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1 Introduction

A number of nonlinear programming algorithms are proposed for computer net-
works analysis using queueing network models. The efficient iterative technique
is due to the use of sensitivity in closed queueing networks. We compare the ap-
proximations with exact results based on the global balance solution. To support
the modelling technique in multiclass queueing network models, we developed
the software package ZEDNET, a Windows application written in C++. The
package includes a graphical interface (input and output), a number of projects
(product form solutions, non product form solution for priority and other ap-
proximations in closed queueing networks, Markov chain routines, global bal-
ance solution), and a set of analytical algorithms implementing theorems from

queueing theory (BCMP, mean value analysis, etc.).

2 Background

In [1,3,5] derivatives have been obtained for the performance metrics as a func-
tion of the service demands and service rates. Sensitivity analysis can be used
to develop efficient algorithms, and to solve optimization problems in queueing
networks {3,5]. In [3] was illustrated the technique to substantiate numerical op-
timization methods of solution of the optimization problem in a closed queueing
network of guaranteed convergence.

Consider a closed product form queuing network with M service centers and

R customer classes. The number of class v customers (v = 1, ..., R) is equal to
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n,. The visit ratio e;, is the solution to the system of linear equations €;, =

S €0 Pt = 0, M;v = 1,.... R, where Pj;, are transition probabilities.
i=1
Using e,, we can also compute the relative utilization r;, = €, /ptin, where

1/ iy 1s the mean service time for a class v customers at service center i. Let’s
specify the input process through the interarrival time distribution with the
given arrival rates Ay, for class v customers.

The iterative procedure presented below allows for different arrival process

definitions.

Algorithm 2.1

Step 0. Initialization: Set initial values of service rates and the mean size of
the source /“((n) Aovs L(()[i) = nL, v=1,..R

Step 1. The parameters :“ov and L()‘u . (steps s = 0,1, ...) are used for calcu-
lation of transition probabilities Pi;, and service rates u, (7,7 = 0,...,M;v =
1,...,R).

Step 2. The calculation of the BCMP queuing network is performed.

Step 3. The calculation of LT = o) (L) 1l and u{ = oo (LE.

(s) ., ) is performed as a function of parameters, defined on the previous steps,

where ,u( °T1) is given by iterative formula (2.1) or (2.2)
o = LT W00 (1/ Aoy ~ T0) (21)
,uéf)ﬂ) = NyAgy/Ugp,v =1, ..., R; (2.2)

Ui, is the utilization at service center ¢ for class v customers; T, is the mean

response time for class v customers,

Uow =y (LG, u2) (23)
M (s+1) (s+1)
ivU'v Liv L L
T, =y (e = = w=1,.,R (24)
powUow” pinUsy Aow ;U'OU)UOU

L;, and Ag, are accordingly mean queue length at center i for class v customers
and throughput for class v customers.

Step 4. If L(()? and ,ugi) not converged, return to Step 1. Otherwise, stop.

If the input stream is given conventionally through g, the simpler algorithm

based on the system of the nonlinear equations: LO st - ;pl(LE)f))), =1,.., R
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Notice that the iterative formula (2.2) is superior and provides better algo-
B,u()[

rithm’s convergence because partial derivatives l)\ (2.2) are larger than
calculated by (2.1).

The partial derivatives for multiclass closed networks are given by the fol-

“()1‘

lowing [1}:
0G) _ Gy (2.5)

al‘iv Iy

oA (1) = A (1) [Liw(ii—1,) — Lp(M);i=0.....,AMv,r=1,....R, (2.6)

axiv Liv

where A\, = é(ﬂ) ) is the throughput for class r customers, (n—1,) = (n1, ... n, —

1,...,ng) is the population vector with one class r customer less in the network.
In the next section, we make use of these derivatives in context with algo-
rithm 2.1 in order to develop an efficient algorithm for the approximation of

priority queueing networks for which no product-form solution exists.

