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Abstract

A number of nonlinear programming algorithms are proposed to obtain the approximate solutions for non-
product form multiclass queueing network models, as well as priority queueing networks. Using sensitivity analysis,
we develop an efficient iterative technique for closed queueing networks. We compare the approximate solutions
obtained from our approach with the global balance solution. Examples illustrate the accuracy of the approximation,
and compare the efficiency of the different optimization methods we have implemented.
© 2004 Published by Elsevier B.V.
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1. Introduction

In the design and performance analysis of computer networks, closed queueing networks have played a
key role[4,5,8,9,19,30,32]. Whereas product-form network models have become invaluable tools in this
regard, a whole host of real networks do not satisfy the necessary conditions to make use of them. For such
situations, various approximations have been proposed[1,5,6,8–10,30,32]. The present work presents a
new approximation, with the main focus being networks employing a preemptive priority discipline at
one or more service centers.
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The novel role of this paper is that it resorts to sensitivity analysis based on partial derivatives for
various performance measures. This method has been previously used in[12,16,31,33]to obtain such
derivative information as functions of the service demands and service rates. We present a unified nonlinear
programming approach to arrive at an approximate solution. In fact, two main optimizing approaches
are followed; one which employs the derivative information to develop efficient techniques to reach the
optimal solution, and the other which does not.

Exact solutions for preemptive and nonpreemptive open queuing systems are given in many texts,
such as[11,14,23,29]. These take the form of explicit expressions for the means, and transform solutions
for the relevant distributions. Since then, related performance measures have been obtained, such as the
interdeparture time distribution for each class of messages in a variety of systems featuring Poisson
arrivals[26–28]. A common area of interest is multiclass feedback queues[15], where it has been shown
that in certain circumstances, a priority arrangement of the various classes yields optimal performance
[7,22]. However, few of these exact results carry over to open networks of priority queues. Similarly for
closed networks, we have seen that exact queuing system solutions for BCMP networks based on Norton’s
theorem are available, but these do not apply for systems involving nonpreemptive or preemptive priorities.

A major development in the analysis of closed priority queueing networks is the “shadow server”
approximation. The concept was first introduced in[2,21] to represent overhead in queueing models of
operating systems (such as context switching or I/O). The shadow approximation for preemptive priority
scheduling was first applied in[25].

The remainder of the paper is organized as follows. In Section2, the pertinent sensitivity analysis
background is presented. In Sections3 and 4, we transform the closed queueing network problem to
the relevant nonlinear programming model, and the necessary derivatives are obtained that are used
in the objective functions. This enables us to use an efficient numerical technique, and to increase the
convergence rate relative to methods not using derivatives. In Section5, we illustrate the complexity
of the global balance solution technique for a particular priority model. In Section6, we present a
diversity of examples in priority queuing networks, and compare the efficiency of the different numerical
approaches. In Section7, we compare the execution time of the nonlinear programming algorithms for the
approximation models, and give some practical recommendations how to increase the convergence speed.

2. Sensitivity in closed queueing networks

Consider a closed product form queuing network withM service centers andRcustomer classes. The
number of classv customers (v = 1, . . . , R) is equal tonv. The visit ratioeiv is the solution to the system of
linear equationseiv = ∑M

j=1 ejvPjiv; i = 0, . . . ,M; v = 1, . . . , R, wherePjiv are transition probabilities.
The relative utilization of classv at centeri is xiv = eiv/µiv, where 1/µiv is the mean service time for a
classv customer at service centeri. LetLiv,Uiv andλiv be the mean queue length, the utilization and the
throughput, respectively, at centeri for classv customers. Let denote byG(n̄) the normalization constant
vector, comprising one constant for each class, after the last service center (centerM) has been dealt with.

First consider single class networks withM centers andN customers. The partial derivatives for
λi(N), Ui(N), Li(N), andG(N) are given by the following equations[12,16,31,33]:

∂G(N)

∂xi
= G(N)

xi
Li(N), (2.1)
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∂Li(N)

∂µi
= −Di(N)

µi
, (2.2)

∂Li(N)

∂xi
= Di(N)

xi
, (2.3)

∂Ui(N)

∂xj
= Ui(N)

xj
[Lj(N − 1) − Lj(N)], i �= j, (2.4)

∂Ui(N)

∂xi
= Ui(N)

xi
[1 + Li(N − 1) − Li(N)], (2.5)

∂Ui(N)

∂µi
= Ui(N)

µi
[1 + Li(N − 1) − Li(N)], (2.6)

∂λi(N)

∂xj
= λi(N)

xj
[Lj(N − 1) − Lj(N)], (2.7)

and

∂λi(N)

∂µi
= λi(N)

µi
[Li(N) − Li(N − 1)], (2.8)

whereDi(N) is the variance of the number of customers at service centeri, andLi(k) is the mean queue
length at service centeri when there arek customers in the network,k = 1, . . . , N.

The mean response time is one of the most important and general performance measures for all
computer-communication systems. From(2.2) and (2.8)we get:

∂T

∂µ0
= ∂(N − L0(N))/λ0

∂µ0
= 1

(λ0)2

[
λ0
∂(N − L0(N))

∂µ0
− (N − L0(N))

∂λ0

∂µ0

]

= − 1

λ0

∂L0(N)

∂µ0
− N − L0(N)

(λ0)2

∂λ0

∂µ0
= 1

µ0λ0
{D0(N) − (N − L0(N))[L0(N) − L0(N − 1)]}

(2.9)

The partial derivatives for multiple class networks are given by the following[12,33]:

∂G(n̄)

∂xiv
= G(n̄)

xiv
Liv(n̄) (2.10)

∂λr(n̄)

∂xiv
= λr(n̄)

xiv
[Liv(n̄− 1r) − Liv(n̄)]; i = 0, . . . ,M; v, r = 1, . . . , R (2.11)

where λr = G(n̄− 1)/G(n̄) is the throughput for classr customers, and (¯n− 1r) = (n1, . . . , nr −
1, . . . , nR) is the population vector with one classr customer less in the network.

In the next sections, we make use of these derivatives in order to develop an efficient iterative algorithm
for queueing networks for which no exact solution exists.
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3. Iterative technique for queuing network models

When the transition probabilities and service rates are allowed to depend on a system state, an exact
closed form analytical solution does not exist.

The iterative procedure presented below is used for models with different classes of customers. The
algorithm allows for two ways to specify the arrival process, and these are described below.

Although we employ a closed model, we can specify the input process using the interarrival time
distribution, as in open models. This is asymptotically valid as the number of customers increases, as we
show below. Furthermore, it provides a basis for comparison with open network models.

