
Analysing spatial point patterns in R

Adrian Baddeley

CSIRO and University of Western Australia

Adrian.Baddeley@csiro.au

adrian@maths.uwa.edu.au

Workshop Notes

Version 3

October 2008

Copyright c©CSIRO 2008

Abstract

This is a detailed set of notes for a workshop on Analysing spatial point patterns that has
been held several times in Australia and New Zealand in 2006–2008.

It covers statistical methods that are currently feasible in practice and available in public
domain software. Some of these techniques are well established in the applications literature,
while some are very recent developments.

The workshop uses the statistical package R and is based on spatstat, an add-on library
for R for the analysis of spatial data.

Topics covered include: statistical formulation and methodological issues; data input
and handling; R concepts such as classes and methods; nonparametric intensity estimates;
goodness-of-fit testing for Complete Spatial Randomness; maximum likelihood inference for
Poisson processes; model validation for Poisson processes; distance methods and summary
functions such as Ripley’s K function; non-Poisson point process models; simulation tech-
niques; fitting models using summary statistics; Gibbs point process models; fitting Gibbs
models; simulating Gibbs models; validating Gibbs models; multitype and marked point pat-
terns; exploratory analysis of marked point patterns; multitype Poisson process models and
maximum likelihood inference; multitype Gibbs process models and maximum pseudolikeli-
hood; and line segment data.

This version of the notes requires R version 2.7.0 or later, and spatstat version 1.14-5
or later.

Acknowledgements
The author gratefully acknowledges countless comments and suggestions from workshop partic-
ipants, and the support of CSIRO Mathematical and Information Sciences, The New

Zealand Statistical Association, The University of Waikato, The Statistical So-

ciety of Australia and The University of Western Australia.

2

Copyright c©CSIRO Australia 2008

All rights are reserved. Permission to reproduce individual copies of this document for
personal use is granted. Redistribution in any other form is prohibited.

The information contained in this document is based on a number of technical, circumstantial
or otherwise specified assumptions and parameters. The user must make its own analysis and
assessment of the suitability of the information or material contained in or generated from this
document. To the extent permitted by law, CSIRO excludes all liability to any party for any
expenses, losses, damages and costs arising directly or indirectly from using this document.

Copyright c©CSIRO 2008

CONTENTS 3

Contents

PART I. OVERVIEW 5

1 Introduction 6

2 Statistical formulation 13

3 The R system 17

4 Introduction to spatstat 19

PART II. DATA TYPES 26

5 Objects, classes and methods in R 27

6 Point patterns in spatstat 33

7 Windows in spatstat 39

8 Manipulating point patterns 46

9 Pixel images in spatstat 54

10 Tessellations 60

PART III. INTENSITY AND RANDOMNESS 65

11 Methods 1: Investigating intensity 66

12 Methods 2: Tests of Complete Spatial Randomness 72

13 Methods 3: Maximum likelihood for Poisson processes 79

14 Methods 4: checking a fitted Poisson model 90

PART IV. INTERACTION 97

15 Simple models of non-Poisson patterns 98

16 Methods 5: Distance methods for point patterns 102

17 Methods 6: simulation envelopes and goodness-of-fit tests 119

18 Methods 7: model-fitting using summary statistics 125

19 Methods 8: adjusting for inhomogeneity 128

20 Gibbs models 132

21 Methods 9: fitting Gibbs models 139

22 Methods 10: validation of fitted Gibbs models 148

Copyright c©CSIRO 2008

4 CONTENTS

PART IV. MARKED POINT PATTERNS 155

23 Marked point patterns 156

24 Handling marked point pattern data 160

25 Methods 11: exploratory tools for marked point patterns 165

26 Methods 12: multitype Poisson models 179

27 Methods 13: Gibbs models for multitype point patterns 185

28 Line segment data 190

29 Further information on spatstat 192

Bibliography 193

Index 195

Copyright c©CSIRO 2008

CONTENTS 5

PART I. OVERVIEW

The first part of the workshop is a quick overview of spatial statistics for point patterns, and a
very quick introduction to the software.

Copyright c©CSIRO 2008

6 Introduction

1 Introduction

1.1 Types of data

1.1.1 Points

A point pattern dataset gives the locations of objects/events occurring in a study region.

The points could represent trees, animal nests, earthquake epicentres, petty crimes, domiciles
of new cases of influenza, galaxies, etc.

The points might be situated in a region of the two-dimensional (2D) plane, or on the Earth’s
surface, or a 3D volume, etc. They could be points in space-time (e.g. earthquake epicentre
location and time). The software presented here is only applicable to 2D point patterns (but
we’re working on it).

1.1.2 Marks

The points may have extra information called marks attached to them. The mark represents an
“attribute” of the point. The mark variable could be categorical , e.g. species or disease status:

off
on

The mark variable could be continuous, e.g. tree diameter:

Copyright c©CSIRO 2008

1.1 Types of data 7

The mark could be multivariate, or even more complicated.

1.1.3 Covariates

Our dataset may also include covariates — any data that we treat as explanatory, rather than
as part of the ‘response’.

Covariate data may be a spatial function Z(u) defined at all spatial locations u, e.g. altitude,
soil pH, displayed as a pixel image or a contour plot:

12
0

13
0

14
0

15
0

16
0

 125
 125 130

 130

 130

 130
 130

 135 135

 135

 140

 140

 140

 145

 145 150

 150

 155

Covariate data may be another spatial pattern such as another point pattern, or a line
segment pattern, e.g. a map of geological faults:

Copyright c©CSIRO 2008

8 Introduction

1.2 Typical scientific questions

1.2.1 Intensity

‘Intensity’ is the average density of points (expected number of points per unit area). Intensity
may be constant (‘uniform’) or may vary from location to location (‘non-uniform’ or ‘inhomo-
geneous’).

uniform inhomogeneous

1.2.2 Interaction

‘Interpoint interaction’ is stochastic dependence between the points in a point pattern. Usually
we expect dependence to be strongest between points that are close to one another.

independent regular clustered

Example 1 (Japanese pines) Locations of 65 saplings of Japanese pine in a 5.7 × 5.7 metre
square sampling region in a natural stand.

Main question: is the spacing between saplings greater than would be expected for a random
pattern? (reflecting competition for resources)

Copyright c©CSIRO 2008

1.2 Typical scientific questions 9

Japanese Pines

1.2.3 Covariate effects

For a point pattern dataset with covariate data, we typically

• investigate whether the intensity depends on the covariates

• allow for covariate effects on intensity before studying interaction between points

Example 2 (Tropical rainforest data) Locations of 3605 trees in a tropical rainforest, with
supplementary grid map of elevation (altitude).

Main questions: (1) does tree density depend on slope? (2) after accounting for variation in
tree density due to slope, is there evidence of clustering of trees?

12
0

13
0

14
0

15
0

16
0

+

++++++
++

+

+

+
++

+

+
+
+

+

++

+

+
+++

+
+
+

+

+

+

++
+

+
++++
+

++
+

+
+

++
+
+

+
+

+
+

+

+
+

++
++

+

+

+

+

+
+

++
+

+

+

+

+

+

++

+

+

+
++

+

+

++

+

+

+++

++
+++
+
++

+
+

+ +

++
++

+

+

+

+

+ +

+

+
+

++

+

+

+

+

+

+
+

+

+
++

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+
+
+

+

+
+

++

++

+

+
++

+

+

+

+

++

+

+
+

+

+

+

++

+

+

+

+
+

+
+

+

+

+

+
+

++
+
+++

+
++
+++++
++

+

+

+
+
+

++
++
++

++++
+++
+

+
++
++
+++

+

+++

++
+

++

+
++

+++
+

+
+

++++

+

+

++
+++

+++
++
+
+++

+

++
+

+
+
+++
+++++++

+
+++

+
++++
+
++++++
+

+

+

+++++++++++

+
+

+
++ +

+
++
+
+

+++

++++
++

+

++
++

+ +

+

+

++

+

+

+

+

++
++

+
+

+++++
++++
++

+
+++++++++
+

+++++
+
+

++
++++

+++++
+

+ +

+

+++
++
+

+
+++
+

+
++

+
+
+++
++

+++
++

++

+

+

+
+

++

+

+

+++++

+
+
+

++

++++++
+++

++
++

++++
+
++
++

+++
++++

++
+++
++++++

+
+

++++++++++
+

+

+
+

+++
+
++

+
++
++++

+
+

+

++++

++++
+

+++
+++

+++++

++
+
++

+

+

+

+

+++
+
+
+++

++
++++

+

+

+

+
++

+++

+
+

++++
+

+
+

+++
++

++++
+

+

++

++++

++
+

+++

++

+++
+++

+ ++

+++++
++
++++++++++
+
+++
+

+
+

+

+

+

++

++
++

+++++++++++
++

+
++++++++
+++

+
+

++

+

+

+++
+

++

+

++
++
+++++++

+
+++

++++
++++++++

+

+

++

+

+

+++++
+
+

++++

+

+

+++
+++++
+ ++++++++++
+
+

+
+++++

+

++
++++++++++
++++++++++++++++
++

+++++++
++++ +

+

+

+++++++
+++++++
++++++++++++

+++
+++
++++
+

+

+

+

++++++

++++

++

+++
+
++

+
+
+
+++
+
+
+

+
+
++

++

+

++

++
+

+
+

++++
+++++
+ ++
+ ++++++

+

+++
+

+
+

+

+
+

+
+

+

+++++
++++++

+++
++

++
+++

++
+

+
+

++

++

+++
+++

++

+

+++
++

+++
++++

+

+

+

++
+
+

+ +

++
+++

++

+

+++

+

++
++++
+++

+

+
+
+
+

+

+ +

+
++
+

++

++
+
+

+

+++++
+

+
+

+
+++

+
+

++++
++

+

++
++ +++
+++
+

+

++
+++++

+
+++

++
+
+

++++++

+++

+

++
++++
+
++++
+
++

+
+++

++
+
+

++++
+

+ ++

+

++
+

+
+

++++
++++
++++++
+++++++
+

++++++

+

+

+++
++

+++
+
++

+ +
+++

++

+

+

+

+

+

+++

+

+

+
+

+

++

+++

+

+

+
+
++

+++
++

+

++++

++
+

+
+

+
+

++
+
+

+

++

++

+
+
+

++
+++
+

+
+
+

+++

+
+

+

+++
++
+

+
++++
+++

++++++
+

+
+

+
++
+++

+++++

++++

+

+
+
+ +

+++
++
+ +

++
+++++++++++++++
+++++++++++++++++++++++++

+
+
++++++++++

++++
++

++++
+++++

++++
++++++++++++++++

++++

+

+

+ +
+++++++
+++

+
+

+

+

++++++++++++
+
+++++++
++++

+++++++
+++++
+++++++++++++++++++++

++++++++++++++++++++++++++++
++++++++

++
+
++

+
+++++++
+++++++++++++++++

+
+
++++
+++++++++++++++++

++

+++
+

+
+
++

+

+
+

+++
+++
+
++++

+
+

++++++

++

+

+
+
+
++

+++
++++
++
+++++
+
+

+++

++ +
+
+
+
+

+

+
++

++
++++

+ ++
+

++++++
+

++++

+
+

+

+

+

++
++
+

+++
++

+++
+++
+

+

+++
++

+
+++

++

++
+

+
+
++
+

+++
+
++

++++
+

+++

+

+

+
++

+
+
++

++

++

+

++

++++++
+++
++
++

+
+++++
++++

+++
+++

+

+
+

++++
+

+++
+

++
++

+++

+
+

++

++

+

++++
+
+++
+

+ +
++++++

++++++++

+++++++
++
+++
++
+

+++
++++
++++

+
+

+

+++
+++

++
++++
++

++++
+ +

++++++
+++++

++
++++
+++
+++++++

+
+++

++
+
+

++

+++
++
++

+
+

++++++

+
++

+

++
+

++
++

+++
+

+
++

++
+++
+++

+
+

++
+
+

+++
+++
++

+++
++
+
++
++++++++
+

+++++++++

+

+

+
+

++++
++

++

+

+++++

+++++++

++++
+++++++
++++
++
+++

+
+++++
+++

+++
++++
++
+++
+
++

+++

+++
++++++

+

+++
+++++
++

++
+

+
+++++++
+++

+++
+++++

+
+
+
+

+++++

++++
++
+
+++++

+
+ +

++++++

+
+
+++

+

++
++
+++
++
++

++
++
+
++ +

+
++

+++
+

+
++++

+++++++
++++++

+
+

+++
++++
++
++

+
++++
+

++
+++++
+++++++

++++

+
+
+

+++++++

++
+
+++++++
++
++
++

+++ +
++

+
+

++++++++++
+++++++

+
+++++++
+++
+
+
+++

++
++
++
++++

+++
+

+++
++++

++++

+++
+

+
+++
+

+

+
+
+++++

+++
++

+++++++
++
+

+

+++++
+++++
+++

+++++++
++
+++

+++++++++
+++

++++++
+++++

+++
++
+++++
+
+++

++
+
+

++++++++++
++

+

+

+

+

+++

+
+
+

+

++++
+
++++

+

+
+

+

+

+

+

+

+

+

+

+

+
++
+
++

++

+
+

+

+

+

+
+

+

+

+

+

+

++

+++
+

++

+

++

+

+

+++

++
+++

++

+

+

++
+

+++

++

+++

+

+
+

+
+

+
++

++

+

+

+ +
+

+

+

+
+++

++

+

+

++

+

++
+
+

++++++
++
+

+++++
++

+

+

+
+++++++

+

+

+

++++

+

+

+

+

+
+

+

+

+

++

+

+
+
+
+

+

+

+
+
+++++++++
+
+

++
+++++

++
+

+

+

+

+

+++++
+

++

+++++
++++
+++

+

++++++++++
++++++++++++++++

+

+ +
+++++++++++

+++
+

++++++++++++++++++
+++++++

+++

++

+

+

+

+

++

+

+
+

+
+++

+

+

+

+

++

++

+++
+

+

+
+

+
++

+

++
+
++

+

+

++

++++++
+++
++

++

+

+++++

++ +++

++

+++

++

+

+
+
++
++

+++
++ +

+

+
++++++++
+
+

+
+

+
++

+

+
++++++

++ +
+
+

+

+

+

+
++
+++
+

++
+++

++++

+

++
++
+++

+
+

+

+
+++
+++++
++

+
++

++++

+

+

+

+

+

++++

+++

+

+
++++++

+

+

+

+

+

+

+

+
++
+

+

+ +
+
+
+
+

+
+++++++++

+

+

++

++

++++

+

+
+

+
+

+

+
+

+

++

++
+

++
++

+

+

+++++

+
+

++

+++

++

+

++
++

+

+

+

+

++
++

+
+ +

+

++

+

+

+

+ +

+
+

+ +

+
+

+

+

+

++++

+
+

+

+

+
++

+

++
+

+

++

+

+

+

+

+

+++

+

+

++
++

+

++

+

+++

+

++

+

+

+

+
+

++

++

+

+
++

++

+

+

+

+
+
+
++
+

+

+

++
+++

+

+

+++

+
+

++ ++

+

+++++

+

+

++
+

+

+

+

+

++

+

+

+

++++++++
+
+

+
+

+

+ ++
+
+

+

+

++

++
+++

+++
++++
++

++++++++

+
+

++++++
++

+

+
+

+

++

++
+ +

+

+

+

++

++

+

+

+

+

+

+

+

++
++

+
++
+

+

++++

+

+

++
++

+

++++

++

+

+
+
+

+

+

+

++++
++++++++
++++

++

++

+++

++
+

+

+++
+

+

+

+

+++++ +

+

+

+

++
+
+

+

++

+++

++

+
+++

+

+

+

++

+++

+

+++

+

++
+++++++++++
++
+

+

+

+

+

+

+ ++

+

+
++

++

+++

+

++
+
+ +++
+++++++

+

++

+
++++++++
++++++++++++

+

++
+

+
+

+

+
+

+
++

+

++
++

++

+

+

++

+++++

+

+

++ +
+

+
+++
+

+

+

++
+

+
+

+

++

+

+

+

++
+

++
+

+

+

+++

+
+

+

+

+

+

+

+

+
+++

++

+

+

+

+ +

+

++

+

+

+

++

++
++++++

+

+
+
+

+

+

+

+

+
++

+

++
+
+

+

+
+

+
+

++

++

+

++
+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+
++
+

++

+++

+

+

+++

+

+

+

++

+
+

+

+
+

+

+

+

+

+

+

++

+

+++

+
+

+

+

+

+

+
+
+

+
+

+

+
+++

+
++

+

+

+

+
++

+
+

+

+

+

+
+
+

+

+

+ +

+

+

+++
+

++
++

+

+

++
+

+ +

+

+

+

+

+

+

+
+

+

++

+

++++

+

+
+

+

+

+

+

+
+++
+

++

+

+

+

++++

+++

+

+

+

++

++

+++

+
++

+

+

+
+
+
+
+

+

Example 3 (Queensland copper data) A intensive mineralogical survey yields a map of
copper deposits (essentially pointlike at this scale) and geological faults (straight lines). The
faults can easily be observed from satellites, but the copper deposits are hard to find. The main
question is whether the faults are ‘predictive’ for copper deposits (e.g. copper less/more likely to
be found near faults).

Copyright c©CSIRO 2008

10 Introduction

Example 4 (Chorley-Ribble data) An apparent cluster of cases of cancer of the larynx oc-
curred near a disused industrial incinerator. The area health authority mapped the domicile
locations of all cases (58) of cancer of the larynx and, for control purposes, a random sample of
cases (978) of lung cancer.

Main question: after allowing for spatial variation in density of the susceptible population
(for which the lung cancer cases are a surrogate), is there evidence of raised incidence of laryngeal
cancer near the incinerator?

Chorley−Ribble Data

larynx
lung
incinerator

1.2.4 Segregation of points with different marks

In a marked point pattern, we need to investigate whether points with different mark values are
‘segregated’ (found in different parts of the study region).

Example 5 (Lansing Woods) In a 20-acre study region in Lansing Woods, Michigan, the
locations of 2251 trees and the botanical classification of each tree were recorded.

Main question: is the study region divided into domains where a single tree species dominates,
or are the different species randomly interspersed?

Copyright c©CSIRO 2008

1.2 Typical scientific questions 11

blackoak

+

+
+

+
+

+++

+++
+
+

+
+

+
++++

++
++

+++
+++

+ +
++ +

++

+

+ ++

+++
+++

+

+

+

+
+

+++
+
+++ +
+++

++
+++ ++++

++
++
+

+

+

+
+
++

+

+

+
+

+

+

++
+

+
++

++
+++++++

+++++++

+

+

+
+++

+ +

+
+ + +

+

+

+
+ +
+

++
++

++

hickory

+
+

++

+
++++

+++
++

+
+

+
+

+

+++
+ +++

+
++++++

+ +
+++ +
+
+++ +
++
++++

++++++ +
+++++++

++++
+
++ +

+++
+++++
++

+++++++
++
+++++
++

++++
+++++ +++
++

+++++
++

+++++
++++++

+ ++++++++
+++ ++

++
+
+++++

+++++ ++
++

+

++++
++++ +
++ +

++++++
++

+
+++++

++++
+++

++
++++++++

+++++++
+
+

+
+

++ +++

++++
+++

+ +++++

+
+++++

+ ++ +

++

+++++

+
+

+
++ +

+
++++

++++++

++++
+ +++ ++++
+

+
++

+

+
+

++++
++
++

++++
+

+++
+

++
+ +
++++++

++++
++++++

++
+ +

+

++++++
++++
+

+

++
++

+
+

+++++
+

++

++
+

+ +

+++

+

+
+++

+++
+

+++

+++++
+

+

+++
+

++ ++

++

+

++++

++

++++
++
+
+++ +

+

+ +++++

++++
++++++ +++

+
+++

+
++ +

+

+++ ++ ++++

+
+++

+
+ +

+
++
+
+

+++
+++++ +

++++
+

++++
+

+ +++

+
++++

+
++++++++

+ +
++++

++ +
++

+++
+++

+ +
+

+++++++++ + +
+

++++
++ +

++

+

+++ +
+

+

+ +
++

+
+++
++++

+++
+

+

+
+
++

+
++

+++++
+++
+++

+++
+++++++ +

+++++
+

+

+
+++

++++++
++++ +

+++ ++
+
++

+ +
+

+++

++
+

+++
+

+++++ ++
+++++

+++++++++ +++++++++
+++ +
+++

++ +
++++

+ +
+
+

+++
+
+++++

+

+
++++++

++

++

maple

++ +
++

+
+

+ ++
++++
+++++

+ ++++++
+

+

+

+

+

+ +

+
+
++

++
+

+ ++

+

+ ++

+
+

++
+
++++++

++
+

+++
+

+ +
+++

++
++

+++
+
++
++++ ++

+++
++

++

+
+

++

++++ +
+++
+

+
+++
+

+

+++ ++
++

+
++++++

++++

+
++++++

+++++++++
++++++

++++++ ++++
++++
+

++

+ ++

+

+ +++++

+

+
+++

++
+

+

+++
+

+

+
++

+
++
+

+
+++++

+
+++

+
+++
++ +

+
+ +++

+
+

+
+

++
+++
+ ++++
+++++++

+++++++
+ ++++

+
++

++++ ++
++

+

+++ +

++++++++
++ +
+

+ +
++++

++++++
++++++++

++ +++ ++++
++++

+ +
++++++
+

+
+++++ +++++
++
+++
+++++++

++
+++

+
+ ++

+
++++++

+++
+
++
+

+
+++

+

++

+
+

+
++++

+

+
+
+++

++++ +++++

++++++
+++++ +

+

+
++ +

++++++
++++++

++
+++ ++

+
++++

+++
+++
++++

++++
+++

+
++++++++ +

+++

+++++++
+++

+ +
+++++

++
+

++++++++++
++ ++
+

+++
++

+

+

+

Example 6 (Longleaf Pines) In a forest of Longleaf Pine trees in Georgia, USA, the locations
of 584 trees were recorded along with their diameter at breast height (dbh), a convenient surrogate
measure of size and age.

Main question: explain any spatial variation in the density and age of trees.

Longleaf Pines

1.2.5 Dependence between points of different types

In a point pattern dataset with categorical marks, (aka multitype point pattern), dependence
between the different types may be formulated either as

• interaction between the sub-pattern of points of type i and the sub-pattern of points of
type j; or

• dependence between the mark values of points at two specified locations.

Example 7 (Amacrine cells) The retina is a flat sheet containing several layers of cells.
Amacrine cells occupy two adjacent layers, the ‘on’ and ‘off’ layers. In a microscope field of
view, the locations of all amacrine cells were mapped, and classified into ‘on’ and ‘off’.

Main question: is there evidence that the ‘on’ and ‘off’ layers grew independently of one
another?

Copyright c©CSIRO 2008

12 Introduction

amacrine

off
on

Example 8 (Ants’ nests) The nests of two species of ants in a plot in Greece were mapped.
Auxiliary information records a field/scrub boundary, and the position of a walking track.

Main question: does species A intentionally place its nests close to species B?

ants

scrub

field

A
B

1.3 Overview of statistical methods

Statistical methods for spatial point patterns have a quirky history, and have not yet coalesced
into a mature statistical methodology. They include

• summary statistics: the applied literature is dominated by ad hoc methods based on
evaluating a summary statistic (e.g. average distance from a point to its nearest neighbour)
with very little statistical theory to support them.

• comparison to Poisson process: in the applied literature, hypothesis tests are invoked
chiefly to decide whether the point pattern is ‘completely random’ (a uniform Poisson point
process) whether or not this is scientifically relevant. Lots of misunderstandings prevail.

• modelling: only in the last decade has it finally become possible to formulate and fit
realistic models to point pattern data. There’s still a lot of work to be done e.g. in
algorithms, model choice, goodness-of-fit.

We’ll cover both classical and modern methods. Useful textbooks include [17, 19, 23, 31, 46,
37]. An important recent survey is [38].

Copyright c©CSIRO 2008

13

2 Statistical formulation

2.1 Point processes

In this workshop, the observed point pattern x will be treated as a realisation of a random
point process X in two-dimensional space. A point process is simply a random set of points;
the number of points is random, as well as the locations of the points. Our goal is usually to
estimate parameters of the distribution of X.