3 Priority Approximation

A major development in the analysis of closed priority queueing networks is Sev-
cik’s shadow approximation for preemptive priority scheduling, described in [4].
The approximate service rate uf, of a class v customer at its dedicated shadow
center is calculated using the utilization U;, of the higher priority classes. There-
fore, the following iteration algorithm is used to find the approximate solution

for the p},,.

Algorithm 3.1
Step 0. Transform the original model into the shadow model. Initialize:
v =0,v=1,..,R—1.

Step 1. Compute the shadow service rates

v—1

b = (1= Y UR), s =01, ... (3.1)
k=1
where y;,, denotes the actual service rate of a class v in the priority center.
Step 2. Find product form solution for BCMP network with A/ + R — 1

service centers. Compute Ui(,:H), v=1,..,.R-1.
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Step 3. If Uz‘(; 1) have not converged return to Step 1. Otherwise, stop.

We incorporated a number of algorithms in the priority context. We resort an
iterative scheme based on the shadow approximation. Another possibility is to
introduce an objective function and use a direct-search procedure. Yet another
option is to solve this optimization problem with the assistance of derivative in-
formation, and this is described extensively below. Lastly, we present in problem
3.2 an approach in which the arrival process is specified in accordance with the
alternate representation introduced in section 2. That is, we specify the input
process in terms of the given arrival rates Ay, and the size of the source n, for
class v customers. This is addressed in problem 3.2 below.

Using m-dimensional vector-valued function F(¢) the nonlinear program-

ming problem for priority approximation can be formally stated as

Problem 3.1
min F(@) = Y _ f2(2) (3.2)
k=1
subject to g;(¢) > 0; 1= 1,....2m,
_ ~ _ ciit=1,....,m; _

where: c) = C) — cg; gi{c) = Y c={(c1,.-e,Cm
11(0) = ¢(@) = ek 6:(0) { 1—cii=m+1,..,2m; @ ;
is m-dimensional solution vector; m = R — 1; px(¢) = Ui(,:ﬂ) is the utilization

at the shadow center £,k =1,....m.

First assume that closed queueing network has two classes of customers, class

1 has preemptive priority over class 2 in the priority center i. Because

9z}, _ A(esa/ ki) _ _ €i2 _ _1’_22 (3.3)
Opin Optin (132)? Hio
using (2.6) we get
an(iH_l) - _1_8/\7,1 _ La/\ll 81‘;2 _ La(eﬂ/\m/em) 81‘22
Opia  maOpip  pa Orip Oy par Oriy  Opjy
1 e A 1‘,’.
= —iﬁ[Lm(m —1,n2) — Lia(ny, n2)j(— =2
Hi1 €01 Ty Hio
(s+1)
- Zl/ [Lig(m. TLQ) — Lig(’nl t 1, TLQ)] (34)

12
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And because

Oy Ol — UL !
#(12) — [# 2( . il )] = — o Hio ) (35)
Uy U 1-U

the iteration function derivatives are

(‘90’.(‘““) aU_(Sle) 9’ U,($+1)

4= . uf = ———[Lip(n — L.na) — Lia(ni.n2)} (3.6)
o (15) O"p o aLr( ) 1~ U( )

1 B 71 71

The derivative for objective function (3.2) is

U(»"’+1)
—Zl—f[Lig(nl — 1,’{7,2) — Lig(nl,ngﬂ — 1} (37)

Assume that the customers belong to set of R different priority classes. Using
(2.6) and (3.1)

(9}1“ 7is
aLT(S) = #17 1 - Z LT(S)> /(9(/( = —Hir

and the iteration function derivatives are

8Uz(j+1) B 3Ui(5+1) 8p;(v+1) UZ_(5+1) . B #2(v+1)
) T ol o~ [Liw1) ()= Liws1) (R=1o)][- ——F———
vy, Fitor1) OU Hi(o+1) (1- X U