Assume that the input stream for each customer in classv is defined as a sequence of independent and
identically distributed random variables with an exponential distribution functionA(t) = 1 − exp(−Λ0vt),
where 1/Λ0v is the common mean interarrival time for classv customers. Then the distribution ofkv(t),
the number of arrivals by timet, is given by

Pr{kv(t) = kv} =
(
nv

kv

)
[Pr{τv ≤ t}]kv [Pr{τv > t}]nv−kv

=
(
nv

kv

)
[1 − exp(−Λ0vt)]

kv [exp(−Λ0vt)]
nv−kv

=
(
nv

kv

)
[1 − exp(−Λ0vt)]

kv exp[−(nv − kv)Λ0vt]. (3.1)

If one letsnv → ∞ andΛ0v → 0 so thatnvΛ0v → Λ′
0v, then the arrival process is approximately Poisson

distributed with rateΛ′
0v. Thus, a finite population model may be approximated by an infinite one as the

population size increases. Hence, we specify the arrival process in the traditional way, by using the
distribution of the timeτ ′

v that a customer stays in the source after receiving service in the network, rather
than using(3.1). This is performed in step 1 of the algorithm given below.

Let us specify the input process through the interarrival time distribution with the given arrival rates
Λ0v for classv customers.

Algorithm 3.1.
Step 0.Initialization. Set initial value of service rates in the source and the mean size of the source

µ
(0)
0v = Λ0v; L

(0)
0v = nv; v = 1, . . . , R, (3.2)

where 1/µ0v is the mean time that customer classv stays in the source after receiving service in the
system.
Step 1.For stepss = 0,1, . . ., the iteratesµ(s)

0v andL(s)
0v are used to find the transition probabilitiesPijv

and service ratesµiv (i, j = 0, . . . ,M; v = 1, . . . , R).
Step 2.The calculation of the queuing network model is performed.
Step 3.The estimated solution is evaluated using an iterative algorithm:{

L
(s+1)
0v = ϕ1(L

(s)
0v, µ

(s)
0v)

µ
(s+1)
0v = ϕ2(L(s+1)

0v , µ
(s)
0v),

(3.3)
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whereµ(s+1)
0v is given by either iterative formula(3.4) or (3.5)below:

µ
(s+1)
0v = L(s+1)

0v /[U0v(1/Λ0v − Tv)] (3.4)

µ
(s+1)
0v = NvΛ0v/U0v, v = 1, . . . , R. (3.5)

DefineUiv as the utilization at service centeri for classv customers andTv as the mean response time
for classv customers. SinceU0v is a function ofL(s+1)

0v andµ(s)
0v , we can write (whereγ1(·, ·) is some

unspecified function)

U0v = γ1(L
(s+1)
0v , µ

(s)
0v), and (3.6)

Tv =
M∑
i=1

(
µivUiv

µ0vU0v

)
Liv

µivUiv
= nv − L(s+1)

0v

λ0v
= nv − L(s+1)

0v

µ
(s)
0vU0v

, v = 1, . . . , R, (3.7)

whereLiv andλ0v are accordingly mean queue length at centeri for classv customers and throughput for
classv customers.

The iterative formula(3.5) is based on Little’s law and also follows from

1

Λ0v
=

M∑
i=0

eiv

e0v

Liv

λiv
=

M∑
i=0

λiv

λ0v

Liv

λiv
= 1

λ0v

M∑
i=0

Liv = N

λ0v
= N

µ0vU0v
, (3.8)

whereλiv is the throughput at service centeri for classv customers.
Step 4.Convergence test: one assesses whether


|L(s+1)
0v − L(s)

0v | < ε

|µ(s+1)
0v − µ(s)

0v | < ε
(3.9)

If so, the iteration stops. Otherwise, one returns to Step 1 to perform the next iteration.

If the input stream is given conventionally throughµ0v the simpler algorithm based on the system of
nonlinear equations applies:

L
(s+1)
0v = ϕ1(L

(s)
0v), v = 1, . . . , R. (3.10)

The convergence proof for iterativeAlgorithm 3.1is given in theAppendix A. Notice that the iterative
formula(3.4)is superior to(3.5)and provides better algorithmic convergence because partial derivatives
∂µ

(s+1)
0v /∂µ

(s)
0v calculated by(3.5)are larger than by(3.4).

4. Numerical methods for priority approximation

We incorporate below a number of algorithms in the priority context. All of these employ a shadow
server approximation, to reflect the utilizationUiv of the higher priority classes. In one approach, we resort
to an iterative scheme. Another possibility is to introduce an objective function and use a direct-search
procedure. Yet another option is to solve this optimization problem with the assistance of derivative
information, and this is described extensively below.
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The approximate shadow service rateµ′
iv of a classv customer at its dedicated shadow center is found

from the utilizationUiv of the higher priority classes.

Algorithm 4.1. Iterative scheme
Step 0.Transform the original model into the shadow model. Initialize:U

(0)
iv = 0, v = 1, . . . , R− 1.

Step 1.Compute the shadow service rates

µ′
iv = µiv

(
1 −

v−1∑
k=1

U
(s)
ik

)
, s = 0,1, . . . , (4.1)

whereµiv denotes the actual service rate of a classv at the priority centeri.
Step 2.Find the product form solution for a BCMP network withM + R− 1 service centers. Compute

U
(s+1)
ik , v = 1, . . . , R− 1.
Step 3.If the utilizationsU(s+1)

ik have not converged, return to Step 1. Otherwise, stop.

Using anm-dimensional vector-valued functionF (c̄), wherem = R− 1, the nonlinear programming
problem for priority approximation can be formally stated as

Problem 4.1.Nonlinear programming scheme:

minF (c̄) =
m∑
k=1

f 2
k (c̄) (4.2)

subject to

gi(c̄) > 0; i = 1, . . . ,2m (4.3)

where

fk(c̄) = ϕk(c̄) − ck; (4.4)

gi(c̄) =
{
ci; i = 1, . . . , m;

1 − ci; i = m+ 1, . . . ,2m;
(4.5)

for c̄ = (c1, . . . , cm) = m-component solution vector, andϕk(c̄) = U(s+1)
ik is the utilization at the shadow

priority centerk, k = 1, . . . , m.

The nonlinear approach can be used either with or without derivative information. We consider next
the case where we are able to calculate, at a givenm = R− 1 dimensional point ¯c, not only the value of
a functionf (c̄) but also the gradient vector of first partial derivatives.

Both the conjugate gradient minimization and quasi-Newton minimization methods were used for
priority network implementations[17].

