STOCHASTIC SYSTEMS

OPTIMIZATION OF CLOSED STOCHASTIC NETWORKS
V. M, Vishnevskii and Z. L. Kruglyi ‘ UDC 62-505:65.012.122
An algorithm of optimization of closed queuwing networks is proposed that have
the property of local balance. The capacity, the load, and the average length

of the queue are studied as a function of the service rate. This algorithm is
used for optimizing the capacity of computer systems and networks.

1. Introduction

Queuing networks (QUNT) are widely used in the analysis of computer systems and net-
works [1-7]. However, the methods of optimization of QUNT needed for the designing of sys-
tems have not yet been sufficiently developed.

At present there exist approximate methods of optimization of closed networks [8, 9],
as well as exact methods of optimization of network models of multiprogram computers [10,
12]. In this paper we consider an exact algorithm of optimization of homogeneous closed
QUNT of any structure, i.e., we study the capacity, the load, and the average queue length
as a function of the service rate. For network optimization we obtain a system of equations
that does not contain partial derivatives. By such an approach it is possible to extend
the domain of application of optimization methods to networks, and to increase the computa-
tional effectiveness of the algorithms.

2. The Capacity as a Function of the Service Rate

We shall consider separable or locally balanced networks (LBN) [11]. Suppose that a
closed LBN contains M nodes and N calls which circulate between the former. The route of
the calls along the network is specified by a stochastic indecomposable matrix P = |Pjil,
where Pij is the probability that after ending the service at the i-th node, a call wifl ar-

M
rive at the the j-th node (i,i-.: 1,M;O<P¢,<i;zpuzi). We shall assume-that the rate

i=1

of service at the i-th node (i = 1, M) depends on the number of calls in the queue and that
it can be written in the forme puj(k) = Bj(k)uy. For example, for the case often encountered
in practice, when th& i-th node is a multiserver queuing system with nj servers and a distri-
bution function of the service time of calls in each server equal to Fj(t) = 1 — exp {—pjt},
we have yj(k) = Bj(k)uy, where

k, for k<nm,

61 (k):{ n;, for k>n¢.

The capacity and the average number of occupied servers of the i-th node* are expressed
(11] by the formulas

M(N) =e,G(N—1)/G(N), (1)
Ud(N)=zG(N-1)/G(N), (2)
Ii=eq/uh &=ep, 3)

where G(n) is the normalizing constant of a closed network in which n calls are circulating
(n=T1,N); e ={e;, e, ..., eM} is the vector of the relative rates of the flows specified
by the system of equations (3); xi is the relative occupation factor.

*This refers to the case that the i-th node is a multiserver queuing system.
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The average length of the queue at the i-th node (taking into account the calls that
are being served) can be expressed as follows:

N

Ly(M)= Y nPi(n) (4)

n=al

where Pj(n) is the marginal probability that the number of calls at the i-th node is equal to
n, n =0, N.

At first let us study A;(N), U;(N), and Lj(N) as a function of the p; (or x;) of its
"own" node.

THEOREM 1. If the rate of service at each node of a closed LBN with N calls and M nodes
is a nondecreasing function of the number of calls in the queue, i.e., pi(k + 1) 2 p;(k), then
the average number of occupied servers and the average queue length will be monotonically
decreasing (increasing) functions, whereas the capacity is a monotonically increasing (de-
creasing) function, of the service rate (the relative occupation factor) of its "own" node:

oUWy =~ = UM + LV = 1) = LW, (5)
ALy (N)jopy == — —p{—D, (N), (6)
M (W)= =M (W) e (V) — Lu(V = 1) | )
U (N)/az‘=—;‘—U« (MU + Li(N — 1) — Ly (M), (8)
ALy (N)/dz; = Ii Di (), (9)

Oy (N)jdzy = — _:7 NV L (V) — La(N — )], i =T, (10)

where D;(N) is the variance of the number of calls at the i-th node, and L{(k) is the average
queue length at the i-th node for a network with k calls, k = 1, N.

