COMPUTATIONAL ALGORITHMS OF OPTIMIZATION OF CLOSED QUEUING NETWORKS
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An iteration method is proposed for optimizing closed queuing networks (QUN)
that have the property of local balance. By studying the average delay time
and the cost of a network as functions of the service rate, it is proved that
the functional to be optimized is strongly convex. Iteration algorithms of
optimization of closed QUN are studied, as well as the selection of initial
points, and how to ensure the highest possible convergence rate.

1. INTRODUCTION

Optimization methods based on models of closed queuing networks (QUN) constitute an
efficient tool for solving diverse problems of designing computational systems and networks
[1-4]. In developing these methods, and especially in elaborating the corresponding facili-
ties of automatic designing, an important task is to improve the computational algorithms
of optimization and to estimate their convergence. This is due to the existing dispropor-
tionation between the computational means required for anmalysis and for design, respective-
1y, as a result of which certain algorithms of optimization of closed QUN cannot be realized
in practice.

In [1-4], the designing of closed QUN is based on the use of the method of undetermined
Lagrange multipliers. Thus, for optimizing the productivity of a closed QUN, a nonlinear
system of partial differential equations has been obtained in [2] that depends on the normali-
zing constant of the closed network, whereas in [1, 3, 4] the results of a study of the
productivity, load, and average queue length as a function of the service rates are used
for reducing the problem of optimization of a closed QUN to a system of nonlinear equations
that do not contain partial derivatives. The system of nonlinear equations is solved with
the aid of an algorithm of multidimensional minimization of the generalized Lagrange func-
tion. However, the insufficient convergence of such a universal algorithm constructed with-
out taking into account the specific character of the functional to be optimized, and the
large number of iterations in a search for a solution, make it inadequate for designing
a QUN of large dimension and also in certain particular cases of optimization of closed
networks.

By transforming the original problem of optimization of a closed QUN with constraints
in the form of inequalities to a problem of search for an unconstrained extremum, we prove
in this paper the strong convexity of the functional to be optimized, so that it is possible
to use numerical optimization methods [5]. We propose an iteration method of optimization
of closed QUN that makes it possible to increase the convergence rate as compared to conven-
tional methods [1-4]. We also prove the convergence of our algorithm.

2. FORMULATION OF OPTIMIZATION PROBLEM

We shall study methods of solution of optimization problems for separable or locally
balanced networks (LBN) [6]. By solving the optimization problem, we select an optimal
network configuration that can be uniquely determined by the vector x = (x4, ..., XM) of
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relative utilization factors or by the vector p= (Uyy oees UM) of rates of service at
the nodes of the network.

Suppose that a closed LBN contains M + 1 nodes and N calls., The service rate at the
i-th node in the presence of n calls is equal to

\ pa for NIy,
wiln) = - Ce— e
peri for  nEr, i=0M. n=0,N,

where rij is the number of servers at the i-th node. The circulation of calls in a network

M

can be characterized by the transition probability matrix P = IPjxl, i‘k=oﬁw(§q: 2115f=

g

1, 0 s Pjx s 1). The vector e= (eq, ..., ey) of relative rates of the flow of calls can
be defined to within a multiplicative constant as a solution of the system

e=eP, (1)
The productivity at the i-th node of a network is defined by the formula

7‘.,,'(.‘() =‘=(’.'GN——| (X)/G-\'(x).‘
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where Gy(x) is the normalizing constant of a closed network that contains N calls.

The average delay time of calls in a network can be obtained by the formula

TN Y PREYSIWE] Pt (3

iz} Twm0

where t;(x) = Lj(N)/Ax;(x) is the average time of sojourn of calls at the i-th node of a
network, and L; (N) the average queue length (taking into account the calls which are being
served) at the i-th node.

By virtue of the relation Xj{x)/ejy = const (i = 0, M), formula (3) is transformed into
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The cost function of a network is defined as follows:

N M
F(xi= E e = E el (5)
1 L e
where cj' = ciej®l, 1 =0, M; ¢ and ci' are cost coefficients; the aj's are coefficients

of nonlinearity of the network nodes.