2.2 Should I treat the data as a point process?

Treating the point pattern as a point process effectively assumes that the pattern is random
(the locations of the points, and the number of points, are random) and that the pattern is
the observation or ‘response’ of interest. A realisation of a point process is an unordered set of
points, so the points do not have a serial order (unless there are marks attached).

Example 9 A silicon wafer is inspected for defects in the crystal surface, and the locations of
all defects are recorded.

This can be analysed as a point process in two dimensions, assuming the defects are point-
like. We’re interested in the intensity of defects, spacing between defects, etc.

Example 10 Earthquake aftershocks in Japan are detected and their latitude, longitude and
time of occurrence are recorded.

This can be analysed as a point process in space-time (where space is the two-dimensional
plane or the Earth’s surface). If the occurrence times are ignored, it becomes a spatial point
process.

Example 11 The locations of petty crimes that occurred in the past week are plotted on a street
map of Chicago.

This can be analysed as a point process. We’re interested in the intensity (propensity for
crimes to occur), any spatial variation in intensity, clusters of crimes, etc. One issue here is
whether the recorded crime locations can be anywhere in two dimensional space, or whether
they are actually restricted to locations on the streets (making them a point process on a 1-
dimensional network).

Example 12 A tiger shark is captured, tagged with a satellite transmitter, and released. Over
the next month its location is reported daily. These points are plotted on a map.

It is probably not appropriate to analyse these data as a spatial point process. At the very
least, the time of each observation should be included. They could be treated as a space-time
point process, except that it’s a strange process, as it consists of exactly one point at each instant
of time. These data should really be treated as a sparse sample of a continuous trajectory, and
analysed using other methods [which, alas, are fairly underdeveloped.] See the R package trip.

Example 13 A herd of deer is photographed from the air at noon each day for 10 days. Each
photograph is processed to produce a point pattern of individual deer locations on a map.

Copyright c©CSIRO 2008

14 Statistical formulation

Each day produces a point pattern that could be analysed as a realisation of a point process.
However, the observations on successive days are dependent (e.g. constant herd size, systematic
foraging behaviour). Assuming individual deer cannot be identified from day to day, this is
effectively a ‘repeated measures’ dataset where each response is a point pattern. Methods for
this problem are in their infancy.

Example 14 In a designed controlled experiment, silicon wafers are produced under various
conditions. Each wafer is inspected for defects in the crystal surface, and the locations of all
defects are recorded as a point pattern.

This is a designed experiment in which the response is a point pattern. Methods for this
problem are in their infancy. There are some methods for replicated spatial point patterns
[9, 13, 24, 25, 29] that apply when each experimental group contains several point patterns.

Example 15 The points are not the original data, but were obtained after processing the data.
For example,

• the original dataset is a pattern of small blobs, and the points are the blob centres;

• the original dataset is a collection of line segments, and the points are the endpoints,
crossing points, midpoints etc;

• the original dataset is a space-filling tessellation of biological cells, and the points are the
centres of the cells.

This is a grey area. Point process methodology can be applied, and may be more powerful
or more flexible than existing methodology for the unprocessed data. However the origin of the
point pattern may lead to artefacts (for example the centres of biological cells never lie very close
together, because cells have nonzero size) which must be taken into account in the analysis.

2.3 Assumptions about the data

The “standard model” assumes that the point process X extends throughout 2-D space, but
is observed only inside a region W , the “sampling window”. Our data consist of an unordered
set

x = {x1, . . . , xn}, xi ∈ W, n ≥ 0

of points xi in W . The window W is fixed and known. Usually our goal is inference about
parameters of X.

Copyright c©CSIRO 2008

2.4 Marks and covariates 15

Data are often supplied without information about the sampling window W . It is impor-
tant to know the window W , since we need to know where points were not observed. Even
something as simple as estimating the density of points depends on the window. It would be
wrong, or at least different, to analyze a point pattern dataset by “guessing” the appropriate
window. An analogy may be drawn with the difference between sequential experiments and
experiments in which the sample size is fixed a priori.

For the same reason, it is not sufficient to observe the values of covariates at the data points
only. In order to investigate the dependence of the point process on the covariate, we need to
have at least some observations of the covariate at other (“non-data”) locations.

It’s implicitly assumed that all points of X within W have been mapped without omission.
Most models we use will assume that random points could have been observed at any location

in the window W , without further constraint. (Examples where this does not apply: GPS
locations of cars will usually lie along roads; certain cells lie only inside certain tissues).

When thinking about methodological issues it’s often useful to think about the discretised
version of a point process. Suppose the window W is chopped into infinitely many ‘pixels’.
Each pixel is assigned the value I = 1 if it contains a point of X, and I = 0 otherwise. This
array of 0’s and 1’s constitutes the data that must be modelled. [e.g. obviously we can’t model
the dependence of these indicators on a covariate if we only observe the covariate value at the
locations where I = 1.]

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0

2.4 Marks and covariates

The main differences between marks and covariates are that

• marks are associated with data points;

• marks are part of the ‘response’ (the point pattern) while covariates are ‘explanatory’.

2.4.1 Marks

A mark variable may be interpreted as an additional coordinate for the point: for example
a point process of earthquake epicentre locations (longitude, latitude), with marks giving the
occurrence time of each earthquake, can alternatively be viewed as a point process in space-time
with coordinates (longitude, latitude, time).

A marked point process of points in space S with marks belonging to a set M is mathemati-
cally defined as a point process in the cartesian product S ×M . The space M of possible marks
may be ‘anything’. In current applications, typically the mark is either a categorical variable
(so that the points are grouped into ‘types’) or a real number. Multivariate marks consisting of
several such variables are also common.

Copyright c©CSIRO 2008

16 Statistical formulation

A marked point pattern is an unordered set

y = {(x1,m1), . . . , (xn,mn)}, xi ∈ W, mi ∈ M

where xi are the locations and mi are the corresponding marks.
Marked point patterns are discussed in detail in section 23.

2.4.2 Covariates

Any kind of data may be recruited as an explanatory variable (covariate).
A ‘spatial function’, ‘spatial covariate’ or ‘geostatistical covariate’ is a function Z(u) observ-

able (potentially) at every spatial location u ∈ W . Values of Z(u) may be available for a fine
grid of locations u:

12
0

13
0

14
0

15
0

16
0

The values of a spatial function Z(u) may only be observable at some scattered sampling
locations u. An example is the measurement of soil pH at a few sampling locations. In this case,
the value of the covariate Z must be observed for all points xi of the point pattern x, and must
also be observed at some other ‘non-data’ or ‘background’ locations u ∈ W with u 6∈ x.

Alternatively, the covariate information may consist of another spatial pattern, such as a
point pattern or a line segment pattern. The way in which this covariate information enters
the analysis or statistical model depends very much on the context and the choice of model.
Typically the covariate pattern would be used to define a surrogate spatial function Z, for
example, Z(u) may be the distance from u to the nearest line segment.

Copyright c©CSIRO 2008

17

3 The R system

We will be using the statistical package R.

3.1 How to obtain R

R is free software with an open-source licence. You can download it from r-project.org and
it should be easy to install on any computer (see the instructions at the website).

Books and online tutorials are available to help you learn to use R.

3.2 How commands are printed in the notes

You can run an R session using either a point-and-click interface or a line-by-line command
interpreter. In these notes, R commands are printed as they would appear when typed at the
command line. So a typical series of R commands looks like this:

> pi/2

> sin(pi/2)

> x <- sqrt(2)

> x

Note that you are not meant to type the > symbol; this is just the prompt for command input
in R. To type the first command, just type pi/2.

In these notes we will sometimes also print the response that R gives to a set of commands.
In the example above, it would look like this:

> pi/2

[1] 1.570796

> sin(pi/2)

[1] 1

> x <- sqrt(2)

> x

[1] 1.414214

If the input is too long, R will break it into several lines, and print the character + to indicate
that the input continues from the previous line. (You don’t type the +). Also if you type an
expression involving brackets and hit Return before all the open brackets have been closed, then
R will print a + indicating that it expects you to finish the expression.

> folderol <- 1.2

> sin(folderol * folderol * folderol * folderol * folderol * folderol *

+ folderol * folderol * folderol * folderol)

[1] -0.09132148

Copyright c©CSIRO 2008

18 The R system

3.3 Contributed libraries for R

In addition to the basic R system, the R website also offers many add-on modules (‘libraries’ or
‘packages’) contributed by users. These can be downloaded from cran.r-project.org (under
‘Contributed Packages’).

Packages that may be useful for analysing spatial data include:

ads spatial point pattern analysis
DCluster detecting clusters in spatial count data
fields curve and function fitting
geoR model-based geostatistical methods
geoRglm model-based geostatistical methods
GeoXB interactive spatial exploratory data analysis
grasp spatial prediction
maptools geographical information systems
rgdal interface to GDAL geographical data analysis
sp base library for some spatial data analysis packages
spatclus detecting clusters in spatial point pattern data
spatialCovariance spatial covariance for data on grids
spatialkernel interpolation and segregation of point patterns
spatstat Spatial point pattern analysis and modelling
spBayes Gaussian spatial process MCMC (grid data)
spdep spatial statistics for variables observed at fixed sites
spgwr geographically weighted regression
splancs spatial and space-time point pattern analysis
spsurvey spatial survey methods
trip analysis of spatial trip data

To make use of a package, you need to:

1. download the package code (once only) without unpacking ;

2. ‘install’ the package code on your system (once only);

3. ‘load’ the package into your current R session using the command library (each time you
start a new R session).

The installation step is performed automatically using R, not by manually unpacking the code.
Installation is usually a very easy process.

Instructions on how to install a package are given at cran.r-project.org. If you are running
Windows, first start an R session. Then try the pull-down menu item Packages — Install

packages. If this menu item is available, then you will be able to download and install any
desired packages by simply selecting the package name from the pulldown list. If this menu item
is not available (for internet security reasons), you can manually download packages by going
to the CRAN website under Contributed packages -- Windows binaries and downloading
the desired zip files of Windows binary files. To perform step 2, start an R session and use the
menu item Packages — Install from local zip files to install.

If you are running Linux, step 1 is performed manually by going to the CRAN website under
Contributed Packages and downloading the tar file packagename.tar.gz. Step 2 is performed
by issuing the command R CMD INSTALL packagename.tar.gz.

Copyright c©CSIRO 2008

19

4 Introduction to spatstat

4.1 The spatstat package

Spatstat is a contributed R package for analysing spatial data, written by Adrian Baddeley and
Rolf Turner. Current versions of spatstat deal mainly with spatial point patterns in two
dimensions. The package supports

• creation, manipulation and plotting of point patterns

• exploratory data analysis

• simulation of point process models

• parametric model-fitting

• hypothesis tests, residual plots, diagnostics

Spatstat is one of the largest contributed packages available for R, with over 300 user-level
functions and a 500-page manual. It has its own web domain, www.spatstat.org, offering
information about the package.

Spatstat can be downloaded from cran.r-project.org (under ‘Contributed packages —
spatstat’). To install spatstat you will also need to download the packages mgcv and sm.

4.2 Please acknowledge spatstat

If you use spatstat for research that leads to publications, it would be much appreciated if
you could acknowledge spatstat in your publications, preferably citing [4]. Citations help us
to justify the expenditure of time and effort on maintaining and developing the package.

4.3 Getting started

Here is a quick demonstration of spatstat in action. You can follow the demonstration by
typing the commands into R.

To begin any analysis using spatstat, first start the R system, and type

> library(spatstat)

The response will be something like this:

> library(spatstat)

This is mgcv 1.3-20

spatstat 1.14-5

Type ’help(spatstat)’ for information

The printout shows that, before loading spatstat, the system has loaded the package mgcv

that is required by spatstat. Then it loads spatstat, showing the version number of the
package.

For a list of the commands available in spatstat, type

> help(spatstat)

To get information on a particular command, type help(command).
To gain an impression of what is available in spatstat, you can run the package demonstra-

tion by typing demo(spatstat).

Copyright c©CSIRO 2008

20 Introduction to spatstat

4.4 Inspecting data

For our first demonstration, we’ll use one of the standard point pattern datasets that is installed
with the package. The ‘Swedish Pines’ dataset represent the positions of 71 trees in a forest plot
9.6 by 10.0 metres.

> data(swedishpines)

To avoid typing ‘swedishpines’ all the time, let us copy the data to another dataset with a
shorter name:

> X <- swedishpines

You can immediately plot the point pattern by typing

> plot(X)

X

Simply typing the name of the dataset gives you some basic information:

> X

planar point pattern: 71 points

window: rectangle = [0, 96] x [0, 100] units (one unit = 0.1 metres)

Let’s study the intensity (density of points) in this point pattern. For a few basic summary
statistics, type

> summary(X)

Planar point pattern: 71 points

Average intensity 0.0074 points per square unit (one unit = 0.1 metres)

Window: rectangle = [0, 96] x [0, 100] units

Window area = 9600 square units

Unit of length: 0.1 metres

The coordinates are in decimetres (0.1 metre), so the average intensity is 0.0074 trees per
square decimetre or 0.74 trees per square metre.

To get an impression of local spatial variations in intensity, we can plot a kernel estimate of
intensity:

Copyright c©CSIRO 2008

4.5 Exploratory data analysis 21

> plot(density(X, 10))

density(X, 10)

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0.
01

2
0.

01
4

where 10 is my chosen value for the standard deviation of the Gaussian smoothing kernel.
If you prefer a contour plot,

> contour(density(X, 10), axes = FALSE)

density(X, 10)

 0.003

 0.004

 0.004

 0.004

 0.005

 0.005

 0.005

 0.005

 0.006

 0.006

 0.006

 0.007

 0.007

 0.007

 0.008

 0.008
 0.009

 0.009

 0.009

 0.009

 0.009

 0
.0

1

 0.01

 0.01

 0.01

 0
.0

11

 0
.0

11

 0.012

 0
.0

13

 0.014

 0
.0

15

The contours are labelled in density units of “trees per square decimetre”.

4.5 Exploratory data analysis

Spatstat is designed to support all the standard types of exploratory data analysis for point
patterns.

One example is quadrat counting . The study region is divided into rectangles (‘quadrats’) of
equal size, and the number of points in each rectangle is counted.

> Q <- quadratcount(X, nx = 4, ny = 3)

> Q

x

y [0,24] (24,48] (48,72] (72,96]

(66.7,100] 7 3 6 5

(33.3,66.7] 5 9 7 7

[0,33.3] 4 3 6 9

Copyright c©CSIRO 2008

22 Introduction to spatstat

> plot(X)

> plot(Q, add = TRUE, cex = 2)

X

7 3 6 5

5 9 7 7

4 3 6 9

Another example is Ripley’s K function. I’ll explain more about the K function later. For
now, we’ll just demonstrate how easy it is to compute and plot it. To compute the K function
for a point pattern X, type Kest(X). This returns an object which can be plotted.

> K <- Kest(X)

> plot(K)

0 5 10 15 20

0
50

0
10

00
15

00

K

r (one unit = 0.1 metres)

K
(r

)

4.6 Multitype point patterns

A marked point pattern in which the marks are a categorical variable is usually called a multitype
point pattern. The ‘types’ are the different values or levels of the mark variable.

Here is the famous Lansing Woods dataset recording the positions of 2251 trees of 6 different
species (hickories, maples, red oaks, white oaks, black oaks and miscellaneous trees).

> data(lansing)

> lansing

marked planar point pattern: 2251 points

multitype, with levels = blackoak hickory maple misc redoak

window: rectangle = [0, 1] x [0, 1] units (one unit = 924 feet)

Copyright c©CSIRO 2008

4.6 Multitype point patterns 23

> summary(lansing)

Marked planar point pattern: 2251 points

Average intensity 2250 points per square unit (one unit = 924 feet)

Pattern contains duplicated points

Multitype:

frequency proportion intensity

blackoak 135 0.0600 135

hickory 703 0.3120 703

maple 514 0.2280 514

misc 105 0.0466 105

redoak 346 0.1540 346

whiteoak 448 0.1990 448

Window: rectangle = [0, 1] x [0, 1] units

Window area = 1 square unit

Unit of length: 924 feet

> plot(lansing)

blackoak hickory maple misc redoak whiteoak

1 2 3 4 5 6

lansing

In this plot, each type of point (i.e. each species of tree) is represented by a different plot
symbol. The last line of output above explains the encoding: black oak is coded as symbol 1
(open circle) and so on.

An alternative way to plot these data is to split them into 6 point patterns, each pattern
containing the trees of one species. This is done using split:

> plot(split(lansing))

Copyright c©CSIRO 2008

24 Introduction to spatstat

split(lansing)

blackoak hickory maple

misc redoak whiteoak

The result of split(lansing) is a list of point patterns. The names of the list entries are the
names of the types (in this case "blackoak","hickory", etc). To extract one of these patterns,
e.g. the hickories,

> hick <- split(lansing)$hickory

> plot(hick)

hick

Copyright c©CSIRO 2008

4.7 Installed datasets 25

4.7 Installed datasets

For reference, here is a list of the standard point pattern datasets that are supplied with the
installation of spatstat:

name description marks covariates window

amacrine Hughes’ rabbit amacrine cells 2 types ·
anemones Upton-Fingleton sea anemones diameter ·
ants Harkness-Isham ant nests 2 species 2 zones convex poly

bei Tropical rainforest trees · topography

betacells Wässle et al. cat retinal ganglia 2 types ·
bramblecanes Bramble Canes 3 ages ·
cells Crick-Ripley biological cells · ·
chorley Chorley-South Ribble cancers case/control · irregular

copper Queensland copper deposits · fault lines
demopat artificial data 2 types · irregular

finpines Finnish Pines diameter ·
hamster Aherne’s hamster tumour data 2 types ·
humberside Humberside child leukaemia case/control · irregular

japanesepines Japanese Pines · ·
lansing Lansing Woods 6 species ·
longleaf Longleaf Pine trees diameter ·
murchison Murchison gold deposits · fault lines irregular
nbfires New Brunswick fires several · irregular

nztrees Mark-Esler-Ripley NZ trees · ·
ponderosa Getis-Franklin Ponderosa pines · ·
redwood Strauss-Ripley redwood saplings · ·
redwoodfull Strauss redwood map (full set) · 2 zones

simdat Simulated point pattern · ·
spruces Spruce trees in Saxony diameter ·
swedishpines Strand-Ripley Swedish pines · ·
urkiola Urkiola Woods, Spain 2 species · irregular

The symbol indicates that the window for the pattern is a rectangle.
To flick through a nice display of all these datasets, type demo(data).
To access one of these datasets, type data(name) where name is the name listed above. To

see information about the dataset, type help(name). To plot the dataset, type plot(name).

4.8 Point-and-click on the screen

There is a graphical interface which allows you to draw a point pattern on the screen. Type

> X <- clickppp(10)

This opens a graphics window and invites you to point and click 10 times in the window.
The result is a point pattern, consisting of 10 points, stored in the object named X. To plot it,
type

> plot(X)

Copyright c©CSIRO 2008

26 Introduction to spatstat

PART II. DATA TYPES

In Part II of the workshop, we look at the different types of spatial data (point patterns, windows,
pixel images, etc) and how to manipulate them in spatstat.

Copyright c©CSIRO 2008

27

5 Objects, classes and methods in R

The tutorial examples above have used some of the ‘object-oriented’ features of R. It is very
useful to know a little about how these work.

5.1 Classes in R

R is an ‘object-oriented’ language. A dataset with some kind of structure on it (e.g. a contingency
table, a time series, a point pattern) is treated as a single ‘object’.

For example, R includes a dataset sunspotswhich is a time series containing monthly sunspot
counts from 1749 to 1983. This dataset can be manipulated as if it were a single object:

> plot(sunspots)

> summary(sunspots)

> X <- sunspots

Each object in R is identified as belonging to a particular type or class depending on its
structure. For example, the sunspots dataset is a time series:

> class(sunspots)

[1] "ts"

Standard operations, such as printing, plotting, or calculating the sample mean, are defined
separately for each class of object.

For example, typing plot(sunspots) invokes the generic command plot. Now sunspots is
an object of class "ts" representing a time series, and there is a special “method” for plotting
time series, called plot.ts. So the system executes plot.ts(sunspots). It is said that the plot
command is “dispatched” to the method plot.ts. The plot method for time series produces a
display that is sensible for time series, with axes properly annotated.

Tip: to find out how to modify the plot for an object of class "foo", consult
help(plot.foo) rather than help(plot).

5.2 Classes in spatstat

To handle point pattern datasets and related data, the spatstat package defines the following
classes of objects:

• ppp: planar point pattern

• owin: spatial region (‘observation window’)

• im: pixel image

• psp: pattern of line segments

• tess: tessellation

Copyright c©CSIRO 2008

28 Objects, classes and methods in R

Point pattern (class ppp)

Rectangular window
 (class owin)

Polygonal window
 (class owin)

Binary mask window
 (class owin)

Pixel image (class im)
12

0
13

0
14

0
15

0
16

0

Line segment pattern (class psp) Tessellation (class tess)

Most of the functionality in spatstat works on such objects. To use this functionality, you’ll
need to read your raw data into R and then convert it into an object of the appropriate format.

In particular spatstat has methods for plot, print and summary for each of these classes.
For example, the plot method for point patterns, plot.ppp, ensures that the x and y scales
are equal, and does various other things that are sensible when plotting a spatial point pattern
rather than just a list of (x, y) pairs.

Copyright c©CSIRO 2008

5.2 Classes in spatstat 29

> data(humberside)

> plot(humberside)

humberside

Exercise 1 Find out how to modify the command plot(swedishpines) so that the title reads
“Swedish Pines data” and the points are represented by plus-signs instead of circles.

When you type print(swedishpines) or just swedishpines, this invokes the generic com-
mand print, which dispatches to the method print.ppp, which prints some sensible information
about the point pattern swedishpines at the terminal.

> swedishpines

planar point pattern: 71 points

window: rectangle = [0, 96] x [0, 100] units (one unit = 0.1 metres)

The generic command summary is meant to provide basic summary statistics for a dataset.
When you type summary(swedishpines) this is dispatched to the method summary.ppp, which
computes a sensible set of summary statistics for a point pattern, and prints them at the terminal.

> summary(swedishpines)

Planar point pattern: 71 points

Average intensity 0.0074 points per square unit (one unit = 0.1 metres)

Window: rectangle = [0, 96] x [0, 100] units

Window area = 9600 square units

Unit of length: 0.1 metres

The command density is also generic. It is normally used to compute a kernel density
estimate of a probability distribution from a vector of numbers. (This “default method” is
called density.default.) But there is also a method for point patterns, so that when you type
density(swedishpines), this is dispatched to density.ppp which computes a two-dimensional
kernel estimate of the intensity function.

> plot(density(swedishpines, sigma = 10))

Copyright c©CSIRO 2008

30 Objects, classes and methods in R

density(swedishpines, sigma = 10)

0.
00

2
0.

00
6

0.
01

0.
01

4
To see a list of all methods available in R for a particular generic function such as plot:

> methods(plot)

To see a list of all methods that are available for a particular class such as ppp:

> methods(class = "ppp")

[1] [.ppp [<-.ppp affine.ppp as.data.frame.ppp

[5] as.owin.ppp as.ppp.ppp by.ppp crossdist.ppp

[9] cut.ppp density.ppp distmap.ppp duplicated.ppp

[13] identify.ppp is.marked.ppp is.multitype.ppp kstest.ppp

[17] markformat.ppp marks.ppp marks<-.ppp nndist.ppp

[21] nnwhich.ppp pairdist.ppp pcf.ppp plot.ppp

[25] print.ppp quadrat.test.ppp rescale.ppp rotate.ppp

[29] rshift.ppp shift.ppp split.ppp split<-.ppp

[33] subset.ppp summary.ppp unique.ppp unitname.ppp

[37] unitname<-.ppp

5.3 Return values

5.3.1 The return value of a function

Every function in R returns a value. The return value may be ‘null’, or a single number, a
list, or any kind of object. When you type an R expression on the command line, the result of
evaluating the expression is printed.

> 1 + 1

[1] 2

> sin(pi/3)

[1] 0.8660254

Just to confuse matters, the result of a function may be tagged as ‘invisible’ so that it is not
printed.

