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Abstract

A number of nonlinear programming algorithms are proposed to obtain the approximate solutions for non-
product form multiclass queueing network models, as well as priority queueing networks. Using sensitivity analysis,
we develop an efficient iterative technique for closed queueing networks. We compare the approximate solutions
obtained from our approach with the global balance solution. Examples illustrate the accuracy of the approximation,
and compare the efficiency of the different optimization methods we have implemented.
© 2004 Published by Elsevier B.V.
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1. Introduction

In the design and performance analysis of computer networks, closed queueing networks have played a
key role[4,5,8,9,19,30,32)Whereas product-form network models have become invaluable tools in this
regard, awhole host of real networks do not satisfy the necessary conditions to make use of them. For such
situations, various approximations have been propfkédb,8—10,30,32]The present work presents a
new approximation, with the main focus being networks employing a preemptive priority discipline at
one or more service centers.
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The novel role of this paper is that it resorts to sensitivity analysis based on partial derivatives for
various performance measures. This method has been previously ydeli®,31,33]to obtain such
derivative information as functions of the service demands and service rates. We present a unified nonlinea
programming approach to arrive at an approximate solution. In fact, two main optimizing approaches
are followed; one which employs the derivative information to develop efficient techniques to reach the
optimal solution, and the other which does not.

Exact solutions for preemptive and nonpreemptive open queuing systems are given in many texts,
such ag11,14,23,29] These take the form of explicit expressions for the means, and transform solutions
for the relevant distributions. Since then, related performance measures have been obtained, such as tt
interdeparture time distribution for each class of messages in a variety of systems featuring Poisson
arrivals[26—28] A common area of interest is multiclass feedback qugLEswhere it has been shown
that in certain circumstances, a priority arrangement of the various classes yields optimal performance
[7,22]. However, few of these exact results carry over to open networks of priority queues. Similarly for
closed networks, we have seen that exact queuing system solutions for BCMP networks based on Norton’:
theorem are available, butthese do not apply for systems involving nonpreemptive or preemptive priorities.

A major development in the analysis of closed priority queueing networks is the “shadow server”
approximation. The concept was first introduced2r21] to represent overhead in queueing models of
operating systems (such as context switching or I/O). The shadow approximation for preemptive priority
scheduling was first applied [@5].

The remainder of the paper is organized as follows. In Se@jdhe pertinent sensitivity analysis
background is presented. In Sectidhand 4 we transform the closed queueing network problem to
the relevant nonlinear programming model, and the necessary derivatives are obtained that are use
in the objective functions. This enables us to use an efficient numerical technique, and to increase the
convergence rate relative to methods not using derivatives. In Segtiwe illustrate the complexity
of the global balance solution technique for a particular priority model. In Seétiame present a
diversity of examples in priority queuing networks, and compare the efficiency of the different numerical
approaches. In Sectiagihwe compare the execution time of the nonlinear programming algorithms for the
approximation models, and give some practical recommendations how to increase the convergence speec

2. Sensitivity in closed queueing networks

Consider a closed product form queuing network Witlservice centers and customer classes. The
number of class customers = 1, ..., R) is equal tor,. The visitratice;, is the solution to the system of
linear equations;, = Zyzl ejyPjiv;i=0,...,M;v=1,..., R,wherePj, are transition probabilities.
The relative utilization of class at centeli is x;, = e;,/ 1iv, Where ¥, is the mean service time for a
classv customer at service centelet L;,, U;, and;, be the mean queue length, the utilization and the
throughput, respectively, at centdor classv customers. Let denote liy(n) the normalization constant
vector, comprising one constant for each class, after the last service center (tgmasrbeen dealt with.

First consider single class networks with centers andN customers. The partial derivatives for

Ai(N), Ui(N), L;(N), andG(N) are given by the following equatiof$2,16,31,33]

IG(N) _ G(N)Li(N)’ 2.1)
Bxi Xi
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dL;(N) __ D;(N)

(2.2)
o Mi
dL;(N) _ D,-(N)’ (2.3)
0x; Xi
al;)fN) _ UZE]_V)[Lj(N N (2.4)
oU;(N) _ Ui(N) [1+ Li(N — 1) — Li(N)], (2.5)
8xl~ Xi
oU;(N) _ Ui(N)[1+Li(N_ 1) — Li(N)], (2.6)
i i
8);(N) _ )\i(]Y) [Lj(N . 1) _ Lj(N)], (2.7)
X Xj
and
i i

whereD;(N) is the variance of the number of customers at service cerdadL;(k) is the mean queue
length at service centéwhen there ar& customers in the network,= 1, ..., N.

The mean response time is one of the most important and general performance measures for all
computer-communication systems. Fr{2) and (2.8)we get:

T d(N — Lo(N))/1 1 d(N — Lo(N oA
O _ AN = LMo _ 1 [ko (V= Lo(N) _ LO(N))_O}
OlLo o (Xo) duo OlLo
1 dLo(N) N — Lo(N) dro 1
= —— — — = Do(N) — (N — Lo(N))[Lo(N) — Lo(N — 1
Y o e = i o) = (N = Lo Lo(N) = Lo(N = 1)}
(2.9)
The partial derivatives for multiple class networks are given by the follojd2¢33}
W OIOING (2.10)
axiv Xiv
A, Ay — .
—(ﬁ) = (E)[L,-v(n -1)-L;,n)];i=0,....,.M;v,r=1,...,R (2.11)
axiv Xivy
where A, = G(n — 1)/G(n) is the throughput for class customers, andn(— 1,) = (n4,...,n, —
1, ..., ng) is the population vector with one classustomer less in the network.