Theorem 1 is proved in Appendix 1.

For LBN it is possible to~prove the following theorem which expresses the relationship
between the characteri#stics of a node when the service parameters of another node of the
network vary. -

THEOREM 2. If the rate of service at each node of a closed LBN with N calls and M nodes
is a nondecreasing function of the number of calls in the queue, then the capacity, the aver-
age number of occupiled servers, and the average queue length will be monotonically increasing
(decreasing) functions of the service rate (the relative occupation factor) of "another"
node:

U (VY= Us (W) Ly (W) L, @ = D),

(11)
o< 248 <5}~D5 (), (12)
0?352\7) :%k,(N)[L,(N)—L;‘(N — ), (13)
_Q[f_(;z_(;ﬂz_%U,(N)[Lj(N)—Lf(N_1)]' (14)
_%D,(N)ga—%;(jﬂ<0, (15)
a};a(:jw:—%M(N)[Lj(N)—Lj(N—UL Wj=1M, i) (16)
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Theorem 2 is proved in Appendix 2.

To study the capacity as a function of the service rate is important also for construct-
ing iteration algorithms of design of LBN [6, 7].

3. Statement of Problem of Optimization of Closed Networks

The cost of a network will be defined as follows:

M
F = Z cip‘:ii
{om]

where c; is a cost coefficient, uj; the rate of service at the i-th node, and aj a nonlinearity
factor.

Since the capacities of the nodes in an exponential network are proportional to one
another, it follows that the capacity of a network can be defined in terms of the capacity
of one of the nodes of the network, i.e., A = Xj/aj, where the a; are the relative average
rates of utilization of the network nodes.

The problem of optimizing a closed network can have one of the following formulations.

Formulation 1. Find

1
maxxr:a—lelG(N-fi)/G(N) (17)
under the constraints
M qa,
CFP= Y 'S, B0 (18)
Formulation 2. Find
Mo
min F= ) cyu' (19)

under the constraints

x=.&1;elG(N— NEWN)>A, BE>0.

The solution is sought on the set of values of the service rates. In this formulation
it is assumed that the speeds 8f the servers are continuous variables, whereas in actual
fact these variables are discrete. Since in the case of a large dimension the solving of
a discrete optimization problem is laborious from a computational point of view, we shall
at first solve the optimization problem in terms of nonlinear programming. After that we
can have discrete search (of smaller dimension) together with search for a continuous opti-
mum.

In considering a fairly large class of cost functions, it was proved in [12] that any

local maximum of the problem in Formulation 1 will be also a global maximum, whereas any
local minimum of the problem in Formulation 2 is also a global minimum.

4. Maximization of Network Capacity
with a Cost not Exceeding the Assigned Value

An optimal solution of (17) will be sought by the method of undetermined Lagrange mul-
tipliers.

Let us construct the Lagrange function d =X 4+ y(F — S), where y is a Lagrange multi-
plier. By taking the partial derivatives and by equating them to zero, we obtain

o _ _ L OF T

M any’
With the use of (7), (13), and (17), we obtain

175



, -:_7.%—7‘1(”)[[:; (N) — Ly(N - 1)]= — yeap, i=TM. (20)
q 1

For eliminating y, we shall divide the i-th equation by the first. By virtue of (18)
it then follows that

cay wit  Ly(N)— Ly(N—1)

- 5T )
agr pd L) —Li(N—1)’ : M,
M
ZC{,J:"—:S. (22)

=1
By substituting pj from (21) into (22), we finally obtain

M
pi=sflaft+4 oy~ 1Ll =1 Z:_:[L* ) — Ly =,

o _ an e Li(N)— Li(N—1)

= y i=2,M.
™ L =L=1) =4M
By using the formula
xiui=$au¢a,/an i=2, M, (23)
where x; can be set equal to x, = 1, we obtain the following equivalent system:
M
a. 1‘ ay .
i =S flaft+ L= e LW~ W - iy}, (24)
o _ p oas LW)—Li(N~=1) . _ 55 (25)
a' =D’ sy ) LA M
where
oo (Z)®
D= Pl Ci-—ci( ) (26)

It is often clearer to obtain the solution in terms of the relative occupation factors
of the nodes. We can go over to the parameters py (i = Z, M) with the aid of (23).