= [0S =S U Ligea1y (T = 1) = Ly @v =1,.., R— 1. (3.9)
k=1

For v > r we get the same solution as for v = r:

oUSTY aulty Ol
Ul Oy oUly

U7,($+1) B B v X
= [Li(v+1)(n) - Li(v+1)(n - 11/‘)][—#;(v+1)/(1 - Z Ui(k)”
/‘i(v+1) k=1

= U /0 =S U Litws1) @ = 1) = Ligorny(@sv > 7 (3.10)
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and
8['-(S+l)

v

=0v<r (3.11)
o
ou,;

Using (3.9) - (3.11) the partial derivatives for objective function (3.2) are

aF<E) _ Q(LT_(S) _ U_(s—f—l))
BC/T(S) A w
R-1 k
+2 ) AR = URETOUR 0= Y U L (7= L)
k=v (=1

At this point, we turn our attention to the alternate specification for the
arrival process, in terms of the interarrival-time parameters. The following m-

dimensional vector-valued function is used to find the numerical solution.

Problem 3.2

min F(2) = > f£(e) (3.13)
k=1

subject to g;(¢) > 0; i = 1.....m+ R, where: f;(¢) = px(€) —ck; = (c1,....,Cm)
is m-dimensional solution vector; m = 2R — 1; v (¢) = UZ.(EH) is the utilization
at shadow priority center k,k = 1,...., R — 1; or—14+&(C) = pox is service rates
in the source for priority class k,k = 1,...,R; g;(¢) are taking into account
2(R-1)4+ R = (m+ R—1) constrains: ¢; > 0,i = 1,..,. R~ 1;¢; < 1,1 =
R,..2(R-1)¢,>0,i=2R~1,....m+R—1.

Service rates in the source are determined by (2.1) or (2.2).
The following algorithm is used to find the solution for the problem 3.1.

Algorithm 3.2

Step 0. Transform the original model into the shadow model.

Step 1. Initialize: Ui(f) =0,v=1,...,R~1 and ,ug?}) = Agy; Lgi) =N, U=
1,....R.

Step 2. The parameters Uz-(j ), #gsv) and L(oi) are determined for calculation of

transition probabilities P;;, and service rates u,,(i,7 =0,...,M;v=1,..., R).
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Step 3. Compute the shadow service rates: ju;, = pg(1 — Z (’ ()

Step 4. Find product form solution for BCMP network w 1th ( AM+R-1)cen-

Dy =1, . R—1 and the estunated solution ;1(()1“) L(ffl).
(S)

oe and g, () have not converged, return

ters. Compute U(
Step 5. Con\ergence test: If Ln ,
to Step 2. Otherwise, stop.

The nonlinear programming technique to find the numerical solution is pro-

vided as follows. We can form a new unconstrained objective function F(¢) =
m

f(e)+ H(c) by adding H(¢) as a penalty function H(¢ Z 8:97(¢), where 4;

and §; are zero if the constraints are satisfied, and unity otherV\ ise. Thus the
penalty function vanished inside the feasible region.
Using the penalty function, the initial problem can be replaced with an

equivalent unconstrained minimization problem:
D(ey) = F(e) + vH(). (3.14)

where the weight coefficients ~ are positive and establish a monotonically de-
creasing sequence (!) such, so v({) > v({+ 1),/ =0,1,2, and llim ~0 =0,
— X

4 Global Balance Solution for Priority Models

Consider the closed tandem queueing network with two classes of customers.
Customer population of each class: Ny = 4, N, = 4. The service discipline at
the server 1 is FCFS. First class have preemptive priority over second class in
the server 2. The service times at each server are exponentially distributed with
rates p; (1 = 1,2;1 = 1,2). The server rates are p1; = 1; g2 = 3; po1 = 1/3;
p22 = 1. The notation (n1, k1;ns, k2) says that there are: ny and k; of the first
class customers at the server 1 and the server 2 accordingly, n; + k; = Ny,
ny + ko = N2, and w(ny, ky;n9e, ko) denotes the probability for that state in
equilibrium. First denote Ay = uy1; Az = pio; g1 = fio1; po = Moo,

The state transition diagram is shown in Fig. 4.1.

