
Implementation and application of extended precision in Matlab

Z.L. KROUGLY
Department of Statistical & Actuarial Sciences

The University of Western Ontario
London, Ontario, Canada

zkrougly@stats.uwo.ca

D.J. JEFFREY
Applied Mathematics

The University of Western Ontario
London, Ontario, Canada
djeffrey@uwo.ca

Abstract: A multiple precision library for floating-point calculations to any number of digits has been implemented
in Matlab. The library is based on the ARPREC library. One application is discussed in detail, namely the evalu-
ation in the complex plane of special functions in regions of bad conditioning. Through the use of Matlab classes,
all the basic arithmetic operations are accessible using Matlab syntax, even though the fundamental operations are
coded in C++. Arithmetic supports both real and complex data to arbitrary precision. The level of the precision
being used can be changed at any time. Many elementary functions are also available in Matlab syntax, although
not all of them are offered for complex arguments.

Key–Words: Arbitrary precision, special functions, condition number, Lambert W function

1 Introduction

Many applications in science require high accuracy
beyond that which can be obtained using IEEE double
precision. Applications which benefit from increased
precision include simulations, power series, and so-
lutions of nonlinear and differential equations. Re-
cent applications to natural phenomena are contained
in Boychuk et al. [4] and Krougly et al. [12], where
extensive investigations of how the distribution selec-
tion for rate of spread and spotting distance will af-
fect the spread of forest fire. Other applications are
to sensitivity analysis, and stability and optimization
techniques in nonlinear systems, such as closed net-
work models (Krougly and Stanford [13]; Casale and
Serazzi [7]).

The development of fundamental algorithms in
IEEE double-double and quad-double floating point
arithmetic was presented in Dekker (1971), Knuth
(1998), Shewchuk (1997). One of the first multiple-
precision packages was due to Brent (1978), and
developed in Fortran 66. His package includes
subroutines for evaluating elementary and special
functions in multiple precision floating-point arith-
metic. Brent’s multiple precision package did not
support complex arithmetic. Many basic properties
of high-precision computations are implemented in
the ARPREC software package (Borwein and Bailey,
2004, Bailey, 2002, 2005). Possibly that is the most
comprehensive package in multiple-precision soft-
ware. ARPREC software includes C++ and Fortran-
90 modules, and can be downloaded from [1]. This
package provides complex arithmetic and some com-

plex elementary functions. Another well-known li-
brary is the GMP library, but this does not support
many elementary functions.

For many engineers and mathematicians, MAT-
LAB provides a familiar and efficient problem solving
environment. Standard Matlab offers only double pre-
cision accuracy, and so for applications such as those
described above, it would be beneficial to implement
multiple precision facilities.

We have implemented a library for high-precision
numerical calculations based on the ARPREC li-
brary. We have writing interface code, defined Mat-
lab classes, and linked to a compiled form of the
ARPREC source code. Thus, we enable programs
written in Matlab syntax to access the ARPREC li-
brary and compute at any set precision.

2 Special function application
We now describe a specific motivating application.
The evaluation of a real-valued function has been
studied in great detail. In particular the condition-
ing of the problem is well understood. The theory for
complex-valued functions is less well developed. We
are interested in evaluation of the Lambert W func-
tion.

Lambert W function plays an important role in
science and mathematics [8]. It is the inverse function
of f(w) = wew where w ∈ ℂ, and it is multi-valued,
being denoted by Wk(z), where k is the branch num-
ber. The branches of the Lambert W function can be
seen in Fig. 1.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 103 ISBN: 978-960-474-124-3

−5π

−4π

−3π

−2π

−π

π

2π

3π

4π

5π

Principal

Branch k=0

Branch k= 1

Branch k= 2

Branch k= −1

Branch k= −2

Re(W)

Im(W)

Figure 1: The ranges of the branches of the Lambert
W function.

The W function may be evaluated by Newton it-
eration or by the recurrence formula [8]

wj+1 = wj −
wje

wj − z
ewj (wj + 1)− (wj+2)(wje

wj−z)
2wj+2

(1)

We are particularly interested in evaluation when the
argument and branch of W are such that W takes a
value near the imaginary axis. Let the imaginary axis
be W = it for −∞ < t < ∞, then in the z plane,
the (pre-)image is z = tei(t+�/2). In Fig. 2, the spi-
rals in the z-plane show the locus of points where the
condition number for the evaluation of the real part of
W is high. This has consequences for accuracy and
for the convergence of iterative schemes such as New-
ton’s method, or Halley’s method (the scheme given
in (1) is a Halley’s method). We illustrate the problem
with a numerical example. Suppose

z = −�/2 + 10−6i .