5. Minimization of Network Cost with a Capacity
not Below the Assigned Valué

It is required to minimize the objective function F(u) under a capacity constraint
A(N, u) 2 A. Just as in the case of maximization of the network capacity, we shall solve
this problem by the method of undetermined Lagrange multipliers. Let us construct the La-
grange function Q = F(u) + y[A(N, u) — A). We shall take the partial derivatives and equate

them to zero: dF/duj = —ydA/ou;, i =1, M.
With the use of (7), (13), and (19), we obtain

. 11 Ty
,C;aip.?‘1:.—YEIM(N)[L{(N)-—Lg(N—-i)], i=T, M.

For eliminating y, we shall divide the i-th equation by the first equation. By virtue
of the formula A = 1;U;(N)/a; and of the constraint (19) we hence obtain

Hr=Ao/U(N),

a9 oq a,L((N)—‘Li(N—'i) i3 M.
M=WmL —1 =¥

By using formula (23), and by setting x; = 1, we can go over to the following equivalent
system of equations:

n=Aa/U(N), (27)
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s o= Ly(N)— Ly(N —1)
£ ——-Dil"‘ LI(N) L:(N—i) '

=3 M, (28)

where Di is specified by (26).

The program of solution of the systems of nonlinear equations (24)-(25) and (27)-(28)
written in the language PL/1 uses a subroutine of minimization of a function with M vari-
ables. An approximate solution can be obtained with a guaranteed error with respect to the
functional.

6. Optimization of Capacity of Multiprogram Computers

Figure 1 shows a model of a computer system (CS) in the form of a closed network with
M nodes, where the first node (the central processor CP) is the center of service, whereas
the other nodes (i = 7, M) simulate the operation of M — 1 external devices ED. The arrival
of an assignment at the first node (CP) corresponds to the execution of a sequence of instruc-
tions between two successive accesses of the external devices. The probability of calling
the i-th ED is equal to Pi (i = 2, M); the quantity P, = 1 — %Pj (i = Z, M) is the probability
of completion of an assignment. In this case, a new assignment will arrive in the system
via the branch denoted in Fig. 1 by 'feeding a new assignment." Thus the number of calls
(assignments) in the network remains constant, being equal to the multiprogramming level n.

It is assumed that all the assignments carried out by the system belong to the same
class, and that the users' memory is shared out equally among n statistically identical as-
signments. Since the assignments require equal amounts of memory, it follows that the capa-
city of the main memory will be a linear function of n. The average time of service of a
call in the i-th node is equal to 1/uj, i = T, M, and the service rate can depend on the
local queue length, i.e., we are given the quantities py(n), where n = I, N.

In the following the cost of a CS will signify the cost of its computational center
which includes the processor, as well as the main memory and the external memory. The total
cost S' of the CS and the cost S of the computational center are connected by the formula
St =585 + Sper, where Sper is the cost of the peripheral equipment of a CS which includes the
input—output devices with punched data carriers such as printers, videoterminals, data trans-
mission multiplexers, and other CS devices needed for organizing the computational process.

The original parameters used for the designing are as follows: M is the number of nodes;
N is the number of calls (assignments); the Pj are the transition probabilities, i =_T77q;
V; is the average number of instructions carried out by the processor in each utilization;
Vi is the average number of words transmitted in an input—output operation in the i-th ex-
ternal device, i = 2, M; Ki is the cost coefficient in the node i, i = T, M; ai is the non-
linearity factor in the node i, i = 1, M; Sy is the cost of the main memory share; S is the
constraint on the CS gost (used in solving the design problem in the formulation 1); A is

a constraint on the CS capacity (used in solving the design problem in the formulation 2).