In the next sections, we make use of these derivatives in order to develop an efficient iterative algorithm
for queueing networks for which no exact solution exists.
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3. lterative technique for queuing network models

When the transition probabilities and service rates are allowed to depend on a system state, an exac
closed form analytical solution does not exist.

The iterative procedure presented below is used for models with different classes of customers. The
algorithm allows for two ways to specify the arrival process, and these are described below.

Although we employ a closed model, we can specify the input process using the interarrival time
distribution, as in open models. This is asymptotically valid as the number of customers increases, as we
show below. Furthermore, it provides a basis for comparison with open network models.

Assume that the input stream for each customer in aléssdefined as a sequence of independent and
identically distributed random variables with an exponential distribution funetion= 1 — exp(— Agy?),
where ¥ Ag, is the common mean interarrival time for classustomers. Then the distribution bf(z),
the number of arrivals by timg is given by

ny

Prik,(1) = k,} = (k ) [Pr{z, < }]F[Pr{z, > )]~

v

= (Z”) [1 — exp(_on[)]kl'[exp(_ont)]nv_kv

= (") 1 - expl Al expl- (1, — k) ot @)
v

If one letsn, — oo andAg, — 0sothat,Aq, — Ap,, thenthe arrival process is approximately Poisson
distributed with rateA, . Thus, a finite population model may be approximated by an infinite one as the
population size increases. Hence, we specify the arrival process in the traditional way, by using the
distribution of the timer, that a customer stays in the source after receiving service in the network, rather
than using3.1). This is performed in step 1 of the algorithm given below.

Let us specify the input process through the interarrival time distribution with the given arrival rates
Ag, for classv customers.

Algorithm 3.1.
Step Olnitialization. Set initial value of service rates in the source and the mean size of the source

/’L(()?)) = AOU; LE)?;) =Ny, V= 1, ..., R, (32)

where Y uo, is the mean time that customer classtays in the source after receiving service in the
system.
Step 1Forsteps =0, 1, ..., the iteratesu&) andLg;J) are used to find the transition probabilitigg,
and servicerateg;, (i, j=0,...,M;v=1,..., R).
Step 2The calculation of the queuing network model is performed.
Step 3The estimated solution is evaluated using an iterative algorithm:
L6 = (L), )

v

3.3)
s+1 s+1 s (
uSt = @o(LSH, 1)),
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Whereu(”l) is given by either iterative formulg8.4) or (3.5)below:
ub Y = LG/ 1U0,(1/ A0, — T)] (3.4)
/_Lg:rl) N AOU/UOIH V= 1, ceey R. (35)

DefineU;, as the utilization at service centefor classv customers and’, as the mean response time
for classv customers. Sincéy, is a function ofL(”rl) and MOv’ we can write (where. (-, -) is some
unspecified function)

Uoy = n(L§, ™, u)),  and (3.6)
M (s+1) (s+1)
ivUiv Liv - L - L
TU:Z(M ) :nv Qv :nu 5 Ov , U:].,...,R, (37)
. Mov UOv Miv Uiv )\Ov ,u(;v UOv

whereL;, andq, are accordingly mean queue length at center classv customers and throughput for
classv customers.
The iterative formula(3.5) is based on Little’s law and also follows from

M

M
1 _ @j_ )"”L’”_izL._ﬁ_ N (3.8)
AOU —0 e Aiv )\'OU iv Ay -0 " Aoy IU/OUUOU’

wherel;, is the throughput at service centdor classv customers.
Step 4Convergence test: one assesses whether

s+1 s
LS — L9 < ¢
(3.9)

s+1 K
St —u$)| <6

If so, the iteration stops. Otherwise, one returns to Step 1 to perform the next iteration.

If the input stream is given conventionally through, the simpler algorithm based on the system of
nonlinear equations applies:

LS =LYy, v=1,... R (3.10)

The convergence proof for iterativdgorithm 3.1is given in theAppendix A Notice that the iterative
formula(3 4)is superior tq3.5)and provides better algorithmic convergence because partial derivatives
(““) / au ) calculated by3.5)are larger than by3.4).

4. Numerical methods for priority approximation

We incorporate below a number of algorithms in the priority context. All of these employ a shadow
server approximation, to reflect the utilizatioh, of the higher priority classes. In one approach, we resort
to an iterative scheme. Another possibility is to introduce an objective function and use a direct-search
procedure. Yet another option is to solve this optimization problem with the assistance of derivative
information, and this is described extensively below.
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The approximate shadow service rate of a classy customer at its dedicated shadow center is found
from the utilizationU;, of the higher priority classes.

Algorithm 4.1. Iterative scheme
Step O.Transform the original model into the shadow model. Initialiﬁé’:’ =0v=1...,R—1.
Step 1 Compute the shadow service rates

v—1
M;U = :uiv (1 - Z Uz(]i)> ’ § = 09 17 cety (41)
k=1

wherepu;, denotes the actual service rate of a classthe priority center.
Step 2Find the product form solution for a BCMP network with + R — 1 service centers. Compute
Ut y=1...,R-1
ax H>v=L1... .
Step 3If the utiIizationsUl.(,f“) have not converged, return to Step 1. Otherwise, stop.

Using anm-dimensional vector-valued functiaf(c), wherem = R — 1, the nonlinear programming
problem for priority approximation can be formally stated as

Problem 4.1. Nonlinear programming scheme:

min F(c) = )~ f(0) (4.2)
k=1

subject to

gi(c)>0; i=1,...,2m (4.3)
where

fi(©) = gi(c) — e (4.4)

cii=1,...,m;
(0) = 4.5

8i() {1—c,~;i=m+1,...,2m; (4.5)
forc = (c1, ..., c,y) = m-component solution vector, agg(c) = Ul.(,f“) is the utilization at the shadow
priority centerk, k = 1, ..., m.