Let the IEEE double precision approximation to this
number be denoted zieee. Because of conversion to
binary data, Matlab will actually work with

zieee = −1.570796326794896 +
(9.9999999999999995)10−7i .

The exact value was calculated using the present soft-
ware, and we compare that with the value Matlab ob-
tained using IEEE arithmetic.

W (z) = (2.884005769542417)10−7

+1.570795873776687i

W (zieee) = (2.884005769265029)10−7

+1.570795873776687i

Figure 2: The spirals in the z plane where the condi-
tion number of the real part is high.

where the bold digits draw attention to the difference
between the two values. Further, Newton iteration
does not actually converge fully. The digits shown in
bold above will oscillate randomly between iterations.
This is shown in the following brief Matlab session.

>> N=@(z,w)w-(w*exp(w)-z)/((1+w)*exp(w));
>> z=-pi/2+1e-6*i;
>> w=0.2884e-7+pi*i/2;
>> for k=1:20; w=N(z,w); end;
>> w=N(zd,w);real(w)
ans =

2.884005768098387e-007
>> w=N(zd,w);real(w)
ans =

2.884005767927381e-007
>> w=N(zd,w);real(w)
ans =

2.884005769817498e-007

Therefore a relative error of 10−10 is the smallest one
can hope for using double precision.

The conclusion is that if Matlab is going to deliver
values accurate to 0.5 ULP (Units in the Last Place),
then computation at higher precision will be needed.
This is the reason for starting this project.

3 Implementation of package

The mprec package includes the following:

∙ Compiled C++ ARPREC code (as Matlab MEX
file)

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 104 ISBN: 978-960-474-124-3

∙ Matlab Code defining class mpreal to incorpo-
rate AP operations and functions in natural math-
ematical expressions

∙ Special routines for C++ interface with Matlab:
to utilize and execute strings containing Matlab
expressions, and to convert C++ output argu-
ments from expressions into strings.

∙ Arithmetic operations, common transcendental
functions, including cosine, sine, tangent, arccos,
arcsin, arctan, exp, ln, log, Erf, gamma and other
functions.

∙ Supports AP datatypes: mp real,mp int and
mp complex, vectors and matrix calculations

∙ Definitions of useful mathematical constants
such as e, log2 e, log10 e, ln 2, ln 10, �, �/2, �/4,
1/�, 2/�, 2/

√
�,
√
2, 1/
√
2.

∙ Common numerical algorithms (solving equa-
tions over the complex field, Newton iteration,
ordinary differential equations, etc)

To create mprec class within MATLAB environ-
ment and provide useful functionality following meth-
ods are defined within the mprec class file:

∙ Overloaded basic arithmetic operations: addition
(+), subtraction (-), multiplication (*), division
(/) and power(∧).

∙ Overloaded relational operations: equal (==), not
equal (!=), less than (<), greater than (>), less
than or equal (<=), greater than or equal (>=).

∙ Overloaded Matlab functions, such as roots,
sin, cos, exp, log and some advance functions
and fundamental algorithms, as newton for
Newton iteration, lambertw (Lambert W func-
tion) and Runge-Kutta fixed-step method for
ODE.

See Table 1, for a full list.

4 Examples and tests of coding

We now give some examples of extended precision
calculations using Matlab and the mprec package. The
mprec files must be stored somewhere in the Matlab
path, or the path must be extended to include the di-
rectory in which the files are stored. These sample
codes also test the accuracy of the installation.

4.1 Fixed-point iteration

We begin by solving a fixed-point iteration for a root
of a cubic polynomial.

% We set desired precision,
% here 40 decimal digits.
precision = 40;

% The constructor that creates mprec
% quantities is also mprec

x=mprec(1); a=mprec(1); b=mprec(-6);
c=mprec(-72); d=mprec(-34.375);
for i = 1:33

x = -(a*xˆ3 + b*x*x + d)/c;
end;
x

The cubic has the root−1/2. The output from the
program is

−0.50000000000000000000000000000000000000 .

4.2 Fixed-step Runge-Kutta code

An interesting demonstration of the ease of program-
ming and a good test of the accuracy of the imple-
mentation is provided by classical fixed-step Runge-
Kutta examples. As will be seen, with the aid of
the mpreal class, the Matlab code for the classical
Runge-Kutta algorithm appears to be identical to the
code in double precision. Of course, once the vari-
ables are defined to be of class mprec, the operation
take place at the higher precision.