A criterion of optimality in designing according to Formulation 1 is to maximize the
CS capacity measured by the number of assignments carried out per unit time, under a con-
straint on the CS cost. As we noted, this cost does not include the cost of auxiliary equip-
ment and installations, or operating expenditure,

We shall define the CS cost as follows:

Fe Z.Kb, _Zc,pl + M (n),

l=1 i=1
where c¢j = Kj(wj/aj) ™, Ky and cj being cost coefficients in the node i; b; is the speed of
the server in the i-th node; uj is the rate of service in the i-th node; the aj are the
relative average rates of calling the nodes; w; is the total number of calls for processing

needed per assignment in a node; M(n) = nSp is the cost of the main memory as a function of
the multiprogramming level.

The average number of calls for processing per access to the i-th node is expressed
by the formula V4§ = wj/aj, where i = 2, M; o, = 1/P;; af = P{/P,, i =

The relationship between the service rate pyi and the server speed b; is

[¢ . ey
m= b i=1M. (29)
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TABLE 1. Parameters of Work Load and Cost Estimate of CS De-

vices
. | No. of operations
inmillions (trans-
Transition ic 1 ’
Device _|probabili. - :ﬁ‘;:ﬂn‘;‘;‘;’:r | Cost coeff., K| Exponent, a;
ties, Pi access, Vi
cp 0,05 0,020 1487 870 0,52716
ED 0,50 0,001 778 700 0,64572
ED 0,30 0,001 778 700 645719
ED _ 0,15 0,001 2021 690 0,96851

TABLE 2. Optimum Capacity of CS with the Original Load Param-
eters Listed in Table 1 and a CS Cost Constraint S = 1 Million

Rubles
. d of external devices
. timal <  [Processor |Spee ’
macse - |l by oeponat S, (el Vo pee s
;i)ngglevel sec” e per ED 2 ED 3 ED &
2 0,8239 2427 | o309 | o038 | 00247 | 00154
3 08744 03912 | 0,0271 0,0187 0,0187 0,0118
4 0,8693 4,600 | 0,3760 0,0222 0,0450 0,0095
S 0,7320 6,830 03177 0,0142. 0,0118 0,0059
6 0,7926 - 7,969 0,3321 0,0159 0,010 0,0066
7 0,7398 9,462 0,3074 00138 0,009 0,0056
8 0,6836 11,703 ‘ 0,2823 0,0120 0,008 0,0048

TABLE 3. Parameters of Work Load and Cost Estimate of CS De-

vices
No. of ppega_tiogs
stion |inmillions (tra-

Device Iransition nsmitted words [Cost coeff., K: | Exponent, a;
probabili- | iy piilions) per * *
ties, Pj access, Vi -

crp 0,02 0,020 118 770 0,52716
ED 0,052 0,001 778 700 0,64572
ED 0,31 0,001 778 700 0,84572
ED 0,15 0,001 778 700 0,64572

TABLE 4. QOptimum Capacity of CS with the Original Load Param-
eters Listel in Table 3 and a CS Cost Constraint S = 1 Million

Rubles
Multi-~ Optimal Processor |Speed of external devices,
Programm- | capacity, At\;;':esxs):gse speed, }“ﬂl' words per sec
ing level | sec™! 4 mill. oper.! ED » ED 3 \ ED 4
per sec
2 0,3167 6,314 0,3807 0,0345 0,0244 0,0130
3 0,3360 8,928 0,3768 0,0270 0,0188 0,0107
4 0,3340 11,976 0,3621 0.0221 0,0149 0,0087
5 0,3221 15,522 0,3426 0,0187 0,0124 0,0071
6 0,3048 19,686 0,3202 0,0160 0,0105 0,0059
7 0,2846 24,592 0,2965 0,0138 0,0090 0,0050
8 0,2631 30,408 0.2720 00120 | 00078 | 00043

The problem of optimizing the CS can be expressed in one of the following formulations.
Formulation 1. Find '

max A=, P,G(n—1)/G(n)

under the constraints
M

F= Yot +Mm<S, B>0.