> data(cells)

> plot(cells)

Copyright c©CSIRO 2008

5.3 Return values 31

There’s still a return value from the function, which can be captured by assigning the result
to a variable:

> a <- plot(cells)

> a

NULL

Tip: Many plotting commands return a value which is useful if you want to annotate
the plot. In spatstat the function plot.ppp plots a point pattern and returns
information about the encoding of the marks. After plotting a multitype pattern, to
make a nice legend for the plot, save the result of the plot call and pass it to the
legend command:

> data(lansing)

> a <- plot(lansing)

> legend(-0.25, 0.5, names(a), pch = a)

lansing

blackoak
hickory
maple
misc
redoak
whiteoak

Tip: To find out the format of the output returned by a particular function fun,
type help(fun) and read the section headed ‘Value’.

5.3.2 Returning an object

A function which performs a complicated analysis of your data will typically return an object
belonging to a special class. This is a convenient way to handle calculations that yield large or
complicated output. It enables you to store the result for later use, and provides methods for
handling the result.

Many of the functions in spatstat return an object of a special class. For example, the
value returned by density.ppp is a pixel image (an object of class "im"). This is effectively a
large matrix, giving the values of the kernel estimate of intensity at each point in a fine regular
grid of locations.

Copyright c©CSIRO 2008

32 Objects, classes and methods in R

> Z <- density(swedishpines, sigma = 10)

> Z

real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 96] x [0, 100] units (one unit = 0.1 metres)

The class of pixel images in spatstat has methods for print, summary, plot and so on.

> summary(Z)

real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 96] x [0, 100] units

dimensions of each pixel: 0.96 x 1 units

(one unit = 0.1 metres)

Image is defined on the full rectangular grid

Frame area = 9600 square units

Pixel values :

range = [0.00188947243195950,0.0155470858797917]

integral = 71.3036909843861

mean = 0.00742746781087355

Another example is the command Kest which estimates Ripley’s K-function. The value
returned by Kest is an object of class "fv" (‘function value table’) containing the estimated
values of K(r), obtained using several different estimators, for a range of r values. This class
has methods for print, plot and so on.

> u <- Kest(swedishpines)

> u

Function value object (class ’fv’)

for the function r -> K(r)

Entries:

id label description

-- ----- -----------

r r distance argument r

theo Kpois(r) theoretical Poisson K(r)

border Kbord(r) border-corrected estimate of K(r)

trans Ktrans(r) translation-corrected estimate of K(r)

iso Kiso(r) Ripley isotropic correction estimate of K(r)

Default plot formula:

. ~ r

Recommended range of argument r: [0, 24]

Unit of length: 0.1 metres

> plot(u)

Copyright c©CSIRO 2008

33

0 5 10 15 20

0
50

0
10

00
15

00

u

r (one unit = 0.1 metres)

K
(r

)

6 Point patterns in spatstat

To analyse your own point pattern data in spatstat, you’ll need to read the raw data into R

and convert them into an object of class "ppp". This tutorial gives one basic recipe.

6.1 Basic recipe

In many cases, the observation window is a rectangle. The following steps will then be sufficient.

1. store the x and y coordinates for the points in two vectors x and y.

2. if there are marks attached to the points, store the corresponding marks in a vector m.
(Note: only a single mark value per point is allowed; multivariate marks are not supported.
But we’re working on it.)

3. create the point pattern object by

> ppp(x, y, xrange, yrange)

or, if there are marks,

> ppp(x, y, xrange, yrange, marks = m)

where xrange, yrange are vectors of length 2 giving the x and y dimensions of the rect-
angular window.

The value returned by the function ppp is an object of class "ppp" representing a point
pattern.

If the window is not a rectangle, then you need to use a command like

> ppp(x, y, window = W)

where W is a window object. See Section 7.5 for details on how to do this.

Copyright c©CSIRO 2008

34 Point patterns in spatstat

Entering coordinate data

Suppose we have recorded the x, y coordinates of 25 points that lie in a rectangle [0, 2] × [0, 1].
They can be entered into R in various ways, for example by typing them directly:

> x <- scan()

1: 1.94 0.32 1.74 0.64 0.12 1.44 0.29 0.74

9: 0.32 1.35 1.23 0.53 0.98 0.96 0.91 1.28

17: 1.24 0.14 1.75 0.24 0.45 0.94 1.22 1.60 0.62

26:

Read 25 items

> y <- scan()

1: 0.40 0.70 0.91 0.92 0.13 0.92 0.72 0.15

9: 0.78 0.59 0.02 0.70 0.75 0.33 0.52 0.75

17: 0.19 0.32 0.87 0.13 0.63 0.08 0.72 0.67 0.96

26:

Read 25 items

You can also use scan(file="filename") to read a stream of numbers from a file. Alter-
natively, if the file is nicely formatted as a table with a separate line for each data point, use
read.table.

Unmarked point pattern

In the example above, the x coordinates are in the range [0, 2] and the y coordinates in [0, 1].
To create the point pattern object we simply type

> P <- ppp(x, y, c(0, 2), c(0, 1))

> plot(P)

> P

planar point pattern: 25 points

window: rectangle = [0, 2] x [0, 1] units

P

Copyright c©CSIRO 2008

6.1 Basic recipe 35

Marked point pattern

Mark values may have any atomic type: numeric, integer, character, logical, or complex. For
example, let’s take a vector of real numbers:

> m <- scan()

1: 9.2 3.2 14.4 12.3 2.5 6.1 2.7 10.4

9: 10.2 0.4 20.9 10.4 25.7 7.7 13.7

16: 10.4 8.1 9.7 0.3 0.2 1.9 11.5

23: 16.8 36.2 5.5

26:

Read 25 items

and include this as the marks vector for the point pattern:

> Q <- ppp(x, y, c(0, 2), c(0, 1), marks = m)

> Q

marked planar point pattern: 25 points

marks are numeric, of type ’double’

window: rectangle = [0, 2] x [0, 1] units

> plot(Q)

0 10 20 30 40

0.00000000 0.04323888 0.08647777 0.12971665 0.17295553

Q

The last line of output is the return value from plot(Q), which indicates the scale used to plot
the marks. The mark value 10 was plotted as a circle of radius 0.0432.

Categorical marks

When the mark is a categorical variable, we have a multitype point pattern. The ‘types’ are the
different levels of the mark variable. The mark values should be stored as a ‘factor’ in R.

For example, let’s attach random marks to the pattern, taking two possible values Yes and
No with equal probability.

> m <- sample(c("Yes", "No"), 25, replace = TRUE)

> m <- factor(m)

> YN <- ppp(x, y, c(0, 2), c(0, 1), marks = m)

> YN

Copyright c©CSIRO 2008

36 Point patterns in spatstat

marked planar point pattern: 25 points

multitype, with levels = No Yes

window: rectangle = [0, 2] x [0, 1] units

> plot(YN)

No Yes

1 2

YN

If the marks are intended to be a categorical variable, ensure that m is stored as
a ‘factor’.

The last line of output indicates how the marks were plotted: the mark No was plotted as
symbol 1 (circle) and mark Yes was plotted as symbol 2 (triangle).

Notice that the factor levels have been re-sorted alphabetically (by default). This is one of
the common slip-ups with factors in R. To stipulate a different ordering of the levels,

> m <- factor(m, levels = c("Yes", "No"))

> YN <- ppp(x, y, c(0, 2), c(0, 1), marks = m)

> YN

marked planar point pattern: 25 points

multitype, with levels = Yes No

window: rectangle = [0, 2] x [0, 1] units

Tip: whenever you create a factor, check that the factor levels are as you intended,
using levels(x).

Other ways of adding marks to a point pattern will be described in Section 25.

6.2 Checking data

It is prudent to check for quirks in the data.

• Print out the coordinate values and marks to check for errors in data entry, and to deter-
mine whether the coordinates have been rounded.

• Duplicated points are surprisingly common in data files (i.e. where two records in the file
refer to the same (x, y) location). Once you have entered the coordinates into R as a two-
column matrix or a data frame D say, you can check for duplication using the command
any(duplicated(D)). If your data are already in the form of a point pattern X, you can
also type any(duplicated(X)) to detect duplication. To remove duplicated points, type
Y <- unique(X).

Copyright c©CSIRO 2008

6.3 Units 37

• Plotting the point pattern is always wise. Look for unexpected patterns, and points that
lie outside the window.

• On a plot of a point pattern X, you can identify an individual point by typing plot(X);

identify(X) then clicking on the point.

The function ppp automatically checks for duplicated points, and for points that lie outside
the specified window.

6.3 Units

A point pattern X may include information about the units of length in which the x and y
coordinates are recorded. This information is optional; it merely enables the package to print
better reports and to annotate the axes in plots.

If the x and y coordinates in the point pattern P were recorded in metres, type

> unitname(P) <- c("metre", "metres")

at least in Australia or New Zealand. The two strings are the singular and plural forms of the
unit. In Scandinavia and Germany you would type

> unitname(P) <- "meter"

The measurement unit can also be given as some multiple of a standard unit. If, for example,
one unit for the x and y coordinates equals 42 centimetres, type

> unitname(P) <- list("cm", "cm", 42)

Beware that the unitname applies only to the coordinates, and not to the marks, of a point
pattern.

Altering the unitname in an existing dataset is usually not sensible; it simply alters the
name of the unit, without changing the entries in the x and y vectors. If you want to convert
to different units (e.g. from metres to kilometres or from imperial to metric units), use the
command rescale as described in Section 8.2.3. If you want to actually change the coordinates
by a linear transformation, producing a dataset that is not equivalent to the original one, use
affine.

6.4 Other ways to make point patterns

To create a point pattern object we can either

• create one from raw data using the function ppp

• convert data from other formats (including other packages) using as.ppp

• point-and-click on a graphics device using clickppp

• read data from a file using scanpp

• transform an existing point pattern using a variety of tools

• generate a random pattern using one of the simulation routines

• use one of the standard point pattern datasets supplied with the package.

Copyright c©CSIRO 2008

38 Point patterns in spatstat

The package help file help(spatstat) lists all the available options.
Note that it is a standard naming convention in R that, for a class "foo", there should

be a ‘creator’ function foo that creates objects of this class from raw numerical data, and a
‘converter’ function as.foo that converts data from other formats into objects of class "foo".
We adhere to this convention in spatstat:

Class Creator Converter

"ppp" ppp as.ppp

"owin" owin as.owin

"im" im as.im

More alternatives for using ppp will be covered in Section 7.5.

Copyright c©CSIRO 2008

39

7 Windows in spatstat

Many commands in spatstat require us to specify a window, study region or domain. It will
be handy to know more about windows in spatstat.

An object of class "owin" (“observation window”) represents a region or window in two-
dimensional space. The window may be

• a rectangle;

• a polygon or polygons, with polygonal holes; or

• an irregular shape represented by a binary pixel image mask.

Rectangular window

Polygonal window Binary mask window

Objects of this class are created by the function owin. There are methods for printing and
plotting windows, and numerous geometrical operations.

7.1 Making windows

7.1.1 Rectangular window

To create a rectangular window, type

> owin(xrange, yrange)

where xrange, yrange are vectors of length 2 giving the x and y dimensions, respectively, of
the rectangle.

> owin(c(0, 3), c(1, 2))

window: rectangle = [0, 3] x [1, 2] units

For a square window you can also use square:

> square(5)

window: rectangle = [0, 5] x [0, 5] units

7.1.2 Circular window

For a circular window use disc:

> W <- disc(radius = 3, centre = c(0, 0))

Currently a circular window is represented as a polygon with a large number of edges.

Copyright c©CSIRO 2008

40 Windows in spatstat

7.1.3 Polygonal window

Spatstat supports polygonal windows of arbitrary shape and topology. That is, the boundary
of the window may consist of one or more closed polygonal curves, which do not intersect
themselves or each other. The window may have ‘holes’. Type

> owin(poly = p)

or

> owin(poly = p, xrange, yrange)

to create a polygonal window. The argument poly=p indicates that the window is polygonal
and its boundary is given by the dataset p. Note we must use the “name=value” syntax to give
the argument poly. The arguments xrange and yrange are optional here; if they are absent,
the x and y dimensions of the bounding rectangle will be computed from the polygon.

If the window boundary is a single polygon, then p should be a list with components x and y

giving the coordinates of the vertices of the window boundary, traversed anticlockwise. For
example, the triangle with corners (0, 0), (1, 0) and (0, 1) is created by

> Z <- owin(poly = list(x = c(0, 1, 0), y = c(0, 0, 1)))

> plot(Z)

Z

Note that polygons should not be closed, i.e. the last vertex should not equal the first
vertex. The same convention is used in the standard plotting function polygon().

If the window boundary consists of several separate polygons, then p should be a list, each
of whose components p[[i]] is a list with components x and y describing one of the polygons.
The vertices of each polygon should be traversed anticlockwise for external boundaries and
clockwise for internal boundaries (holes). For example, the following creates a triangle
with a square hole.

> Z <- owin(poly = list(list(x = c(0, 8, 0), y = c(0, 0, 8)), list(x = c(2,

+ 2, 3, 3), y = c(2, 3, 3, 2))))

> plot(Z)

Copyright c©CSIRO 2008

7.1 Making windows 41

Z

Notice that the first boundary polygon is traversed anticlockwise and the second clockwise,
because it is a hole.

It is often useful to plot a polygonal window with line shading:

> plot(Z, hatch = TRUE)

Z

7.1.4 Binary mask

A window may be defined by a discrete pixel approximation. Type

owin(mask=m, xrange, yrange)

to create the window object. Here m should be a matrix with logical entries; it will be interpreted
as a binary pixel image whose entries are TRUE where the corresponding pixel belongs to the
window.

The rectangle with dimensions xrange, yrange is divided into equal rectangular pixels. The
correspondence between matrix indices m[i,j] and cartesian coordinates is slightly idiosyncratic:
the rows of m correspond to the y coordinate, and the columns to the x coordinate. The entry
m[i,j] is TRUE if the point (xx[j],yy[i]) (sic) belongs to the window, where xx, yy are
vectors of pixel coordinates equally spaced over xrange and yrange respectively. The length of
xx is ncol(m) while the length of yy is nrow(m).

In some GIS applications the study region will be given as a binary pixel image. A safe
strategy is to dump the data from the GIS system to a text file, and read the text file into R

using scan. Then reformat it as a matrix, and use owin to create the window object.

To convert a rectangle or polygonal window to a binary mask, use as.mask.

Copyright c©CSIRO 2008

42 Windows in spatstat

> Z <- owin(poly = list(x = c(0, 1, 0), y = c(0, 0, 1)))

> W <- as.mask(Z)

> plot(W)

W

7.2 Converting from GIS formats

There is a wide variety of software packages for handling spatial data, especially Geographical
Information Systems (GIS). These packages use many different formats to represent spatial data.
Typically spatstat does not support these formats: this would not be good software design.

Specialised R packages exist for handling different spatial data file formats. The most useful
ones are rgdal, shapefiles and maptools. These packages will make it possible for you to read
your data from a file into an R session. The rgdal package has the most functionality, but can
sometimes be difficult to install, as it requires installation of an external library on your system.
The packages shapefiles and maptools have no such difficulty.

The package sp provides generic support for spatial data types in R. It enables you to convert
between different representations of your data in R.

The usual procedure for converting spatial data is:

1. read your data file into R using a package designed specifically for that file format (e.g.
shapefiles for ESRI shapefiles), converting it into an R dataset;

2. convert this R dataset into a generic format used by sp;

3. convert the generic sp format to the required spatstat format, using sp.

For example, if your window (spatial region) is supplied as an “ESRI shapefile” with a name
like myfile.shp, then type the following:

> library(maptools)

> S <- readShapePoly("myfile.shp")

> library(sp)

> SP <- as(S, "SpatialPolygons")

> W <- as(SP, "owin")

The readShapePoly command reads the file myfile.shp and returns an object S of class
"SpatialPolygonsDataFrame". The next command converts this to an object of class "SpatialPolygons"
and the last command converts this in turn into a window (object of class "owin") in spatstat.

This procedure has to be followed separately for different types of spatial data. Point pat-
terns, windows and pixel images are handled slightly differently. If your point pattern locations
are supplied as an ESRI shapefile mypoints.shp, then the commands would be

Copyright c©CSIRO 2008

7.3 Functions that return a window 43

> S <- readShapePoints("myfile.shp")

> SP <- as(S, "SpatialPoints")

> P <- as(SP, "ppp")

The result is a point pattern (object of class "ppp") in spatstat, but you then need to assign
the correct window to it.

For further information on handling GIS formats see [17].

7.3 Functions that return a window

Some functions return a window object. They include

as.owin Convert other data to a window object
disc Create a circular window
clickpoly The user draws a polygon on the screen
bounding.box Bounding box of a window
bounding.box.xy Bounding box of a point pattern
convexhull.xy Convex hull of a point pattern
ripras Ripley-Rasson estimator of window, given only the points
trim.rectangle Cut off side(s) of a rectangle
levelset Level set of a pixel image
solutionset Solution of an equation involving pixel image(s)
tiles List of the tiles in a tessellation.

For example, the dataset bei.extra$elev is a pixel image containing altitude (elevation)
values for a study region. To find the subset where altitude exceeds 145,

> elev <- bei.extra$elev

> W <- levelset(elev, 145, ">")

> plot(W)

W

The result W is a window.

The accompanying dataset bei.extra$grad is a pixel image of the slope (gradient) of the
terrain. To find the subset where altitude is below 140 and slope exceeds 0.1,

> grad <- bei.extra$grad

> V <- solutionset(elev <= 140 & grad > 0.1)

> plot(V)

Copyright c©CSIRO 2008

44 Windows in spatstat

V

7.4 Operations on windows

Basic methods for the class "owin" include
print.owin print short description of a window
summary.owin print detailed summary of a window
plot.owin plot a window

Numerous geometrical operations are implemented for window objects. They include:

area.owin compute window’s area
diameter compute window’s diameter
intersect.owin intersection of two windows
union.owin union of two windows
bounding.box Find a tight bounding box for the window
complement.owin swap inside and outside
rotate rotate window
shift translate window
affine apply affine transformation
rescale change scale and adjust units
as.mask convert to binary image mask
dilate.owin morphological dilation
erode.owin morphological erosion
eroded.areas compute areas of eroded windows
inside.owin determine whether a point is inside a window
distmap.owin distance transform image
centroid.owin compute centroid (centre of mass) of window
is.subset.owin determine whether one window contains another

7.5 Creating a point pattern in any window

As we saw in Section 6.1, the function ppp() will create a point pattern (an object of class
"ppp") from raw numerical data in R.

Suppose the x, y coordinates of the points of the pattern are contained in vectors x and y of
equal length. Then

ppp(x, y, other.arguments)

will create the point pattern. The ‘other arguments’ must determine a window for the pattern,
in one of two ways:

Copyright c©CSIRO 2008

7.5 Creating a point pattern in any window 45

• the other arguments can be passed to owin to determine a window:
ppp(x, y, xrange, yrange) point pattern in rectangle
ppp(x, y, poly=p) point pattern in polygonal window
ppp(x, y, poly=p, xrange, yrange) point pattern in polygonal window
ppp(x, y, mask=m, xrange, yrange) point pattern in binary mask window

• if W is a window object (class "owin") then

> ppp(x, y, window = W)

will create the point pattern.

You may already have a window W (an object of class "owin") ready to hand, and now want
to create a pattern of points in this window. For example you may want to put a new point
pattern inside the window of an existing point pattern X; the window is accessed as X$window,
so type

ppp(x, y, window=X$window)

Copyright c©CSIRO 2008

46 Manipulating point patterns

8 Manipulating point patterns

Before proceeding, we need to know more about how to manipulate and interrogate point pattern
data.

8.1 Format of ppp objects

A point pattern is represented in spatstat by an object of the class "ppp". This contains the
coordinates of the points, optional ‘mark’ values attached to the points, and a description of the
study region or spatial ‘window’.

8.1.1 Format

A point pattern object P has the following components:

• P$n is the number of points (which may be zero).

• P$x is a numeric vector containing the x coordinates of the points. Its length equals P$n

(and may be zero).

• P$y is a numeric vector containing the y coordinates of the points. Its length also equals
P$n.

• P$marks contains the marks. It is either NULL, or a vector of length P$n containing the
mark values. The entries of P$marks may be of any atomic type (character, numeric,
logical, complex).

• P$window is an object of class "owin" (“observation window”) determining the study region
or spatial ‘window’.

You can extract these components individually; for example, to make a histogram of the
x coordinates just type hist(P$x). However, do not assign values to these components
directly, or you may create inconsistencies in the data which cause spatstat to crash. To
manipulate point patterns, use the functions provided.

Although a point pattern should be treated as an unordered set, the coordinates are obviously
stored in a particular order, and can be addressed using that order.

> data(longleaf)

> x <- longleaf$x

> y <- longleaf$y

> diameter <- longleaf$marks

> cbind(x, y, diameter)[1:5,]

x y diameter

[1,] 200.0 8.8 32.9

[2,] 199.3 10.0 53.5

[3,] 193.6 22.4 68.0

[4,] 167.7 35.6 17.7

[5,] 183.9 45.4 36.9

If the marks are a categorical variable, then P$marks is a factor.

Copyright c©CSIRO 2008

8.2 Operations on ppp objects 47

> data(chorley)

> x <- chorley$x

> y <- chorley$y

> type <- chorley$marks

> data.frame(x, y, type)[55:60,]

x y type

55 355.6 413.9 larynx

56 355.5 413.9 larynx

57 355.7 413.9 larynx

58 355.6 414.1 larynx

59 359.0 417.3 lung

60 353.1 426.9 lung

> is.factor(type)

[1] TRUE

> levels(type)

[1] "larynx" "lung"

> table(type)

type

larynx lung

58 978

8.1.2 A point pattern needs a window

Note especially that, when you create a new point pattern object, you need to specify the spatial
region or window in which the pattern was observed. In spatstat, the observation window is an
integral part of the point pattern. A point pattern dataset consists of knowledge about where
points were not observed, as well as the locations where they were observed. Even something as
simple as estimating the intensity of the pattern depends on the window of observation. It would
be wrong, or at least different, to analyze a point pattern dataset by “guessing” the appropriate
window (e.g. by computing the convex hull of the points). An analogy may be drawn with the
difference between sequential experiments and experiments in which the sample size is fixed a
priori.

Often, the window of observation is a rectangle, so this requirement just means that we have
to specify the x and y dimensions of the rectangle when we create the point pattern. Windows
with a more complicated shape can easily be represented in spatstat, as described below.

For situations where the window is really unknown, spatstat provides the function ripras

to compute the Ripley-Rasson estimator of the window, given only the point locations.

8.2 Operations on ppp objects

Directly manipulating the entries inside an object is not safe. It is also unnecessary, because
these manipulations can be performed using functions or operators.

For point patterns (objects of class "ppp") there are the following operations.

Copyright c©CSIRO 2008

48 Manipulating point patterns

8.2.1 Extracting subsets

Recall that in R the subset operator is []. If x is a vector of numbers, then x[s] extracts an
element or subset of x. The subset index s can be

• a positive integer: x[3] means the third element of x;

• a vector of positive integers indicating which elements to extract: x[c(2,4,6)] extracts
the 2nd, 4th and 6th elements of x;

• a vector of negative integers indicating which elements not to extract: x[-1] means all
elements of x except the first one;

• a vector of logical values, of the same length as x, with each TRUE entry of s indicating
that the corresponding entry of x should be extracted, and FALSE indicating that it should
not be extracted. For example x[x > 3.1] extracts those elements of x which are greater
than 3.1.

To extract a subset of a point pattern in spatstat, we also use the subset operator []. If
X is a point pattern then X[s] is also a point pattern, consisting of those points of X selected by
the subset index s, where s can be any of the three types listed above, (Recall that the points
in a point pattern object are stored in a particular order; this is the order in which they are
indexed by s.)

> data(bei)

> bei

planar point pattern: 3604 points

window: rectangle = [0, 1000] x [0, 500] metres

> bei[1:10]

planar point pattern: 10 points

window: rectangle = [0, 1000] x [0, 500] metres

It is also possible to extract the subset defined by a spatial region. If X is a point pattern
and W is a spatial window (object of class "owin") then X[W] is the point pattern consisting of
all points of X that lie inside W.

