2.0E-4 1.6E-4 2.6E+5

F03 1.7E+1 2.2E+0 1.1E+0 5.1E+4

F04 9.3E-2 2.6E-5 8.4E-5 7.1E+4

F05 5.1E+1 1.1E+1 5.9E+0 6.2E+4

F06 2.6E+2 8.1E+1 6.4E+1 5.4E+4

F07 4.4E-3 5.7E-4 1.1E-2 2.1E+7

F08 9.7E-2 1.8E-3 6.6E-4 1.1E+3

F09 8.9E+0 1.2E+0 6.2E-1 2.9E+5

F10 1.9E+0 1.7E-4 3.8E-4 7.6E+5

Kn =

min(n,N/2)∑

k=[(n+1)/2]

(−1)n+N/2kN/2(2k)!

(N2 − k)!k!(k − 1)!(n− k)!(2k − n)!
.

(2)

For each function we calculate an error, E, defined by

E = (
30∑

i=1

(f(i/2)− fα(i/2))
2/30)1/2, (3)

as the measure for the accuracy of the numerical solution
[4]. Let f(t) be the analytical solution. We denote by fα(t)
the numerical estimate of the exact solution. Then E gives
the root-mean-square deviation between the analytical and
numerical solutions for the t values 0.5, 1, 1.5, . . ., 15.

The Kn coefficients become very lalrge and alternate in
sign for increasing n. The sum (1) begins to suffer from
cancelation for large N ≥ the number of decimal digits of
precision (e.g., double precision = 16).

1) Testing Gaver-Stehfest inversion algorithms in double
precision: In Tab. III we report some numerical results related
to the test functions presented in Tab. II.

All the calculations in Tab. III were done in double preci-
sion. In Tab. II we show a number of functions and their exact
inverse functions. The numerical solutions for the functions in
Tab. II were compared to 200 points along the exact solution,
and their norms were added. Table III shows the sums of these
errors which gives a numerical representation of how good a
solution truly is.

When looking at numerical inversion, it is important to
note the accuracy with a varying number of terms and pre-
cision. We compare the inverses using Matlab Gaver-Stehfest
implementation and observe the accuracy of the inversions as
we increase the number of the expansion terms and precision.
However, there exists a limit to adding additional terms. As
we increase the number of terms, N, in the computation
we quickly discover that the numerical inversion becomes
unstable and our function is dominated by numerical error.
For double precision it is reasonable to only allow a number
N = 18. In many cases 18 expansion terms is sufficient to
approximate a function almost exactly, however there are times
where a noticeable difference is seen. We have provided a
number of trial functions whose exact solutions are known, to
identify the ones that would benefit from the use of extended
precision. Using extended precision allows to combat the
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numerical limitation that we experience when dealing with
double precision. Thus, we can use a larger number of terms
for those functions without encountering noise.

The calculations in double precision for all functions and
any number of terms are at most roughly 10−5. The accuracy
is very poor (the functions F03, F05, F06 and F09). The conver-
gence is poor for all these functions for the number of terms
N = 8, 16, 18, and even worse if the number of terms N ≥ 32.
If we continue increase the number of terms, i.e. for N = 128,
we get NaN indicating Not-a-Number, that the Gaver-Stehfest
algorithm in double precision was unable to provide even an
order of magnitude estimates.

The results shown in Fig. 1 - Fig. 10 correspond to the
function F01 −F10 in Tab. II. The inverse Laplace transforms
are given for ten functions evaluated in double precision. The
curves illustrate the solutions for different number of expansion
terms in comparison to the exact solution. The term ”exact
solution” in the figures means the numerical estimate of the
exact solution.

In figures Fig. 2, Fig. 4 and Fig. 7 even with only N = 8
expansion terms we are able to converge to the solutions which
are indistinguishable to the eye.

The Fig. 1, Fig. 8 and Fig. 10 provide the solutions that are
indistinguishable to the eye between N = 16 and N = 18. The
value N is chosen to provide the closest solution to the exact
value. Due to the functions being slightly different, the error
may begin to worsen the solution at an earlier term (N=18), or
the additional terms may continue to benefit the solution even
with 16 digits.

In the remaining figures, Fig. 3, Fig. 5 Fig. 6 and Fig. 9,
we can see the difference between the best approximation and
the exact solution. For these problems, arbitrary precision is
of interest. We are able to add additional terms to improve the
solution, and delay the onset of the noise.