{mel
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Feeding a new assign- Queue at CS nodes
ment

Py P,
TIKD- K-
cP & .
- TIH)—
Pm
Fig. 1
A,sec'l )
7§ A, ey
50 501 J
4,0 41”—
J,0F J,0F
2,0 2,0
1,0 1,0
1 | . - t i S .  E.
g g5 L0 1§ 20 25 40 o 05 L0 15 20 25 40
) 5, mill. rubles § mill. rubles
Fig. 2 Fig. 3

Fig. 1. Model with central server.

Fig. 2. Optimum capacity plotted versus cost of computer sys-
tem for various values of P,. 1) V, = 0.02 million operations,

P, = 0.005, A = 0.0846 S':9774; 2) V, = 0.02 million operations,
P, = 0.01, A = 0.1680 S2-9388; 3) Vv, = 0.02 million operations,
P, = 0.02, X = 0.3364 $2-962%; 4) V, = 0.02 million operations,
P, = 0.05, A = 0.8517 S*-%%73; 5) V, = 0.02 million operations,
P, = 0.08, A = 1.3697 S2-%9%41; 6) V, = 0.02 million operations,
P, = 0.1, A = 1.7114 $2-°%12; 7) V, = 0.02 million operations,
P, = 0.2, A = 3.5037 §2-9352; 8) V, = 0.02 million operations,
P, =.0.3, A = 3,892 §2-0482,

Fig. 3. Optimum capacity plotted vs. cost of computer system
for various values. 1) V, = 0.08, P, = 0.02, A = 0,1081 S§2.%332;
2) v; = 0.005, P, = 0,02, A = 0.1613 §2-93%¢; 3) Vv, = 0.02, P, =
0.02, A = 0.3364 S2-°8%2; 4) V, = 0.01, P, = 0.02, A = 0.5676
§2.013%, 5) y, = 0.005, P, = 0.02, A = 0.9051 §2:0741,

Formulatjon 2. Find

under the constraints

A= G(n—1)/G(n)=A, >0,

where g(n) is a normalizing constant of a closed network.

The solution is sought on the set of values of the service rates uj (i = T, M) and of
the multiprogramming levels n.
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The vector of access a = (ays ..., aM) and the vector of calls for processing of assign-
ments w = (w;, ..., wM)_specify the parameters of the work load. The multiprogramming level
n and the speed vector b = (b;, ..., bM) of the servers constitute (M + 1) variables. Let
us note that after solving the optimization problem with respect to u, we go over to the
parameters b with the aid of (29).

Since the multiprogramming level n is usually confined to fairly small positive numbers,
it is possible to select the optimal n in the optimization problem by discrete search. By
taking n as an input parameter, we can solve the optimization problem with respect to the
other M variables. The optimal solution will be the one (out of n feasible solutions) that
has the best objective function.

For the model represented in Fig. 1, we listed in Tables 1 and 3 the parameters of the
work load and estimates of the cost of the devices. The quantity V, is given in millions
of operations, whereas Vi is given in millions of words, i = 7, M. The cost coefficients
and the exponents have been obtained by regression analysis of models of standard computers.

In Table 1 it is assumed that the nodes 2 and 3 are supplemented with magnetic disk
memories (MDM) with a capacity of 100 Mbyte, whereas the node 4 is supplemented with an MDM
of 29 Mbyte capacity. In Table 3 it is assumed that the nodes 2 and 4 are supplemented with

memories of 100 Mbyte.
The speed of the input—output devices is expressed in millions of words transmitted

per second (with allowance for the time needed for fixing the heads, the search for the data
on a track, and the data transmission; it corresponded to a unit of 1000 word capacity).

In Tables 2 and 4 we listed the results of optimization of the CS capacity with a cost
constraint S = 1 million rubles, for the original load parameters listed in Tables 1 and
3, respectively. The cost of the main memory share was Sp = 37.5 thousand rubles.