The nonlinear approach can be used either with or without derivative information. We consider next
the case where we are able to calculate, at a givea R — 1 dimensional point, not only the value of
a function f(c) but also the gradient vector of first partial derivatives.

Both the conjugate gradient minimization and quasi-Newton minimization methods were used for
priority network implementationfl.7].

First assume that closed queueing network has two classes of customers. In what follows, it is assumec
throughout that class 1 has preemptive priority over class 2 at the priority ¢eBegause

Oy _ ein/ 1ip) _ €2 _ X
iz Itip (in)? iy’

(4.6)
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using(2.11)we get
US™ 1 oy 1 anpox, 1 d(eiror/eor) 3
Oip M duip M 0Xjp iy i Oxjp O

1 €i1 )\.Ol x;
= — = "F[Lip(n1 — 1, n2) — Lia(n1, n2)] | ——2
Mi1 €01 X;p Mo
U_(s-i—l)
= —& [Lip(n1,n2) — Lio(n1 — 1, np)]. 4.7)
i2
Furthermore, since
© ® = —HUi2 = — oL (4.8)
U Uy 1-U;5

the derivatives on this iteration are
(s+1) (+1) o (s+1)
aU; aU; o U
Ao = S0 2R S (Lo — 1, n5) — Liolna, no)]. (4.9)
U i U  1-Uy
The derivative for objective functiof.2)is

(s+1)
dF(c : U:
aU((;) =2U5™ - Ufi’){ L [Lia(n1 — 1, n2) — Liglnz, n2)] — 1}. (4.10)
il

1- 05
Now assume that the customers belongete 2 different priority classes, indexed by the subscript
v,v=1,..., R.Using(2.11) and (4.1pne obtains

o, e (X))
oUy) ouy) Co1-y,uR
v=1....R-1,r=2,...,R, r>v, (4.11)

and the derivatives are given by

1 41 1 ’
Ut aust opj ) USHY _ Hiw+1)
Ny = X = [Liv 1(ﬁ)_Liv l(n_lv)] -
©) EYY ©) 7 (v+1) (v+1) v ©)
U, Kiw+1) 9U, Hitw+1) 1- Zk:l Ui

(s+1)

iv — .

= | ——— [ [Liprn — L) = Liprpy@)]; v=1,...,R—1 (4.12)
[1 Y Ufk)}

Forv > r we get the same solution as foe r:

auS™ Ul iy USTY - Hit11)
6 EYY 6 [Li(v-&-l)(ﬁ) - Li(v+1)(n - lv)] - v 0
oU;, i1y OU; Hit+1) 1-2 kUi

r

(++1)
U

= {m} [L,-(IH_J_)(I’T— 11,) — Li(v+1)(ﬁ)]; V>r (4.13)
- k=1 "~ik
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and

8 Ul(j + 1)

o= 0; v<r (4.14)
anr

Using(4.12)—(4.14}he first partial derivatives for objective functi¢.2) are

R-1 (s+1)

aF c S S \) S U

() _ 208 - Uty + 2> [(Ul.(,jl) —UYy [—lk }
k=v

aUU 1- Zf:l Ul(;)
X [L,-(/H_J_)(I’T— 1k) — Li(k+1)(ﬁ)]} ;o v=1...,R. (4.15)
We also can iterate using as the unknowns the service réig¢s = 1, ..., R — 1) instead of the

utilizationsU,,.

At this point, we turn our attention to the arrival process, in terms of the interarrival-time parameters
introduced in Sectior8. The following m-dimensional vector-valued function is used to find the
numerical solution.

Problem 4.2.
m
min F() = | fé(©) (4.16)
k=1
subject to
gi(c)>0; i=1....m+R (4.17)
where
Ji(€) = gr(c) — cx; (4.18)
¢ =(c1,...,cn) is mdimensional solution vectomm = 2R — 1; ¢i(c) = Ul.(,f”) is the utilization at
shadow priority centek,k =1,..., R—1; ¢r_1.4(c) = nor is service rate in the source for ev-

ery priority classk,k =1, ..., R; gi(c) are taking into account R — 1)+ R = (m + R — 1) cons-
traints:

¢ >0 1i=1...,R-1; ci<l1l i=R,...,2(R-1);
¢>0 i=2R-1,... m+R—-1 (4.19)

Service rates in the source are determine@3») or (3.5)
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The system of nonlinear equations inR2 1 unknownscy = Uj, ..., cg-1 = Ujg-1), Cr =
Mo, - - -, C2(r—1) = Mo(r—1) Can be described as following

(k+1) (*) (k) *) ®)
Uil = fl(Uil v---aUl'(R,]_)y MOl""’H’OR

k+1 k k k k
Uity = Fea(Ui- - UiGa 1y, 1o - 1o

(k+1) _ (k) (k) (5 *)
Ho1 ~ = fR(Uil yoeo Uyro1y Mois - - -5 MoR

(4.20)

(k+1) (%) (k) (%) (k)
Ko ~ = fZ(Rfl)(Uil s Ui(R—l)’ Mo1s -+ MR

We can transform our constrained nonlinear problem into an equivalent unconstrained problem as
follows:

F(c) = f(c) + H(c) (4.21)

whereH(c) is a “penalty” function defined by
H(Q) =) 8ig7(0)- (4.22)
i=1

In the foregoingg; is zero for each constraint that is satisfied, and unity otherwise. Thus, the penalty
function defined by4.22)vanishes inside the feasible region.

The following iterative procedure is used to find the approximating solution for the system-efl2
nonlinear equations withR — 1 unknownsyu ;v=1,..., R —landuo,v=1,..., R.