> W <- owin(c(100, 800), c(100, 400))

> W

window: rectangle = [100, 800] x [100, 400] units

> bei[W]

planar point pattern: 918 points

window: rectangle = [100, 800] x [100, 400] units

Tip: You may need to put quotes around the subset operator in some contexts.
The generic subset operator is [but the help file is summoned by typing help("[").
The subset method for point patterns is called [.ppp but the help file is summoned
by typing help("[.ppp").

The command split.ppp allows you to divide a point pattern into sub-patterns, and the
command by.ppp allows you to perform an operation on each sub-pattern.

Copyright c©CSIRO 2008

8.2 Operations on ppp objects 49

8.2.2 Fiddling with marks

To extract the marks from a point pattern, use marks:

> m <- marks(X)

To add or change marks, use marks<-

> marks(X) <- whatever

To delete marks from a point pattern, assign the marks to NULL:

> marks(X) <- NULL

For convenience, you can also perform these operations inside an expression, using the func-
tion unmark to remove marks and the binary operator %mark% to add marks:

> data(redwood)

> radii <- rexp(redwood$n, rate = 10)

> X <- redwood %mark% radii

> X

marked planar point pattern: 62 points

marks are numeric, of type ’double’

window: rectangle = [0, 1] x [-1, 0] units

> unmark(X)

planar point pattern: 62 points

window: rectangle = [0, 1] x [-1, 0] units

For a point pattern with real-valued marks, the method cut.ppp for the generic function
cut will divide the range of mark values into several discrete bands, yielding a point pattern
with categorical marks:

> Y <- cut(X, breaks = 3)

> Y <- cut(X, breaks = c(0, 1, 10, Inf))

> Y

marked planar point pattern: 62 points

multitype, with levels = (0,1] (1,10] (10,Inf]

window: rectangle = [0, 1] x [-1, 0] units

8.2.3 Changing scales and units

A scalar dilation can be applied using affine. For example, the Swedish Pines data were
recorded in decimetres. To convert the coordinates to metres, we could type

> data(swedishpines)

> X <- affine(swedishpines, mat = diag(c(1/10, 1/10)))

> unitname(X) <- c("metre", "metres")

> X

Copyright c©CSIRO 2008

50 Manipulating point patterns

planar point pattern: 71 points

window: rectangle = [0, 9.6] x [0, 10] metres

The command rescale performs the same function:

> data(swedishpines)

> X <- rescale(swedishpines, 10)

> X

planar point pattern: 71 points

window: rectangle = [0, 9.6] x [0, 10] metres

Beware that this does not change the marks in the point pattern. If your marks represent
tree diameter and you want to rescale them as well, this must be done by hand.

8.2.4 Geometrical transformations

The commands rotate, shift and affine apply two-dimensional rotation, vector shifts, and
affine transformations, respectively.

8.2.5 Random perturbations of a point pattern

It is sometimes useful to randomise the data, for example for hypothesis testing. The command
rshift will apply the same random shift to each point, while rjitter will apply a different
random shift to each point. The command quadratresample performs a block resampling
procedure in which the window is divided into rectangles and these rectangles are randomly
resampled.

8.3 Example

We will use one of the standard point pattern datasets that is installed with the package. The
NZ trees dataset represent the positions of 86 trees in a forest plot 153 by 95 feet.

> data(nztrees)

> nztrees

planar point pattern: 86 points

window: rectangle = [0, 153] x [0, 95] feet

> plot(nztrees)

nztrees

Copyright c©CSIRO 2008

8.3 Example 51

To get an impression of local spatial variations in intensity, we plot a kernel density estimate
of intensity.

> contour(density(nztrees, 10), axes = FALSE)

density(nztrees, 10)

 0.002

 0.004

 0.004

 0.004

 0.004

 0.006

 0.006

 0.008

 0.008 0.008

 0.008

 0.008

 0
.0

1

 0.01

 0.01

 0.01

 0.012 0.014

 0.018

The density surface has a steep slope at the top right-hand corner of the study region.
Looking at the plot of the point pattern itself, we can see a cluster of trees at the top right.

You may also notice a line of trees at the right-hand edge of the study region. It looks
as though the study region may have included some trees that were planted as a boundary or
avenue. This sticks out like a sore thumb if we plot the x coordinates of the trees:

> hist(nztrees$x, nclass = 25)

Histogram of nztrees$x

0
2

4
6

8
10

We might want to exclude the right-hand boundary from the study region, to focus on the
pattern of the remaining trees. Let’s say we decide to trim a 5-foot margin off the right-hand
side.

First we create the new, trimmed study region:

> chopped <- owin(c(0, 148), c(0, 95))

or more slickly,

> win <- nztrees$window

> chopped <- trim.rectangle(win, xmargin = c(0, 5), ymargin = 0)

> chopped

window: rectangle = [0, 148] x [0, 95] feet

Copyright c©CSIRO 2008

52 Manipulating point patterns

(Notice that chopped is not a point pattern, but simply a rectangle in the plane.)
Then, using the subset operator [.ppp, we simply extract the subset of the original point

pattern that lies inside the new window:

> nzchop <- nztrees[chopped]

We can now study the ‘chopped’ point pattern:

> summary(nzchop)

Planar point pattern: 78 points

Average intensity 0.00555 points per square foot

Window: rectangle = [0, 148] x [0, 95] feet

Window area = 14060 square feet

Unit of length: 1 foot

> plot(density(nzchop, 10))

> plot(nzchop, add = TRUE)

density(nzchop, 10)

0.
00

5
0.

01
0.

01
5

0.
02

Removing the right margin seems to have produced a much more uniform pattern.

8.4 Splitting and combining point patterns

Sometimes it is useful to split a point pattern dataset into several sub-patterns, and perform
some calculations on each sub-pattern.

8.4.1 Splitting a point pattern into sub-patterns

The powerful R command split has a method for point patterns. This enables the user to
divide a point pattern into sub-patterns using any suitable criterion.

• If X is a marked point pattern, and the marks are a factor, then split(X) separates the
data points into different point patterns according to their mark value.

• If Z is a pixel image with factor values, then split(X,Z) separates the data points into
different point patterns according to the pixel value of Z at each point.

• If Z is a tessellation, then split(X,Z) separates the point pattern X into sub-patterns
delineated by the tiles of Z.

Copyright c©CSIRO 2008

8.4 Splitting and combining point patterns 53

In each case the result is a list of point patterns. You can then use the R command lapply

to perform any desired operation on each element of the list. For example, to apply adaptive
estimation of intensity to each species of tree in the Lansing Woods data,

> data(lansing)

> V <- split(lansing)

> A <- lapply(V, adaptive.density)

> plot(as.listof(A))

A neater way to operate on sub-patterns is to use by.ppp, a method for the R function
by. The call by(X, INDICES=Z, FUN=f) is essentially equivalent to lapply(split(X,Z), f).
It splits the dataset X into sub-patterns according to Z, then applies the function f to each
sub-pattern. So to apply adaptive estimation of intensity to each species of tree in the Lansing
Woods data,

> data(lansing)

> A <- by(lansing, FUN = adaptive.density)

> plot(A)

8.4.2 Combining point patterns

Any number of point patterns can be combined to make a single pattern, using superimpose.

> X <- runifpoint(20)

> Y <- runifpoint(10)

> superimpose(X, Y)

planar point pattern: 30 points

window: rectangle = [0, 1] x [0, 1] units

The argument W, if given, specifies the window for the combined point pattern.

> superimpose(X, Y, W = square(2))

planar point pattern: 30 points

window: rectangle = [0, 2] x [0, 2] units

To attach a separate mark to each component pattern, use argument names:

> superimpose(Hooray = X, Boo = Y)

marked planar point pattern: 30 points

multitype, with levels = Hooray Boo

window: rectangle = [0, 1] x [0, 1] units

Copyright c©CSIRO 2008

54 Pixel images in spatstat

9 Pixel images in spatstat

An object of class "im" represents a pixel image. It specifies a rectangular grid of locations
(“pixels”) in two dimensional space, and a numerical value for each pixel. The pixel values
can be real numbers, integers, complex numbers, single characters or strings, logical values or
categorical values. A pixel’s value can also be NA, meaning that it is not defined at that location.

A pixel image represents a spatial function Z(u) in many different contexts. It may contain
experimental data (such as a map of terrain elevation) or computed values (such as a kernel
estimate of point process intensity) or it may be directly obtained from a camera (such as a
satellite image).

9.1 Creating a pixel image

9.1.1 Creating an image from raw data

To create a pixel image from raw data, use im:

> im(mat, xcol, yrow)

where mat is a matrix containing the pixel values. The pixel values could have been generated
by hand, or read from a file.

The correspondence between matrix indices mat[i,j] and cartesian coordinates is slightly
idiosyncratic: the rows of m correspond to the y coordinate, and the columns to the x coordinate.

The argument xcol is a vector of equally-spaced x coordinate values corresponding to the
columns of mat, and yrow is a vector of equally-spaced y coordinate values corresponding to
the rows of mat. These vectors determine the spatial position of the pixel grid. The length of
xcol is ncol(mat) while the length of yrow is nrow(mat). If mat is not a matrix, it will be
converted into a matrix with nrow(mat) = length(yrow) and ncol(mat) = length(xcol).

> vec <- seq(-5, 5, length = 1200) + rnorm(1200)

> mat <- matrix(vec, nrow = 30, ncol = 40)

> noisy <- im(mat, xcol = seq(0, 4, length = 40), yrow = seq(0,

+ 3, length = 30))

> plot(noisy)

noisy

−
6

−
4

−
2

0
2

4
6

For some strange reason, R does not allow matrices with categorical (factor) values. To
create a pixel image with categorical values, leave the pixel values as a vector. The im command
will reshape it:

Copyright c©CSIRO 2008

9.1 Creating a pixel image 55

> cutvec <- cut(mat, 3)

> cutnoise <- im(cutvec, xcol = seq(0, 1, length = 40), yrow = seq(0,

+ 1, length = 30))

> plot(cutnoise)

cutnoise

(−
7.

09
,−

1.
98

]
(−

1.
98

,3
.1

4]
(3

.1
4,

8.
25

]

Although mat was a matrix, cutvec is a vector, with factor values. Finally cutnoise is a
factor-valued image.

9.1.2 Converting a function to an image

The command as.im will convert other types of data to a pixel image.

A function f(x,y) can be converted into a pixel image. This makes it easy to create a pixel
image in which the pixel values are defined by an algebraic formula in the x and y coordinates.

> f <- function(x, y) {

+ x^2 + y^2

+ }

> w <- owin(c(-1, 1), c(-1, 1))

> Z <- as.im(f, w)

The second argument of as.im is a window object (class "owin") specifying the domain of
the image.

9.1.3 Functions that return a pixel image

Functions that return an object of class "im" include:

Copyright c©CSIRO 2008

56 Pixel images in spatstat

as.im converts other data to a pixel image
density.ppp kernel smoothing of point pattern
density.psp kernel smoothing of line segment pattern
distmap.owin distance function of window
distmap.ppp distance function of point pattern
distmap.psp distance function of line segment pattern
setcov geometric covariance function of a window
predict.ppm fitted intensity of a point process model
[.im subset of an image (or look up pixel values)
shift.im vector shift of image domain
rescale.im rescaling of image domain
eval.im evaluate any expression involving images
cut.im convert numeric image to factor image
split.im divide pixel image into sub-images
by.im apply function to subsets of pixel image
interp.im spatial interpolation of image
blur spatial blurring and extrapolation of image

9.2 Inspecting an image

9.2.1 Plotting an image

Methods for plotting an image object include:
plot.im display as colour image
contour.im contour plot
persp.im perspective plot of surface

These are methods for generic functions, so you would type plot(Z), contour(Z) or persp(Z)
to display a pixel image Z.

> opa <- par(mfrow = c(1, 3))

> data(redwood)

> D <- density(redwood)

> plot(D)

> persp(D)

> contour(D)

> par(opa)

D

0
20

40
60

80
10

0
12

0

x

y

D

D

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

D

 10

 20

 20

 30

 30

 30

 40

 40

 40

 4
0

 50

 50

 50

 5
0

 60

 60

 60

 60

 70

 70

 70

 70

 7
0

 80

 80

 8
0

 90

 90

 100

 100

 100

 110

 110

 110

 120

 120

For plot.im, note that the default colour map for image plots in R has only 12 colours
and can convey a misleading impression of the gradation of pixel values in the image. Use the
argument col to control the colour map.

Copyright c©CSIRO 2008

9.2 Inspecting an image 57

> opa <- par(mfrow = c(1, 2))

> plot(Z)

> plot(Z, col = grey(seq(1, 0, length = 512)))

> par(opa)

Z

0
0.

5
1

1.
5

Z

0
0.

5
1

1.
5

For persp.im, see also the help for persp.default for the names of various arguments to
control the appearance of the plot. For example, the viewing direction is controlled by the angles
theta and phi.

> persp(density(redwood), theta = 30)

x
y

density(redw
ood)

density(redwood)

Similarly for contour.im, consult also the help file for contour.default to control the
appearance of the contours.

For some inspiring examples of perspective and contour plots with beautiful colour schemes
and shading, see the R graphics demonstration by typing demo(graphics).

Copyright c©CSIRO 2008

58 Pixel images in spatstat

9.2.2 Exploratory analysis

To inspect an image, the following are useful.

as.matrix extract matrix of pixel values from image
cut.im convert numeric image to factor image
hist.im histogram of pixel values

For an image Z with any type of values, plot(cut(Z, 3)) will divide the pixel values into 3
bands, and display the image with the 3 bands rendered in 3 different colours.

To compute numerical summaries of pixel values, like the median or order statistics of the
pixel values, extract the pixel values using as.matrix(Z) then apply the summary operation.

9.3 Manipulating images

9.3.1 Subsets of an image

The subset operator [has a method for pixel images, [.im:

> X[S]

> X[S, drop = TRUE]

The subset to be extracted is determined by the index argument S.

• If S is a point pattern, or a list(x,y), then the values of the pixel image X at these points
are extracted, and returned as a vector.

• If S is a window (an object of class "owin"), the values of the image inside this window
are extracted. The result is a pixel image if possible, and a numeric vector otherwise (see
help("[.im") for details).

• If S is a pixel image with logical values, it is interpreted as a window (with TRUE inside
the window).

The logical argument drop determines whether pixel values that are undefined are omitted
(drop = TRUE) or returned as the value NA (drop=FALSE).

See help("[.im") for full details.

The subset operator can be used to look up the value of a pixel image at a single point:

> data(bei)

> elev <- bei.extra$elev

> elev[list(x = 142, y = 356)]

[1] 147.08

or to display a subregion:

> S <- owin(c(200, 300), c(100, 200))

> plot(elev[S])

Copyright c©CSIRO 2008

9.3 Manipulating images 59

elev[S]

14
0.

5
14

1
14

1.
5

14
2

14
2.

5
14

3
14

3.
5

This can even be performed interactively, using the R function locator to click on a point
in the window:

> elev[locator(1)]

9.3.2 Computation with images

The handy function eval.im allows us to perform pixel-by-pixel calculations on an image or on
several compatible images.

If Z is a pixel image, to take the logarithm of each pixel value,

> logZ <- eval.im(log(Z))

If A and B are two pixel images with compatible grids of pixels (i.e. having the same numbers
of pixels and the same coordinate locations), then to find the sum of the corresponding pixel
values,

> C <- eval.im(A + B)

The expressions may involve constants and functions as well, so long as the expression is
‘parallelised’.

> W <- eval.im(sin(pi * Z))

> V <- eval.im(Z > 3)

> U <- eval.im(ifelse(Z > 3, 42, Z))

Other functions which manipulate images include the following:
shift.im vector shift of an image
cut.im convert numeric image to factor image
split.im divide pixel image into sub-images
by.im apply function to subsets of pixel image
interp.im spatially interpolate an image
levelset threshold an image (produces a window)
solutionset find the region where a statement is true (produces a window)

Copyright c©CSIRO 2008

60 Tessellations

10 Tessellations

A “tessellation” is a division of space into non-overlapping regions (“tiles”).

Tessellation

Tessellations have several uses in spatstat. The tessellation may be ‘real’, for example,
a continent divided into states or provinces. The tessellation may be completely artificial, for
example, the rectangular quadrats which we use in quadrat counting. Or the tessellation may
be computed from other data, for example, the Dirichlet tessellation defined by a set of points.

10.1 Creating a tessellation

An object of class "tess" represents a tessellation. Currently spatstat supports three kinds of
tessellations:

• rectangular tessellations in which the tiles are rectangles with sides parallel to the
coordinate axes;

• tile lists, tessellations consisting of a list of windows, usually polygonal windows;

• pixellated tessellations, in which space is divided into pixels and each tile occupies a
subset of the pixel grid.

rectangular list

pixel

a
b

c
d

e
f

g
h

i
j

k

Copyright c©CSIRO 2008

10.2 Computed tessellations 61

All three types of tessellation can be created by the command tess.

To create a rectangular tessellation:

> tess(xgrid = xg, ygrid = yg)

where xg and yg are vectors of coordinates of vertical and horizontal lines determining a
grid of rectangles. Alternatively, if you want to divide a rectangular window W into rectangles
of equal size, you can type

> quadrats(W, nx, ny)

where nx,ny are the numbers of rectangles in the x and y directions, respectively. A common
use of this command is to create quadrats for a quadrat-counting method.

To create a tessellation from a list of windows,

> tess(tiles = z)

where z is a list of objects of class "owin". The windows should not be overlapping; currently
spatstat does not check this. This command is commonly used when the study region is divided
into administrative regions (states, départements, postcodes, counties) and the boundaries of
each sub-region are provided by GIS data files.

To create a tessellation from a pixel image,

> tess(image = Z)

where Z is a pixel image with factor values. Each level of the factor represents a different tile
of the tessellation. The pixels that have a particular value of the factor constitute a tile. This
command is often used to separate the landcover types in a landcover image (a pixel image in
which each pixel is labelled by the type of vegetation or land use at that location) into different
regions.

The command as.tess can also be used to convert other types of data to a tessellation.

10.2 Computed tessellations

There are two commands which compute a tessellation from a point pattern.

The command dirichlet(X) computes the Dirichlet tessellation or Voronoi tessellation of
the point pattern X. The tile associated with a given point of the pattern X is the region of space
which is closer to that point than to any other point of X. The Dirichlet tiles are polygons. The
command dirichlet(X) computes these polygons and intersects them with the window of X.

> X <- runifpoint(42)

> plot(dirichlet(X))

Copyright c©CSIRO 2008

62 Tessellations

dirichlet(X)

The command delaunay(X) computes the Delaunay triangulation of the point pattern X.
Strictly speaking this is not a tessellation but a network or graph, formed by joining some of the
points of X by straight lines. Two points of X are joined if their Dirichlet tiles share a common
edge. The resulting network forms a set of non-overlapping triangles. These triangles cover the
convex hull of X rather than the entire window of X.

> plot(delaunay(X))

delaunay(X)

10.3 Operations involving a tessellation

There are methods for print, plot and [for tessellations.
Use the command tiles to extract a list of the tiles in a tessellation. The result is a list

of windows ("owin" objects). This can be handy if, for example, you want to compute some
characteristic of the tiles in a tessellation, such as their areas or diameters:

> X <- runifpoint(10)

> V <- dirichlet(X)

> U <- tiles(V)

> unlist(lapply(U, area.owin))

Copyright c©CSIRO 2008

10.3 Operations involving a tessellation 63

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7

0.08923453 0.18978755 0.06111215 0.11110646 0.07150611 0.05885538 0.05563879

Tile 8 Tile 9 Tile 10

0.19671046 0.08942098 0.07662757

Tessellations can be used to classify the points of a point pattern, in split.ppp, cut.ppp
and by.ppp. If X is a point pattern and V is a tessellation, then

• cut(X,V) attaches marks to the points of X identifying which tile of V each point falls into;

• split(X,V) divides the point pattern into sub-patterns according to the tiles of V, and
returns a list of the sub-patterns;

• by(X,V,FUN) divides the point pattern into sub-patterns according to the tiles of V, applies
the function FUN to each sub-pattern, and returns the results as a list.

> par(mfrow = c(1, 3))

> X <- runifpoint(100)

> plot(X)

> Z <- dirichlet(runifpoint(16))

> plot(Z)

> plot(cut(X, Z))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

> par(mfrow = c(1, 1))

X Z cut(X, Z)

> plot(split(X, Z))

Copyright c©CSIRO 2008

64 Tessellations

split(X, Z)

1 2 3 4

5
6

7 8

9
10

11

12

13
14 15

16

If we plot two tessellations on the same spatial domain, what we see is another tessellation.
The “intersection” (or “overlay” or “common refinement”) of two tessellations X and Y is the
tessellation whose tiles are the intersections between tiles of X and tiles of Y. The command
intersect.tess computes the intersection of two tessellations.

> opa <- par(mfrow = c(1, 3))

> plot(X)

> plot(Y)

> plot(intersect.tess(X, Y))

> par(opa)

X Y intersect.tess(X, Y)

Copyright c©CSIRO 2008

10.3 Operations involving a tessellation 65

PART III. INTENSITY AND RANDOMNESS

Finally we can start working on statistical methods for analysing point pattern data. Part III
of the workshop discusses how to investigate the intensity of a point pattern, and how to assess
whether a pattern is completely random.

Copyright c©CSIRO 2008

66 Methods 1: Investigating intensity

11 Methods 1: Investigating intensity

When we analyse numerical data, we often begin by taking the sample mean. The analogue of
the mean or expected value of a random variable is the intensity of a point process.

‘Intensity’ is the average density of points (expected number of points per unit area). In-
tensity may be constant (‘uniform’ or ‘homogeneous’) or may vary from location to location
(‘inhomogeneous’). Investigation of the intensity should be one of the first steps in analysing a
point pattern.

11.1 Uniform intensity

11.1.1 Theory

If the point process X is homogeneous, then for any sub-region B of two-dimensional space, the
expected number of points in B is proportional to the area of B:

E[N(X ∩ B)] = λ area(B)

and the constant of proportionality λ is the intensity. Intensity units are numbers per unit area
(length−2). If we know that a point process is homogeneous, then the empirical density of points,

λ =
n(x)

area(W)

is an unbiased estimator of the true intensity λ.

11.1.2 Implementation in spatstat

To compute the estimator λ in spatstat, use summary.ppp:

> data(bei)

> summary(bei)

Planar point pattern: 3604 points

Average intensity 0.00721 points per square metre

Window: rectangle = [0, 1000] x [0, 500] metres

Window area = 5e+05 square metres

Unit of length: 1 metre

The estimated intensity is λ = 0.00721 points per square metre. To extract this intensity
value, type

> lamb <- summary(bei)$intensity

> lamb

[1] 0.007208

Copyright c©CSIRO 2008

11.2 Inhomogeneous intensity 67

11.2 Inhomogeneous intensity

11.2.1 Theory

In general the intensity of a point process will vary from place to place. Assume that the
expected number of points falling in a small region of area du around a location u is equal to
λ(u) du. Then λ(u) is the “intensity function” of the process, satisfying

E[N(X ∩ B)] =

∫

B
λ(u) du

for all regions B.
More generally there could be singular concentrations of intensity (e.g. earthquake epicentres

may be concentrated along a fault line) so that an intensity function does not exist. Then we
speak of the “intensity measure” Λ defined by

Λ(B) = E[N(X ∩ B)]

for each B ⊂ R
2, assuming the expectation is finite.

If it is suspected that the intensity may be inhomogeneous, the intensity function or intensity
measure can be estimated nonparametrically by techniques such as quadrat counting and kernel
smoothing.

In quadrat counting, the window W is divided into subregions (‘quadrats’) B1, . . . , Bm of
equal area. We count the numbers of points falling in each quadrat, nj = n(x ∩ Bj) for j =
1, . . . ,m. These are unbiased estimators of the corresponding intensity measure values Λ(Bj).

