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Abstract. Some properties and statistical analysis of periodic Non-
stationary Poisson Processes (NPP) via an almost-lack-of-memory
(ALM) distributions are presented. Problems of parameters esti-
mation and testing ALM distributions versus other distributions
are considered. A procedure for calculating critical level and power
of likelihood ratio test, based on Monte-Carlo simulation method

is shown.

1 Introduction

It is well known that the traffic through a network depends on the time. There
are intervals of higher activity alternating with others of low activity, which
could be days, weeks, or seasons. There is a natural reason for such phenomena,
due to the environment where a network and its users are surrounded. Many
authors have noticed some periodicity in the intensities of emergency calls, phone
calls, service needs, accidents, other casualty activities, etc.

The times {7} when a need occurs form the points of a point process [12].

The expected number A(t) of points occurred on an interval [0, t) is called hazard
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rate of the point process. Its derivative (supposed to exist) A(t) = A'(t) is called
intensity, or rate of the process.

When the inter arrival times (i.a.t.) X,, = T,41 — T,, between two con-
secutive points are independent identically distributed (i.i.d.) random variables
(r.v.’s), the process is called renewal process, and these r.v.’s, vice versa, generate
appropriate process in the following way

N{t)y=max{n:T, <t} with T, = Z X,. (1)
1<i<n

Usually, most of results in Queueing Theory and Queueing Networks are
obtained under this assumption. Since it is fulfilled

Al _ 1
Jim BN, and - lim A(t) = E[X,]

most of respective results are converged to the stationary regime, i.e. some
characteristics ”beyond the horizon”, in infinite time.

For the traffic in finite time there are not many of analytical results. Here we
focus on non-stationarity, namely, on periodic non-stationarity. There are cases
where the process intensity function is a periodic function. There exists number
¢ > 0 such that \(¢) satisfies the equation

At +¢) = A(t) for any t > 0. (2)

This number ¢ is called period (or cycle) of the process. We use some more
general and rarely noticed results from probability theory in order to introduce
the concept of an underlying r.v. X, generating a NPP, and vice versa. This
relationship is then used to characterize a periodic NPP via the underlying r.v.
X with ALM properties, and some statistical estimations of parameters on the

ALM distributions based on observations of the associated process are discussed.

2 A characterization of a NPP

Let {N(t), t <0} be a NPP with the leading function (for definition see [11])

A(t) = / Au)du, (3)

0

which represents the expected number of points on [0, t). It is assumed that

A(t) < oc for any t < oo and A(t) -» o for t — oc. (4)
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Special case of this process is the Stationary Poisson Process (SPP) with A(t) =
At.
Notice that the i.a.t.’s for the NPP are not independent in general. For

example, their joint multi-dimensional p.d.f. is

fxixo x (2. Tp) =
= Mz)Axy +22) - MA@y 4+ 22 + - - F a0, )e " M EITFE),

It can not be represented in product form except the case of SPP, when A(t) =
At, aud A(t) = A. This means that the points of NPP can not be represented as
sum of i.i.d. r.v. Nevertheless, there exists some r.v. X, generated by any NPP
and procedure, such that the process is uniquely specified by a sequence of i.i.d.
r.v., same as X. To introduce such a procedure and the appropriate r.v., we
need the notion of records.

Definition 1. Let {X,,, n=1.2....} be a sequence of i.i.d. r.v. The sequence

of rv. {Th. n=1,2,...}, where
=X, T,=X,, with v,=min{k:X,>T,_;for k>uv,_1}. (5)

is called the sequence of records of {X,}. D
Assume, that A(t) > 0 is known, and A(t) is defined by (3) and has the

properties (3). Introduce the function

Ft)=1—exp{-A(t)} =1 — exp{- /Ot Alu)du}, t>0. (6)

The function F'(t) possesses the properties of a cumulative distribution function
(c.d.f.) defined as F(t) = 0 for ¢ < 0. Therefore, there exists a r.v. X with c.d.f
F(t) =P{X < t}, which we call associated with the NPP N(t).

Reversely: Let X be a continuous r.v. representing the time to arrival of a
call in the system, with a ¢.d.f. F(¢), and p.d.f. f(t). Consider the sequence of
iid. rv. {X1, X,, ...} with c.d.f. F(t). Define the records T, of {X,,} as points

of process, and N (t) similar to (1)

N(t) = max{n: T, <t}, (7
with T, defined by (5), instead of given there. The following theorem (see Feller
[9], Karlin and Taylor [10]) shows that this procedure leads to NPP with leading
function A(¢) and intensity function A(t), given by

A= -~ F@), and A0 =+ U0

T POy (8)
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Theorem 1. The points of any NPP with leading function A(t) are records of
the sequence of i.i.d. r.v. with c.d.f. F(x) defined by (6). Inversely. any sequence
of 1.4.d. r.v. with common c.d.f. F(x) generates by (7) a NPP N(t) with leading
and intensity functions (8). whose points are the records of {X,}. given by (5).

Notice that this theorem provides some new interpretation of the nature of

input processes in queueing networks.

3 Periodic NPP’s and the ALM distributions

In this section we show how periodic NPP’s is connected with recently intro-
duced ALM distributed r.v. (see [1,2,6,7]). We start with the general concept
of LM property for r.v. The proofs of the following properties could be found in

referred papers.