First assume that closed queueing network has two classes of customers. In what follows, it is assumed
throughout that class 1 has preemptive priority over class 2 at the priority centeri. Because

∂x′
i2

∂µ′
i2

= ∂(e′i2/µ
′
i2)

∂µ′
i2

= − e′i2
(µ′
i2)2

= − x
′
i2

µ′
i2

, (4.6)



Z.L. Krougly, D.A. Stanford / Performance Evaluation 61 (2005) 41–64 47

using(2.11)we get

∂U
(s+1)
i1

∂µ′
i2

= 1

µi1

∂λi1

∂µ′
i2

= 1

µi1

∂λi1

∂x′
i2

∂x′
i2

∂µ′
i2

= 1

µi1

∂(ei1λ01/e01)

∂x′
i2

∂x′
i2

∂µ′
i2

= 1

µi1

ei1

e01

λ01

x′
i2

[Li2(n1 − 1, n2) − Li2(n1, n2)]

(
− x

′
i2

µ′
i2

)

= U
(s+1)
i1

µ′
i2

[Li2(n1, n2) − Li2(n1 − 1, n2)]. (4.7)

Furthermore, since

∂µ′
i2

∂U
(s)
i1

= ∂[µi2(1 − U(s)
i1 )]

∂U
(s)
i1

= −µi2 = − µ′
i2

1 − U(s)
i1

, (4.8)

the derivatives on this iteration are

∂U
(s+1)
i1

∂U
(s)
i1

= ∂U
(s+1)
i1

∂µ′
i2

∂µ′
i2

∂U
(s)
i1

= U
(s+1)
i1

1 − U(s)
i1

[Li2(n1 − 1, n2) − Li2(n1, n2)]. (4.9)

The derivative for objective function(4.2) is

∂F (c̄)

∂U
(s)
i1

= 2(U(s+1)
i1 − U(s)

i1 )

{
U

(s+1)
i1

1 − U(s)
i1

[Li2(n1 − 1, n2) − Li2(n1, n2)] − 1

}
. (4.10)

Now assume that the customers belong toR ≥ 2 different priority classes, indexed by the subscript
v, v = 1, . . . , R. Using(2.11) and (4.1)one obtains

∂µ′
ir

∂U
(s)
iv

=
∂
[
µir

(
1 −∑v

k=1U
(s)
ik

)]
∂U

(s)
iv

= −µir = −µ′
ir

1 −∑v
k=1U

(s)
ik

;

v = 1, . . . , R− 1; r = 2, . . . , R; r > v, (4.11)

and the derivatives are given by

∂U
(s+1)
iv

∂U
(s)
iv

= ∂U
(s+1)
iv

∂µ′
i(v+1)

∂µ′
i(v+1)

∂U
(s)
iv

= U
(s+1)
iv

µ′
i(v+1)

[Li(v+1)(n̄) − Li(v+1)(n̄− 1v)]

[
− µ′

i(v+1)

1 −∑v
k=1U

(s)
ik

]

=
[

U
(s+1)
iv

1 −∑v
k=1U

(s)
ik

]
[Li(v+1)(n̄− 1v) − Li(v+1)(n̄)]; v = 1, . . . , R− 1. (4.12)

Forv > r we get the same solution as forv = r:
∂U

(s+1)
iv

∂U
(s)
ir

= ∂U
(s+1)
iv

∂µ′
i(v+1)

∂µ′
i(v+1)

∂U
(s)
ir

= U
(s+1)
iv

µ′
i(v+1)

[Li(v+1)(n̄) − Li(v+1)(n̄− 1v)]

[
− µ′

i(v+1)

1 −∑v
k=1U

(s)
ik

]

=
[

U
(s+1)
iv

1 −∑v
k=1U

(s)
ik

]
[Li(v+1)(n̄− 1v) − Li(v+1)(n̄)]; v > r (4.13)
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and

∂U
(s+1)
iv

∂U
(s)
ir

= 0; v < r. (4.14)

Using(4.12)–(4.14)the first partial derivatives for objective function(4.2)are

∂F (c̄)

∂Uv
= 2(U(s)

iv − U(s+1)
iv ) + 2

R−1∑
k=v

{
(U(s+1)
ik − U(s)

ik )

[
U

(s+1)
ik

1 −∑k
l=1U

(s)
il

]

× [Li(k+1)(n̄− 1k) − Li(k+1)(n̄)]

}
; v = 1, . . . , R. (4.15)

We also can iterate using as the unknowns the service ratesµ′
iv (v = 1, . . . , R− 1) instead of the

utilizationsUiv.
At this point, we turn our attention to the arrival process, in terms of the interarrival-time parameters

introduced in Section3. The following m-dimensional vector-valued function is used to find the
numerical solution.

Problem 4.2.

minF (c̄) =
m∑
k=1

f 2
k (c̄) (4.16)

subject to

gi(c̄) > 0; i = 1, . . . , m+ R (4.17)

where

fk(c̄) = ϕk(c̄) − ck; (4.18)

c̄ = (c1, . . . , cm) is m-dimensional solution vector;m = 2R− 1; ϕk(c̄) = U(s+1)
ik is the utilization at

shadow priority centerk, k = 1, . . . , R− 1; ϕR−1+k(c̄) = µ0k is service rate in the source for ev-
ery priority classk, k = 1, . . . , R; gi(c̄) are taking into account 2(R− 1) + R = (m+ R− 1) cons-
traints:

ci > 0, i = 1, . . . , R− 1; ci < 1, i = R, . . . ,2(R− 1);

ci > 0, i = 2R− 1, . . . , m+ R− 1. (4.19)

Service rates in the source are determined by(3.4) or (3.5).
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The system of nonlinear equations in 2R− 1 unknowns c1 = Ui1, . . . , cR−1 = Ui(R−1), cR =
µ01, . . . , c2(R−1) = µ0(R−1) can be described as following



U
(k+1)
i1 = f1(U

(k)
i1 , . . . , U

(k)
i(R−1), µ

(k)
01, . . . , µ

(k)
0R)

...

U
(k+1)
i(R−1) = fR−1(U

(k)
i1 , . . . , U

(k)
i(R−1), µ

(k)
01, . . . , µ

(k)
0R)

µ
(k+1)
01 = fR(U(k)

i1 , . . . , U
(k)
i(R−1), µ

(k)
01, . . . , µ

(k)
0R)

...