In all the figures, when looking at the plot using N = 32 we
see that using too many terms causes rounding error to overtake
the numerical solution, and we essentially obtain noise. This
is because as small changes in large numbers are manipulated,
we experience severe truncation of the changes which lead to
unstable solutions.

2) Implementation of Gaver-Stehfest algorithm in arbitrary
precision: The Gaver-Stehfest algorithm was implemented in
arbitrary precision, taking advantage of the arbitrary number of
significant digits. Below is a demonstration of how the package
can be used to compute an inverse Laplace transform on a
function predefined in our code. The parameter fun represents
the name of the function to be transformed, i.e. fun = 1
corresponds to the function F01 in Tab.II. The time at which the
inverse Laplace transform of the original function is required
is denoted by t. N is the number of expansion terms to be
used in the computation, which must be an even number, and
prec is the precision to be used. The path reflects the path to
the C++ mpcalc dll project, where Gaver-Stehfest algorithm
(function gavste) employed. Upon running this test function
script, we will obtain in the output the value of the inverse
Laplace transform, invlt and the err corresponds to formula
(3) when this result is compared to the numerical estimate of
the exact value.
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Fig. 1. Inverse Laplace transform of the function F01 evaluated in double
precision
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Double Precision, N=8

Double Precision, N=18

Exact Solution
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Fig. 2. Inverse Laplace transform of the function F02 evaluated in double
precision
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Exact Solution
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Fig. 3. Inverse Laplace transform of the function F03 evaluated in double
precision

The test function can be run with the code below

% Numerical inversion of the Laplace transform using Gaver-Stehfest
% algorithm with extended precision calculations
function [inv_lt, err] = gavste_test(fun,t,L, prec)
%% Input
% fun The name of the function to be inverse transformed
% (the number corresponds to test function in mpcalc
% dll project)
% t The value of t where the inverse Laplace transform
% to the (unknown)
% original function f(t)is required (t > 0), usually
% a snapshot of time(examples: t = 0.5, 1, 1.5, ...,
% 15, so on)
% N The number of expansion terms, which must be even
% (examples: N = 4, 16, 32, 64, 128, 256, so on)
% prec The number of digits in arbitrary precision
% calculations used (examples: prec = 16, 32, 100,
% ..., 1000)
%% Output
% invlt The value of the inverse laplace transform
% err Error of the inverse Laplace transform
%
% Example: [inv_lt, err] = test_gavste(1,2,32,100)

global path_ precision;
mputil;
precision = prec;
fn = ’2’; % Inverse calculation
k = fun;
kp = mpreal([k,L]);
tn = mpreal(t);
tn.imag = 100;
responce = gavste(kp,tn,fn);
inv_lt = responce.real;
fn = ’3’; % Error calculation
responce = gavste(kp,tn,fn);
err = responce.real;
end

The output is:
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Double Precision, N=8

Double Precision, N=16

Exact Solution
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Double Precision, N=32

Fig. 4. Inverse Laplace transform of the function F04 evaluated in double
precision

TABLE IV. CALCULATION ERRORS OF THE INVERSE LAPLACE

TRANSFORM IN ARBITRARY PRECISION (100 DIGITS) FOR THE FUNCTIONS

IN TAB. II. VALUES 9.6E-2 ≡ 9.6× 10−2

N = 4 N = 16 N = 32 N = 64 N = 128 N = 256

F01 9.60E-2 1.6E-4 8.1E-12 1.8E-26 2.3E-33 6.3E+53

F02 1.5E-2 6.4E-6 5.2E-11 1.3E-23 3.4E-34 6.1E+52

F03 1.7E-1 5.0E-2 4.4E-3 4.4E-7 1.5E-21 1.0E+52

F04 3.4E-1 3.9E-7 1.5E-14 3.1E-29 1.4E-34 1.1E+52

F05 6.6E-1 4.7E-1 1.4E-1 1.3E-4 1.0E-17 1.1E+52

F06 6.0E+0 5.2E+0 1.9E+0 7.0E-3 5.6E-16 1.1E+56

F07 6.3E-4 6.4E-8 1.9E-13 2.7E-26 1.3E-31 7.2E+55

F08 3.6E-3 6.8E-6 2.3E-9 1.9E-16 8.6E-31 2.5E+52

F09 1.1E-1 4.1E-2 7.5E-3 4.9E-6 8.6E-20 4.6E+59

F10 9.6E-2 1.6E-4 8.1E-12 2.0E-26 2.3E-33 6.3+E53

invlt = 10 ˆ -1 x -3.795389758243676381129800678241861148...
840967617592231946344278938954985244981787821768215557460943428

err = 10 ˆ -12 x 8.137622462175380948241428517793674051945...
118475730848296549470231938397691733197561032902744637450831