The problem of optimization of a closed QUN can be expressed in one of the following
formulations.

Formulation 1. Minimize the average delay time with a constraint on the network cost,

i.e.,

mini(x)=[1\’/Ze;]GN(x)/GN_‘(x) (6)



under the constraints

M

F(x)=2(‘.'x.“"-<s. 0<y<z,<X<o, i=0,M. (7)
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Formulation 2. Minimize the network cost with a constraint on the average delay time,

i.e.,
a
min F(x) = Ecix.-"“‘ (8)
under the constraints
M
t(x)=[N/2 e‘]G,Y(x)/G,“..(x)éT. O<y<<r<<X <o, i=0, M. (9)

T

The solution is sought on a set of values of the relative utilization factors x of
the network nodes that are related to the service rates u by formula (2).

3. ITERATION ALGORITHMS OF OPTIMIZATION OF CLOSED QUN

In this section we substantiate an iteration (gradient) method of solution of the prob-
lem of optimization of a closed QUN of guaranteed convergence. Compared to the algorithm
based on the use of the method of undetermined Lagrange multipliers realized in [3, 4],
the convergence rate of our iteration algorithm is higher in individual cases by more than
one order of magnitude.

Let us note that in solving network optimization problems in the formulations 1 and
2, a global minimum is reached for F(x) = s and t(x) = T, respectively. Indeed, as follows
from [3], the functional of problem 1 which has to be minimized is a monotonically increas-
ing function of the argument x. It follows from formula (A.2) of the Appendix that the
network cost function F(X) is monotonically decreasing. According to [2], these properties
of monotonicity of t(X) and F(x) make it possible to restrict the region of search for a
global extremum of problem 1 or 2 to the surfaces F(x) = s or t(x) = T instead of the half-
spaces defined by the corresponding inequality constraints.

Let us fix a so-called dependent j-th node of the network. The problem of optimiza-
tion of a closed network in formulation 1 is equivalent to the unconstrained minimization
problem

z(x’) = min, (10)
where we denoted by z(xJ) the composite function (6) of M variables
X'= {xo, cer Tty Tiggy e ey I.\f}-

The relative utilization factor xj of a dependent node can be expressed in terms of
the relative utilization factors xJ of the other nodes on the basis of the network cost
constraint (7):

2= (X') = [s,(x') | =[s;(x’) /] 1™, (11)
where Sj(xj) is the portion of the total cost of the network that belongs to the j-th node:

M

s,-(x’)=s~2c,-’zr">0,, j=1,M. (12)
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Similarly, the problem of optimization in formulation 2 is equivalent to the problem
of unconstrained minimization of the composite function



w(x’) ~min. (13)

For a dependent node the quantity xj = g(xJ) is an implicit function of the arguments
xJ expressed by the relation
w(x)=t(x)—T==0. (14)
Let us show that xj is uniquely determined by (14). By substituting (4) into (14),
we obtain

ZG (X‘)-lnr n/z,(v,. .(x).zrJ "’TE(’/N

L il

where an(xj) is the normalizing constant of a closed network that contains n calls and
which differs from the original network by the exclusion of the j-th node. Hence, Xj can
be obtained as a solution of the exponential equation )

e
T:EL&

im0 Nen 15
r,"%E G (X) -G .(x)—~—--— r =0 (15)
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By virtue of Descartes' theorem (on the number of positive roots of an exponential
equation), the uniqueness of a solution of Eq. (15) follows from the relation

G () /G () <T 3 jedN, n=T, .

Let us prove that as a result of transforming the original LBN optimization problem
in the formulation 1 or 2 to a problem of search for an unconstrained extremum, the func-
tional to be minimized in problem (10) or (13) is a strongly convex function of the arguments
xJ.

THEOREM. If the service rate at each node of a closed LBN is a nondecreasing function
of the number of calls in the queue (ui(n + 1) 2 yidn), i = 0, M, n = 0, N), then the objec-
tive functions z(xJ) and u(xJ) of the unconstrained minimization problems (10) and (13)
will be strongly convex functions of the relative utilization factors xJ of the network nodes
on a set of real positive numbers 0 < x < x§ < x < o, i =70, M.