µ
(k+1)
0R = f2(R−1)(U

(k)
i1 , . . . , U

(k)
i(R−1), µ

(k)
01, . . . , µ

(k)
0R)

(4.20)

We can transform our constrained nonlinear problem into an equivalent unconstrained problem as
follows:

F (c̄) = f (c̄) +H(c̄) (4.21)

whereH(c̄) is a “penalty” function defined by

H(c̄) =
m∑
i=1

δig
2
i (c̄). (4.22)

In the foregoing,δi is zero for each constraint that is satisfied, and unity otherwise. Thus, the penalty
function defined by(4.22)vanishes inside the feasible region.

The following iterative procedure is used to find the approximating solution for the system of 2R− 1
nonlinear equations with 2R− 1 unknowns:µ′

iv; v = 1, . . . , R− 1 andµ0v; v = 1, . . . , R.
We limit the analysis below to the iterative case. The nonlinear programming technique to find the

solution(4.21)is provided by constrained nonlinear optimization methods[20].

Algorithm 4.2.
Step 0.Transform the original model into the shadow model.
Step 1.Initialize:

U
(0)
iv = 0; v = 1, . . . , R− 1 (4.23)

µ
(0)
0v = Λ0v;L

(0)
0v = nv; v = 1, . . . , R. (4.24)

Step 2.The parametersU(s)
iv , µ

(s)
0v andL(s)

0v are determined and used for calculation of transition proba-
bilities Pijv and service ratesµiv(i, j = 0, . . . ,M; v = 1, . . . , R).
Step 3.Compute the shadow service rates

µ′
iv = µiv

(
1 −

v−1∑
k=1

U
(s)
ik

)
(4.25)

Step 4.Find product form solution for BCMP network with (M + R− 1) centers. ComputeU(s+1)
iv , v =

1, . . . , R− 1 and the estimated solutionµ(s+1)
0v , L

(s+1)
0v , v = 1, . . . , R by (3.3).
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Step 5.Convergence test. Assess whether


max|U(s+1)
iv − U(s)

iv | < ε, v = 1, . . . , R− 1

max|L(s+1)
0v − L(s)

0v | < ε, v = 1, . . . , R

max|µ(s+1)
0v − µ(s)

0v | < ε, v = 1, . . . , R

(4.26)

If yes, stop. Otherwise, return to Step 2 and perform the next iteration.

5. Global balance solution for priority models

Consider a closed tandem queueing network with two classes of customers, andN1 = N2 = 4 cus-
tomers per class. The service discipline at server 1 is first come first served (FCFS). Class 1 has preemptive
priority over class 2 at server 2. The service times at each server are exponentially distributed with rates
µir (i = 1,2;r = 1,2), whereµ11 = 1, µ12 = 3, µ21 = 1/3, andµ22 = 1. The notation (n1, k1; n2, k2)
says that there areni andki classi customers at servers 1 and 2, respectively, whereni + ki = Ni, i = 1,2.
Let π(n1, k1; n2, k2) denote the probability for that state in equilibrium. The state transition diagram is
shown inFig. 1, where we have setλ1 = µ11; λ2 = µ12; µ1 = µ21; µ2 = µ22.

Fig. 1. State transition diagram for preemptive priority model.
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Solving the global balance equations by setting the overall flux into a state equal to the overall flux
out, we obtain the steady state probability vector,π = (π1, . . . , π25), for lexicographically ordered states
((0, 4; 0, 4), (0, 4; 1, 3),. . . , (0, 4; 4, 0), (1, 3; 0, 4), . . . , (4, 0; 4,0)). For the given rates,π is found to be
as follows:

π = (0.0001016150,0.0002631570,0.0007524080,0.002166980,0.00613636,

4.16882× 10−5,0.0001477980,0.0005043130,0.001779140,0.02324530,

1.43303× 10−5,6.86008× 10−5,0.0002907380,0.001310630,0.07323780,

3.72216× 10−6,2.40454× 10−5,0.0001317080,0.000803349,0.22190500,

5.58324× 10−7,4.92725× 10−6,3.66224× 10−5,0.000328723,0.66670100).

The related performance measures are the marginal distributions, the server utilizations, and the
throughputs.

The marginal probabilitiesπi(0) that the serveri (i = 1,2) is idle, are

π1(0) = π(0,4; 0,4) + π(0,4; 1,3) + π(0,4; 2,2) + π(0,4; 3,1) + π(0,4; 4,0)

= 1 − 0.000101615+ 0.000263157+ 0.000752408

+ 0.00216698+ 0.00613636= 0.009421;

π2(0) = 1 − (π(0,4; 1,3) + π(0,4; 2,2) + π(0,4; 3,1) + π(0,4; 4,0))

= 1 − 0.000263157+ 0.000752408+ 0.00216698+ 0.00613636= 0.0093189;

(5.1)

The utilizations at servers 1 and 2 are

U1 = 1 − π1(0) = 1 − 0.009421= 0.990579;

U2 = 1 − π2(0) = 1 − 0.990688= 0.0093189.

The throughputs at servers 1 and 2 are

λ1 = µ1U1 = (1/3)0.990579= 0.330193;

λ2 = µ2U2 = (1/3)0.0093189= 0.003106.

A global balance solution technique is very computationally intensive for most networks due to the
huge number of equations to solve, as this simple example illustrates, so for large networks we look for
priority approximations. In Section6, we compare the priority approximation with exact solutions based
on the global balance technique.

6. Numerical examples

In this section we present several examples of exact and approximation solutions for various queuing
network models, for a variety of service disciplines in the service centers. We used our software package
ZEDNET, a Windows application written in C++, to perform the analysis. The package includes a graph-
ical interface for input and output, and a number of C++ projects to handle product form solutions, non
product form solution for priority and other approximations in closed queueing networks, Markov chain
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routines, and global balance solution. It also features a set of analytical algorithms that reflect results
from queueing theory (BCMP, mean value analysis, etc.).

Several numerical optimization algorithms have been implemented to solve the minimization problem
and find the approximate solutions: an iterative algorithm, a direct search Powell’s minimization method
with does not use derivatives, and two descent methods which require the derivative information (these
are conjugate gradient method and quasi-Newton method[20]).

The performance measures we compute for these examples consist of the throughput, utilization, mean
queue length, mean waiting time, and mean response time per class.

Example 6.1.Consider a central server model withR = 2 classes of customers under three scenarios:
a multiclass system operating under preemptive resume priority (PR) at service center 1, a multiclass
system without priority (denoted “product-form”), and an equivalent product form system with a single
class of customers. Service centers 2, 3,. . . , M are FCFS centers and service center 1 is a processor
sharing (PS) center. This is a computer system example, first modelled via BCMP networks in[4], in
which center 1 represents the CPU and the others represent the input/output devices. As such, the results
are exact for the non-priority systems. Our purpose in presenting this example is to highlight the difference
in performance under the priority approximation. We address the accuracy of the priority approximation
procedure in Examples 6.3 through 6.5 below.