We limit the analysis below to the iterative case. The nonlinear programming technique to find the
solution(4.21)is provided by constrained nonlinear optimization metH@gs.

Algorithm 4.2.
Step O.Transform the original model into the shadow model.
Step 1lInitialize:

v9=0;, v=1..,R-1 (4.23)
Mgi) = Agy; ng) =n,, v=1...,R (4.24)

Step 2The parameters’™, 1.& andL$) are determined and used for calculation of transition proba-

bilities P;;, and service rateg;,(i, j=0,...,M,v=1,..., R).
Step 3Compute the shadow service rates

v—1
o= (1 S0t (425)

k=1

Step 4Find product form solution for BCMP network witM{ + R — 1) centers. Compufe,.(j“), v =
1,..., R — 1 and the estimated solutiory, ™, LS v = 1,..., R by (3.3).

v
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Step 5Convergence test. Assess whether

max| U™ — U < e v=1,...,R-1

max|LST — LY < e v=1,...,R (4.26)
maxmgvﬂ) _ W(JS3| <gv=1...,R

If yes, stop. Otherwise, return to Step 2 and perform the next iteration.

5. Global balance solution for priority models

Consider a closed tandem queueing network with two classes of customers; and/, = 4 cus-
tomers per class. The service discipline at server 1 is first come first served (FCFS). Class 1 has preemptiv
priority over class 2 at server 2. The service times at each server are exponentially distributed with rates
wir i=1,2;r=1,2),whereu;; = 1, uip = 3, uo1 = 1/3, anduoo = 1. The notation g1, k1; no, ko)
says that there arg andk; class customers at servers 1 and 2, respectively, whetek; = N;,i = 1, 2.
Let n(ny, k1; no, ko) denote the probability for that state in equilibrium. The state transition diagram is
shown inFig. 1, where we have set; = 11, Ao = (12, 1 = W21; U2 = 22

0 %}L) 1 %111 2 %/12 3 %’11 4

( 04,04 i I 0,413 0,4,22 { 0,431 i ' 0,4, 4,0

F 1 o
Yo th A
5 . g |
v ,42,
1,3;0,4
¥y
K ol A Iﬂl
d %4,

A
K s A A
15
b %H.,
A
B 4 th
20 A, 2

Fig. 1. State transition diagram for preemptive priority model.
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Y
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19
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|
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Solving the global balance equations by setting the overall flux into a state equal to the overall flux
out, we obtain the steady state probability vectos (1, . . ., m2s), for lexicographically ordered states
((0,4;0,4),(0,4;1,3),..,(0,4;4,0),(1,3;0,4), ..., (4, 0; 9). For the given rates; is found to be
as follows:

7 = (0.00010161500.00026315700.00075240800.0021669800.00613636
4.16882x 107°,0.00014779800.00050431300.0017791400.02324530
1.43303x 107>, 6.86008x 10>, 0.00029073800.0013106300.07323780
3.72216x 107° 2.40454x 10~°, 0.00013170800.0008033490.22190500
5.58324x 107',4.92725x 10°°, 3.66224x 107>, 0.0003287230.66670100)

The related performance measures are the marginal distributions, the server utilizations, and the
throughputs.
The marginal probabilities;(0) that the server(i = 1, 2) is idle, are
71(0) = 7(0, 4;0, 4) + 7(0, 4; 1, 3) + 7(0, 4; 2, 2) + (0, 4; 3, 1) + 7(0, 4; 4, 0)
=1-0.000101615+ 0.000263157 0.000752408
+0.00216698+ 0.00613636= 0.009421; (5.1)
72(0) = 1— (7(0, 4; 1, 3) + (0, 4; 2, 2) + (0, 4; 3, 1) + 7 (0, 4; 4, 0))
=1-0.00026315# 0.000752408+ 0.00216698+ 0.00613636= 0.0093189;
The utilizations at servers 1 and 2 are

U; =1—m1(0)=1— 0.009421= 0.990579;
U = 1— m2(0) = 1 — 0.990688= 0.0093189

The throughputs at servers 1 and 2 are

A = Uy = (1/3)0.990579= 0.330193;
A2 = 12Uz = (1/3)0.0093189= 0.003106

A global balance solution technigue is very computationally intensive for most networks due to the
huge number of equations to solve, as this simple example illustrates, so for large networks we look for
priority approximations. In Sectiof, we compare the priority approximation with exact solutions based
on the global balance technique.

6. Numerical examples

In this section we present several examples of exact and approximation solutions for various queuing
network models, for a variety of service disciplines in the service centers. We used our software package
ZEDNET, a Windows application written in C++, to perform the analysis. The package includes a graph-
ical interface for input and output, and a number of C++ projects to handle product form solutions, non
product form solution for priority and other approximations in closed queueing networks, Markov chain
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routines, and global balance solution. It also features a set of analytical algorithms that reflect results
from queueing theory (BCMP, mean value analysis, etc.).

Several numerical optimization algorithms have been implemented to solve the minimization problem
and find the approximate solutions: an iterative algorithm, a direct search Powell’'s minimization method
with does not use derivatives, and two descent methods which require the derivative information (these
are conjugate gradient method and quasi-Newton me@jil

The performance measures we compute for these examples consist of the throughput, utilization, meat
gueue length, mean waiting time, and mean response time per class.

Example 6.1. Consider a central server model with= 2 classes of customers under three scenarios:

a multiclass system operating under preemptive resume priority (PR) at service center 1, a multiclass
system without priority (denoted “product-form”), and an equivalent product form system with a single
class of customers. Service centers 2,.3, M are FCFS centers and service center 1 is a processor
sharing (PS) center. This is a computer system example, first modelled via BCMP netwftksirin

which center 1 represents the CPU and the others represent the input/output devices. As such, the resul
are exact for the non-priority systems. Our purpose in presenting this example is to highlight the difference
in performance under the priority approximation. We address the accuracy of the priority approximation
procedure in Examples 6.3 through 6.5 below.