Next we report some numerical results in AP to the test
functions presented in Tab. II. The calculations are given in
Tab. IV for 100 digits and Tab. V for 1000 digits.

For the number of terms preceding 100, the accuracy is
poor (particularly in the functions F05 and F06) and improves
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Exact Solution
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Fig. 5. Inverse Laplace transform of the function F05 evaluated in double
precision

TABLE V. CALCULATION ERRORS OF THE INVERSE LAPLACE

TRANSFORM IN ARBITRARY PRECISION (1000 DIGITS) FOR THE

FUNCTIONS IN TAB. II. VALUES 9.6E-2 ≡ 9.6× 10−2

N = 16 N = 32 N = 64 N = 128 N = 256

N = 512

F01 1.6E-4 8.1E-12 2.0E-26 1.3E-55 7.6E-114 4.0E-230

F02 6.4E-6 5.2E-11 1.3E-23 5.0E-55 5.1E-119 2.8E-235

F03 5.0E-2 4.4E-3 4.4E-7 1.5E-21 6.8E-66 6.2E-178

F04 3.9E-7 1.5E-14 3.1E-29 2.0E-58 1.2E-116 6.4E-233

F05 4.7E-1 1.4E-1 1.3E-4 1.0E-17 2.0E-60 1.9E-175

F06 5.2E+0 1.9E+0 7.0E-3 5.6E-16 3.0E-58 2.6E-173

F07 6.4E-8 1.9E-13 2.7E-26 1.3E-58 7.6E-120 4.3E-236

F08 6.8E-6 2.3E-9 1.9E-16 8.7E-31 1.9E-59 1.4E-120

F09 4.1E-2 7.5E-3 4.9E-6 8.6E-20 1.9E-62 9.6E-179

F10 1.6E-4 8.1E-12 2.0E-26 1.3E-55 7.6E-114 4.0E-230

to at most roughly 10−17 if we increase the number of terms
to 128. Further increase the number of terms to 256 doesn’t
provide convergence due to roundoff errors.

For the number of presiding 1000, the accuracy is very
good for all functions and is at least roughly 10−16, 10−58

and 10−120 for the number of terms accordingly N = 128,
256, and 512.

The MATLAB functions can be evaluated using either
command syntax or function syntax. The code inside Matlab
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Double Precision, N=8

Double Precision, N=18

Exact Solution
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Fig. 6. Inverse Laplace transform of the function F06 evaluated in double
precision

functions above will be executed when you call the function.
The functions are flexible, you can call them using different
arguments. See comments inside the functions for explanation.

Many test examples illustrate different aspects of arbitrary
precision numerical techniques.

IV. CONCLUSION

We have introduced the arbitrary precision library, as
a collection of Matlab m-files. With the assistance of the
implemented mpreal class, we presented the arithmetic and
algebraic operations as in mathematical convention. For max-
imum efficiency, many of the functions are implemented by
interfacing Matlab to C++.

The list of classical algorithms are implemented, such as
Newton’s iterations, Lambert W function, and Runge-Kutta
algorithm for ordinary differential equations.

We discussed in detail the implementation of the Gaver-
Stehfest algorithm for the Laplace transform inversion allowing
the advantage of using an arbitrary number of significant digits.
We observe the accuracy of the inversions as we increase the
number of the expansion terms and precision, which ultimately
leads to stable solutions.
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Exact Solution
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Fig. 7. Inverse Laplace transform of the function F07 evaluated in double
precision
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Exact Solution
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Fig. 8. Inverse Laplace transform of the function F08 evaluated in double
precision
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Double Precision, N=32

Fig. 9. Inverse Laplace transform of the function F09 evaluated in double
precision
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Fig. 10. Inverse Laplace transform of the function F10 evaluated in double
precision
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