The parameters for the equivalent single-class system are calculated by first solving for the equilibrium
state probabilities of the corresponding multiclass model. From these we can findrv, the rate at which
classv customers leave service center 1,v = 1, . . . ,R. The equivalent customers have parameters

1

µ1
=

R∑
v=1

(
rv∑R
v=1 rv

)
1

µ1v
(6.1)

Pj1 =
R∑
v=1

(
rv∑R
v=1 rv

)
Pijv, j = 2, . . . ,M. (6.2)

Table 1gives the utilization and mean response time for the three scenarios previously mentioned. We
see that the introduction of PR priority service at center 1, when compared with PS scheduling (product
form solution), results in a slight increase in the occupancy of high priority customers, and a slightly
larger decrease in the low priority occupancy.

Example 6.2. In this example, we present a central server model with four classes of customers.Table 2
gives the utilization and mean response time for the multiclass product form model, the “equivalent”
product form single class model and the priority model with preemptive resume scheduling at service
center 1. The introduction of PR priority service at center 1, relative to PS scheduling (product form
solution), results in significant improvement in mean response time of class 1 customers, a slight decrease
for classes 2 and 3 customers, and a slight increase in the mean response time of the lowest priority
customers. Also notable from the results inTables 1 and 2is the fact that the occupancies at each center
for the single class “equivalent” model are all smaller than the corresponding multiclass model.

Example 6.3. Table 3gives the mean queue length for a network with preemptive resume priority
discipline. There are two classes of customers and two service centers, where centers 1 and 2 are modelled
as infinite server (IS) and FCFS centers, respectively. The service rates areµ11 = 0.4,µ12 = 1.0,µ21 = 20
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Table 1
Utilization and mean response time for the central server model with two classes of customers (product form solution), one class
of “equivalent” customers and preemptive resume priority at service center 1

Class 1 2 All Equivalent

Utilization (PR)
Center 1 0.245 0.502 0.747
Center 2 0 0.335 0.335
Center 3 0.771 0 0.771
Center 4 0.514 0 0.514
Center 5 0.330 0 0.330

Utilization (product form)
Center 1 0.236 0.508 0.744 0.665
Center 2 0 0.339 0.339 0.303
Center 3 0.743 0 0.743 0.664
Center 4 0.495 0 0.495 0.442
Center 5 0.319 0 0.318 0.284

Mean response time (PR) 1.362 1.991
Mean response time (product form) 1.413 1.968 1.702
Number of customers in class 3 1 4 4

Transition probabilities
P12v 0 1 0.193
P13v 0.35 0 0.282
P14v 0.35 0 0.282
P15v 0.30 0 0.242

Service rates
Center 1 9.0 1.0 3.536
Center 2 1.5 1.5 1.5
Center 3 1.0 1.0 1.0
Center 4 1.5 1.5 1.5
Center 5 2.0 2.0 2.0

andµ22 = 10. The customer populations for each class,n1 andn2, are varying. The exact results were
taking from [14, p. 105]. Comparing the priority approximation results with the exact solution, one
observes that the accuracy is generally very good, but that it degrades slightly as the number of customers
in the network increases.

Example 6.4. Consider a closed tandem queuing network with two service centers and two classes
of customers. There are four customers in each class. Center 1 operates under a PR discipline. The
service time of customers at each center are exponentially distributed with service ratesµjv = 1/sjv (v =
1, . . . , R; j = 1,2).

The results are presented inTable 4. We compare the throughput for priority approximation models
with exact results and product form solutions. Exact results were computed for every class using the
global balance solution technique, presented in Section5. We observe that while the throughput rates for
the high priority class are quite accurate (with errors ranging from 1 to 5%), the low priority can be off
as much as 30%.
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Table 2
Utilization and mean response time for the central server model with four classes of customers (product form), one class of
“equivalent” customers and preemptive resume priority at service center 1

Class 1 2 3 4 All Equivalent

Utilization (PR)
Center 1 0.131 0.073 0.494 0.090 0.788
Center 2 0.315 0.232 0.039 0.072 0.659
Center 3 0.084 0.186 0.063 0.058 0.391
Center 4 0.140 0.155 0.105 0.290 0.691

Utilization (product form)
Center 1 0.115 0.068 0.451 0.104 0.738 0.677
Center 2 0.275 0.217 0.036 0.083 0.612 0.561
Center 3 0.073 0.174 0.058 0.067 0.372 0.341
Center 4 0.122 0.145 0.096 0.334 0.698 0.640

Mean response time (PR) 3.810 3.441 10.130 5.525
Mean response time (product form) 4.359 3.680 11.079 4.796 5.455
Number of customers in class 1 1 1 1 4 4

Transition probabilities
P12v 0.6 0.4 0.2 0.2 0.383
P13v 0.2 0.4 0.4 0.2 0.291
P14v 0.2 0.2 0.4 0.6 0.327

Service rates
Center 1 2.0 4.0 0.2 2.0 1.084
Center 2 0.5 0.5 0.5 0.5 0.5
Center 3 0.625 0.625 0.625 0.625 0.625
Center 4 0.375 0.375 0.375 0.375 0.375

Table 3
The mean queue lengths for the network with preemptive resume priority discipline

Model n2 1 2 3 4 5 10

n1 L21 L22 L21 L22 L21 L22 L21 L22 L21 L22 L21 L22

Approximation 1 0.02 0.09 0.02 0.20 0.02 0.33 0.02 0.48 0.02 0.65 0.02 2.21
Exact 1 0.02 0.09 0.02 0.20 0.02 0.33 0.02 0.48 0.02 0.66 0.02 2.22
Approximation 2 0.04 0.09 0.04 0.20 0.04 0.33 0.04 0.49 0.04 0.67 0.04 2.28
Exact 2 0.04 0.10 0.04 0.21 0.04 0.34 0.04 0.49 0.04 0.68 0.04 2.30
Approximation 3 0.06 0.10 0.06 0.21 0.06 0.34 0.06 0.50 0.06 0.69 0.06 2.35
Exact 3 0.06 0.10 0.06 0.21 0.06 0.35 0.06 0.51 0.06 0.70 0.06 2.38
Approximation 4 0.08 0.10 0.08 0.21 0.08 0.35 0.08 0.51 0.08 0.70 0.08 2.43
Exact 4 0.08 0.10 0.08 0.22 0.08 0.36 0.08 0.52 0.08 0.72 0.08 2.46
Approximation 5 0.11 0.10 0.11 0.22 0.11 0.36 0.11 0.53 0.11 0.72 0.11 2.50
Exact 5 0.11 0.10 0.11 0.23 0.11 0.37 0.11 0.54 0.11 0.75 0.11 2.55
Approximation 10 0.24 0.11 0.24 0.24 0.24 0.40 0.24 0.59 0.24 0.83 0.24 2.95
Exact 10 0.22 0.12 0.24 0.26 0.24 0.44 0.24 0.64 0.24 0.89 0.24 3.04