The parameters for the equivalent single-class system are calculated by first solving for the equilibrium
state probabilities of the corresponding multiclass model. From these we can,fthd rate at which

classv customers leave service centewXk 1, ... ,R The equivalent customers have parameters

R

1 r 1

—=> |\=r (6.1)

[ e DD S A T
R r

le:2( 3 )P"fv’ j=2...M (6.2)
v=1 ZU:l rv

Table 1gives the utilization and mean response time for the three scenarios previously mentioned. We
see that the introduction of PR priority service at center 1, when compared with PS scheduling (product
form solution), results in a slight increase in the occupancy of high priority customers, and a slightly
larger decrease in the low priority occupancy.

Example 6.2. In this example, we present a central server model with four classes of custdaides2

gives the utilization and mean response time for the multiclass product form model, the “equivalent”
product form single class model and the priority model with preemptive resume scheduling at service
center 1. The introduction of PR priority service at center 1, relative to PS scheduling (product form
solution), results in significant improvement in mean response time of class 1 customers, a slight decreas
for classes 2 and 3 customers, and a slight increase in the mean response time of the lowest priority
customers. Also notable from the resultsTables 1 and s the fact that the occupancies at each center

for the single class “equivalent” model are all smaller than the corresponding multiclass model.

Example 6.3. Table 3gives the mean queue length for a network with preemptive resume priority
discipline. There are two classes of customers and two service centers, where centers 1 and 2 are modelle
asinfinite server (IS) and FCFS centers, respectively. The service ratas ate.4, 1o = 1.0, 1 = 20
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Table 1
Utilization and mean response time for the central server model with two classes of customers (product form solution), one class
of “equivalent” customers and preemptive resume priority at service center 1

Class 1 2 All Equivalent
Utilization (PR)
Center 1 @45 0502 Q747
Center 2 0 B35 Q335
Center 3 or71 0 Q771
Center 4 ®14 0 0514
Center 5 330 0 0330
Utilization (product form)
Center 1 ®36 0508 Q744 0665
Center 2 0 B39 Q0339 0303
Center 3 0743 0 Q743 0664
Center 4 495 0 0495 Q442
Center 5 ®19 0 0318 0284
Mean response time (PR) .362 1991
Mean response time (product form) 413 1968 1702
Number of customers in class 3 1 4 4

Transition probabilities

Py, 0 1 0193
Pi3, 0.35 0 Q282
P14, 0.35 0 0282
Pis, 0.30 0 Q242
Service rates
Center 1 D 10 3536
Center 2 15 15 15
Center 3 10 10 10
Center 4 15 15 15
Center 5 20 2.0 20

and o, = 10. The customer populations for each clagsandn,, are varying. The exact results were
taking from[14, p. 105] Comparing the priority approximation results with the exact solution, one
observes that the accuracy is generally very good, but that it degrades slightly as the number of customers
in the network increases.

Example 6.4. Consider a closed tandem queuing network with two service centers and two classes
of customers. There are four customers in each class. Center 1 operates under a PR discipline. The
service time of customers at each center are exponentially distributed with servige rated/s;, (v =
1,...,R;j=12).

The results are presentedTable 4 We compare the throughput for priority approximation models
with exact results and product form solutions. Exact results were computed for every class using the
global balance solution technique, presented in Seétid¥e observe that while the throughput rates for
the high priority class are quite accurate (with errors ranging from 1 to 5%), the low priority can be off
as much as 30%.
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Table 2
Utilization and mean response time for the central server model with four classes of customers (product form), one class of
“equivalent” customers and preemptive resume priority at service center 1

Class 1 2 3 4 All Equivalent
Utilization (PR)

Center 1 0131 Q073 0494 Q090 Q788

Center 2 ®15 0232 Q039 Q072 0659

Center 3 084 0186 0063 Q058 0391

Center 4 0140 Q155 Q105 0290 0691
Utilization (product form)

Center 1 0115 Q068 0451 Q104 Q738 Q677

Center 2 @75 Q0217 Q036 Q083 0612 0561

Center 3 73 Q174 Q058 Q067 Q372 0341

Center 4 0122 Q0145 Q096 0334 0698 0640
Mean response time (PR) .80 3441 10130 5525
Mean response time (product form) .389 3680 11079 4796 5455
Number of customers in class 1 1 1 1 4 4
Transition probabilities

Py, 0.6 04 0.2 0.2 0.383

Py3, 0.2 04 04 0.2 0.291

P14y 0.2 0.2 04 0.6 0.327
Service rates

Center 1 20 40 0.2 20 1084

Center 2 ® 0.5 0.5 0.5 0.5

Center 3 0625 0625 0625 0625 0625

Center 4 @75 Q375 Q375 Q0375 Q375
Table 3
The mean queue lengths for the network with preemptive resume priority discipline
Model ny 1 2 3 4 5 10