Let a first-order ODE with a given initial value is
written in the form,

dx

dt
= f(t, x), t0 < t < T (2)

x(t0) = x0 (3)

where x(t) is the unknown function.
An elementary code to calculate x(T) is as fol-

lows

function x = rk4(fun, x0, t0, T, h)
% fun must be a function handle
n=floor((T-t0)/h);
t = t0;
x=x0;
for i = 1:n
s1 = h*fun(t , x);
s2 = h*fun(t + 0.5*h, x + s1*0.5);
s3 = h*fun(t + 0.5*h, x + s2*0.5);
s4 = h*fun(t + h , x + s3);

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 105 ISBN: 978-960-474-124-3

x = x + (s1 + 2*(s2 + s3) + s4) / 6;
t = t0 + i * h;
end

We can test our new class by solving the problem

dx

dt
=
tx− 2x2

t2
, 1 < t ≤ 3 (4)

x(1) = 4 (5)

which has the analytical solution

x(t) =
t

0.25 + 2 ln(t)
(6)

The Matlab code to test this is below. Note that
a typical path has been shown, but this would be
changed according to local storage.

path(path, ’My Documents\Matlab’);
% t0, T are limits of integration
% x0 is an initial condition
% h is the step size.
t0 = mpreal(1.0);
T = mpreal(3.0);
x0 = mpreal(4.0);
n= mpreal(60000);
h = (T - t0) / n;
f = @(t,x) (t*x - 2*x*x)/(t*t);
x = rk4(f, x0, t0, T, h);

fe = @(t) t /(0.25 + 2*log(t));
exact = fe(T);
norm = abs(exact - x)

This gives the following output, which has been
abbreviated to fit the page.
x=1.225878502440291521844552101272787
exact=1.22587850244029152153018542297
norm=3.14366678302186782313497*E-19.

5 Floating point function evaluation

When the precision of a calculation changes, it be-
comes important to be clear on the evaluation model
being used. In regions where a problem is badly con-
ditioned, this can be critical to understanding results.

The model used here is based on the IEEE stan-
dard and is also used by several commercial numer-
ical products. Under the standard, any floating-point
datum given to a function as an argument is regarded
as exact. Another way of saying this is that the da-
tum can be padded with an infinite number of ze-
ros after the last digit supplied. This has the effect
of meaning that transcendental constants such as �

will be approximated by numbers slightly greater or
slightly less than � depending upon the precision.
For example, at 15 decimal digits, the approximation
for � is slightly low (3.14159265358979), whereas at
20 decimal digits, the approximation is slightly high
(3.1415926535897932385). The IEEE double preci-
sion binary approximation is slightly low (equivalent
in decimal digits to 3.1415926535897931160).

We now consider three iterative schemes for the
evaluation of Lambert W in regions where the prob-
lem is ill-conditioned. The three iterations are Hal-
ley’s method, quoted above as equation (1), and two
forms of Newton iteration:

w = w − wew − z
(1 + w)ew

, (7)

w = w − w − ze−w

(1 + w)
. (8)

We know that W has an exact value at z = −�/2,
namely W0(−�/2) = i�/2. If this argument is per-
turbed slightly in the complex plane, say to z =
−�/2 + 10−6i, then calculations above show that the
real part of the value is badly conditioned. We now re-
visit this calculation, first showing that the condition-
ing is independent of the iteration used. We computed
the value of W using the three schemes above. The
rate of convergence is higher using Halley than the
other schemes. Using double precision and a starting
estimate of W ≈ i, Halley needs only 3 iterations to
obtain the imaginary part carrect to all places; the real
part, however, was correct only to 8 decimal digits and
the remaining 8 digits oscillated with each iteration.
The two Newton iterations took 6 iterations to reach
the same accuracy, but the accuracy was essentially
the same for all methods. Interestingly, scheme (8)
managed one extra digit of accuracy in the real part.

The working precision was now raised to 30 dig-
its, and the computations repeated. Now (1) con-
verged to 30 digits in 4 iterations, while the Newton
schemes took 7 iterations. The real part was accurate
to 23 digits, with all schemes causing the last 7 digits
to oscillate.

From these observations, one might think that
computing the results to 30 digits and then round-
ing back to 16 would be the correct strategy, since all
schemes obtained 23 digits correct. There is one pro-
viso with this strategy, according to the floating-point
model discussed above. If the user has asked for an
evaluation to 16 digits, then the model above requires
that the arguments should first be rounded to the 16
digits requested by the user, followed by the iterative
calculation. The difference is as follows. Let z16 be
−�/2 + 10−6i rounded to 16 digits, and z30 the same

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 106 ISBN: 978-960-474-124-3

quantity rounded to 30 digits. Then by computing to
30 digits in both cases, the 16 digit answers are

W (z16) = 2.884005766737188× 10−7 +

1.570795873776687i

W (z30) = 2.884005769542418× 10−7 +

1.570795873776687i

Notice that the two evaluations differ precisely where
the iterative schemes failed to converge. This again
underlines the fact that the inaccuracies discussed here
are results of the underlying mathematical definitions,
and not simply computational errors.