Z.L. Krougly, D.A. Stanford / Performance Evaluation 61 (2005) 41–64 55

Table 4
Comparison the throughput for priority approximation model with exact result and product form solution

Model number Class s1v s2v Throughput

Approximation Exact Product form

1 1 3 3 0.206625 0.215642 0.148148
2 3 3 0.111717 0.080654 0.148148

2 1 3 1 0.330551 0.330193 0.166650
2 3 1 0.002782 0.003106 0.166650

3 1 5 2.5 0.193190 0.191647 0.099804
2 5 2.5 0.006810 0.007962 0.099804

Example 6.5.Consider a network that comprises a terminal system (center 0) and five service centers:
the CPU (center 1) and four disks (centers 2 through 5). The parameter values are the following:
P011 = P121 = P231 = P341 = P451 = P501 = 1.0;P122 = P232 = P342 = P412 = 1.0;µ01 = 0.1, µ11 =
0.25, µ21 = 0.5, µ31 = 0.5, µ41 = 0.5, µ51 = 0.5;µ12 = 0.025, µ22 = 0.5, µ32 = 0.125, µ42 = 0.167,
µ52 = 0.125 (all service rates are in sec−1). There are six low priority customers, while the number
of high priority customers is allowed to vary. We compare inTable 5the mean response time for the
priority approximation with product form solution and simulation. Simulation results were taking from
[19, p. 260].

Example 6.6.Consider a computer system composed of a CPU (center 1) and two disks (centers 2 and 3)
used to support an interactive system with 35 terminals (center 0), split into two classes for the workload:
n1 = 20 andn2 = 15. Center 0 represents the think time at the terminals, the PS station represents the
CPU, and two load independent stations represent the disks (FCFS).

Table 6presents the mean response time for the interactive system. If both classes have the same
priority, the mean response time for class 1 is 2.63 and 5.98 s for class 2. If class 1 has a higher CPU
priority over class 2, we have a significant improvement in the mean response time of the class 1 (from
2.63 to 0.60 s) with a moderate increase in the mean response time of the class 2: 13.4% (from 5.98 to
6.78).

Example 6.7.A client server system (Fig. 2) includesk client workstations (center 0) that are connected
by Ethernet network (center 1) to a database server. The database server consists of a CPU (center 2) and
two disk devices (centers 3 and 4). The client workstations are modeled as IS centers, and submit SQL
requests to a database server.

Table 5
Mean queue length at CPU and mean response time for class 1 in the network with preemptive resume priority discipline

Solution technique n1

1 5 10 15 20

L11 T1 L11 T1 L11 T1 L11 T1 L11 T1

Approximation 0.2 12.9 1.3 19.5 4.3 32.7 8.6 50.4 13.5 70.0
Simulation 12.0 19.1 32.0 50.4 70.0
Product form 0.6 34.8 3.2 46.5 7.0 63.1 11.3 81.0 15.8 99.7
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Table 6
Mean response time for interactive system with 35 workloads and two classes of customers

Class 1 2

Mean response time (s)
Product form 2.63 5.98
Preemptive resume 0.60 6.78

Transition probabilities
P10v 0.1667 0.1
P11v 0.3333 0.2
P12v 0.1667 0.5
P13v 0.1666 0.2

Service rates
Center 0 0.05 0.0667
Center 1 4.2 1.4
Center 2 12.5 20.0
Center 3 10.0 16.667

Number of terminals 20 15

The Ethernet network (operating under carrier sense multiple access with collision detection, or
CSMA/CD) can be modeled as a load dependent (LD) center to represent the effect of network con-
tention[13,18]. The rate at which the Ethernet delivers packets, givenk stations trying to use the channel,
is:

mp(k) = 1

(Lp/B + SC(k))
, (6.3)

whereC(k) = (1 − A(k))/A(k) denotes the average number of collisions per request, andA(k) = (1 −
1/k)k−1 denotes the probability of a successful transmission.

The other parameters are specified as follows: the mean length in bytes per SQL requestLSQL = 1000
bytes, the network bandwidthB = 10 Mbits/s, the slot durationS = 51.2 ms, the mean packet length
Lp = 1518 bits, the maximum length of the data field of a packetLd = 1492 bits, and the mean number
of packets per SQL requestNSQL = 1 + [LSQL/Ld] = 7 packets.

Givenkactive clients and one database server in the system, there arek + 1 workstations in the network.
But, as the workstation transmits only on request, there are no collisions if there is only one client active.

Fig. 2. Client server queuing network model.



Z.L. Krougly, D.A. Stanford / Performance Evaluation 61 (2005) 41–64 57

Fig. 3. Throughput as a function of the number of workstations. (1) Preemptive priority model; (2) Product form model.

Thus, considering the number of sent packets per SQL request, the service rate of the network, measured
in SQL requests per second, is:

µnet(k) =



µp(1)

NSQL
, k = 1

µp(k + 1)

NSQL
, k > 1

(6.4)

The client server model was evaluated using a two-class product form model, and a priority
model where the first class has preemptive resume priority over the second class at CPU (cen-
ter 2). The transition probabilities and service rates for classes 1 and 2 are as follows:P011 =
1.0;P101 = 0.5, P121 = 0.5, P211 = 0.5, P231 = 0.2, P241 = 0.3;P321 = 1.0;P421 = 1.0;µ01 = 0.2s−1,
µ11 = µnet(k), µ21 = µCPU = 32.2s−1,µ31 = 29.6s−1,µ41 = 15.5s−1; P012 = 1.0;P102 = 0.5, P122 =
0.5, P212 = 0.15, P222 = 0.2, P232 = 0.4, P242 = 0.25;P322 = 1.0;P422 = 1.0;µ02 = 0.15s−1, µ12 =
µnet(k), µ22 = µCPU = 25.4s−1, µ32 = 29.6s−1 andµ42 = 15.5s−1. The number of workstations in
class 2 isk2 = 20. The number of workstations in class 1 (denotedk1) is varying.