We set the overall flux into a state equal to the overall flux out of the state for
each state. Let m = (my, ..., mo5) represents the steady state probability vector
= ((0,4;0,4), (0,4:1,3), (0,4;2,2), (0,4;3,1), (0,4;4,0),(1,3;0,4), (1,3;1,3), (1,3;2,2),
(1,3;3,1), (1,3:4,0),(2,2;0,4), (2,2;1,3), (2,2;2,2), (2,2;3,1), (2,2;4,0),3,1;0,4), (3,1;1,3),
(3,1;2,2), (3,1;3,1), (3,1;4,0),(4,0;0,4), (4,0;1,3), (4,0;2,2), (4,0;3,1), (4,0;4,0)).
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Fig. 4.1. State transition diagram for preemptive priority model

Vector 7 can be obtained from the system of equations 7P = =, where P is
the transition probability matrix, defined from the global balance equations:
(1) p(0,4;0,4)((1/2)A1 + (1/2)A2) = p(0,4:1.3)u2 + p(1,3; 0,411y
(2) p(0,4;1,3)((4/T)A1 + (3/T)Az + p2) = p(0.4;0,4)(1/2) A2 + p(0,4; 2, 2) 2 +
p(1,3;1,3)ma

Rewrite this system of equations in the form 7@ = 0, where Q = P — I. By
solving 7@ = 0 under normalization condition > 7; = 1, vector 7 is given by:
0.000101615 0.000263157 0.000752408 0.0021]666598 0.00613636
4.16882e-005 0.000147798 0.000504313 0.00177914 0.0232453
1.43303e-005 6.86008e-005 0.000290738 0.00131063 0.0732378
3.72216e-006 2.40454e-005 0.000131708 0.000803349 0.221905

5.58324e-007 4.92725e-006 3.66224e-005 0.000328723 0.666701
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The marginal probabilities 7;(0) that the server i is idle, i = 1. 2:
m(0) = 7(0.4;0,4)+ 7(0.4: 1.3)+ 7(0,4;2.2) + 7(0. 43. 1) + «(0. ,4,0) = 1 —
0.000101615+0.0002631574 0.000752408+0.00216698+0.00613636 = 0.009421;
m2(0) = 1—(7(0,4;1,3)+m(0,4: 2, 2)+7(0,4; 3,1)+7(0,4;4,0)) = 1-0.000263157+
0.000752408 + 0.00216698 + 0.00613636 = 0.0093189;

The utilization at server 1 and 2:
Uy =1-m(0)=1-0.009421 = 0.990579;
Us=1-m(0) =1-—0.990688 = 0.0093189.

The throughput at server 1 and 2:
A= Uy = (1/3) - 0.990579 = 0.330193;
Az = ppUz = (1/3) - 0.0093189 = 0.003106.

5 Numerical Examples

Example 5.1. Consider the closed tandem queuing network with two service
centers and two classes of customers. There are four customers in each class.
Center 1 operates under a preemptive priority discipline. The service time of
customers at each center are exponentially distributed with service rates y;, =
1/s8p(v=1,..,R);j=1.2.

The results are presented in Table 5.1. We compare the throughput for prior-
ity approximation models with exact results and product form solutions. Exact
results were computed for every class using the global balance solution tech-
nique, presented in section 4. We observe that while the throughput rates for
the high priority class are quite accurate (errors ranging from 1% to 5%), the
low priority can be off as much as 30 %.

Example 5.2. A client server system (Fig 5.1) includes k client workstations
(center 0) that are connected by Ethernet (CSMA /CD) network (center 1) to
a database server. The database server consists of a CPU (center 2) and two
disk devices (centers 3 and 4). The client workstations are modelled as infinite
center (IS) and submit SQL requests to a database server.