ny L L2 Ly Lo, Ly Lo Ly Lo, Ly La> Ly Lo,

Approximation 1 0.02 0.09 002 020 002 033 002 048 002 065 002 221
Exact 1 0.02 009 002 020 002 033 002 048 002 066 0.02 222
Approximation 2 0.04 009 004 020 004 033 004 049 004 067 0.04 228
Exact 2 0.04 010 004 021 004 034 004 049 004 068 004 230
Approximation 3 0.06 010 0.06 021 006 034 006 050 0.06 069 0.06 235
Exact 3 0.06 0.10 006 021 006 035 006 051 006 070 0.06 2.38
Approximation 4 0.08 010 0.08 021 008 035 008 051 008 070 0.08 243
Exact 4 0.08 0.10 008 022 008 036 008 052 008 072 0.08 246
Approximation 5 0.11 010 021 022 011 036 011 053 011 072 011 250
Exact 5 0.11 0.10 0.11 0.23 0.11 0.37 0.11 0.54 0.11 0.75 0.11 2.55
Approximation 10 024 011 024 024 024 040 024 059 024 083 024 295
Exact 10 022 012 024 026 024 044 024 064 024 089 024 3.04
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Table 4
Comparison the throughput for priority approximation model with exact result and product form solution
Model number Class S1y S2y Throughput
Approximation Exact Product form
1 1 3 3 0.206625 0.215642 0.148148
2 3 3 0.111717 0.080654 0.148148
2 1 3 1 0.330551 0.330193 0.166650
2 3 1 0.002782 0.003106 0.166650
3 1 5 2.5 0.193190 0.191647 0.099804
2 5 25 0.006810 0.007962 0.099804

Example 6.5. Consider a network that comprises a terminal system (center 0) and five service centers:
the CPU (center 1) and four disks (centers 2 through 5). The parameter values are the following:
Po11 = P121 = P31 = P341 = Pss1 = Pso1 = 1.0; P1op = Pa3zp = Pasp = Pa120=1.0; 001 = 0.1, 11 =

0.25, o1 = 0.5, w31 = 0.5, g1 = 0.5, usy = 0.5; w12 = 0.025, oo = 0.5, ugp = 0.125, g = 0.167,

us2 = 0.125 (all service rates are in s&§. There are six low priority customers, while the number

of high priority customers is allowed to vary. We compareTable 5the mean response time for the
priority approximation with product form solution and simulation. Simulation results were taking from
[19, p. 260]

Example 6.6. Consider a computer system composed of a CPU (center 1) and two disks (centers 2 and 3)
used to support an interactive system with 35 terminals (center 0), split into two classes for the workload:
ny = 20 andn, = 15. Center 0 represents the think time at the terminals, the PS station represents the
CPU, and two load independent stations represent the disks (FCFS).

Table 6presents the mean response time for the interactive system. If both classes have the same
priority, the mean response time for class 1 is 2.63 and 5.98 s for class 2. If class 1 has a higher CPU
priority over class 2, we have a significant improvement in the mean response time of the class 1 (from
2.63 to 0.60 s) with a moderate increase in the mean response time of the class 2: 13.4% (from 5.98 to
6.78).

Example 6.7. A client server systenHig. 2) includesk client workstations (center 0) that are connected

by Ethernet network (center 1) to a database server. The database server consists of a CPU (center 2) an
two disk devices (centers 3 and 4). The client workstations are modeled as IS centers, and submit SQL
requests to a database server.

Table 5
Mean queue length at CPU and mean response time for class 1 in the network with preemptive resume priority discipline

Solution technique ny

1 5 10 15 20

L1 T Ly T L1 T L1 Ty L1 Ty
Approximation 0.2 12.9 1.3 19.5 4.3 32.7 8.6 50.4 13.5 70.0
Simulation 12.0 19.1 32.0 50.4 70.0

Product form 0.6 34.8 3.2 46.5 7.0 63.1 11.3 81.0 15.8 99.7
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Table 6
Mean response time for interactive system with 35 workloads and two classes of customers
Class 1 2
Mean response time (s)
Product form 2.63 5.98
Preemptive resume 0.60 6.78
Transition probabilities
Pio, 0.1667 0.1
Py, 0.3333 0.2
Py, 0.1667 0.5
Py3, 0.1666 0.2
Service rates
Center 0 0.05 0.0667
Center 1 4.2 1.4
Center 2 12.5 20.0
Center 3 10.0 16.667
Number of terminals 20 15

The Ethernet network (operating under carrier sense multiple access with collision detection, or
CSMA/CD) can be modeled as a load dependent (LD) center to represent the effect of network con-
tention[13,18]. The rate at which the Ethernet delivers packets, giv&ations trying to use the channel,
is:

1
(Lp/B + SC(k))’

whereC(k) = (1 — A(k))/A(k) denotes the average number of collisions per requestAéind= (1 —
1/k)*—* denotes the probability of a successful transmission.
The other parameters are specified as follows: the mean length in bytes per SQL feguest1l000
bytes, the network bandwidtB = 10 Mbits/s, the slot duratio§ = 51.2 ms, the mean packet length
L, = 1518 bits, the maximum length of the data field of a padket= 1492 bits, and the mean number
of packets per SQL requedkso. = 1+ [Lsql/Lg] = 7 packets.
Givenkactive clients and one database serverin the system, thérg-atevorkstations in the network.
But, as the workstation transmits only on request, there are no collisions if there is only one client active.

mp(k) = (6.3)

Client Workstations Database Server
O El®
0 L Disk
NHFOT=
o Network CPU :m :

Disk

Fig. 2. Client server queuing network model.
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Fig. 3. Throughput as a function of the number of workstations. (1) Preemptive priority model; (2) Product form model.

Thus, considering the number of sent packets per SQL request, the service rate of the network, measurec
in SQL requests per second, is:

1
l]t]p( )’ k=1
k)= { SO 6.4
anet( ) Mp(k + 1) k . 1 ( )
NsoL

The client server model was evaluated using a two-class product form model, and a priority
model where the first class has preemptive resume priority over the second class at CPU (cen-
ter 2). The transition probabilities and service rates for classes 1 and 2 are as falgws:

1.0; Pio1= 0.5, Pio1= 0.5, P11 = 0.5, Py31 = 0.2, Py = 0.3; P31 = 1.0; Py = 1.0;/L01 = O.2S71,
p11 = pnedk), po1 = pcpu = 322571, pnar = 29657, puag = 155571, Poro = 1.0; Pigp = 0.5, P1op =
0.5, Pr1o = 0.15, Py = 0.2, Py3o = 0.4, Py = 0.25;P322 =1.0; Pyoo = 1.0;/L02 = 0.15.5‘_1, M12 =
tnedk), o2 = pepu = 254571, wa = 29.6571 and s = 155571 The number of workstations in
class 2 isk, = 20. The number of workstations in class 1 (dendtgds varying.