The throughputλ0 = λ01 + λ02 as a function of the number of workstationsk = k1 + k2 is shown in
Fig. 3.

Example 6.8. Consider an open M/G/1 queuing system with preemptive resume priority. The system
has two classes of customers. Arrival rates for classes 1 and 2 areΛ1 = 0.08,Λ2 = 0.08. Service rates
for classes 1 and 2 areµ1 = µ2 = 0.25. The standard deviation of service times for classes 1 and 2 is
σ1 = σ2 = 1.

UsingAlgorithm 4.2, we compare the priority approximation results in the closed model with exact
results for the open model.

The associated closed tandem queuing network has two service centers and two classes of customers.
Arrival rates are calculated usingλ01 = Λ1/n1 andλ02 = Λ2/n2. Service rates at center 1 areµ11 = µ1

andµ12 = µ2.
The mean response time in the network with preemptive resume priority discipline for closed and open

models is presented inTable 7.
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Table 7
Mean response time in the network with preemptive resume priority discipline for closed and open models

Mean response time n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 n1 n2 Open model

2 2 10 10 20 20 40 40 50 50 60 60 80 80

T1 4.66 5.53 5.69 5.78 5.80 5.82 5.83 5.88
T2 7.35 9.77 10.34 10.69 10.77 10.82 10.89 16.40

Table 8
Mean response times for the preemptive resume priority discipline compared with exact solution and open queueing network
model

Model n2 5 10

n1 T1 T2 Λ1 Λ2 T1 T2 Λ1 Λ2

Approximation 5 0.054 0.169 1.956 4.250 0.054 0.330 1.956 7.450
Exact 5 0.056 0.176 1.956 4.250 0.056 0.342 1.956 7.450
Open model 0.055 0.221 1.956 4.250 0.055 0.670 1.956 7.450

Approximation 10 0.060 0.196 3.904 4.110 0.060 0.406 3.904 6.960
Exact 10 0.060 0.216 3.904 4.110 0.060 0.440 3.904 6.960
Open model 0.062 0.285 3.904 4.110 0.060 1.130 3.904 6.960

Example 6.9.We compare the approximate solution given byAlgorithm 4.2with the exact result, and
with the associated open M/G/1 model with preemptive resume discipline. There are two customers
classes and two service centers, modelled as IS and PR centers, respectively. The arrival rates for closed
model are given byλ01 = Λ1/n1, λ02 = Λ01/n2. The service rates areµ11 = 20 andµ12 = 10. The exact
results were taking from[14, p. 106].

Table 8gives mean response time for the preemptive resume priority discipline in comparison with exact
solution and open queueing network model. A comparison of the results inTables 7 and 8demonstrate
the benefits of usingAlgorithm 4.2 to run priority approximation, rather than ignoring the customer’s
population.

7. Comparison of optimization methods

Numerical examples were run to evaluate the performance of a variety of computer network models to
assess the accuracy of the approximations, and to compare the convergence speed of the various nonlinear
approximation techniques.

Below we estimate the execution time for priority approximation models using different numerical
algorithms.Table 9gives the relative CPU time of the numerical solution for the priority approxima-
tion models using different numerical algorithms: an iterative algorithm, quasi-Newton minimization,
conjugate gradient minimization and Powell’s method. The last of these is one of the best minimization
procedures that does not resort to derivatives. The penalty function approach is used to transform a con-
strained nonlinear programming problem into an unconstrained problem by adding one or more functions
of the constraints to the objective function.
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Table 9
Relative CPU time of the numerical solution for priority approximation models

# Model Iterative
algorithm

Quasi-Newton Conjugate
gradient

Powell’s
method

1. Example 6.3 1 1 1 2
M = 2 (i = 1,2), R = 2, N1 = 10, N2 = 10

2. Example 6.4 0.4 0.3 0.6 0.6
M = 2 (i = 1,2), R = 2, N1 = 4, N2 = 4

3. Example 6.6 3 3 3 6
M = 3 (i = 0,1,2,3), R = 2, N1 = 20, N2 = 15

4. Example 6.7 21 21 21 30
M = 4 (i = 0,1,2,3,4), R = 2, N1 = 30, N2 = 30

5. Example 6.7 69 81 117 255
M = 4 (i = 0,1,2,3,4), R = 3, N1 = 5, N2 = 10,
N3 = 25

6. Example 6.7 33 39 75 171
M = 4 (i = 0,1,2,3,4), R = 4, N1 = 5, N2 = 5,
N3 = 5, N4 = 5

7. Example 6.7 24 27 50 156
M = 4 (i = 0,1,2,3,4), R = 6, N1 = 2, N2 = 2,
N3 = 2, N4 = 2, N5 = 2, N6 = 2

All times are relative to the time to run model 1. All the test problems shown inTable 9used the
objective function(4.2) that was minimized with respect to the initial vector ¯c = (c1, . . . , cm), starting
from the vector ¯c(0) = (c(0)

1 , . . . , c
(0)
m ). All algorithms terminated when the objective functionF (c̄) fell

below 10−13.
The test results presented so far can give only a fragmentary picture of the relative effectiveness of

the algorithms, because each study used a different unidimensional search method, different termination
criteria and different methods of counting function evaluations.Table 9demonstrates that numerical
optimization methods using derivatives can yield a significant improvement for convergence speed. We
observe that the quasi-Newton method and the iterative algorithm are generally superior at minimizing
theF (c̄) function. The conjugate gradient method appears to be nearly as satisfactory as the quasi-Newton
method.

As expected, the search algorithms were slower than the algorithms that used derivatives, but what is
notable is the high ranking of Powell’s algorithm.

The quasi-Newton method works well if the starting vector is selected close enough to the minimum.
We can use product form solution or perform several iterations to find a starting vector. Calculation by
quasi-Newton and conjugate gradient methods are much more intensive than using an iterative algorithm,
because at each iteration it is necessary to find the matrix of partial derivatives and to solve the system
of linear equations. One solution to this computational problem is to calculate the matrix of partial
derivatives only on the initial iteration, and use the results for all others iterations. But convergence in
this case became linear, and the matrix of partial derivatives can be quite different from that at the final
iteration.

Calculation(4.12)needs to be done using the mean queue lengthLiv(n̄− 1r) in closed network with one
fewer classr customer. So as to avoid additional computing, one can employ the Bard[3] and Schweitzer
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[24] approximation, which was proposed to approximate the mean value analysis algorithm:

Liv(n̄− 1r) = (n̄− 1r)v
nv

Liv(n̄), (7.1)

where

(n̄− 1r)v =
{
nv, v �= r
nv − 1, v = r (7.2)

Other simplifications have been proposed; see for example[5].