The usual kernel estimator of the intensity function is

λ̃(u) = e(u)
n∑

i=1

κ(u − xi), (1)

where κ(u) is the kernel (an arbitrary probability density) and

e(u)−1 =

∫

W
κ(u − v) dv (2)

is an edge effect bias correction. Clearly λ̃(u) is an unbiased estimator of

λ∗(u) = e(u)

∫

W
κ(u − v)λ(v) dv,

a smoothed version of the true intensity function λ(u). The choice of smoothing kernel κ involves
a tradeoff between bias and variance.

Intensity can also be estimated using parametric methods, as we explain in Section 13.

11.2.2 Implementation in spatstat

Quadrat counting is performed in spatstat by the function quadratcount.

> quadratcount(bei, nx = 4, ny = 2)

x

y [0,250] (250,500] (500,750] (750,1e+03]

(250,500] 666 677 130 481

[0,250] 544 165 643 298

Copyright c©CSIRO 2008

68 Methods 1: Investigating intensity

> Q <- quadratcount(bei, nx = 6, ny = 3)

> plot(bei, cex = 0.5, pch = "+")

> plot(Q, add = TRUE, cex = 2)

bei

+

++
+

++ +

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+
+
+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

++

+
+

+

+

+

+

++

+

+

+

++

+

+

+
+

+

+

++
+

+
+

++ +

+
+

+

+

+

+ +

+ +

+
+

+

+

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+
+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++
+

+

+
+
+ +

+
++

+
+

+

+

+

+

+
+
+
++

++

++
+ +

++
+

+

+
+
+

++

+
+
+

+

++
+

+ +

+

+
+

+

+
+

+ +
+

+

+

+

++++

+

+

+ +

+++

+++

+ +

+

+++

+

++

+

+

+

++
+

++ +
+

+
++

+
+
++

+

+++
+

+

++
+
+
++

+

+

+

+
++++++++
+ +

+

+

+

++
+

+
++

+
+

+
+
+

++++
+ +

+

++

+
+

+
+

+

+

+
+

+

+

+

+

++

++

+

+

+
++
+

+

+
+

++

+
+

+
++ +
++ ++
+

+

+

++++
+

+

+

+
+

+
+++

+
++++

+

+
+

+

++
+

+
+
+

+
++ +
+

+

+
+

+

+

+++

+
+

+ +
+

++

+
+

+

+

+

+

+
+

+

+

++
+++

+

+
+

+
+

+
+ ++++
+
++

++
+
+

+
+ ++

+

++

++

+++

+
+

+ +

+ +

++ +

++++ +
+

+

+

+++
++++

+
++

+

+

+

+

+
++

+
+ +

+

+ +

+
+++

+

+

+

++
++

++++

+

+++

+
+

+

++++
+

+
+

+

++

+

+

+

+

+
+

+
+

+

++
+

++

+
+
++

+

+

+

+

++

+ +
+

+

+

++
++

+

+

+

+
+ +

+
+

++
++

+

+

+
+

++++

++

+

++ +

+
+

+
++
++
+

+ +
+

+
++++
+

+
+
++
+++++++

+

+
++

+

+

+

+

+

+

+
+

++

++

+
+
+

++++++
+++ +

+

++++++
++

++ +

+

+

+
+

+

+

+
++

+

+
+

+

+
+
++

+
+

++++ +

+
+
++

++++
++++++++

+

+

++

+

+

++++
+

+
+

++
+

+

+

+

+++

+++
++

+
++

++
+

+++
+
+

+

+

+

+++ ++

+

+
++++++
+++
++
++++
+++++++++

+++

+
+

+ ++
++

++
+++

+ +

+

+

++
++++ +

++++++ +
++
++++++++++

++
+

+++

+
+++

+

+

+

+

+++
+ +

+

+
++

+

++

+++
+

++

+

+

+

+++

+

+

+

+

+

++

++

+

+ +

+
+

+

+

+

+++ +

++
+

++

+
++

+
++++
++

+

+
++

+

+

+

+

+

+

+

+

+

++++
+++++++

+
++

++

++

+++

+
+

+

+

+

++

+
+

+++

+++

+
+

+

+++

++

+++

++
+

+

+

+

+

+
+

+

+

+ +

++

+
+

+
+ +

+

++ +

+

++

+
+
+
+

+++

+

+

+

+
+

+

+
+

+

+
+
+

+
+

+
+

+

+

+

+
++

+ +
+

+
+

+
+

+
+

+
+

++++

++

+

+
+

++ +++

+++

+

+

+
+ +++

++

+

+++

+
+
+

+

++ +
+

++

+++

+

++

++ +
+

+
+++

+

+

+
+
+

+++

++

+

+

++++
+

+ ++

+

++
+

+

+

+
+

++

++ ++

++++
+

+

+
++ +++

+

+

+ ++++ +

+

+

+
+

+

+
+

+
+
+

+

++

+
+

+++

+
+

+

+

+

+

+

+ ++

+

+

+
+

+

++

+ ++

+

+

+

+

++

+
++

+ +

+

++ +
+

++

+

+

+

+

+

++

+

+

+

+
+

+
+

+

+

+

+
+

+
+
+

+

+
+

+

+ + +

+

+

+

+
++

+ +

+

+

+ ++

+

+ ++

+++
++ +

+

+

+

+

+
+

+ + +

+ ++
++

+
++
+

+

+
+

+ +

+++

+
+

+ +

++

++++
+++

+++++++
+++++++++++++++++

+++++++++

+

+
+ ++

+
++++++

++
+

+
++

++++

++++
+

++
++
+
+++++++++++
+

+++

++
++

+

+

+ +

++
+
+++

+

+++

+

+
+

+

++++++
++++

++

+

+
+++++

++++
+

+++++
++

+ +
+
++

+
++++++++++++++++++

+
+
+++++

++++++++++++++++++
+++++
++
+
+++++

++

+

++

+

++++++
+

+++++++++++++++++

+

+

+
+
++
+++++
++++++++++++

++

+
++

+

+

+

+
+

+

+

+

+
+ +

+++

+

+++
+

+
+

+ +++
+

+

+ +

+

+

+

+
+ +

+ + +

+++

+

+ +

++
++
++
+

+++

+
+ +

+

+

+

+

+

+

++

++

+++
+

+
++

+

++
+
+

+
+

+

++++

+

+

+

+

+

++

+
+

+

+++

+
+

++
+

++
+

+

+

+++

+ +

+

+++

++

+
++

+

+

++

+

+
+

+

+

+ +

+++ +

+

++
+

+

+

+

++

+
+

++

+
+

+ +

+

++

+++
+
++

+
++
++

+
+

+

+ ++
++
+

+
++

+ ++

+
+ +

+

+
+

++
+

+
+

+
+

+
+

++

+
+

+
++

+

+

+
+

+
+

+

+
+++

+

+
++

+

+
+

+ + ++
++

+
+ +++++

+

++++
+ ++

++

++
+

+
+

+

+++

+
+
++

++
++

+

+

+

+++

++
+

++

+ +++

++

+
+ +
+

+ +

+
+

++++

+
+

++
++
+

+++
+

++
+
++
+++

+
+

+

+++

++

+

+

+
+

+ +
+

++
++

+

+

++ ++++

+

++

+

++

+

+
+

++

+++

+

+

++

+
+

+
+ +

+++

+

+

++
+

+

+++
+

+
+

+
+

++
+

+
+

+

+ +

++++++++

+

++ +
+

++
+++

+

+

+

+

++++
+

+
++

+

+++++

++ +++ ++

++ ++

++
+ ++
+ +

+++ +

+
+
+

++

+

+
+ +++
++

+

+
+++
+++

+
+
+
+
+

+

+ +

++
+

++
+

+
+++++

+

+
+

+

+++
++
+
+

+
+

+

+

++
+++
+ +

+++

+
+
+

+
+

+
++

+

+

+

+

++
+
+ +

++
++

++

+
+++ ++

+

+
+

++
++++

+

+

+
+
+

+

++
+
+
+

++

++

+
+

+
+

+
+

+

++ +

+

++
+
+
+

+
+

++
++

+ ++++
++

++
+

+++

+

+
+ + +

+
+ ++

+
+
++

+

+
+
+++

+
+

+++++

+++++++
+++ +

+

+
+

+ +++
+

++

+ +

+

+
+
+

+
+++

+
+

++

+
+

+++ +

++

+
+

+++++++
+++
+++

+
++
+
+

+++++
++

+++

+

+

+
+
+

++

++
+

+
++
++

+
+

+
+

+
+

+

+
++ +

+++
+

++ +

+

+

+++

+

+

+

+

++
+
++

++ +

+
+

+ + +
+
+ +

+

+ +

+

+

+
+
+
++

+
++

++

++
+

+
+
+++
++

+
+
+
+

+

+
+
++++++

+
+
++

++++++
++

+++

+
++

++
+
++++

+

+++

++

+

+

+
+++
++++
++

+
+

+

+

+

+

+++

+
+

+

+

++
+ ++

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

++

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+
++

+

+ +

+

+
+

+

+

+
+ +

+
+

+ ++

+
+

+

+

+
+ +

++ +

++

+++

+

+

+

+

+

+

+ +

++

+

+

+ +

+
+

+

+
+

+

+

+
+

+

+

+
+

+

+ +

+

+

+++++
+

+
+ +

+++++

++

+

+

+

+++
+
+++

+

+

+

++ ++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+ ++++++++

+

+

+
+

+
+
++

+

+
+

+

+

+

+

+

+
+++ +

+

++

+
++
+
+++++

+++

+

+
++++++++++++++
+++++++++++

+

+
+

+++++ +
+ +

++++++

+

+
+++++

++++
++
++++++++
+++++

+ +
+

+
+

+

+

+

+

+ +

+

+
+

+

+ ++

+

+

+

+

+
+

+
+

+++

+

+

+

+

+

++

+

++

+
++

+

+

++

++
++++
+
++

++
+
+

+

+++
+

+

++
++

+

++

+
+
+

+
+

+

+

+

+
+

++

++
+

++ +

+

+

++++
++++

+

+

+

+

+

+
+

+

+

+
+

++++

++ +

+
+

+

+

+

+

+
+

+ + +

+

++

+
+

+

+
+++

+

+
+

++

+++

+
+

+

+

++
+

+++++
+

+

+
+

+

++ ++

+

+

+

+

+

++++

+ ++

+

+
+

+++
+
+

+

+

+

+

+

+

+

+

++

+

+

+
+

+
+

+

+

+

+
+
++++
+++

+

+

+
+

+
+

+++
+

+

+
+

+

+

+

+

+

+

+ +

++
+

++
+
+

+

+

+++++

+
+

+
+

+
+ +

++

+

+
+

++

+

+

+

+

+ +

++

+

+
+

+

+
+

+

+

+

+ +

+
+

+
+

+

+

+

+

+

+++ +

+

+

+

+

+

++

+

+
+
+

+

++

+

+

+

+

+

+ ++

+

+

++

+ +

+

+
+

+

++
+

+

++

+

+

+

+

+

+
+

++

+

+
++

+
+

+

+

+

+

+

+

++

+

+

+

++
++ +

+

+

+
++

+

+

++ +
+

+

+++++

+

+

++
+

+

+

+

+

+
+

+

+

+

+
+ +++++

+

+

+

+

+

+

+
++

+

+

+

+

+
+

+
+

++
+

+++

++
++

+
+

+++++
+++

+

+

+
++

++
+

++

+

+

+

+

+
+

+
+

+
+

+

+

+

++

++

+

+

+

+

+

+

+

++

+
+

+

+
+
+

+

++++

+

+

++
++

+

+
++ +

++

+

+

+
+

+

+

+

+
+++++++++

++

+
+ +
+

++

++

++
+

++
+

+

+++

+

+

+

+

+++
++

+

+

+

+

++

+

+

+

+
+

++
+

++

+

+
+ +

+

+

+

++

+
++

+

++
+

+

+
+
+
+++++
+++++
++

+

+

+

+

+

+

+ +
+

+

+

+ +

++

++ +

+

+
+

+

+ +++

++
+++++

+

++

+

+++
+++++++++++
++
+++

+

+

++

+

+

+

+

+
+

+

++

+

+
+

+ +

+
+

+

+

+ +

+++++

+

+

++
+

+

+

+++

+

+

+

++

+

+

+

+

+ +

+

+

+

+ +

+

+ +

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+++

+
+

+

+

+

+ +

+

++

+

+

+

+
+

+
+

+ +++++

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+
+

+

+

++

+
+

+

++

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+
+

+

+ +

+++

+

+

+++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+++

+

+

+

+

+

+

+
+

+

+

+

+

+

++ +
+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+++

+

++
+

+

+

+

+
+
+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+++ +

+

+
+

+

+

+

+

+

+++

+

+
+

+

+

+

+
+++

+ +
+

+

+

+

+
+

+
+

++
+

+

+
+

+

+

+

+

+
+
+

+

337 608 162 73 105 268

422 49 17 52 128 146

231 134 92 406 310 64

The value returned by quadratcount is an object belonging to the special class "quadratcount".
We have used the plot method for this class to get the display above.

Kernel density (or intensity) estimation using an isotropic Gaussian kernel is implemented
in spatstat by the function density.ppp, a method for the generic command density.

> den <- density(bei, sigma = 70)

> plot(den)

> plot(bei, add = TRUE, cex = 0.5)

den

0.
00

5
0.

01
0.

01
5

0.
02

The value returned by density.ppp is a pixel image (object of class "im"). This class has
methods for print, summary, plot, contour (contour plots), persp (perspective plots) and so
on.

> persp(den)

Copyright c©CSIRO 2008

11.2 Inhomogeneous intensity 69

x

y

den

den

> contour(den)

0
10

0
20

0
30

0
40

0
50

0

den

 0.002
 0.002

 0
.0

02

 0.004

 0
.0

04
 0.006

 0.006

 0.
00

6 0.008

 0.008

 0.008

 0.01

 0.01

 0.012

 0.012

 0.012

 0
.0

14

 0.014

 0.014

 0.016

 0.016

 0.018

 0.018

 0.02

Alternatively, there is an adaptive estimator of intensity which uses a fraction f of the
data to construct a Dirichlet tessellation, then forms an intensity estimate that is constant in
each tile of the tessellation:

> aden <- adaptive.density(bei, f = 0.01, nrep = 10)

> plot(aden, main = "Adaptive intensity")

> plot(bei, add = TRUE, cex = 0.5)

Copyright c©CSIRO 2008

70 Methods 1: Investigating intensity

Adaptive intensity

0.
01

0.
03

0.
05

The value returned by adaptive.density is also a pixel image (object of class "im").

11.3 Quadrats determined by a covariate

In quadrat counting methods, any choice of quadrats is permissible. From a theoretical view-
point, the quadrats do not have to be rectangles of equal area, and could be regions of any
shape.

Quadrat counting is more useful if we choose the quadrats in a meaningful way. One way to
do this is to define the quadrats using covariate information.

For example, the tropical rainforest point pattern dataset bei comes with an extra set of
covariate data bei.extra, which contains a pixel image of terrain elevation bei.extra$elev

and a pixel image of terrain slope bei.extra$grad. It might be useful to split the study region
into several sub-regions according to the terrain slope.

> data(bei)

> Z <- bei.extra$grad

> b <- quantile(Z, probs = (0:4)/4)

> Zcut <- cut(Z, breaks = b, labels = 1:4)

> V <- tess(image = Zcut)

> plot(V)

> plot(bei, add = TRUE, pch = "+")

V

1
2

3
4

+

++++++
++

+

+

+
++

+

+
+
+

+

++

+

+
+++

+
+
+

+

+

+

++
+

+
++++
+

++
+

+
+

++
+
+

+
+

+
+

+

+
+

++
++

+

+

+

+

+
+

++
+

+

+

+

+

+

++

+

+

+
++

+

+
++

+

+

+++

++
+++
+++

+
+

+ +

++
+++

+

+

+

+ +

+

+
+

++

+

+

+

+

+

+
+

+

+
++

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+
+
+

+

+
+

++

++

+

+
++

+

+

+

+

++

+

+
+

+

+

+

++
+

+

+

+
+

+
+

+

+

+

+
+

++
+
+++

+
++
+++++
++

+

+

+
+
+

++
++
++

++++
+++
+

+++
++
+++

+

+++

++
+

++

+
++

+++
+

+
+

++++

+

+

++
+++

+++
++
+
+++

+

++
+

+
+
+++
+++++++

+
+++

+
++++
+
++++++
+

+

+

+++++++++++

+
+

+
++ +

+
++
+
+

+++

++++
++

+

++
++

+ +

+

+

++

+

+
+

+
++
++

+
+

+++++
++++
++
++

++++++++
+

+++++
+
+

++
++++

+++++
+

+ +

+

+++
++
+
+

+++
+

+
++

+
+
+++
++

+++
++

++

+

+

+
+

++

+

+

+++++

+
++

++

++++++
+++

+++
++
+++

+
++
++

+++
++++

++
+++
++++++

+
+

++++++++++
+

+

+
+

+++
+
++
+
++
++++

+
+

+

++++

++++
+

+++
+++

+++++

++
+
++

+

+

+

+

+++
+++++

++
++++

+

+

+

+
++

+++

+
+

++++
+

+
+

+++
++

++++
+

+
++

++++

++
+

+++

++

+++
+++

+ ++

+++++
++
++++++++++
+
+++
+

+
+

+

+
+

++

++
++

+++++++++++++
+
++++++++
+++

+
+

++

+

+

+++
+

++

+

++
++
+++++++

+
+++

+++++
+++++++

+

+

++

+

+

+++++
++

++++

+

+

+++
+++++
+ ++++++++++
+
+

+
+++++

+

++
++++++++++
++++++++++++++++
++

+++++++
+++++

+

+

+++++++
+++++++
++++++++++++

+++
+++
++++
+

+

+

+

++++++

++++
++

+++
+
++

+
+
+
+++
+
+
+

+
+
++

++

+

++

++
+

+
+

++++
+++++
+ ++
+ ++++++

+

+++
+

+
+

+

+
+

+
+

+

+++++
++++++

+++
++

++
+++
++

+

+
+

++

++

+++
+++

++

+

+++
++

+++
++++

+

+

+

++
+
+

+ +

++
+++

++

+

+++

+

++
++++
+++

+

+
+
++

+

+ +

+
++
+

++

++
+
+

+

+++++
+

+
+
++

++
+
+

++++
++

+

++
++ +++
+++
+

+

++
+++++

+
+++

++
+
+

++++++

+++

+
++

++++
+++++
+
++

+
+++

++
+
+

++++
+

+ ++

+

++
+

+
+

++++
++++
++++++
+++++++
+

++++++

+

+

+++
++

+++
+
++

++
+++

++

+

+

+

+

+

+++

+

+

+
+

+

++

+++

+

+

+
+
++

+++
++

+
++++

++
+

+
+

+
+

++
+
+

+

++

++

+
+
+

++
+++
+

+
+
+

+++

+
+

+

+++
++
+

+
++++
+++

++++++
+
+

+
+
++
+++

+++++

++++
+

+
+
+ +

+++
++
+ +

++
+++++++++++++++
+++++++++++++++++++++++++

+
+++++++++++

++++
++

++++
+++++

++++
++++++++++++++++

++++

+

+

+ +
+++++++
+++

+
+

+

+

++++++++++++
+
+++++++++++

+++++++
+++++
+++++++++++++++++++++
+++++++++++++++++++++++++++++
+++++++

++
+
++

+
+++++++
+++++++++++++++++

+
+
++++
+++++++++++++++++

++

+++
+

+
+
++

+

+
+

+++
+++
+
++++

+
+

++++++

++

+

+
+
+++

+++
++++
++
+++++
+
+

+++

++ +
+
+
+
+

+

+
++

++
++++

+ ++
+
+++++
+
+

++++

+
+
+

+

+

++
++
+

+++
++

+++
+++
+

+

+++
++

+
+++

++

++
+
+

+
++
+

+++
+
++

++++
+

+++

+

+

+
++

++++

++
++

+

++

++++++
+++
++
++

+
+++++
++++

+++
+++

+

+
+

++++
+

+++
+

++
++

+++

+
+

++

++

+

++++
+
+++
+

+ +
++++++

++++++++

+++++++
++
+++
++
+

+++
++++
++++

+
+

+

+++
+++

++
++++
++

++++
+ +

++++++
+++++

++
++++
+++
+++++++

+
+++

++
+
+

++

+++
+++++

+
++++++

+
++

+

++
+

++
++

++++

+
++

++
+++
+++

+
+

++++
+++
+++
++
+++
++
+
++
++++++++
+
+++++++++

+

+

+
+

++++
++

++

+

+++++

+++++++

++++
+++++++
++++
+++++

+
+++++
+++

+++
++++
++
+++
+
++

+++

+++
++++++

+

+++
+++++
++

++
+

+
+++++++
+++

+++
+++++

+
+
+
+

+++++

++++
++
+
++++++

+ +

++++++

+
+
+++

+

+++
++
++
++
++

++
++
+
++ +

+
++

+++
++
++++

+++++++
++++++

+
+

+++
++++
++
++

+
+++++

++
+++++
+++++++

++++

+
+
+

+++++++

++
+
+++++++
++
++
++

++++
++

+
+

++++++++++++++
+++
+
+++++++
+++
+
+
+++

++
++
++
++++

++++
+++
++++

++++

+++
+

+
+++
+

+

+
+
+++++

+++
++

+++++++
++
+

+

+++++
+++++
+++

+++++++
++
+++

+++++++++
+++

++++++
+++++

+++
+++++++
+
+++

++
+
+

++++++++++
++

+

+

+

+

+++

+
+
+

+

++++
+
++++

+

+
+

+

+

+

+

+

+

+

+

+

+
++
+
++

++

+
+

+

+

+

++

+

+

+

+

+
++

+++
+

++

+

++

+

+

+++

++
+++

++

+

+

++
+

+++

++

+++

+

+
+

+
+

+
++

++

+

+

++
+

+

+

+
+++

++

+

+

++

+

++
+
+

++++++
+++
+++++
++

+

+

+
+++++++

+

+

+

++++

+

+

+

+

+
+

+

+

+

++

+

+
+
+
+

+

+

+
+
+++++++++
+
+

++
+++++

++
+

+

+

+

+

+++++
+

++

++++++++
++
++

+

++++++++++++
++++++++++++++

+

+ +
+++++++++++++

+
+

++++++++++++++++++
+++++++

+++

++

+

+

+

+

++

+

+
+

+
+++

+

+

+

+

++

++

+++
+

+

+
+

+
++

+

++
++
+

+

+

++

++++++
+++
++ ++

+

+++++

++ +++

++

+++

++

+

+
+
++
++

+++
++ +

+

+
++++++++
+
+

+
+

+
++

+

+
++++++

++ +
++

+

+

+

+
++
+++
+

++
+++

++++

+

++
++
+++

+
+

+

+
+++
+++++++
+
++

++++

+

+

+

+

+

++++

+++

+

+
++++++

+

+

+

+

+

+

+

+
++
+

+

++
+
+
+
+

+
+++++++++

+

+

++

++

++++
+

++

+
+

+

+
+

+

++

++
+

++
++

+

+

+++++

+
+

++

+++

++

+

++
++

+

+

+

+

++
++

+
+ ++

++

+

+

+

+ +

++

++

+
+

+

+

+

++++

+
+

+

+

+
++

+

++
+

+

++

+

+

+

+

+

+++

+

+

++
++

+

++

+

+++

+

++

+

+

+

+
+

++

++

+

+++

++

+

+

+

+
+
+
++
+

+

+

++
+++

+

+

+++

+
+

++ ++

+

+++++

+

+

++
+

+

+

+

+

++

+

+

+

++++++++
+
+

+
+

+

+ ++
+
+

+

+

++

++
+++

+++
++++
++

++++++++

+
+
++++++
++

+

+
+

+

++

++
+ +

+

+

+

++

++

+

+

+

+

+

+

+

++
++

+
++
+

+

++++

+

+
++

++

+

++++

++

+

+
++

+

+

+

+++++
+++++++
++++

++

++

+++

++
+

+

+++
+

+

+

+

++++++

+

+

+

++
+
+

+

++

+++

++

+
+++

+

+

+

++

+++

+

+++

+

++
+++++++++++
++
+

+

+

+

+

+

+ ++

+

+
++

++

+++

+

++
+
+ +++
+++++++

+

++

+
+++++++++
+++++++++++

+

++
+

+
+

+

+
+

+
++

+

++
++

++

+

+

++

+++++

+

+

++ +
+

+
+++
+

+

+

++
+

+
+

+

++

+

+

+

++
+

++
+

+

+

+++

+
+

+

+

+

+

+

+

+
+++

++

+

+

+

+ +

+

++

+

+

+

++

++
++++++

+

+
+
+

+

+

+

+

+
++

+

++
+
+

+

+
+

+
+

++

++

+

++
+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+
++
+

++

+++

+

+

+++

+

+

+

++

+
+

+

+
+

+

+

+

+

+

+

++

+

+++

+
+

+

+

+

+

++
+

+
+

+

+
+++
+

++

+

+

+

+
++

+
+

+
+

+

+
+
+

+

+

+ +

+

+

+++
+

++
++

+

+

++
+

+ +

+

+

+

+

+

+

+
+

+

++

+

++++

+
++

+

+

+

+

+
+++
+

++

+

+

+

++++

+++

+

+

+

++

++

+++

+
++

+

+
+

+
+
+
+

+

The call to quantile gave us the quartiles of the slope values, so the four tiles in the
tessellation V have equal area (ignoring discretisation effects). In other words, we have divided
the study region into four zones of equal area according to the terrain slope.