6 Concluding Remarks

The AP precision function library, as collection of
Matlab m-files, are presented. With the assistant of the
implemented mpreal class, we presented arithmetic
and algebraic operations in a natural notation. For
maximum efficiency many of the Matlab functions in
AP are implemented using C++ interfacing to Matlab.

We illustrated some classical algorithms, such as
Newton’s iterations, Lambert W function, and Runge-
Kutta algorithm for ordinary differential equations.
There are several extensions that can be consider for
future work, one is to comprise some other funda-
mental algorithms and matrix mathematics, including
eigensystems and matrix exponentials. The AP cal-
culations using Matlab library is a relevant avenue as
well.

References:

[1] http://crd.lbl.gov/∼dhbailey/mpdist.

[2] Bailey, D.H., 2005, High-Precision Floating-
Point Arithmetic in Scientific Computation,
Computing in Science and Engineering 7, 54-61.

[3] Bailey, D.H., Hida, Y., Li, X.S.,
Thompson, B., 2002, Arprec: An ar-
bitrary precision computation package.
http://crd.lbl.gov/˜dhbailey/dhbpapers/arprec.pdf.

[4] Boychuk, D., Braun, W.J., Kulperger, R.J.,
Krougly, Z.L, Stanford, D.A.,2009, A Stochastic
Forest Fire Growth Models, Environmental and
Ecological Statistics 16, 133-151.

[5] Brent, R.P., 1978. A Fortran multiple preci-
sion arithmetic package, ACM Transactions on
Mathematical Software 4, 57-70.

Table 1: Basic arbitrary precision arithmetic and alge-
braic operations implemented in mpreal class

Function Data Type
z = x + y x, y, z AP complex
z = x - y x, y, z AP complex
z = x * y x, y, z AP complex
z = x / y x, y, z AP complex
z = sin(x) x, z AP real
z = cos(x) x, z AP real
z = arcsin(x) x, z AP real
z = arccos(x) x, z AP real
z = arctan(x) x, z AP real
z = exp(x) x, z AP complex
z = ln(x) x, z AP real
z = sqrt(x) x, z AP real
z = xn x, z AP real, n integer
z = xy x, y, z AP real
==,∼= x, y, z AP real
<,>,<=, >= AP real
z = double(x) x string, z double
z = char(x) x AP, string, z AP complex

[6] Borwein, J.M., Bailey, D.H., 2004. Mathematics
by Experiment: Plausible Reasoning in the 21st
Century, A K Peters Ltd, Natick, Massachusetts,
288 pp.

[7] Casale, G., Serazzi, G., 2006. Stabilization tech-
niques for load-dependent queueing networks
algorithms, in J.A.Barria Ed., Communication
Networks and Computer Systems, Chapter 8,
127 - 141, Imperial College Press, London.

[8] Corless, R.M, Gonnet, G.H., Hare, D.E.G., Jef-
frey, D.J., Knuth, D.E., 1996. On the Lambert
W function, Advances in Computational Mathe-
matics 5, 329-359.

[9] Dekker, T.J., 1971. A floating-point tech-
nique for extending the available precision, Nu-
merische Mathematik 18, 224-242.

[10] Jeffrey, D.J., Hare, D.E.G., Corless, R.M., 1996.
Unwinding the branches of the LambertW func-
tion. The Mathematical Scientist 21, 1-7.

[11] Knuth, D.E., 1998. The Art of Computer Pro-
gramming, volume 2: Seminumerical algo-
rithms. Addison-Wesley, Reading MA, 3rd edn.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 107 ISBN: 978-960-474-124-3

[12] Krougly Z.L., Creed, I.F., Stanford, D.A., 2009,
A Stochastic Model for Generating Disturbance
Patterns within Landscapes, Computers & Geo-
sciences 35, 1451-1459.

[13] Krougly, Z.L., Stanford, D.A., 2005. Iterative al-
gorithms for performance evaluation of closed
network models, Performance Evaluation 61,
41-64.

[14] Shewchuk, J.R., 1997. Adaptive precision
floating-point arithmetic and fast robust geomet-
ric predicates, Discrete & Computational Geom-
etry 18, 305-363.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 108 ISBN: 978-960-474-124-3