Definition 2. A non-negative r.v. X non-degenerating at zero with 0 < P{X >
¢} < 1 is said to have the LM property at the point ¢ > 0 if and only if the
equality

P{X>ct+z|X>c)=P{X >z} (9)

holds for any « > 0. We call ¢ point of regeneration (r.p.) for the r.v. X and for
its distribution. O

Notice that if this property holds for all points ¢ it implies that X has either
the exponential distribution (if X is continuous) or the geometric distribution
(if X is discrete). However, if X has the LM-property at a point ¢ it also has
the LM-property at any point from the sequence {¢,, = mc}2_,. It holds

Theorem 2. Let the distribution of a r.v. X has two 7.p. o and b. Then

(1) if a and b are commensurable, then there exists a number ¢ such that
X has LM property with respect to the sequence of r.p. ¢, = mc, to which the
numbers a and b belong;

(#1) if a and b are incommensurable, then the r.v X has exponential distri-

bution.

These properties hint to give another definition

Definition 3.
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A non - negative r.v. X has the ALM property if there exists an infinite

sequence of distinet constants {¢,, = mec}7_, such that the equality
PXZcn+r| XZenm)=PX >1) (10)

holds for any ¢,, and any x > 0.
The following theorem ([5]) gives a characterization of the class of ALM

distributions with [x] is the largest integer less then z.

Theorem 3. A r.v. X has the ALM property over the sequence {c,, = me}i_,
if and only if

(i) in continuous case its p.d.f. fx(x). x > 0 has the form
fx(@) = (1= a)a* fy (= [z/c]e). (11)

where a = P{X > c}, and fy(.) is the p.d.f. of a continuous r.v. Y with support
[0.¢):

(1) in discrete case its p.m.f. px(x) has the form
px(z) = (1 —a)a < py(z — [x/cJe) (12)

where a« = P{X >} and py(.) is the p.m.f. of a discrete r.v. Y with support
{0.1.....c—1};

(#i) moreover in any case it can be represented as
X=2Z.+cK (13)

where Z. and K are independent r.v.’s, Z. is concentrated on [0,c) and K has
a geometric distribution with parameter a and p.m.f. pg(k) = (1 — a)a*, k =
0.1,....

The next theorem shows the connection between NPP and family of ALM

distributions.

Theorem 4. The r.v. X associated with any periodic NPP possesses the ALM
property, and, on reverse, any NPP is generated by some ALM distributed r.v.
X in the sense of the Theorem 1.

Consider now some statistical properties of ALM distributions.
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4 Parameter Estimation

For parameter estimation one can use both maximum likelihood (ML) Method
and/or the method of moments and will get the same results. Let us show how

nioment’s method works in the case, observation on X available.

It is well known that for any sample X,...., X, the sample mean
- 1
AX = ; Z )(1'
1<:i<n

is the best estimator for expected value. From (13) one can find that

yX:EXzEZ—%cEK:yZ—%cl =

By changing expectations with sample means, which are their estimations one

can obtained that

X-Z a . X-z X -
= -, or a= = = _~
c 1~-a C<1+,Y—Z) c+X -7
Here
= 1 . X; .
7 =— Z;. with Z, =X, - |— for me< X; <{(m+ 1)
n c
1<i<n

Analogous estimators was given in ([4]) by the ML method.

5 Likelihood Ratio Test

It is intuitively clear (and proved in [8]), that when ¢ — 0, the class of ALM
distributions should tend to the exponential. This remark shows that it is of
interest to consider the exponential class as a competing class of distributions
versus the ALM-property with any sequence ¢,,. On the other hand, the param-
eter ¢ usually may be known from practice reason. Therefore it is reasonable
to compare two ALM distributions with the same value of parameter ¢ and
different p.d.f. on the cycle.

Let X;,....X, be an independent random sample from unknown distribu-

tion with p.d.f. f(z). We are interested in testing the null hypothesis

Hy: f(z) = fo(x)
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versus the alternative

According to Neumann-Pearson theorem, the most powerful test for testing
Hy versus H; is the likelihood ratio test. For this test, due to independence of

observations, the critical region can be represented in the form

[1(1‘1 ..... .I‘n) fl(‘Ti)
lo{ry,. ... ) 1<i<n fo(xs)

The significance level of the test is
a=Py{WW} =Py {(X)....X,) € W},
and the power of the test is
1—- 3= Py {W}

In calculating the critical value ¢, for given significance level o, and power
1 — 3 of the test we use the Monte Carlo method. From numerical point of
view instead of the product in formula (14) it would have been better to use its
logarithm. For this reason we consider a natural logarithm of likelihood ratio.

For convenience we will refer to the statistic

w=1n H = Z (In f1(z;) — In fo(z;)) (15)

l<1<n 1<i<n

as to a test’s statistic.

In cases of large sized samples the statistics (15) has approximately normal
distribution. It allows us to limit ourselves in calculation of only its two moments
and then calculate appropriate significance level and power of the test with the
use of respective normal approximation.

To show how it works let us denote by U and V the r.v.’s

U =Inf(X) —Info(X). =1In f1(Y) — In fo(Y),

where X and Y are taken from distributions with densities fo(.) and f1(.) corre-
sponding to hypotheses Hy and H;. Denote by uy, py and ogr, o% their expec-

tations and variances respectively. Then, for large samples the test’s statistics
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