Copyright c©CSIRO 2008

11.3 Quadrats determined by a covariate 71

We can now use this tessellation to study the point pattern bei. We could invoke the
commands split, cut or by to divide the points according to this tessellation and manipulate
the sub-patterns.

The command quadratcount also works with tessellations:

> qb <- quadratcount(bei, tess = V)

> qb

tile

1 2 3 4

271 984 1028 1321

> plot(qb)

qb

1
2

3
4

271

984
1028

1321

The text annotations show the number of trees in each region. Since the four regions have
equal area, the counts should be approximately equal if there is a uniform density of trees.
Obviously they are not equal; there appears to be a strong preference for steeper slopes.

Copyright c©CSIRO 2008

72 Methods 2: Tests of Complete Spatial Randomness

12 Methods 2: Tests of Complete Spatial Randomness

The basic ‘reference’ or ‘benchmark’ model of a point process is the uniform Poisson point
process in the plane with intensity λ, sometimes called Complete Spatial Randomness (CSR).
Its basic properties are

• the number of points falling in any region A has a Poisson distribution with mean λarea(A)

• given that there are n points inside region A, the locations of these points are i.i.d. and
uniformly distributed inside A

• the contents of two disjoint regions A and B are independent.

The uniform Poisson process is often the ‘null model’ in an analysis. For historical reasons,
many applied writers focus on establishing that their data do not conform to a uniform Poisson
process.

12.1 Definition

The homogeneous Poisson process of intensity λ > 0 has the properties

(PP1): the number N(X ∩ B) of points falling in any region B is a Poisson random variable;

(PP2): the expected number of points falling in B is E[N(X ∩ B)] = λ · area(B);

(PP3): if B1, B2 are disjoint sets then N(X∩B1) and N(X∩B2) are independent random variables;

(PP4): given that N(X ∩ B) = n, the n points are independent and uniformly distributed in B.

The list is redundant; (PP2) and (PP3) are sufficient.
This process is often called “Complete Spatial Randomness” (CSR) especially in biological

science. Under CSR, points are independent of each other and have the same propensity to be
found at any location.

It is easy to simulate the Poisson process directly by following the properties (PP1)–(PP4).
In spatstat, use the command rpoispp (by convention, random data generators have names
beginning with r).

> plot(rpoispp(100))

rpoispp(100)

Copyright c©CSIRO 2008

12.1 Definition 73

Conceptually, if we discretise a homogeneous Poisson process into infinitesimal pixels, the
indicators I are independent and identically distributed, with success probability P {I = 1} =
λdA where dA is the infinitesimal area of a pixel.

To develop some intuition about completely random patterns, it’s useful to repeat the com-
mand plot(rpoispp(100)) several times (use the up-arrow key to recall the previous command
line) so that you see several replicates of the Poisson process. In particular you will notice that
the points in a homogeneous Poisson process are not ‘uniformly spread’: there are empty gaps
and clusters of points.

The command rpoispp has arguments lambda (the intensity) and win (the window in which
to simulate). The default window is the unit square.

> data(letterR)

> plot(rpoispp(100, win = letterR))

rpoispp(100, win = letterR)

If you want to simulate a Poisson process conditionally on a fixed number of points, use the
command runifpoint.

> runifpoint(100)

planar point pattern: 100 points

window: rectangle = [0, 1] x [0, 1] units

Copyright c©CSIRO 2008

74 Methods 2: Tests of Complete Spatial Randomness

12.2 Quadrat counting tests for CSR

In classical literature, the homogeneous Poisson process (CSR) is usually taken as the appropriate
‘null’ model for a point pattern. Our basic task in analysing a point pattern is to find evidence
against CSR.

A classical test for the null hypothesis of CSR is the χ2 test based on quadrat counts. As
explained earlier, the window W is divided into subregions (‘quadrats’) B1, . . . , Bm of equal area.
We count the numbers of points falling in each quadrat, nj = n(x∩Bj) for j = 1, . . . ,m. Under
the null hypothesis of CSR, the nj are i.i.d. Poisson random variables with the same expected
value. The Pearson χ2 goodness-of-fit test can be used.

> quadrat.test(nzchop, nx = 3, ny = 2)

Chi-squared test of CSR using quadrat counts

data: nzchop

X-squared = 5.0769, df = 5, p-value = 0.4066

The value returned by quadrat.test is an object of class "htest" (the standard R class
for hypothesis tests). Printing the object (as shown above) gives comprehensible output about
the outcome of the test. Inspecting the p-value, we see that the test does not reject the null
hypothesis of CSR for the (chopped) New Zealand trees data.

The return value quadrat.test also belongs to the special class "quadrat.test". Plotting
the object will display the quadrats, annotated by their observed and expected counts and the
Pearson residuals (observed counts nj at top left; expected count at top right; Pearson residuals
at bottom).

> M <- quadrat.test(nzchop, nx = 3, ny = 2)

> M

Chi-squared test of CSR using quadrat counts

data: nzchop

X-squared = 5.0769, df = 5, p-value = 0.4066

> plot(nzchop)

> plot(M, add = TRUE, cex = 2)

nzchop

9 14 17

17 9 12

13 13 13

13 13 13

−1.1 0.28 1.1

1.1 −1.1 −0.28

The p-value can also be extracted by

Copyright c©CSIRO 2008

12.3 Critique 75

> M$p.value

[1] 0.4065648

12.3 Critique

Since this kind of technique is often used in the applied literature, a few comments are appro-
priate.

The main critique of the quadrat test approach is the lack of information. This is a goodness-
of-fit test in which the alternative hypothesis H1 is simply the negation of H0, that is, the
alternative is that “the process is not a homogeneous Poisson process”. A point process may
fail to satisfy properties (PP1)–(PP4) either because it violates (PP2) by having non-uniform
intensity, or because it violates (PP3)–(PP4) by exhibiting dependence between points. There
are too many types of departure from H0.

The usual justification for the classical χ2 goodness-of-fit test is to assume that the counts
are independent, and derive a test of the null hypothesis that all counts have the same expected
value. Invoking it here is slightly naive, since the independence of counts is also open to question
here.

Indeed we can also turn things around and view the χ2 test as a test of the Poisson distri-
butional properties (PP2)–(PP3) assuming that the intensity is uniform. The Pearson χ2 test
statistic

X2 =

∑
j(nj − n/m)2

n/m

(where n =
∑

j nj is the total number of points) coincides, up to a constant factor, with the
sample variance-to-mean ratio of the counts nj, which is often interpreted as a measure of
over/under-dispersion of the counts nj assuming they have constant mean.

The power of the quadrat test depends on the size of quadrats, and falls to zero for quadrats
which are either very large or very small. The power also depends on the alternative hypothesis,
in particular on the ‘spatial scale’ of any departures from the assumptions of constant intensity
and independence of points. The choice of quadrat size carries an implicit assumption about the
spatial scale.

12.4 Kolmogorov-Smirnov test of CSR

Typically a more powerful test of CSR is the Kolmogorov-Smirnov test in which we compare
the observed and expected distributions of the values of some function T .

We specify a real-valued function T (x, y) defined at all locations (x, y) in the window. We
evaluate this function at each of the data points. Then we compare this empirical distribution
of values of T with the predicted distribution of values of T under CSR, using the classical
Kolmogorov-Smirnov test.

In spatstat the spatial Kolmogorov-Smirnov test is performed by kstest. This function is
generic. The method for point patterns, kstest.ppp, performs the Kolmogorov-Smirnov test
for CSR.

If X is the data point pattern, then

> kstest(X, fun)

performs the test, where fun is a function(x,y) in the R language.
For example, let’s consider the nzchop data and choose the function T to be the x coordinate,

T (x, y) = x. This means we are simply comparing the observed and expected distributions of
the x coordinate.

Copyright c©CSIRO 2008

76 Methods 2: Tests of Complete Spatial Randomness

> kstest(nzchop, function(x, y) {

+ x

+ })

Spatial Kolmogorov-Smirnov test of CSR

data: covariate ’function(x, y) { x}’ evaluated at points of ’nzchop’

and transformed to uniform distribution under CSR

D = 0.0717, p-value = 0.7913

alternative hypothesis: two-sided

The result of kstest is an object of class "htest" (the standard R class for hypothesis
tests) and also of class "kstest" so that it can be printed and plotted. The print method
(demonstrated above) reports information about the hypothesis test such as the p-value. The
plot method displays the observed and expected distribution functions.

> KS <- kstest(nzchop, function(x, y) {

+ x

+ })

> plot(KS)

> pval <- KS$p.value

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spatial Kolmogorov−Smirnov test of CSR
based on distribution of covariate ’function(x, y) { x}’

p−value= 0.7896

function(x, y) { x}

pr
ob

ab
ili

ty

Sometimes this test generates a warning message about tied values. Typically this occurs
because the coordinates in the dataset have been rounded to the nearest integer, so that there
are tied observations.

12.5 Using covariate data

We are often interested in testing whether the point pattern intensity depends on a covariate. For
example, our preliminary analysis of the tropical rainforest pattern bei in Section 11.3 suggested

Copyright c©CSIRO 2008

12.5 Using covariate data 77

that the density of trees depends on terrain slope. To test this formally we can divide the region
into irregular quadrats according to the terrain slope, and apply the χ2 test. The command
quadrat.test accepts a tessellation and uses the tiles of the tessellation as the quadrats:

> data(bei)

> Z <- bei.extra$grad

> b <- quantile(Z, probs = (0:4)/4)

> Zcut <- cut(Z, breaks = b, labels = 1:4)

> V <- tess(image = Zcut)

> quadrat.test(bei, tess = V)

Chi-squared test of CSR using quadrat counts

data: bei

X-squared = 661.8402, df = 3, p-value < 2.2e-16

Because of the large counts in these regions, we can probably ignore concerns about inde-
pendence, and conclude that the trees are not uniform in their intensity.

A more powerful test (if that were needed!) is the Kolmogorov-Smirnov test using the slope
covariate:

> KS <- kstest(bei, Z)

> plot(KS)

> KS

Spatial Kolmogorov-Smirnov test of CSR

data: covariate ’Z’ evaluated at points of ’bei’

and transformed to uniform distribution under CSR

D = 0.1871, p-value < 2.2e-16

alternative hypothesis: two-sided

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spatial Kolmogorov−Smirnov test of CSR
based on distribution of covariate ’Z’

p−value= 0

Z

pr
ob

ab
ili

ty

Copyright c©CSIRO 2008

78 Methods 2: Tests of Complete Spatial Randomness

The Kolmogorov-Smirnov test would typically be preferred if the covariate Z has continuously-
varying numerical values. If the covariate is a factor or discrete variable, then the Kolmogorov-
Smirnov test is ineffective because of tied values, and the χ2 test based on quadrat counts would
be preferable.

Copyright c©CSIRO 2008

79

13 Methods 3: Maximum likelihood for Poisson processes

If we are willing to assume (tentatively) that the points are independent, then we can apply
some decent statistical methods to the investigation of the intensity.

13.1 Inhomogeneous Poisson process

The inhomogeneous Poisson process with intensity function λ(u), u ∈ R
2, is a modification of

the homogeneous Poisson process, in which properties (PP2) and (PP4) above are replaced by

(PP2’): the number N(X ∩ B) of points falling in a region B has expectation

E[N(X ∩ B)] =

∫

B
λ(u) du.

(PP4’): given that N(X ∩ B) = n, the n points are independent and identically distributed, with
common probability density f(u) = λ(u)/I, where I =

∫
B λ(u) du.

This process can also be simulated using rpoispp using the same properties. The intensity
argument lambda can be a constant, a function(x,y) giving the values of the intensity function
at coordinates x, y, or a pixel image containing the intensity values at a grid of locations.

> lambda <- function(x, y) {

+ 100 * (x + y)

+ }

> plot(rpoispp(lambda))

rpoispp(lambda)

If we discretise an inhomogeneous Poisson process, the indicators I are independent, but
have unequal success probabilities, P {I(u) = 1} = λ(u) dA.

The inhomogeneous Poisson process is a plausible model for point patterns under several
scenarios. One is random thinning: suppose that a homogeneous Poisson process of intensity
β is generated, and that each point is either deleted or retained, independently of other points.
Suppose the probability of retaining a point at the location u is p(u). Then the resulting process
of retained points is inhomogeneous Poisson, with intensity λ(u) = βp(u).

Copyright c©CSIRO 2008

80 Methods 3: Maximum likelihood for Poisson processes

Consider, for example, a model of plant propagation which assumes that seeds are randomly
dispersed according to a Poisson process, and seeds randomly germinate or do not germinate,
independently of each other, with a germination probability that depends on the local soil
conditions. The resulting pattern of plants is an inhomogeneous Poisson process.

13.2 Likelihood methods

The log-likelihood for the homogeneous Poisson process with intensity λ is

log L(λ;x) = n(x) log λ − λ area(W) (3)

where n(x) is the number of points in the dataset x. The maximum likelihood estimator of λ is

λ̂ =
n(x)

area(W)

which is also an unbiased estimator. The variance of λ̂ is var[λ̂] = λ/area(W).

Consider an inhomogeneous Poisson process with intensity function λθ(u) depending on a
parameter θ. The log-likelihood for θ is

log L(θ;x) =

n∑

i=1

log λθ(xi) −
∫

W
λθ(u) du (4)

This is a well-behaved likelihood; for example if log λθ(u) is linear in θ, then the log-likelihood
is concave, so there is a unique MLE. However, the MLE θ̂ is not analytically tractable, so it
must be computed using numerical algorithms such as Newton’s method.

The usual asymptotic theory of maximum likelihood applies: under suitable large sample
conditions, the MLE of θ is asymptotically normal. If we wish to test CSR, the likelihood ratio
test statistic

R = 2 log
L(θ̂)

L(λ̂)

is asymptotically χ2 under CSR, and this gives an asymptotically optimal test of CSR against
the alternative of an inhomogeneous Poisson process with intensity λθ(u).

13.3 Fitting Poisson processes in spatstat

Mark Berman and Rolf Turner [14] (see also [34, 18, 35]) developed a clever computational device
for finding the MLE of θ by exploiting a formal similarity between the Poisson log-likelihood (4)
and that of a loglinear Poisson regression.

The Berman-Turner algorithm is implemented in spatstat. The intensity function λθ(u)
must be loglinear in the parameter θ:

log λθ(u) = θ · S(u) (5)

where S(u) is a real-valued or vector-valued function of location u. The form of S is arbitrary so
this is not much of a restriction. In practice S(u) could be a function of the spatial coordinates
of u, or an observed covariate, or a mixture of both. Assuming (5), the log-likelihood (4) is a
convex function of θ, so maximum likelihood is well-behaved.

Copyright c©CSIRO 2008

13.3 Fitting Poisson processes in spatstat 81

13.3.1 Model-fitting function

The fitting function is called ppm (‘point process model’) and is very closely analogous to the
model fitting functions in R such as lm and glm. The statistic S(u) is specified by an R lan-
guage formula, like the formulas used to specify the systematic relationship in a linear model or
generalised linear model. The basic syntax is:

> ppm(X, ~trend)

where X is the point pattern dataset, and ~trend is an R formula with no left-hand side. This
should be viewed as a model with log link, so the formula ~trend specifies the form of the
logarithm of the intensity function.

To fit the homogeneous Poisson model:

> ppm(bei, ~1)

Stationary Poisson process

Uniform intensity: 0.007208

To fit an inhomogeneous Poisson model with an intensity that is log-linear in the cartesian
coordinates, i.e. λθ((x, y)) = exp(θ0 + θ1x + θ2y),

> ppm(bei, ~x + y)

Nonstationary Poisson process

Trend formula: ~x + y

Fitted coefficients for trend formula:

(Intercept) x y

-4.7245290274 -0.0008031288 0.0006496090

Here x and y are reserved names that always refer to the cartesian coordinates. In the output,
the ‘fitted coefficients’ are the maximum likelihood estimates of θ0, θ1, θ2, the coefficients of the
‘linear predictor’. The fitted intensity function is

λθ((x, y)) = exp (−4.724529 + −0.000803x + 0.00065 y) .

To fit an inhomogeneous Poisson model with an intensity that is log-quadratic in the cartesian
coordinates, i.e. such that log λθ((x, y)) is a quadratic in x and y:

> ppm(bei, ~polynom(x, y, 2))

Nonstationary Poisson process

Trend formula: ~polynom(x, y, 2)

Fitted coefficients for trend formula:

(Intercept) polynom(x, y, 2)[x] polynom(x, y, 2)[y]

-4.275762e+00 -1.609187e-03 -4.895166e-03

polynom(x, y, 2)[x^2] polynom(x, y, 2)[x.y] polynom(x, y, 2)[y^2]

1.625968e-06 -2.836387e-06 1.331331e-05

Copyright c©CSIRO 2008

82 Methods 3: Maximum likelihood for Poisson processes

Essentially any kind of model formula can be used, involving the reserved names x and y

and any covariates (as we explain later).

To fit a model with constant but unequal intensities on each side of the vertical line x = 500,
the explanatory variable S(u) should be a factor with two levels, Left and Right say, taking
the value Left when the location u is to the left of the line x = 500.

> side <- function(z) factor(ifelse(z < 500, "left", "right"))

> ppm(bei, ~side(x))

Nonstationary Poisson process

Trend formula: ~side(x)

Fitted coefficients for trend formula:

(Intercept) side(x)right

-4.8026460 -0.2792705

When factors are involved, the interpretation of the coefficients depends on which ‘contrasts’
are in force. By default the ‘treatment contrasts’ are assumed. This means that the treatment
effect is taken to be zero for the first level of the factor, and the estimated treatment effects for
other levels are effectively estimates of the difference from the first level. In this case "left"

comes alphabetically before "right", so by default, the first level is "left". The fitted model
is

λθ((x, y)) =

{
exp(−4.8026) if x < 500
exp(−4.8026 + (−0.2793)) if x ≥ 500

Rather than relying on such interpretations, it is prudent to use the command predict to
compute predicted values of the model, as explained in Section 13.4 below.

13.3.2 Models involving spatial covariates

It is also possible to fit an inhomogeneous Poisson process model with an intensity function that
depends on an observed covariate. Let Z(u) be a covariate that has been measured at every
location u in the study window. Then Z(u), or any transformation of it, can serve as the statistic
S(u) in the parametric form (5) for the intensity function.

The point pattern dataset bei is supplied with accompanying covariate data bei.extra.
The covariates are the elevation (altitude) and the slope of the terrain at each location in the
window, given as two pixel images bei.extra$elev and bei.extra$grad.

> data(bei)

> grad <- bei.extra$grad

> plot(grad)

Copyright c©CSIRO 2008

13.3 Fitting Poisson processes in spatstat 83

grad

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3

To fit the inhomogeneous Poisson model with intensity which is a loglinear function of slope,
i.e.

λ(u) = exp(β0 + β1Z(u)) (6)

where β0, β1 are parameters and Z(u) is the slope at location u, we type

> ppm(bei, ~slope, covariates = list(slope = grad))

Nonstationary Poisson process

Trend formula: ~slope

Fitted coefficients for trend formula:

(Intercept) slope

-5.390553 5.022021

In the call to ppm, the argument covariates should be a list of name=value pairs. The names

should match the variables appearing in the model formula. The values should be pixel images.

The printout includes the fitted coefficients β0, β1 so the fitted model is

λ(u) = exp(−5.390553 + 5.022021Z(u)). (7)

It might be more appropriate to fit the inhomogeneous Poisson model with intensity that is
proportional to slope,

λ(u) = βZ(u) (8)

where again Z(u) is the slope at u. Equivalently

log λ(u) = log β + log Z(u). (9)

There is no coefficient in front of the term log Z(u) in (9), so this term is an ‘offset’. To fit this
model,

> ppm(bei, ~offset(log(slope)), covariates = list(slope = grad))

Copyright c©CSIRO 2008

84 Methods 3: Maximum likelihood for Poisson processes

Nonstationary Poisson process

Trend formula: ~offset(log(slope))

Fitted coefficients for trend formula:

(Intercept)

-2.427127

The fitted coefficient is the constant log β appearing in (9), so converting back to the form
(8), the fitted model is

λ(u) = e−2.427127 Z(u) = 0.0883 Z(u).

13.4 Fitted models

The value returned by the model-fitting function ppm is an object of class "ppm" that represents
the fitted model. This is analogous to the fitting of linear models (lm), generalised linear models
(glm) and so on.

13.4.1 Standard operations

The following standard operations on fitted models in R can be applied to point process models
(i.e. these operations have methods for the class "ppm"):

print print basic information
summary print detailed summary information
plot plot the fitted intensity
predict compute the fitted intensity
fitted compute the fitted intensity at data points
update re-fit the model

coef extract the fitted coefficient vector θ̂

vcov variance-covariance matrix of θ̂
anova analysis of deviance
logLik log-likelihood value
formula extract the model formula
terms extract the terms in the model
model.matrix compute the design matrix

For information on these methods, see print.ppm, summary.ppm, plot.ppm etc. The follow-
ing commands also work on "ppm" objects:

step stepwise model selection
drop1 one step model deletion
AIC Akaike Information Criterion

> fit <- ppm(bei, ~x + y)

> fit

Nonstationary Poisson process

Trend formula: ~x + y

Fitted coefficients for trend formula:

(Intercept) x y

-4.7245290274 -0.0008031288 0.0006496090

Copyright c©CSIRO 2008

13.4 Fitted models 85

> plot(fit, how = "image", se = FALSE)

Fitted trend

0.
00

4
0.

00
6

0.
00

8
0.

01
0.

01
2

> predict(fit, type = "trend")

real-valued pixel image

50 x 50 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

> predict(fit, type = "cif", ngrid = 256)

real-valued pixel image

256 x 256 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

> coef(fit)

(Intercept) x y

-4.7245290274 -0.0008031288 0.0006496090

> vcov(fit)

(Intercept) x y

(Intercept) 1.854091e-03 -1.491267e-06 -3.528289e-06

x -1.491267e-06 3.437842e-09 1.208410e-14

y -3.528289e-06 1.208410e-14 1.338955e-08

> sqrt(diag(vcov(fit)))

(Intercept) x y

4.305915e-02 5.863311e-05 1.157132e-04

> round(vcov(fit, what = "corr"), 2)

(Intercept) x y

(Intercept) 1.00 -0.59 -0.71

x -0.59 1.00 0.00

y -0.71 0.00 1.00

Copyright c©CSIRO 2008

86 Methods 3: Maximum likelihood for Poisson processes

This is the fitted model with intensity function

λθ((x, y)) = exp (θ0 + θ1x + θ2y) (10)

with the following estimates:

i θi var(θ̂i) standard deviation

0 -4.724529 0.001854091 0.04305915

1 -0.0008031288 3.437842e-09 5.863311e-05

2 0.000649609 1.338955e-08 0.0001157132

It is also possible to compute the standard error of the fitted intensity λθ(u) at each location
u, as a pixel image. Use predict(fit, type="se") or plot(fit, se=TRUE).