8. Conclusions

The performance evaluation algorithms presented in this paper use a nonlinear programming approach
to obtain approximate solutions in queueing network models. A number of algorithms are proposed
for determine the numerical results for priority approximation and other models. We introduced the
minimization criteria and used a direct search procedure with efficient algorithms based on the calculation
of derivative information to perform the optimization.
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Appendix A. Convergence proof for the Algorithm 3.1

Define the ordered pairy = (y1, y2) by y1 = L0; y2 = 1/µ0. Suppose that the iteratesy(s+1) for s =
0,1,2, . . . are determined by(3.3):

L
(s+1)
0 = ϕ1(L

(s)
0 µ

(s)
0 ) (A.1)

µ
(s+1)
0 = ϕ1(L

(s+1)
0 , µ

(s)
0 ) = L

(s+1)
0

U0(1/Λ0 − T )
(A.2)

and set{
y

(s+1)
1 = ϕ1(y

(s)
1 , y

(s)
2 );

y
(s+1)
2 = ϕ2(y(s+1)

1 , y
(s)
2 ).

(A.3)

For s = 0 we obtain

y
(1)
1 = ϕ1

(
N,

1

Λ0

)
, (A.4)

y
(1)
2 = ϕ2

(
U0,

1

Λ0

)
. (A.5)
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Then the iteratesy(1)
1 andy(1)

2 , obtained on the first step, are less then the previous values:

y
(1)
1 < y

(0)
1 = N; (A.6)

y
(1)
2 < y

(0)
2 = 1

Λ0
. (A.7)

SupposeµB0(k) (k = 1, . . . , N) is the throughput as a function of customers populationk, determined
when service center 0 is shorted. The statement(A.6) is obvious. By Norton’s theorem for service
center 0, there exists an equivalent reduced two-service center network consisting of center 0 and its
“complementary center”B0. The service rate at centerB0 is equal to the throughputµB0(k), k = 1, . . . , N
when center 0 is shorted and therefore,µB0(k) > 0, k = 1, . . . , N.

The statement(A.7) is obtained from(A.2):

y
(1)
2 = 1/Λ0 − T

L
(1)
0 /U0

≤ 1

Λ0
− T < 1

Λ0
(A.8)

becauseL(1)
0 ≤ U0 andT > 0.

When we use the iterative formula(3.5)µ0 = NΛ0/L0 and sinceU0 < N

y
(1)
2 <

U0

NΛ0
<

1

Λ0
. (A.9)

From(2.3) [31]and

xiµi = αix0µ0 (A.10)

we get

∂L
(s+1)
0

∂L
(s)
0

=
∂
[
N −∑M

i=1L
(s+1)
i

]
∂L

(s)
0

= −
M∑
i=1

∂L
(s+1)
i

∂L
(s)
0

= −
M∑
i=1

(
∂L

(s+1)
i

∂xi

∂xi

∂αi

∂αi

∂L
(s)
0

)

= −
M∑
i=1

1

xi
Di
xi

αi

∂αi

∂L0
= −

M∑
i=1

Di

αi

∂αi

∂L0
. (A.11)

Therefore if,∂αi/∂L0 < 0; i = 1, . . . ,M, we see that

∂ϕ1(y1, y2)

∂y1
> 0. (A.12)

From(2.2) [31]

∂Li(N)

∂µi
= −Di(N)

µi
(A.13)

it follows that

∂ϕ1(y1, y2)

∂y2
= ∂ϕ1(y1, y2)

∂µ0

∂µ0

∂y2
= − 1

µ0
D0

(
− 1

y2
2

)
= µ0D0 = D0

y2
. (A.14)
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Therefore,

∂ϕ1(y1, y2)

∂y2
> 0. (A.15)

Differentiatingϕ2(y1, y2) with respect toy1,

∂ϕ2(y1, y2)

∂y1
= ∂(1/µ(s+1)

0 )

∂L
(s)
0

= − 1

(µ(s+1)
0 )2

∂µ
(s+1)
0

∂L
(s)
0

. (A.16)

It is easy to prove that

∂µ
(s+1)
0

∂L
(s)
0

< 0, (A.17)

and from(A.16)

∂ϕ2(y1, y2)

∂y1
> 0. (A.18)

Differentiatingϕ2(y1, y2) with respect toy2,

∂ϕ2(y1, y2)

∂y2
= ∂(1/µ(s+1)

0 )

∂µ
(s)
0

= − 1

(µ(s+1)
0 )2

∂µ
(s+1)
0

∂y2
= − 1

(µ(s+1)
0 )2

∂µ
(s+1)
0

∂µ
(s)
0

∂µ
(s)
0

∂y
(s)
2

= − 1

(µ(s+1)
0 )2

(
− 1

(y(s)
2 )2

)
∂µ

(s+1)
0

∂µ
(s)
0

=
(
µ

(s)
0

µ
(s+1)
0

)2
∂µ

(s+1)
0

∂µ
(s)
0

. (A.19)

Using(2.6)

∂µ
(s+1)
0

∂µ
(s)
0

= −NΛ0

U2
0

∂U0

∂µ
(s)
0

= −NΛ0

U2
0

{
− 1

µ
(s)
0

U0[1 + L(s+1)
0 (N − 1) − L(s+1)

0 (N)]

}

= µ
(s+1)
0

µ
(s)
0

[1 + L(s+1)
0 (N − 1) − L(s+1)

0 (N)]. (A.20)

It is easy to see that

[1 + L(s+1)
0 (N − 1) − L(s+1)

0 (N)] > 0; i = 1, . . . ,M, (A.21)

so we get from(A.20) that

∂µ
(s+1)
0

∂µ
(s)
0

> 0,and (A.22)

∂ϕ2(y1, y2)

∂y2
> 0. (A.23)

As a consequence of(A.12), (A.15),(A.18), and (A.23), all the partial derivatives of the vectory(y1 =
ϕ1(y1, y2), y2 = ϕ2(y1, y2)) are positive.



Z.L. Krougly, D.A. Stanford / Performance Evaluation 61 (2005) 41–64 63

But according to(A.6) and (A.7), y(1) < y(0), so the sequence{y(s)} is monotonically decreasing:

y(s+1) < y(s); s = 0,1,2, . . . . (A.24)

The vectory is continuous and limited, so as a consequence{y(s)} converges to the optimum point ¯y ,
whereȳ1 = ϕ1(ȳ1, ȳ2) andȳ2 = ϕ2(ȳ1, ȳ2).
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