The Ethernet network can be modelled as a load dependent (LD) center [2,4]
to represent the effect of network contention. The rate at which the Ethernet
delivers packets, given k stations that desire to use the channel, is: m,(k) =
1/(L,/B+ 8% C(k)),where C(k) = (1 — A(k))/A(k) denotes the mean number
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Table 5.1. Comparison the throughput for priority approximation model with

exact result and product form solution

Throughput
Model # | Class | s1, | Sou mvpproximation J Exact T Product form
Model 1 1 3 0.206625 | 0.215642 0.148148
2 3 0.111717 | 0.080654 0.148148
Model 2 1 3 1 0.330551 { 0.330193 0.166650 |
2 3 1 0.002782 | 0.003106 r 0.166650
Model 3 ll 51 2. 0.193190 | 0.191647 0.099804
2l 5125 0.006810 | 0.007962 0.099804 f

Clint W orkstations Database Server

e L
e N etw ork

CPU

ndnOsy
Disk

[H9—

D isk

Figure 5.1.Client server queueing network model

Fy.52: Thwoughput as a
function of the number of
works@ations. 0

1 -preem ptive prority model;
2 - product form model.
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of collision per request, and where A(k) = (1 — 1/k)*~! is the probability of a
sticcessful transmission.

The other parameters are specified as follows: mean length in bytes per
SQL request Lsor=1000 bytes; network bandwidth B= 10 Mbits sec™ 1 slot
duration =51.2 pusec; mean packet length L, = 1518 bits; maximum length
of the data field of a packet L;=1492 bits; mean number of packets per SQL
request Nsor = 1+ [Lsqr/La]=7 packets.

Given k active clients and one database server in the system, there are &+ 1
workstations in the network. But, as the workstation transmits only on request,
there are no collisions if there is only one client active. Thus, considering the
number of sent packets per SQL request, the service rate of the network, mea-
up(1)/Negr. k=1
pup(k+1)/Nsor. k > 1.

The client server model is evaluated using product form model and prior-

sured in SQL requests per second, is: finet (k) = {

ity model. For the last model, the first class has preemptive resume priority
over second class at CPU (center 2). The transition probabilities and service
rates for class 1 and class 2 are as follows: Fy11 = 1.0;Pig1 = 0.5, P9 =
0.5. P51 = 0.5, Py = 0.2,Ppy; = 0.3;Pyo; = 1.0;Pio; = 1.0;01 = 0.2
sec™ p11 = pnet(k) o1 = pcopy = 32.2 sec™l uz1 = 29.6 sec™!, ugy = 15.5
sec Vi Pyio = 1.0;Pig2 = 0.5, Pios = 0.5, P12 = 0.15, Pagy = 0.2, Pagg =
0.4, Pogp = 0.25; Pyoy = 1.0; Pygp = 1.0; 192 = 0.15 sec™ !, p1g = pnes(k), ptoz =

L izs = 29.6 sec™! and pye = 15.5 sec™!. The number of

Ucpy = 25.4 sec”
workstations in class 2 is k2 = 20. The number of workstations in class 1 (de-
noted k;) is varying.

The throughput Ag = Ap1 + Ag2 as a function of the number of workstation
k = ki + ko are shown on the Fig. 5.2.

Numerical examples were run to evaluate the performance of a variety of
classical computer science applications to address the accuracy of the approxi-
mations, and to compare the convergence speed of the various nonlinear approx-
imation techniques. We estimated the execution time for priority approximation
models. Analysis demonstrates that optimization methods using derivatives can
give significant improvement for convergence speed. We observe that the quasi-
Newton method and the iterative algorithm were generally superior at mini-
mizing the F(¢) function. Conjugate gradient method appears to be nearly as

satisfactory as the quasi-Newton method. As expected, the search algorithms
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were slower than the algorithms that used derivatives, but what is interesting

is the high ranking of Powell’s algorithm.
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