> SE <- predict(fit, type = "se")

> plot(SE, main = "standard error of fitted intensity")

standard error of fitted intensity

2e
−

04
3e

−
04

4e
−

04

If the model formula involves transformations of the original covariates, then model.matrix(fit)

gives the design matrix whose columns contain these transformed covariates, and model.images(fit)

gives a list of pixel images of these transformed covariates.

> fit <- ppm(bei, ~sqrt(slope) + x, covariates = list(slope = grad))

> mo <- model.images(fit)

> mo

(Intercept) :

real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

sqrt(slope) :

real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

x :

Copyright c©CSIRO 2008

13.4 Fitted models 87

real-valued pixel image

100 x 100 pixel array (ny, nx)

enclosing rectangle: [0, 1000] x [0, 500] metres

> plot(mo[[2]])

mo[[2]]

0.
1

0.
2

0.
3

0.
4

0.
5

It is also possible to plot the ‘effect’ of a single covariate in the model. The command
effectfun computes the intensity of the fitted model as a function of one of its covariates. This
is chiefly useful if the model only has one covariate.

> fit <- ppm(bei, ~slope, covariates = list(slope = grad))

> plot(effectfun(fit, "slope"))

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

5
0.

01
0

0.
01

5
0.

02
0

effectfun(fit, "slope")

slope

la
m

bd
a

Copyright c©CSIRO 2008

88 Methods 3: Maximum likelihood for Poisson processes

13.4.2 Model selection

Analysis of deviance for nested Poisson point process models is implemented in spatstat as
anova.ppm. The first model should be a sub-model of the second.

> fit <- ppm(bei, ~slope, covariates = list(slope = grad))

> fitnull <- update(fit, ~1)

> anova(fitnull, fit, test = "Chi")

Analysis of Deviance Table

Model 1: .mpl.Y ~ 1

Model 2: .mpl.Y ~ slope

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 20507 18728.4

2 20506 18346.1 1 382.3 4.018e-85

This effectively performs the likelihood ratio test of the null hypothesis of a homogeneous
Poisson process (CSR) against the alternative of an inhomogeneous Poisson process with in-
tensity that is a loglinear function of the slope covariate (6). The p-value is extremely small,
indicating rejection of CSR in favour of the alternative. (Please ignore the columns Resid.Df

and Resid.Dev which are artefacts of the discretisation. Only the deviance difference and the
difference in degrees of freedom are valid.)

Note that standard Analysis of Deviance requires the null hypothesis to be a sub-model of the
alternative. Unfortunately the model (8), in which intensity is proportional to slope, does not
include the homogeneous Poisson process as a special case, so we cannot use analysis of deviance
to test the null hypothesis of homogeneous Poisson against the alternative of an inhomogeneous
Poisson with intensity (8).

One possibility here is to use the Akaike Information Criterion AIC for model selection.

> fitprop <- ppm(bei, ~offset(log(slope)), covariates = list(slope = grad))

> fitnull <- ppm(bei, ~1)

> AIC(fitprop)

[1] 42496.65

> AIC(fitnull)

[1] 42763.92

The smaller AIC favours the model (8) with intensity is proportional to slope.

Automatic model selection can be performed using step. By default, this performs stepwise
deletion. Starting from the fitted model, the procedure considers each term in the model, and
determines whether the term should be deleted (according to AIC). The deletion giving the
biggest improvement in AIC is carried out. This is applied recursively until no more terms can
be deleted.

> X <- rpoispp(100)

> fit <- ppm(X, ~x + y)

> step(fit)

Copyright c©CSIRO 2008

13.5 Simulating the fitted model 89

Start: AIC=-707.35

~x + y

Df AIC

- y 1 -709.35

- x 1 -707.83

<none> -707.35

Step: AIC=-709.35

~x

Df AIC

- x 1 -709.83

<none> -709.35

Step: AIC=-709.83

~1

Stationary Poisson process

Uniform intensity: 99

13.5 Simulating the fitted model

A fitted Poisson model can be simulated automatically using the function rmh.

> X <- rmh(fitprop)

> plot(X, main = "realisation of fitted model")

realisation of fitted model

Copyright c©CSIRO 2008

90 Methods 4: checking a fitted Poisson model

14 Methods 4: checking a fitted Poisson model

After fitting a point process model to a point pattern dataset, we should check that the model is a
good fit (‘goodness-of-fit’), and that each component assumption of the model was appropriate
(‘validation’). This section presents some techniques available for checking a fitted Poisson
model.

Model checking can be either ‘formal’ or ‘informal’. Formal techniques are based on detailed
probabilistic assumptions about the data, and allow us to make probabilistic statements about
the outcome. They include hypothesis tests (χ2 tests, goodness-of-fit tests, Monte Carlo tests)
and Bayesian model selection.

In contrast, ‘informal’ tools do not impose assumptions on the data and their interpretation
depends on human judgement. A typical example is the residual, defined for each observation by
(residual) = (observed) - (fitted). If the model is a good fit, then the residuals should
be ‘noise’, centred around zero.

14.1 Goodness-of-fit

A goodness-of-fit test is a formal test of the null hypothesis that the model is true, against the
very general alternative that the model is not true.

The χ2 goodness-of-fit test based on quadrat counts can be applied to a fitted Poisson model,
homogeneous or inhomogeneous. Under the null hypothesis, the quadrat counts are independent
Poisson variables with different mean values, and the means are estimated by the fitted model.

> data(bei)

> fit <- ppm(bei, ~x)

> M <- quadrat.test(fit, nx = 4, ny = 2)

> M

Chi-squared test of fitted model ’fit’ using quadrat counts

data: data from fit

X-squared = 711.5036, df = 6, p-value < 2.2e-16

If (as in this case) the formal goodness-of-fit test rejects the fitted model, we would then like
to gain an informal impression of the type of departure from the model (i.e. in what way the
data appear to depart from the predictions of the model) so that we may formulate a better
model. To do this we can inspect the residual counts.

> plot(bei, pch = ".")

> plot(M, add = TRUE, cex = 1.5, col = "red")

Copyright c©CSIRO 2008

14.2 Validation using residuals 91

bei

666 677 130 481

544 165 643 298

601 478.5 402.8 319.7

601.6 477.9 402.3 320.2

2.7 9.1 −14 9

−2.3 −14 12 −1.2

The plot displays, for each quadrat, the observed number of points (top left), the predicted
number of points according to the model (top right), and the Pearson residual (bottom) defined
by

Pearson residual =
(observed)− (expected)√

expected

If the original data were Poisson, this transformation approximately standardises the residuals
so that they have mean zero and variance 1 when the model is true. A Pearson residual of −14
is a gross departure from the fitted model.

The Kolmogorov-Smirnov test can also be applied to a fitted Poisson model, with homoge-
neous or inhomogeneous intensity.

> kstest(fit, function(x, y) {

+ y

+ })

Spatial Kolmogorov-Smirnov test of inhomogeneous Poisson process

data: covariate ’function(x, y) { y}’ evaluated at points of ’bei’

and transformed to uniform distribution under ’fit’

D = 0.1019, p-value < 2.2e-16

alternative hypothesis: two-sided

This uses the method kstest.ppm for the generic function kstest.

14.2 Validation using residuals

14.2.1 Residuals

Residuals from the fitted model are an important diagnostic tool in other areas of applied
statistics, but in spatial statistics they have only recently been developed ([39, 45], [44, pp.
49–50], [6]).

For a fitted Poisson process model, with fitted intensity λ̂(u), the predicted number of points
falling in any region B is

∫
B λ̂(u) du. Hence the residual in each region B ⊂ R

2 is defined [6]
to be the observed minus predicted number of points falling in B: [6]

R(B) = n(x ∩ B) −
∫

B
λ̂(u) du (11)

Copyright c©CSIRO 2008

92 Methods 4: checking a fitted Poisson model

where x is the observed point pattern, n(x∩B) the number of points of x in the region B, and
λ̂(u) is the intensity of the fitted model.

These residuals are closely related to the residuals for quadrat counts that were used above.
Taking the set B to be one of our quadrats, the ‘observed’ quadrat count is n(x ∩ B). The
‘expected’ quadrat count is λ̂ area(B) if the model is CSR, or more generally

∫
B λ̂(u) du if the

model is an inhomogeneous Poisson process. Hence the ‘raw residual’ is observed - expected

= n(x ∩ B) −
∫
B λ̂(u) du.

14.2.2 Residual measure

Equation (11) defines the total residual for any region B, large or small.

Intuitively the residuals can be visualised as an electric charge, with unit positive charge at
each data point, and a diffuse negative charge at all other locations u, with density λ̂(u). If the
model is true, then these charges should approximately cancel.

If we’d like to visualise this electric charge, one way is to plot the observed points and the
fitted intensity function together:

> data(bei)

> fit <- ppm(bei, ~x + y)

> plot(predict(fit))

> plot(bei, add = TRUE, pch = "+")

predict(fit)

0.
00

4
0.

00
6

0.
00

8
0.

01
0.

01
2

+

++++++
++

+

+

+
++

+

+++

+

++

+
+
+++

+
+
+

+

+

+

++
+
+
++++
+
++
+

++
++

+
+

+
+

+
+

+

+
+
++

++

+

+

+

+

++

++
++

+

+

+

+

++

+

+

+
++

+

+
++
+

+

+++
++

+++
+++

++
++
+++++

+

+

+

++

+
+

+

++

+

+

+

+

+

+
+
+

+
++
+

+

+

+

+
+

+

+

+

+

+

+

+
+

++
+

+

+
+
++

++

+

+
++

+
+

+

+

++

+
+
+

+

+

+

++
+

+

+

+
+

+
+

+
+

+

+
+

++
+
+++

+++
+++++
++

+

+

++
++
+++++

++++
+++
+

+++
+++++

+

+++

++
+

++

+
++

++++
+
+
++++

+

+

++
++++++
++
+++
+

+

++
+
++
+++
+++++++

++++
++
++++
++++++
+
+

+

+++++++++++

++
+
+++
+++
++
+++
+++++++
++++

++

+

+

++

+
+
+

+
++
++

+
+

+++++
++++
++
+++
+++++++
+

+++++
++

++
++++
+++++
+

++

+

+++
++
+
++++

+
+
++

++
+++
++
+++
++

++

+

+

+
+

++

+

+

+++++
+++

++
++++++
+++
+++
++
+++

+
++
++
+++

++++
++
+++
++++++

+
+

++++++++++
+

+

+
+

+++
+++
+
++
++++

+
+

+
++++

++++
+

++++
+
+

+++++

++
+
++

+

+

+

+
+++
+++++

++
++++

+

+

+
+
++
+++

+
+

++++
+

+
+

++++
+
++++
+
+
++

++++

++
+

+++

++
++++
++

+++

+++++
++
++++++++++
++++
+

+
+

+

+
+

++
++
++
+++++++++++++
+
+++++++++++
++

++

+

+

+++
+

++

+

++
++
+++++++

++++
++++++++++++

+

+

++

+

+
+++++
++
++++

+

+

+++
+++++
+++++++++++
++
++++++

+

+++++++
++++++
+++++++++++++++
++

++++++++
++++

+

+

+++++++
++++++++
+++++++++++

+++
+++
++++
+

+

+

+

++++++
++++
++

+++++
+++
+
+++
+
++

+
+
++

++
+

++

++
+

+
+

++++
+++++
+++
+++++++

+

+++
+

+
+

+

+
+

++

+

++++++
+++++++++
+
+++++
++

+

+
+

++

++

+++
+++

++

+

+++
++

+++
++++
+

+

+

++
+
+

++
++
++
+++

+

+++
+

++
++++
+++
+

+
+
++

+

++
+
++
+

++

++
++

+

+++++
+++++

++
++

++++
++

+

+++++++
+++
+

+

+++++++
+
+++

+++
+

++++++
+++

+
++

+++++++++
++++
+++

++
+
+

+++++
+++

+
+++

++

++++
++++
++++++
+++++++
+
++++++

+

+

+++++
+++
+
++

++
+++

++

+

+

+

+

+

+++

+

+

++

+

++

+++
+

+

++
++
+++
++

+
++++

++
+

+
+ ++
++
+
+
+

++

++

+
+
+

++
+++
+

+++
+++
+
++
+++++
+

+
++++
+++
++++++
+
+

+
+
+++++
+++++

++++
+

++
++

+++
++
+ +

++
++
++++++++++++
++++
++

++++
+++++

++++++++++++++++++++
++++
+

+

++
+++++++
+++

+
++
+

++++++++++++
+
+++++++++++
+++++++
+++++
+++++++++++++++++++++
+++++++++++++++++++++++++++++
+++++++

++
+++

+
+++++++
+++++++++++++++++

++++++++
+++++++++++++++
++

+++
+

+
++
+

+
+
+

+++
++++++++++
++++++

++

+

+
++
++

+++
++++
++
++++++
++++

++ +
++
+
+

+

+
++

++++++
+++
+
++++++

+

++++

+
+
+

+

+

++
++
+

+++
++++

+
+++
+
+

+++
++

++++

++

++++
++++

++++++

++++
+

+++
+

+

+++

++++
++
++

+

++

+++++++
++++
++

+
+++++++++
+++

++++

++
+++++
+++
+

++
++
+++
+
+

++

++
+

+++++
+++
+

++
++++++

++++++++
+++++++++
+++
++
+

+++
++++
++++

++
+

++++
++

++
++++
++

++++
++

++++++
+++++

++
++++
+++
++++++++
+++
++
+
+

++
+++
+++++

+
++++++

+
++
+

++
+

++
++
++++
+
++

+++
++

+++
+
+

++++
++++++
++
+++++
+
++
+++++++++
+++++++++

+

+

+
+
+++++
+++

+
+++++
+++++++
++++
+++++++
++++
+++++

+
+++++
+++
++++
+++
+++
++
+
++
+++
+++
++++++

+
+++
+++++
++

++
+
+
+++++++
+++

+++
+++++
++

+
+

+++++
++++++
++
+++++
++
++++++

+
+
+++

+

+++
++++
++
++

++
++
++
+++
+++++
++
++++

+++++++
++++++
+

++++
++++
++
++
+

+++++
++
+++++
+++++++++++
+++
+++++++

++
+
++++
+++

++
++++

++++
++
++
+++++++++++++++++

+
+++++++
+++
+
+
+++

++
++++
++++

++++
+++
++++
++++

+++
++
++++

+

+++++++
+++
++

+++++++
++
++
+++++
+++++++
++++++++

++
++++
++++++++

++++++++++++++
+++

+++++++
+
+++

+++
+
++++++++
++

+++

+

+

+

+++

++
+

+

+++++
++++

+
+
+

+

+

+

+

+

+

+

+

+

+++
+
++

++

+
+
+

+
+

++

+

+

+

+
+
++

+++
+

++

+

++

+

+

+++
++
+++

++

+

+

+++

+++
++

+++

+

+
+

+
+
+++
++

+

+

++
++

+
++++

++

+

+
++

+

++
+
+

++++++
+++
+++++++

+

+

++++++++

+

+

+

++++

+

+

+

+

++

+
+

+

++

+

+
+
++
+

+

+
+
+++++++++
++
+++++++

++
+

+

+

+

+

+++++
+
++
+++++++++
+++

+

++++++++++++++++++++
++++++

+

++
+++++++++++++
+
+

+++++++++++++++++++++++++
+++

++

+
+

+

+

++

+

++

++++

+

+

+

+

++

++
++++

+

+
+

+
++

+

++
+++

+

+

++
+++++++++
++++

+
+++++

++ +++
++
+++
++

+

++
++
++

++++
++

+

+
++++++++
+
+

++
+
++

+

+
++++++
+++
++

+

+

+

+
+++++
+++
+++
++++

+

++
++
+++
++

+

++
++
+++++++
+++
++++
+

+

+

+
+
++++
+++

+

++
+++++

+

+

+

+

+

+

+

+
++
+

+

++
+++
+

+
+++++++++

+

+

++
++

++++
+

++

+
+

+
+

+

+

++

+++

++++

+

+
+++++

++

++

+++

++

+

++
++

+

+

+

+
++
++

+ +++

++

+

+

+

++
++

++

++

+
+

+

++++
+
+

+

+

+
++

+

++
+

+

++

+
+

+

+

+

+++

+

+

++
++

+

++

+

+++

+

++
+

+

+

+
+

++

++

+
+++

++

+

+

+
+
+
+
++
+

+

+

+++++

+

+

+++
++

++++

+

+++++

+

+

+++

+

+

+

+

++

+

+

+

++++++++
++
+
+

+

+++
+
+

+

+

++

++
+++
+++
++++
++

++++++++

+
+
++++++
++

+

++
+

++

++
+ +

+

+

+

++

++

+

+

+

+

+

+

+

++
++

+
++
+

+

++++

+

+
++

++

+

++++
++

+

+
++
+

+

+

++++++++++++
+++
+
++
++

+++
+++

+

++++

+

+

+

++++++
+

+

+

++
++

+

++

+++

++

+
+++

+

+

+

++

+++

+

+++

+

++
+++++++++++++
+

+

+

+

+

+

+++

+

+
++
++

+++

+

++
+
++++
+++++++

+

++

+
++++++++++++++
++++++

+

++
+

+
+

+

++

+
++

+

++++

++

+

+

++

+++++

+

+

+++
+

+
+++
+

+

+

++
+

+
+

+

++

+

+

+
++
+

++
+

+
+
+++

+
+

+

+

+

+

+

+

+
+++

++

+

+

+

+ +

+

++

+

+

+

++

++++++++

+

+
+
+

+

+
+
+

+
++

+

++
+
+

+

++

+
+

++

++

+

++
+

+

+

+

+

+
+ +++

+

+

+

+

+

+

+
++
+

++

+++

+

+

+++

+

+

+

++

+
+

+

+
+

+

+

+

+

+

+

++

+

+++

+
+

+

+

+

+

++
+

+
+

+

+
++++
++

+

+

+

+
++

++

+
+

+

+
+
+
+

+

+ +

+

+

+++
+

++
++

+

+

+++

+ +

+

+

+

+

+

+

+
+

+

++

+
++++

+
++

+

+

+

+

+
+++
+

++

+

+

+
++++

+++

+
+

+

++

++

+++

+++

+

+
+
+
+++

+

Each data point should be visualised as a charge of +1, while the colour image indicates a
negative charge density. If the model is true then these positive and negative charges should
even out to zero.

14.2.3 Smoothed residuals

A more useful way to visualise the residuals is to smooth them.

> data(bei)

> fitx <- ppm(bei, ~x)

> diagnose.ppm(fitx, which = "smooth")

Copyright c©CSIRO 2008

14.2 Validation using residuals 93

Smoothed raw residuals

 −0.004

 −0.003

 −
0.

00
3

 −0.002

 −0.002

 −
0.

00
2

 −0.001

 −0.001

 −
0.

00
1

 0

 0

 0

 0.001

 0.001

 0.001

 0.002

 0.002

 0.002

 0.003

 0.003

 0.003

 0.004

 0.004

 0.005

 0.005

 0.006

 0.006

This is an image plot of the ‘smoothed residual field’

s(u) = λ̂(u) − λ†(u) (12)

where λ̂(u) is the nonparametric, kernel estimate of the intensity,

λ̂(u) = e(u)

n(x)∑

i=1

κ(u − xi)

while λ†(u) is a correspondingly-smoothed version of the parametric estimate of the intensity
according to the fitted model,

λ†(u) = e(u)

∫

W
κ(u − v)λθ̂(v) dv.

Here κ is the smoothing kernel and e(u) is the edge correction (2) on page 67. The difference
(12) should be approximately zero if the model is true.

In this example the smoothed residual image contains a visible trend, suggesting that the
model is inappropriate.

14.2.4 Lurking variable plot

If there is a spatial covariate Z(u) that plays an important role in the analysis, it may be useful
to display a lurking variable plot of the residuals against Z. This is a plot of C(z) = R(B(z))
against z, where

B(z) = {u ∈ W : Z(u) ≤ z}

is the region of space where the covariate value is less than or equal to z.

> grad <- bei.extra$grad

> lurking(fitx, grad, type = "raw")

Copyright c©CSIRO 2008

94 Methods 4: checking a fitted Poisson model

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
60

0
−

40
0

−
20

0
0

covariate

cu
m

ul
at

iv
e

ra
w

 r
es

id
ua

ls

Note that the lurking variable plot typically starts and ends at the horizontal axis, since (for
any model with an intercept term) the total residual for the entire window W must equal zero.
This is analogous to the fact that the residuals in linear regression sum to zero.

The plot also shows approximate 5% significance bands for the cumulative residual C(x) or
C(y), obtained from the asymptotic variance under the model.

This plot indicates that the model is grossly inadequate; the fitted intensity function fails to
capture the dependence of intensity on slope.

It can be helpful to display the derivative C ′(z), which often indicates which values of z are
associated with a lack of fit.

> lurking(fitx, grad, type = "raw", cumulative = FALSE)

0.00 0.05 0.10 0.15 0.20 0.25 0.30−
30

00
0

−
10

00
0

0
10

00
0

20
00

0
30

00
0

covariate

m
ar

gi
na

l r
aw

 r
es

id
ua

ls

Copyright c©CSIRO 2008

14.2 Validation using residuals 95

The derivative is estimated using a smoothing spline and you may need to tweak the smooth-
ing parameters (argument splineargs) to get a useful plot. Also the package currently does
not plot significance bands for C ′(z).

14.2.5 Four-panel plot

If there are no spatial covariates, use the command diagnose.ppm to plot the residuals:

> data(japanesepines)

> fit <- ppm(japanesepines, ~x + y)

> diagnose.ppm(fit)

 −25

 −25

 −20

 −20

 −
15

 −15

 −15

 −15

 −10

 −10

 −10

 −5

 −5

 −5

 −5

 0

 0

 0

 0

 5

 5

 5

 5

 10
 10

 10

 15

 15

 15

 2
0

 20

 20

 25

 25

 30

 30

 35

 35

0 0.2 0.4 0.6 0.8 1

x coordinate

−
6

−
4

−
2

0
2

4
6

cu
m

ul
at

iv
e

su
m

 o
f r

aw
 r

es
id

ua
ls

0
0.

2
0.

4
0.

6
0.

8
1

y
co

or
di

na
te

8 6 4 2 0 −2 −4 −6

cumulative sum of raw residuals

This combination of four plots has proved to be a useful quick indication of departure from
the trend in the model.

The bottom right panel is an image of the smoothed residual field.

Copyright c©CSIRO 2008

96 Methods 4: checking a fitted Poisson model

The top left panel is a direct representation of the residual ‘charge’, with circles representing
the data points (positive residuals) and a colour scheme representing the fitted intensity (negative
residuals). However, it is often difficult to interpret.

The two other panels are lurking variables against one of the cartesian coordinates. For
example, the bottom left panel is a lurking variable plot for the x-coordinate. Imagine a vertical
line which sweeps from left to right across the window. The progressive total residual to the left
of the line is plotted against the position of the line.

In this example, the lurking variable plot for the y coordinate suggests a lack of fit at about
y = 0.15, and the image of the smoothed residual field suggests an excess of positive residuals
at about x = 0.8, y = 0.15, both indicating that the model underestimates the true intensity of
points in this vicinity.

14.2.6 Caveats

The residual plots described above are useful for detecting misspecification of the trend in a fitted
Poisson process model. They are not very useful for checking the independence assumption, that
is, for checking the properties (PP3)–(PP4) of a Poisson process listed on page 72.

Effective diagnostics of independence or dependence between points include the K-function
(section 16.4) and a Q–Q plot of the residuals (section 22.2.3).

Copyright c©CSIRO 2008

14.2 Validation using residuals 97

PART IV. INTERACTION

Part IV of the workshop explains how to investigate dependence between the points in a point
pattern.

Copyright c©CSIRO 2008

98 Simple models of non-Poisson patterns

15 Simple models of non-Poisson patterns

A point process that is not Poisson can be said to exhibit ‘interaction’ or dependence between
the points. It’s time to introduce some models for such processes. This section covers simple
models that are derived from the Poisson process, and still retain some of the tractable features
of the Poisson model.