The solutions (24)-(25) were sought from an initial point x3° =1, i = 72, M. The ini-
tial approximation for p,? was specified by (24). After obtaining the solytion vector (u,,
X,. ...y XM) the values of py for i = 2, M were obtained from (23), whereas the speed by (i =
1, M) of the devices was obtained from (16). The average response time was expressed by
the formula

T=[N—-L(N)1/M(N).

In Tables 2 and 3 the optimum capacity corresponds to a multiprogramming level n = 3.

In Figs. 2 and 3 we plotted the optimum capacity vs. the CS cost for various values
of the load parameters.

The curves were obtained by a regression analysis of the plots of the optimum capacity
'vs. the CS cost. The form of the curves shows that this relationship is close to the Grosch
law. .
APPENDIX 1

Proof of Theorem 1. The normalizing constant of a closed network with N calls and M
nodes can be calculated [11]}, by the formula

L4
CW =Y et (N-n), (A.1)

where

f«(u)-e.--/Hw(H”«“/HW‘)‘ (A.2)

k=i Rwwi

g = 2 Hf;(n,).

ne: 8 (N, M) i=1
ﬂ‘au(N—n ) Fiald

B1(k) = p3(k)/nj, k = I, N, py(k) being the rate of service in the i-th node in the case of
k calls in the queue; the set S(N, M) of all the feasible states of a system for a closed
network with N calls and M nodes can be expressed as follows:
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M
S(N,M)“{ (m,...,nq,...,nu)/z Il|=N, n?O, f=1—,—ﬂ—}_

{1

The term gHi(n) is the normalizing constant of a network obtained from the original
network by eliminating the i-th node, and only with n calls. Let us note that gHH(n) =
gM-1(n) for n = 0, N,

By using (A.1)-(A.2) and (4), we obtain

N
G 1
—i@- == (Z fe(n)gu* (N~n) )/ 9z¢ = ;—Z, nfy(n) gu' (N —n)= (A.3)

= —G(N) an.(n)— —G(V)L‘(N).

el

where

fim) g (N—n), n=O,N. (A.4)

1
Py(n)= )

By virtue of (1) and (A.3) we can prove (10):

g (Y) . 6( G(N~-1)
= ;0 | ————

GW-1) UR
G(N)

)/ dzy —[e‘/G'(N)l[G(N)—‘——"""‘G N~1)

dry 9z,

e
G*(N)

[ G(N)-—G(N—i)la(N—i) G(N—-1) —G(N)L«(I\') ] = —--—M(N) LNy — La(N—-1) |

By virtue of (2) and (A.3) we can similarly prove (8).
For proving (9) we obtain, with the use of (A.2)-(A.4), the formula

GP‘ (n) _ i _ / - A.S
PP ( TS fo(n)ga' (N ﬁ)) \ 9z (A.5)
= { G(N)o{fi(n)ga' (N—r)]/0zs—fs(n) gu' (N*") 26w }
G'(N) oz
1
ot -{G(N)n—f«(n)xu‘(N-n)—la(n)xu"(N—n)--G(N)L«(N)} = — [WPy ()~ Li (M) Pe(m) .
G*(N) z : x4 2 :

[

>
By using (4) and (A.5), we can prove (9):

oL« [ Z nP; (n)]/ dzq =——2 [ntPi(n) — Ly (M)nPy(n)}] = — Zln-—[q(N) 2P (n) = ——lh(N)

a N =t

Formulas (5)-(7) can be proved in the same way, either by direct differentiation, or
by virtue of (8)-(10) and (3). For example,

oz, MW Ty 4
M) M) Bz M) - L‘uv—m( -~P‘T) = — WML~ LiN-1)],
1

6],],4 Bz; .ap‘ a z3

N
The monotonicity of the functions follows from the fact that Di(N) 2 0 and Li(N) =
Li(N— 1) for pj(k + 1) 2 py(k), i =T, M, k=T