This theorem is proved in the Appendix.
Taking into account the Appendix, it follows from the theorem that the iteration se-
quence {xpJ} defined by the recursion relation
Xmpr=Xm—agradz(x.?), m=1,2,..., (16)

converges, and it yields a solution of the optimization problem in the formulation 1, i.e.,
X = x; U xJ.
]

The initial approximation x,j = {xy;,, 1 =0, M, i # j} is selected from the cost con-
straint (7). At the step m = 1, the scaling during the computer realization of the algorithm
was carried out by selecting a multiplicative constant in (1) that satisfies the condition

D<o, <10¥, 2= 1; 107"<a <D}, x0 <1,

where

D;= /s, e=1/ max {a,}, {==1/min {a,};
—0 i=0, M M i=0, M
isi 143 i#.’
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{10™%, 10¥] being the machine order.
At the subsequent steps the scaling was realized by a conventional method [6].
Below we describe the m-th step of the algorithm.

The gradient of the function z(xyJ) and the coefficient a of the antigradient can be
obtained by the formulas

grad 2 (x,/) =4 (xn) +1 (X0 ) 2 (x0'),, =0, M, i#]; 0 =2/Ks,

where X, is determined from (A.4).

The second differential of the function z(xJ) can be calculated by the formula

82 (%) = [t () +1 (%) 28y’ () H237 (xm) 22" (xa') +
" (k) 217 () T (k)30 (Ka)) 2 (X') 1421 d,
i k=0, M; i, k],
Here xi(l)(xmj) and xik(z)(xmj) denote the gradient and the Hessian of the function
Xj =@(x'):
::‘“)HA.S;“"'“’B‘, t==6:l?l, i,

AL (1/agt4) 55 et D B s Mokt (g, +1) Bz,

tP= Ji=0,M, i#j,
A (/e )3V BB, i k=0M, ik*j, i*k;

A, = —é-c'“/"l) B==q,c,/ - (atV)
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The gradient t;(1)(xy) and the Hessian ti,(2)(x,) of the function t(x) are defined
by the formulas

. N Y T
P L S S LI N, 7}
! X M(Zm) ’ = (17)
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b = €; N dL(N)-
n m‘;:[ Y‘Y,./(::,:c,‘)+( Fra (18)
€
"“éffiétlil)llah]' i,k=&i~m, ik,
Oz,

where Y; = Lij(N) = Ly(N - 1), i = 0, M; Lj(n) and Dy(n) denote the average queue length
and the variance of the number of calls at the i-th node of a network that contains n calls.

According to [3], the partial derivatives 3L;(N)/dxy can be calculated by the formula
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where Lki(n) is the average queue length at the k-th node of a network with n calls that
differs from the original network by the exclusion of the i-th node.

For determining the constant K,, we reduce the inequality (A.4) to the form Q(xJ) < 0>
and we obtain a solution by reducing the quadratic form Q(dxJ) to canonical form.

Another method of determination of the constant K, is based on using the following
estimates for the partial derivatives [3]:

_ _D_,,(N) < oL(N) <0, i k=6,T”, i#k (20)
Iy oz
For the elements tik(z) of the Hessian of the function t(xX) we obtain from (18) the
formula

e N
max{O,T—m[Y(Yg_Du(N) ]/(I{Ih) }S (21)

€

e

5 , N —
Sty € g [V, 1\ +D,(N-1) 1/ (ziz), i, k=0M, i+*k.
A'i('tvn)

By using estimates (20) and (21) instead of the exact values of the partial derivatives
(18) and (19) in calculating d?z(xJ), it is possible to simplify the obtaining of the con-
stant K,, since it is not necessary to calculate the normalizing constant for a network
in which the node i is absent (i = 0, M). However, this causes a drop in the convergence
rate.