The throughpuig = 101 + 102 @s a function of the number of workstatiohs= k1 + &, is shown in
Fig. 3.

Example 6.8. Consider an open M/G/1 queuing system with preemptive resume priority. The system
has two classes of customers. Arrival rates for classes 1 and2;,are0.08, A, = 0.08. Service rates

for classes 1 and 2 age; = uo = 0.25. The standard deviation of service times for classes 1 and 2 is
01 =02 = 1.

Using Algorithm 4.2 we compare the priority approximation results in the closed model with exact
results for the open model.

The associated closed tandem queuing network has two service centers and two classes of customers
Arrival rates are calculated using; = A1/n1 andig, = Ay/ny. Service rates at center 1 are; = 1
anduir = po.

The mean response time in the network with preemptive resume priority discipline for closed and open
models is presented ifable 7
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-II\;Iaeb; Zesponse time in the network with preemptive resume priority discipline for closed and open models

Mean response time niny nins nins nins nina nina niny Open model
22 1010 20 20 40 40 50 50 60 60 8080

T, 4.66 5.53 5.69 5.78 5.80 5.82 5.83 5.88

1> 7.35 9.77 10.34 10.69 10.77 10.82 10.89 16.40

Table 8

Mean response times for the preemptive resume priority discipline compared with exact solution and open queueing network
model

Model no 5 10
niy T1 T2 A;]_ A2 T]_ T2 Al Az

Approximation 5 0.054 0.169 1.956 4.250 0.054 0.330 1.956 7.450
Exact 5 0.056 0.176 1.956 4.250 0.056 0.342 1.956 7.450
Open model 0.055 0.221 1.956 4.250 0.055 0.670 1.956 7.450
Approximation 10 0.060 0.196 3.904 4.110 0.060 0.406 3.904 6.960
Exact 10 0.060 0.216 3.904 4.110 0.060 0.440 3.904 6.960
Open model 0.062 0.285 3.904 4,110 0.060 1.130 3.904 6.960

Example 6.9. We compare the approximate solution givenAlgorithm 4.2with the exact result, and
with the associated open M/G/1 model with preemptive resume discipline. There are two customers
classes and two service centers, modelled as IS and PR centers, respectively. The arrival rates for close

model are given b1 = A1/n1, Ag2 = Ag1/n2. The service rates apg; = 20 andu,, = 10. The exact
results were taking frorfii4, p. 106]

Table 8gives mean response time for the preemptive resume priority discipline in comparison with exact
solution and open queueing network model. A comparison of the resulabies 7 and 8lemonstrate
the benefits of usindlgorithm 4.2to run priority approximation, rather than ignoring the customer’s
population.

7. Comparison of optimization methods

Numerical examples were run to evaluate the performance of a variety of computer network models to
assess the accuracy of the approximations, and to compare the convergence speed of the various nonline
approximation techniques.

Below we estimate the execution time for priority approximation models using different numerical
algorithms.Table 9gives the relative CPU time of the numerical solution for the priority approxima-
tion models using different numerical algorithms: an iterative algorithm, quasi-Newton minimization,
conjugate gradient minimization and Powell's method. The last of these is one of the best minimization
procedures that does not resort to derivatives. The penalty function approach is used to transform a con

strained nonlinear programming problem into an unconstrained problem by adding one or more functions
of the constraints to the objective function.



Z.L. Krougly, D.A. Stanford / Performance Evaluation 61 (2005) 41-64 59

Table 9
Relative CPU time of the numerical solution for priority approximation models
# Model Iterative Quasi-Newton Conjugate Powell's
algorithm gradient method
1. Example 6.3 1 1 1 2
M=2G(=12),R=2,N;,=10 N,=10
2. Example 6.4 o 0.3 0.6 0.6
M=2G=12,R=2,N1=4, N, =4
3. Example 6.6 3 3 3 6
M=3(=0,1,2,3,R=2 N, =20 N, =15
4. Example 6.7 21 21 21 30
M=4(=0,1,2,3,4,R=2,N; =30, N, =30
5. Example 6.7 69 81 117 255
M=4(=0,1,2,3,4),R=3,N, =5 N, =10,
N3 =25
6. Example 6.7 33 39 75 171
M=4(=0,1,2,3,4,R=4, N, =5, N, =5,
N3=5 Ns=5
7. Example 6.7 24 27 50 156

M=4(G=01234),R=6N, =2 N, =2,
N3=2,Ns=2 Ns=2 Ng=2

All times are relative to the time to run model 1. All the test problems showralile Qused the

objective function(4.2) that was minimized with respect to the initial vectoe (cy, ..., c¢,), Starting
from the vectore® = (2, ..., c©). All algorithms terminated when the objective functigifc) fell
below 10713,

The test results presented so far can give only a fragmentary picture of the relative effectiveness of
the algorithms, because each study used a different unidimensional search method, different termination
criteria and different methods of counting function evaluatiofable 9demonstrates that numerical
optimization methods using derivatives can yield a significant improvement for convergence speed. We
observe that the quasi-Newton method and the iterative algorithm are generally superior at minimizing
the F(c) function. The conjugate gradient method appears to be nearly as satisfactory as the quasi-Newton
method.