APPENDIX 2
Proof of Theorem 2. For proving (16), we shall use (1) and (A.3):
- 3N, ‘ ' :
) (e (V=136 @) 1025 =
6:, . .
1
- [G(N)—’—G(N~1)L,(N—i)—G(N—i)-—i—G(N)L,(N)]-———M(N)IL,(N)—L,(N—m.
G*(N) z4 x4 zj
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From (2) and (A.3) we similarly obtain (14)

aU,
D oG-t o, =
an
= _[ en Lew-nz,0-0-60-0 —0@nia® | = - vt sy
& 4] . -1y . { = Y 3(¥)— Ly(N~1) ).
For proving (15), Ye shall use (A.2)-(A.4) and hence obtain 1
0Py (n) ( / - Py
=g — — N,
P ) fim) st (¥ ")) . oz; @) {G(N)a(f«(n)Kx'(N-—-n))/ﬁ:u~la(n)!x‘(N-n) az(, ) }= (A.6)

1 { 1
G (N) { G(Mfi(m) ';;LJ‘(N"‘")KH‘ WN=n) — fi(n)ga' (N—n) _;';LJ(N)G(N) }'= = {Ls* (N=n)Py(n)— Ly(N) Py (n))},

where L;i(n) is the average queue length in the j-th node of a network with n calls that
differs from the original network by the elimination of the node i; i, j =1, M, n = I, N.

By using (4) and (A.6), we obtain

N N -
L _o( Y, wpuim ) o5 - {rimz,mn— Yt w-nnomy }.

a.t,

LT LT

For a network with two nodes we have 4™ —-—i-—D.(N), i),

0:, Z,
b4 . P4
By using the formula ZL,(N)..,N and (9), we have

{==i i
2]

@
L) —.—.—%—I),(N). There hence fol-
L}

dx;

lows the formula (15) and the monotonicity of Lj(N).

Formulas (11)-(13) can be proved on the basis of (14)-(16) and (3) in the same way as

in the proof of Theorem 1.

1.
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METHOD OF RECONSTRUCTING THE STATE VECTOR OF A NONLINEAR DYNAMICAL SYSTEM
FROM THE RESULTS OF OBSERVATIONS

V. I. Kushnarev and L. N. Lysenko UDC 62-501.5:519.71

A method for solving the problem of reconstructing the complete state vector of
dynamical systems described by ordinary nonlinear differential equations is
given. In the method the scheme of solution of a two-point boundary problem of
definite type is realized and the generalized algorithm for conditionally opti-
mal filtration is used.

1. Introduction. Formulation of the Problem

In this paper we give one possible approach to the solution of the problem of reconstruct-
ing the complete state vector of a system whose dynamics are described by ordinary nonlinear
differential equations satisfying existence and uniqueness conditions for solutions on a
fixed interval of time.

We consider a nonlinear dynamical system, whose mathematical model, in general, has
the following form:

x(t)=f(¢, x) +I§ (1), (1)

. 2(t)=¢(¢, y) +n(2). (2)

Here x = {A,”y)T is the n-dimensional state vector of the system; 2z is the m-dimensional
vector of measurements; A is a k-dimensional and y is an %-dimensional state subvector.

We shall have in mind that n=l+k, n>m, xeX*, z=Z*, AsA’eX", yeY'e X, where X", Z™, A% Y
are closed nonempty sets.

The vectors n(t) and £(t) on the right sides of (1) and (2) are n- and m-dimensional
stochastic processes, whose necessary statistical characteristics are given.

The functions f and ¥ are continuous and continuously differentiable in all of their
arguments on a fixed time interval.

It is assumed that the m-dimensional vectors corresponding to (2) are a certain collec-
tion of measurable parameters, functionally connected with the subvector y of the current
state vector.

It is required, from the results of direct measurements of z{(t) to estimate the state

vector x(t) of the nonlinear dynamical system (1) on a fixed time interval, the components
of the subvector A{t) of which are not connected with z{(t) by finite analytic relations.
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