Assignment 1: The M/G/1 Queueing System
 Due: January 27

1. Verify Equation $\pi_{j}=\pi_{0} a_{j}+\sum_{i=1}^{j+1} \pi_{i} a_{j-i+1}(j=0,1,2, \ldots)$ for $j=0,1,2,3$.
2. For the M/G/1 queue, let X_{n} denote the number in the system left behind by the nth departure.
(a) If

$$
X_{n+1}=\left\{\begin{array}{l}
X_{n}-1+A, X_{n} \geq 1 \\
A, X_{n}=0
\end{array}\right.
$$

what does A represent?
(b) Rewrite the preceding as

$$
\begin{equation*}
X_{n+1}=X_{n}-\delta_{n}+A \tag{1}
\end{equation*}
$$

where

$$
\delta_{n}=\left\{\begin{array}{l}
1,\left(X_{n}>0\right) \\
0,\left(X_{n}=0\right)
\end{array}\right.
$$

Take expectations and let $n \rightarrow \infty$ in Equation (1) to obtain
$E\left[\delta_{n}\right]=E[a]=\lambda E[S]=\frac{\lambda}{\mu}=\rho$
© Square both sides of Equation (1), take expectations, and then let $n \rightarrow \infty$ to $\operatorname{obtain}\left(E\left[X_{n+1}\right]=E\left[X_{n}\right]=L\right)$

$$
L=\rho+\frac{\rho^{2}+\lambda^{2} \sigma_{S}^{2}}{2(1-\rho)} .
$$

3. From equation $\pi(z)=\frac{(1-\rho)(1-z) a(z)}{a(z)-z}$ derive the P-K formula $L=\rho+\frac{\rho^{2}+\lambda^{2} \sigma_{S}^{2}}{2(1-\rho)}$ by using that fact that $L=\pi^{\prime}(1)$.
Hint: Use L'Hopital's rule twice, and $a^{\prime \prime}(1)=\lambda^{2} \sigma_{s}^{2}+\rho^{2}$

$$
\begin{aligned}
& \left(a^{\prime \prime}(1)=\sum_{i=1}^{\infty} i(i-1) a_{i}=\sum_{i=1}^{\infty} i^{2} a_{i}-\sum_{i=1}^{\infty} i a_{i}=\operatorname{Var}(a)+(E[a])^{2}-E[a]\right. \\
& \left.=\rho+\lambda^{2} \sigma_{s}^{2}+\rho^{2}-\rho=\lambda^{2} \sigma_{s}^{2}+\rho^{2}\right)
\end{aligned}
$$

4. In a small post office there is a single person serving. Seventy percent of customers take 1 min to serve, 20 percent take 3 min and 10 percent take 10 min . Calculate the average time spent in the post office, und the average number of people in the post office, when customers arrive at an average rate of (a) one per 3 min , (b) one per 4 min , (c) one per 5 min .
5. Using software package ZEDNET compare the mean response time and the mean queue length of the $\mathrm{M} / \mathrm{D} / 1$, the $\mathrm{M} / \mathrm{M} / 1$, and the $\mathrm{M} / \mathrm{G} / 1$ system ($C_{s}=0.5$ and $C_{s}=2.5$) with $\lambda=0.8 \mathrm{sec}^{-1}$ and $\mu=1 \mathrm{sec}^{-1}$.
Give a comprehensible explanation why the values are different although the arrival rate λ and service rate μ are always the same.