As expected, the search algorithms were slower than the algorithms that used derivatives, but what is
notable is the high ranking of Powell’s algorithm.

The guasi-Newton method works well if the starting vector is selected close enough to the minimum.
We can use product form solution or perform several iterations to find a starting vector. Calculation by
guasi-Newton and conjugate gradient methods are much more intensive than using an iterative algorithm,
because at each iteration it is necessary to find the matrix of partial derivatives and to solve the system
of linear equations. One solution to this computational problem is to calculate the matrix of partial
derivatives only on the initial iteration, and use the results for all others iterations. But convergence in
this case became linear, and the matrix of partial derivatives can be quite different from that at the final
iteration.

Calculation4.12)needs to be done using the mean queue lehgth — 1,) in closed network with one
fewer class customer. So as to avoid additional computing, one can employ thdBaadd Schweitzer
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[24] approximation, which was proposed to approximate the mean value analysis algorithm:

Lu-1)= """t (7.)
where
(n—1,), = {n VET (7.2)
n,—lLv=r

Other simplifications have been proposed; see for exafBple

8. Conclusions

The performance evaluation algorithms presented in this paper use a nonlinear programming approact
to obtain approximate solutions in queueing network models. A number of algorithms are proposed
for determine the numerical results for priority approximation and other models. We introduced the
minimization criteria and used a direct search procedure with efficient algorithms based on the calculation
of derivative information to perform the optimization.
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Appendix A. Convergence proof for the Algorithm 3.1

Define the ordered pair = (y1, y2) by y1 = Lo; y» = 1/10. Suppose that the iterate§* for s =
0,1, 2,...are determined b¢3.3).

(1) 6+1) () Lyt
s+ s+ S| 0
o =@u(Lly T my) = (A.2)
0 Uo(1/A0 —T)
and set
{ylﬁ_l =@ (y(ls)’yz ) (A 3)
WY = 0, (5D, D).
Fors = 0 we obtain
1
(l)
= N, — |, A4
o (v) (n.9)

1
W= (Uo, —) . (A.5)
Ao
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Then the iterate;a(ll) andy(zl), obtained on the first step, are less then the previous values:

1 0 .
W <40 — (A.6)
1
1 (0]
y<2><y<2>:A‘ (A7)
0

Supposeus,(k) (k =1, ..., N) is the throughput as a function of customers populakiotdetermined
when service center 0 is shorted. The statenférd) is obvious. By Norton’s theorem for service
center 0, there exists an equivalent reduced two-service center network consisting of center O and its
“complementary centerBy. The service rate at centBp is equal to the throughputs,(k), k = 1,..., N
when center 0 is shorted and therefqrg, (k) > 0,k =1,..., N.
The statemen(A.7) is obtained from(A.2):
@_ YA-T _ 1 1

V5 = —— < —T<— (A.8)
2 LY/, T Ao Ao

because.{” < UpandT > 0.
When we use the iterative formuld.5) o = NAo/Lo and sincd/y < N

U 1
v _ Yo _ + A9
20 Nao T Ao (A-9)
From(2.3) [31]and
Xilbi = QiXoM0 (A.10)
we get
M (s+1)
LS _ d [N - XLy ] _ L) _ i AL B, day
Ly oLy —~ JLY —~\ 9 9 9Ly
M M
1 i 00 D; oa;
:—Z—Diﬁﬁz— i o (A.11)
. Xi o 8Lo - o 3L0
i=1 i=1
Therefore if,0a;/0Lo < 0;i =1, ..., M, we see that
0 ,
P01, y2) 0. (A.12)
ay1
From(2.2) [31]
oL;(N D;(N
(N) =_ (N) (A.13)
o i
it follows that
0 , 0 , y2) @ 1 1 D,
¢1(y1, y2) _ d¢1(y1, y2) dno _ S <__2> — oDy = 20, (A14)
ay2 o y2 Ko Y5 Y2
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Therefore,
0p1(y1, ¥2)
_— >
ay2
Differentiatinge(y1, y2) with respect toy,

1
dpa01, y2) _ apg™) 1 ouf™ (A16)
oy oL Sy o0
It is easy to prove that

aultY

oLy
and from(A.16)

dp2(y1, y2)
_— >
a1
Differentiatinge(y1, y2) with respect toy,,

dpa(y1, y2)  aA/uS™) 1 guft 1 oul™oud)

- s - s - s+1 s s
02 o (g2 dy2 (o™)? g 0y

2 1

o 1 (_ 1 ) 3Mg+l) B ( M(()S) ) aM((JH) (A19)

- s+1 s s) s+1 s) ’
g™\ 082) ong \ug™/)  oug

0. (A.15)

<0, (A.17)

0. (A.18)

Using(2.6)

ous™  NAo Uy NAo
oy Ug o) Ug

1 s S
L_@%H+LVWN—D—LVWM4
Ho

(s+1)
= Ko+ LEOW - 1) - LED@). (A.20)
Ho

It is easy to see that
L+ L5V -1 - L5V >0, i=1,.... M, (A.21)

so we get from(A.20) that
9 (s+1)
o~ 0, and (A.22)

aug)

092(y1, y2)
_ >
ay2
As a consequence ¢A.12), (A.15),(A.18), and (A.23)all the partial derivatives of the vectefy; =
@1(y1, ¥2), y2 = @2(y1, y2)) are positive.

0. (A.23)
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But according tqA.6) and (A.7) yY < y©, so the sequende®} is monotonically decreasing:
Y <90 s=0,1,2,.... (A.24)

The vectoly is continuous and limited, so as a consequep€d converges to the optimum poipt,
wherey; = ¢1(y1, y2) andyz = @2(y1, y2)-
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