Yet another method of determination of the constant K, is based on the use of the in-
equality (a;ta.t...an)'<(M+1)(a4a+...Fay?). By setting e = dxj, i =0, M, £ = j, we
obtain from (A.4) the formula

Ko=(M+1)max{z’ (x), §,k=0,M, i, k*j}, (22)
where zik(z)(xmj), i, k=0, M, i, k # j, is an element of the Hessian of the function z(xJ).

At the expense of a certain decrease in the convergence rate, it is possible to deter-
mine by this method the constant K, in explicit form without resorting to numerical algo-
rithms of canonization of matrices and quadratic forms.

A condition of completion of the iteration procedure is the vanishing of gradz(xmj)
or the obtaining of the desired value of the error with respect to the functional.

Similarly, the iteration procedure
xm+l=x’"’_ﬁ grad u(xmj)r m=112v"~ (23)
determines the solution of the optimization problem in the formulation 2.

The initial approximation is selected on the basis of the average delay time constraint

(9).
Let us consider the m-th step of the algorithm.

The gradient of the functions u(xpJ) and the coefficient B of the antigradient can
be obtained by the formulas

grad 2 (x.7) =F " (x,) +FV (x,) 2 (x'),  i=0, M,
¥, p=2/K,,
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‘where K, can be determined from {A.4).

The second differential of the function u(xpl) is calculated by the formula

3% (%)) =[F5 (xn) +F 28 (x3) +FS (x0) 28" (300) +
+F ()2 () FF (xa) 28 () 28" (x,7) 1dis dz, (24)
i, k=0. M, i, k+j.

. (2 .
Here xi(l)(me) and xik%me) denote the gradient and the Hessian of the implicit
function xj = g(xJ) specified by (14):

O =t (x) [0 (xn),  i0, M, i%=j,

2 =t & &) 8 (xm), i, k=0, M, i, k%,

where t-(l), i =0, M, and tik(z), i, k = 0, M, are specified by (17) and (18); Fi(‘)(xm),
i =0, M and Fyg 25(Xm), i, k = 0, M, denote the gradient and the Hessian of the function
F(x) specified by (A.1) and (A.2), respectively.

In solving the inequality (A.4), it is possible to simplify the algorithm by using,
instead of the second differential d2u(xl), its upper bound obtained from (24), taking
into account (21).

The constant K, is expressed by the formula

K= (M+1) max{us (x.%), i, k=0, M, i, k=]},

where uik(z)(xj), i, k=0, M, i1, k # j is the Hessian of the function u(xJ).

A condition of completion of the procedure (23) is the relation grad u(xpj) = 0, or
the obtaining of the desired value of the error with respect to the functional.

For estimating the convergence rate of the iteration procedure (16) or (23), it is
possible to use Goldstein's theorem for a quasi-Newtonian algorithm [5]. The convergence
of the sequence {xpJ} to the optimum value x is superlinear, with ixpd — %I + 0 form + «
faster than any geometric progression E6M, m =1, 2, ..., -} is the norm in RM (RM denotes
an M-dimensional Euclidean space), 8 € (0, 1], and E is a unit matrix.

The iteration procedures (16) and (23) are suitable for solving problems of maximization
of the proéuctivity with a constraint on the cost of a network (formulation 3), or minimiza-
tion of the network cost with a productivity not below the assigned value (formulation 4).
The solutions are the same for the formulations 1 and 3, whereas for the formulations 2

,and 4 they differ only in the method of determination of the relative utilization factor
of a dependent network node which can be obtained from the constraint on the average delay
time, or the constraint on the network productivity [4].

4., EXAMPLE OF MINIMIZATION OF AVERAGE DELAY TIME
WITH A CONSTRAINT ON THE COST OF A COMPUTATIONAL NETWORK

The original data are: The number of computational network channels M = 7; the LBN
contains M + 1 nodes (the zero node is a "source'); the average length of a packet v; =
512 bit; the cost coefficients ki = 11.3 (bit/sec)/rubles; the coefficient of nonlinearity
at the network nodes aj = 0.67, i =1, M; the transition probability matrix for a network
with nodes i = 0, M:

0 0.217 0.41305 0.1305 0.087 0.1305 1.174 0.1305
09 0 0 0 0 0 041 0
1 0 0 0 0 0 0 0
0666 0 0 0 0 0467 0 0.167

P=|4 0 0 0 0 0 0 0 .
0.833 0 0 0467 0 0 0 0
0.875 0.125 0 0 0 0 0 0
0.833 0 0 0167 0 0 0 0
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TABLE 1
Opt imm Optimum channel capacities, bit/sec
Number of |average
N e I N T T N
b4

10 0,29 10933 6433 8638 4553 7742 | 9220 | 7745

20 047 11212 (383 8746 4413 7738 | 9344 | 7725

30 0,64 11 312 6339 8767 4364 7729 | 9382 | 77314

50 1,00 11364 6286 B756 4258 | 7699 | 9380 | 7692

The solution of Eq. (1) of balance of flows is: e, = 0.2418, e, = 0.1305, e, = 0.1844,
e, = 0.087, e; = 0.1613, e = 0,1982, e, = 0.1613. Let us take the dependent network node
as j = 0. As the initial approximation we take xj3 =1, i = 1, M. The solution will be
obtained by the iteration procedure (16). The relative utilization factor of the node j =
0 is calculated by formula (11). The network chamnel (node) capacities are expressed by
the formula wj = pjvi, 1 = 1, M.

In Table 1 we listed the results of solving the problem of minimization of the average

delay time with a constraint on the cost of a computational (or communications) network

s = 100,000 rubles. For N = 30 a solution was obtained by the gradient method after 10
iterations with an error for the functional equal to A = lxpyy —xpl = 1073, The method

of undetermined Lagrange multipliers [3] yielded an optimum with the same accuracy after
200 iterations. For N = 50 a solution with this accuracy was obtained for the first and
second methods after 25 and 600 iterations, respectively. In Fig. 1 we plotted the aver-
age delay time versus the cost for various numbers of calls in the network.

The above iteration method of optimization of closed QUN has been programmed in the
PL/1 language and incorporated in the professional technical guide manual published by Min-
pribor (Moscow Institute of Instruments) [8]. There we can also find examples of solution
of various practical problems of optimization of computational systems and networks.

APPENDIX

Proof of Theorem. The proof of the theorem is preceded by the following four lemmas.

LEMMA 1. The second differential of the function t(x) is nonnegative.

Proof. It is proved in [2] that the ratio GyN(x)/GN-,(%) is a convex function of x.
EH

The coefficient ¥ /Z‘ei of this ratio in (4) is a quantity that does not depend on «x,
iwg

since in solving an optimization problem the number of calls and the network topology are
fixed. For a convex twice-continuously differentiable function t(x) we hence obtain
d2t(x) = 0.

LEMMA 2. F(x) is a strongly convex function of the relative utilization factors x of
the network nodes.

Proof. By virtue of the expressions for the partial derivatives
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OF (%) /92 ==—c,z; ar<0, i=0, M; (A.1)

0, i kO M, i*k (4.2)

{c-"ff-(ﬂs"?)u.-(a.»+1>. i=0,M, i~k

we obtain for the second differential of the network cost function (5):
M

G (x) = 2 C('J:(G‘H) a;(a;+H1)dz

i=0

Hence d2F(*) > 0 and there exists a constant K; (K, > 0) such that
Ki(dx)r< drf(x), (A.3)
where dx denotes the vector (dxg, ..., dxy).
Since the domain of variation of x is bounded, there exists a boundary K, (K, = K, > 0):

4t (x) <K, (d%)2. (A.4)
It then follows from the definition that F(x) is a strongly convex function of the
argument

. LEMMA 3. xj = ¢(xJ) is a strongly convex function of the relative utilization factors
*] of the network nodes.

Proof. By virtue of (11) and (12) we obtain for the second differential of a composite
function the expression

&z d [ 55(0)) | +dp[5(x)) J/ds;(x7) dts; (x9) >0, (A.5)

Indeed, d2si(xJ) < 0 by being the second differential of a strongly concave function
defined by (12);

Wifa 1
d\p[:j(x") ]/d.‘j(x-”) = /ey sj(xi)"(‘/"ﬂ")(_ .-—-.) <0,

a5
a2 i 2(x)) =g —wsaprry [ 1
©ls;(xf) )/ds s (x)) =y 8 (xf)mte) —f ) >,
gy \ 45

’

hence dzw[Sj(xj)] > 0.

It follows from (A.5) that there exists a constant K; such that (A.3) is satisfied.
From the boundedness of the domain of variation of x there follows the existence of a bound-
ary K. It then follows from the definition that xj = ¢(x]) is a strongly convex function
of xJ.

LEMMA 4. xj = g(xJ) is a concave function of the relative utilization factors xJ of
the network nodes.

Proof. By equating to zero the second differential of the left-hand side of (14) which
specifies the implicit function xj = g(x)), we obtain

P w(x) =d?(x) +3t(x)/dg (x’) d*g (x?) =().
From (4), by using (2) and (A.6) [4]:

G (N)/dz, v= A G(N)L(N), (4.6)

i

we obtain the following formula:

0t(x)/0:t,= [ei/Ze.- ][N/M(x)][L;(N)-L((N—j)]/.t,, t=’0,7. (A- 7)

=0
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By virtue of Lemma 1 and of (A.7) we obtain
d*g (x) = - d?t(x)/ (8t (x)/0g (x})) <0, (A.8)

dt(x)[9g (x9) *0. (A.9)
The inequality (A.8) proves the result of Lemma 4.

Proof of Theorem. The second differential of the function z(xJ) as the differential
of a composite function (j being a dependent node of the network) has the form

@3 (x)) = 471 (x) + 01(x) [0, (x) (1) 0. (A.10)
Indeed, d2t(x) > 0 by virtue of Lemma 1, and dzxj(xj) > 0 by virtue of Lemma 3.
By virtue of a lemma from [2] we have

L(N)-L(N—1) =0, 20, i=0, M.
It then follows that at(x)/BXj(xj) > 0 under the condition

Ly(N)~L;j(N—1) 0. (A.11)

It follows from (A.9) that there exists a constant K, such that (A.3) is satisfied,
By virtue of the boundedness of the domain of variation of xJ there exists a boundary K,.
It then follows from the definition that z(xJ) is a strongly convex function of xJ.

The second differential of the function u(xJ) as the differential of a composite func-
tion (j being a dependent node of the network) has the form

d?a(x%) =dtF (x) + 9F (x)/0z;(x)) d?z;(x’) >0. (A.12)

Indeed, d2F(x) > 0 (by virtue of Lemma 2); 9F(x )/axJ(xJ) < 0 [by virtue of (A.1)];
(xJ) < 0 (by virtue of Lemma 4).

It follows from (A.12) that there exists a constant K, such that (A.3) is satisfied.
It hence follows from the boundedness of the domain of variation xJ that there exists a
boundary K,. By virtue of the definition it then follows that u(xJ) is a strongly convex
function of xJ. This completes the proof of the theorem.

It follows from a theorem formulated in [7] that if the function f(x) is strongly con-
vex on a convex set R, then the iteration sequence =xuys1=Xm—agradf(xm), m =1, 2, ... [0 <
a < 2/K,, K, being a constant specified by (A.4), and grad f(xy) the gradient of the function
f(x) at the point xp] will converge, beginning with a point x; of the set R, to a point
of local minimum of the function f(x).

Let us note that the conditions (A.9) and (A.11) are satisfied in closed LBNs for
x; = 0, 1 = 0, M, and they do not require special verification. However, in the case of
computer realization of optimization algorithms, the difference Ly(N) — Lj(N — 1) may vanish
for a dependent node (i = j) of the network. Therefore, the node with smallest load should
not be taken as a dependent node of the network.

The requirement of boundedness of the domain of variation of x introduced in the formu-
lations 1 and 2 of optimization problems is a consequence of the physical meaning. ‘The
value x4 = 0 corresponds to closing (short-circuiting), and x{ = = to opening the i-th node,
i =0, M, in a closed QUN that contains M + 1 nodes.
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