15.1 Poisson cluster processes

In a Poisson cluster process, we begin with a Poisson process Y of ‘parent’ points. Each ‘parent’
point yi ∈ Y then gives rise to a finite set Zi of ‘offspring’ points according to some stochastic
mechanism. The set comprising all the offspring points forms a point process X. Only X is
observed.

parents clusters offspring

An example is the Matérn cluster process in which the parent points come from a homoge-
neous Poisson process with intensity κ, and each parent has a Poisson (µ) number of offspring,
independently and uniformly distributed in a disc of radius r centred around the parent.

The Matérn cluster process can be generated in spatstat using the command rMatClust.
[By convention, random data generators in R always have names beginning with r.]

> plot(rMatClust(kappa = 10, r = 0.1, mu = 5))

rMatClust(kappa = 10, r = 0.1, mu = 5)

Other Poisson cluster processes implemented in spatstat are

• rThomas: the Thomas process, in which each cluster consists of a Poisson(µ) number of
random points, each having an isotropic Gaussian N(0, σ2I) displacement from its parent.

Copyright c©CSIRO 2008

15.2 Cox processes 99

• rGaussPoisson: the Gauss-Poisson process in which each cluster is either a single point
or a pair of points.

• rNeymanScott: the general Neyman-Scott cluster process in which the cluster mechanism
is arbitrary.

15.2 Cox processes

A Cox point process is effectively a Poisson process with a random intensity function. Let Λ(u)
be a random function with non-negative values, defined at all locations u ∈ R

2. Conditional on
Λ, let X be a Poisson process with intensity function Λ. Then X is a Cox process.

A trivial example is the “mixed Poisson” process in which we generate a random variable Λ
and, conditional on Λ, generate a uniform Poisson process with intensity Λ. Following are three
different realisations of this process:

> par(mfrow = c(1, 3))

> for (i in 1:3) {

+ lambda <- rexp(1, 1/100)

+ X <- rpoispp(lambda)

+ plot(X)

+ }

> par(mfrow = c(1, 1))

X X X

Moments of Cox processes are tractable (in terms of the moments of Λ). The intensity
function of X is λ(u) = E[Λ(u)].

A Cox model is the analogue of a ‘random effects’ model. It is always overdispersed relative
to a Poisson process (i.e. the variance of the number of points falling in a region, is greater
than the mean). Cox processes are the most convenient models for clustered point patterns. A
particularly interesting and useful class is that of log-Gaussian Cox processes (LGCP) in which
log Λ(u) is a Gaussian random function [37, 38].

The Matérn Cluster process and the Thomas process are both Cox processes.

Currently there are no functions in spatstat for generating the general Cox process, but
if you have a way of generating realisations of a random function Λ of interest, then you can
use rpoispp to generate the Cox process. The intensity argument lambda of rpoispp can be a
function(x,y) or a pixel image.

15.3 Thinned processes

‘Thinning’ means deleting some of the points from a point pattern. Under ‘independent thinning’
the fate of each point is independent of other points. When independent thinning is applied to a

Copyright c©CSIRO 2008

100 Simple models of non-Poisson patterns

Poisson process, the resulting process of retained points is Poisson. To get a non-Poisson process
we need some kind of dependent thinning mechanism.

In Matérn’s Model I, a homogeneous Poisson process Y is first generated. Any point in Y
that lies closer than a distance r from the nearest other point of Y, is deleted. Thus, pairs of
close neighbours annihilate each other.

> plot(rMaternI(70, 0.05))

rMaternI(70, 0.05)

In Matérn’s Model II, the points of the homogeneous Poisson process Y are marked by ‘arrival
times’ ti which are independent and uniformly distributed in [0, 1]. Any point in Y that lies
closer than distance r from another point that has an earlier arrival time, is deleted.

> plot(rMaternII(70, 0.05))

rMaternII(70, 0.05)

15.4 Sequential models

In a sequential model, we start with an empty window, and the points are placed into the window
one-at-a-time, according to some criterion.

In Simple Sequential Inhibition, each new point is generated uniformly in the window and
independently of preceding points. If the new point lies closer than r units from an existing
point, then it is rejected and another random point is generated. The process terminates when
no further points can be added.

Copyright c©CSIRO 2008

15.4 Sequential models 101

> plot(rSSI(0.05, 200))

rSSI(0.05, 200)

Sequential point processes are the easiest way to generate highly ordered patterns with high
intensity.

Copyright c©CSIRO 2008

102 Methods 5: Distance methods for point patterns

16 Methods 5: Distance methods for point patterns

Suppose that a point pattern appears to have constant intensity, and we wish to assess whether
the pattern is Poisson. The alternative is that the points are dependent (they exhibit ‘interac-
tion’).

Classical writers suggested a simple trichotomy between ‘independence’ (the Poisson process),
‘regularity’ (where points tend to avoid each other), and ‘clustering’ (where points tend to be
close together). [The concept of ‘clustering’ does not imply that the points are organised into
identifiable ‘clusters’; merely that they are closer together than expected for a Poisson process.]

independent regular clustered

16.1 Distances

The classical techniques for investigating interpoint interaction are distance methods, based on
measuring the distances between points. Specifically we may consider

• pairwise distances sij = ||xi − xj || between all distinct pairs of points xi and xj (i 6= j)
in the pattern;

• nearest neighbour distances ti = minj 6=i sij, the distance from each point xi to its
nearest neighbour;

• empty space distances d(u) = mini ||u−xi||, the distance from a fixed reference location
u in the window to the nearest data point.

If you need to compute these directly, they are available in spatstat using the functions
pairdist, nndist and distmap respectively. If X is a point pattern object,

• pairdist(X) returns the matrix of pairwise distances.

• nndist(X) returns the vector of nearest neighbour distances.

• distmap(X) returns a pixel image whose pixel values are the empty space distances to the
pattern X measured from every pixel.

> data(cells)

> emp <- distmap(cells)

> plot(emp, main = "Empty space distances")

> plot(cells, add = TRUE)

Copyright c©CSIRO 2008

16.2 Empty space distances 103

Empty space distances

0
0.

05
0.

1
0.

15
0.

2
0.

25

Tip: Quite a useful exploratory tool is the Stienen diagram obtained by drawing a
circle around each data point of diameter equal to its nearest neighbour distance:

> plot(X %mark% (nndist(X)/2), markscale = 1, main = "Stienen diagram")

Stienen diagram

16.2 Empty space distances

It’s easiest to start by explaining the analysis of the empty space distances
The distance

d(u,x) = min{||u − xi|| : xi ∈ x}
from a fixed location u ∈ R

2 to the nearest point in a point pattern x, is called the ‘empty
space distance’ or ‘void distance’. It can be computed for all locations u on a fine grid, using
the spatstat function distmap as we saw above.

Copyright c©CSIRO 2008

104 Methods 5: Distance methods for point patterns

16.2.1 Edge effects

It is not easy to interpret a histogram of the empty space distances. The empirical distribution of
the empty space distances depends on the geometry of the window W as well as on characteristics
of the point process X.

Another viewpoint is that the window introduces a sampling bias. Recall that under the
‘standard model’ (Section 2.3) the point process X extends throughout 2-D space, but is observed
only inside W . This leads to bias in the distance measurements. Confining observations to a
window W implies that the observed distance d(u,x) = d(u,X ∩ W) to the nearest data point
inside W , may be greater than the true distance d(u,X) to the nearest point of the complete
point process X.

observed true

16.2.2 Empty space function F

Ignoring the edge problems for a moment, let us focus on the entire point process X.
Assuming X is stationary (statistically invariant under translations), we can define the cu-

mulative distribution function of the empty space distance

F (r) = P {d(u,X) ≤ r} (13)

where u is an arbitrary reference location. If the process is stationary then this definition does
not depend on u.

The empirical distribution function of the observed empty space distances on a grid of loca-
tions uj, j = 1, . . . ,m,

F ∗(r) =
1

m

∑

j

1 {d(uj ,x) ≤ r} (14)

is a negatively biased estimator of F (r), for reasons explained above.
Corrections for this ‘edge effect bias’ are required. Many edge corrections are available.

Typically they are weighted versions of the ecdf,

F̂ (r) =
∑

j

e(uj , r)1 {d(uj ,x) ≤ r} (15)

where e(u, r) is an edge correction weight designed so that F̂ (r) is unbiased. These corrections
are effectively forms of the Horvitz-Thompson estimator of survey sampling fame.

Copyright c©CSIRO 2008

16.2 Empty space distances 105

The edge effect problem can also be regarded as a form of censoring (analogous to right-
censoring in survival data), as first pointed out by CSIRO researcher Geoff Laslett [33]. A
counterpart of the Kaplan-Meier estimator is available. For further information see [7].

Thus, assuming that the point process is homogeneous, we are able to compute an unbiased
and reasonably accurate estimate of the empty space function F defined by (13).

To interpret this estimate, a useful benchmark is the Poisson process. Notice that d(u,X) > r
if and only if there are no points of X in the disc b(u, r) of radius r centred on u. For a
homogeneous Poisson process of intensity λ, the number of points falling in b(u, r) is Poisson
with mean µ = λarea(b(u, r)) = λπr2, so the probability that there are no points in this region
is exp(−µ) = exp(−λπr2). Hence for a Poisson process

Fpois(r) = 1 − exp(−λπr2). (16)

Typically we compare F̂ (r) with the value of Fpois(r) obtained by plugging in the estimated

intensity λ̂ = n(x)/area(W). Values F̂ (r) > Fpois(r) suggest that empty space distances in the
point pattern are shorter than for a Poisson process, suggesting a regularly space pattern; while
values F̂ (r) < Fpois(r) suggest a clustered pattern.

16.2.3 Implementation in spatstat

The function Fest computes estimates of F (r) using several edge corrections, and the benchmark
value for the Poisson process.

> data(cells)

> plot(cells)

> Fc <- Fest(cells)

> Fc

Function value object (class ’fv’)

for the function r -> F(r)

Entries:

id label description

-- ----- -----------

r r distance argument r

theo Fpois(r) theoretical Poisson F(r)

rs Fbord(r) border corrected estimate of F(r)

km Fkm(r) Kaplan-Meier estimate of F(r)

hazard lambda(r) Kaplan-Meier estimate of hazard function lambda(r)

raw Fraw(r) uncorrected estimate of F(r)

Default plot formula:

. ~ r

Recommended range of argument r: [0, 0.085]

Copyright c©CSIRO 2008

106 Methods 5: Distance methods for point patterns

cells

Tip: Don’t use F as a variable name! It’s a reserved word — an abbreviation for
FALSE.

The value returned by Fest is an object of class "fv" (“function value table”). This is
effectively a data frame with some extra information. The printout for Fc indicates that the
columns in the data frame are named r, theo, rs, km, hazard and raw. The first column r

contains a sequence of values of the function argument r. The next column theo contains the
corresponding values of F (r) for a homogeneous Poisson process. The columns rs, km and raw

contain different estimates of the empty space function F , namely the ‘reduced sample’ estimator,
the Kaplan-Meier estimator, and the uncorrected empirical distribution function, respectively.
The column hazard contains an estimate of the hazard rate of F , i.e. h(r) = (d/dr) log(1−F (r)),
a by-product of the Kaplan-Meier estimate.

> par(pty = "s")

> plot(Fest(cells))

lty col

km 1 1

rs 2 2

theo 3 3

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

Fest(cells)

r

F
(r

)

Copyright c©CSIRO 2008

16.2 Empty space distances 107

This is a call to plot.fv. The printed output is the return value from plot.fv, which
explains the encoding of the different function estimates using the R graphics parameters lty

(line type) and col (line colour).

You’ll notice that, by default, the uncorrected estimate raw and the hazard rate hazard were
not plotted. The choice of estimates to be plotted, and the style in which they are plotted, are
controlled by the second argument to plot.fv, which should be an R language formula involving
the identifier names r, theo, rs, km, hazard and raw. To plot the hazard rate against r,

> plot(Fest(cells), hazard ~ r, main = "Hazard rate of F")

0.00 0.02 0.04 0.06 0.08

0
20

40
60

80

Hazard rate of F

r

ha
za

rd

To plot all the estimates of F (r), including the uncorrected estimate:

> plot(Fest(cells), cbind(km, rs, raw, theo) ~ r)

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

Fest(cells)

r

km
 ,

rs
 ,

ra
w

 ,
th

eo

Notice the use of cbind to specify several different graphs on the same plot.

To plot the estimates of F (r) against the Poisson value, in the style of a P–P plot:

> plot(Fest(cells), cbind(km, rs, theo) ~ theo)

Copyright c©CSIRO 2008

108 Methods 5: Distance methods for point patterns

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fest(cells)

theo

km
 ,

rs
 ,

th
eo

(including theo on the left side here gives us the diagonal line).

The symbol . stands for ‘all recommended estimates of the function’. So an abbreviation
for the last command is

> plot(Fest(cells), . ~ theo)

Transformations can be applied to these function values. For example, to subtract the
theoretical Poisson value from the estimates,

> plot(Fest(cells), . - theo ~ r)

0.00 0.02 0.04 0.06 0.08

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Fest(cells)

r

cb
in

d(
km

, r
s,

 th
eo

)
−

 th
eo

To apply Fisher’s variance stabilising transformation φ(F̂ (t)) = sin−1(
√

(F̂ (t))),

> plot(Fest(cells), asin(sqrt(.)) ~ r)

Copyright c©CSIRO 2008

16.3 Nearest neighbour distances 109

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Fest(cells)

r

as
in

(s
qr

t(
cb

in
d(

km
, r

s,
 th

eo
))

)

16.3 Nearest neighbour distances

For other types of distances we encounter similar problems. For the nearest neighbour distances
ti = minj 6=i ||xi − x|j||, again it is not easy to interpret a histogram of the observed distances.
The empirical distribution of the nearest neighbour distances depends on the geometry of the
window W as well as on characteristics of the point process X. Confining observations to a
window W implies that the observed nearest-neighbour distances are larger, in general, than the
‘true’ nearest neighbour distances of points in the entire point process X. Corrections for this
edge effect bias are required.

16.3.1 G function

Assuming the point process X is stationary, we can define the cumulative distribution function
of the nearest-neighbour distance for a typical point in the pattern,

G(r) = P {d(u,X \ {u}) ≤ r | u ∈ X} (17)

where u is an arbitrary location, and d(u,X \ {u}) is the shortest distance from u to the point
pattern X excluding u itself. If the process is stationary then this definition does not depend on
u.

The empirical distribution function of the observed nearest-neighbour distances

G∗(r) =
1

n(x)

∑

i

1 {ti ≤ r} (18)

is a negatively biased estimator of G(r), for reasons we explained above. Many edge corrections
are available. Typically they are weighted versions of the ecdf,

Ĝ(r) =
∑

i

e(xi, r)1 {ti ≤ r} (19)

where e(xi, r) is an edge correction weight designed so that Ĝ(r) is approximately unbiased. A
counterpart of the Kaplan-Meier estimator is also available.

For a homogeneous Poisson point process of intensity λ, the nearest-neighbour distance
distribution function is known to be

Gpois(r) = 1 − exp(−λπr2). (20)

Copyright c©CSIRO 2008

110 Methods 5: Distance methods for point patterns

This is identical to the empty space function for the Poisson process. Intuitively, because points
of the Poisson process are independent of each other, the knowledge that u is a point of X does
not affect any other points of the process, hence G is equivalent to F .

Interpretation of Ĝ(r) is the reverse of F̂ (r). Values Ĝ(r) > Gpois(r) suggest that nearest
neighbour distances in the point pattern are shorter than for a Poisson process, suggesting a
clustered pattern; while values Ĝ(r) < Gpois(r) suggest a regular (inhibited) pattern.

The function Gest computes estimates of G(r) using several edge corrections, and the bench-
mark value for the Poisson process.

> Gc <- Gest(cells)

> Gc

Function value object (class ’fv’)

for the function r -> G(r)

Entries:

id label description

-- ----- -----------

r r distance argument r

theo Gpois(r) theoretical Poisson G(r)

rs Gbord(r) border corrected estimate of G(r)

km Gkm(r) Kaplan-Meier estimate of G(r)

hazard lambda(r) Kaplan-Meier estimate of hazard function lambda(r)

raw Graw(r) uncorrected estimate of G(r)

Default plot formula:

. ~ r

Recommended range of argument r: [0, 0.15]

> par(pty = "s")

> plot(Gest(cells))

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

Gest(cells)

r

G
(r

)

The estimate of G(r) suggests strongly that the pattern is regular. Indeed, Ĝ(r) is zero for
r ≤ 0.07 which indicates that there are no nearest-neighbour distances shorter than 0.07.

Common ways of plotting Ĝ include:

Copyright c©CSIRO 2008

16.4 Pairwise distances and the K function 111

Ĝ(r) and Gpois(r) plotted against r plot(Gest(X))

Ĝ(r) − Gpois(r) plotted against r plot(Gest(X), . - theo ~ r)

Ĝ(r) plotted against Gpois(r) in P–P style plot(Gest(X), . ~ theo)

and Fisher’s variance-stabilising transformation φ(G(t)) = sin−1(
√

G(t)) applied to the P–P
plot:

> fisher <- function(x) {

+ asin(sqrt(x))

+ }

> plot(Gest(cells), fisher(.) ~ fisher(theo))

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Gest(cells)

fisher(theo)

fis
he

r(
cb

in
d(

km
, r

s,
 th

eo
))

16.4 Pairwise distances and the K function

The observed pairwise distances sij = ||xi−xj|| in the data pattern x constitute a biased sample
of pairwise distances in the point process, with a bias in favour of smaller distances. For example,
we can never observe a pairwise distance greater than the diameter of the window.

Ripley [40] defined the K-function for a stationary point process so that λK(r) is the expected
number of other points of the process within a distance r of a typical point of the process.
Formally

K(r) =
1

λ
E [n(X ∩ b(u, r) \ {u}) | u ∈ X] . (21)

For a homogeneous Poisson process, intuitively, the knowledge that u is a point of X does
not affect the other points of the process, so that X\{u} is conditionally a Poisson process. The
expected number of points falling in b(u, r) is λπr2. Thus for a homogeneous Poisson process

Kpois(r) = πr2 (22)

regardless of the intensity.
Numerous estimators of K have been proposed. Most of them are weighted and renormalised

empirical distribution functions of the pairwise distances, of the general form

K̂(r) =
1

λ̂2area(W)

∑

i

∑

j 6=i

1 {||xi − xj || ≤ r} e(xi, xj; r) (23)

where e(u, v, r) is an edge correction weight. The choice of estimator does not seem to be very
important, as long as some edge correction is applied.

Copyright c©CSIRO 2008

112 Methods 5: Distance methods for point patterns

Again we usually compare the estimate K̂(r) with the Poisson K function. Values K̂(r) > πr2

suggest clustering, while K̂(r) < πr2 suggests a regular pattern.
In spatstat the function Kest computes several estimates of the K-function.

> Gc <- Kest(cells)

> Gc

Function value object (class ’fv’)

for the function r -> K(r)

Entries:

id label description

-- ----- -----------

r r distance argument r

theo Kpois(r) theoretical Poisson K(r)

border Kbord(r) border-corrected estimate of K(r)

trans Ktrans(r) translation-corrected estimate of K(r)

iso Kiso(r) Ripley isotropic correction estimate of K(r)

Default plot formula:

. ~ r

Recommended range of argument r: [0, 0.25]

> par(pty = "s")

> plot(Kest(cells))

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

Kest(cells)

r

K
(r

)

In this case, the interpretation of all three summary statistics F , G and K is the same:
emphatic evidence of a regular pattern. It is not always the case that these three summaries
give equivalent messages.

A commonly-used transformation of K is the L-function

L(r) =

√
K(r)

π

which transforms the Poisson K function to the straight line Lpois(r) = r, making visual assess-
ment of the graph much easier. The square root transformation also approximately stabilises
the variance of the estimator, making it easier to assess deviations.

Copyright c©CSIRO 2008

16.4 Pairwise distances and the K function 113

To compute the estimated L function, use Lest.

> L <- Lest(cells)

> plot(L, main = "L function")

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

L function

r

L(
r)

Another related summary function is the pair correlation function

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K. The pair correlation is in some ways easier to interpret than
either K or L, although it is more difficult to estimate. Roughly speaking, the pair correlation
g(r) is the probability of observing a pair of points separated by a distance r, divided by the
corresponding probability for a Poisson process. This is a non-centred correlation which may
take any nonnegative value. The value g(r) = 1 corresponds to complete randomness; for the
Poisson process the pair correlation is gpois(r) ≡ 1. For other processes, values g(r) > 1 suggest
clustering or attraction at distance r, while values g(r) < 1 suggest inhibition or regularity.

To compute the estimated pair correlation function, use pcf.

> plot(pcf(cells))

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
5

1.
0

1.
5

pcf(cells)

r

g(
r)

Here we have used the method pcf.ppp. This computes a standard kernel estimate which
performs well except at very small values of r. So it is prudent not to read too much into the
behaviour of the pcf close to r = 0.

Copyright c©CSIRO 2008

114 Methods 5: Distance methods for point patterns

If you want to try another algebraic transformation of a summary function, the transforma-
tion can be computed using eval.fv. You can also plot algebraic transformations of a summary
function using the ‘plotting formula’ argument to plot.fv. For example, if we have already
computed the K function, we can plot the L function by

> K <- Kest(cells)

> plot(K, sqrt(./pi) ~ r)

and compute the L function using eval.fv:

> K <- Kest(cells)

> L <- eval.fv(sqrt(K/pi))

If you have already computed the K function and wish to derive the pair correlation, there
is another algorithm pcf.fv that calculates g(r) = K ′(r)/(2πr) by numerical differentiation.

> K <- Kest(cells)

> g <- pcf(K)

16.5 J function

A useful combination of F and G is the J function [48]

J(r) =
1 − G(r)

1 − F (r)
(24)

defined for all r ≥ 0 such that F (r) < 1. For a homogeneous Poisson process, Fpois = Gpois, so
that

Jpois(r) ≡ 1. (25)

Values J(r) > 1 suggest regularity, and J(r) < 1 suggest clustering.

An appealing property of the J function is that the superposition X• = X1 ∪ X2 of two
independent point processes X1,X2 has J-function

J(t) =
λ1

λ1 + λ2
J1(t) +

λ2

λ1 + λ2
J2(t)

where J1, J2 are the J-functions of X1,X2 respectively and λ1, λ2 are their intensities.

The J function is computed by Jest.

The convenient function allstats efficiently computes the F , G, J and K functions for a
dataset. They can be plotted automatically.

> plot(allstats(cells))

Copyright c©CSIRO 2008

16.6 Manipulating and plotting summary functions 115

allstats(cells)

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

F function

r

F
(r

)

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

G function

r

G
(r

)

0.00 0.02 0.04 0.06 0.08

2
4

6
8

J function

J(
r)

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

K function

K
(r

)

16.6 Manipulating and plotting summary functions

As explained above, the summary function commands Fest, Gest, Kest, Lest, pcf etc. return
a function value table (an object of class "fv"). This is a data frame (i.e. it also belongs to
the class "data.frame") with some extra information. One column of the data frame contains
values of the distance argument r, while the other columns contain different estimates of the
value of the function, or the theoretical value of the function under CSR.

The following operations are defined on this class:
print.fv print a summary description
plot.fv plot the function estimates
as.data.frame strip extra information (returns a data frame)
$ extract one column (returns a numeric vector)
[.fv extract subset (returns an "fv" object)
with.fv perform calculations with specific columns of data frame
eval.fv perform calculation on all columns of data frame
stieltjes compute Stieltjes integral with respect to function

To make life easier, there are several options for manipulating the function values.

To manipulate or combine one or more columns of the data frame, it is typically easiest to
use the command with.fv, which is a method for the generic command with. For example:

> data(redwood)

> K <- Kest(redwood)

> y <- with(K, iso - theo)

> x <- with(K, r)

In this case, the results x and y are numeric vectors, where x contains the values of the
distance argument r, and y contains the difference between the columns iso (isotropic correction
estimate) and theo (theoretical value for CSR) for the K-function estimate of the redwood

Copyright c©CSIRO 2008

116 Methods 5: Distance methods for point patterns

seedlings data. For this to work, we have to know that K contains columns named r, iso and
theo.

The general syntax is with(X, expr) where X is an "fv" object and expr can be any
expression involving the names of columns of X. The expression can include functions, so long
as they are capable of operating on numeric vectors. The expression can also involve the symbol
. representing “all recommended estimates of the function”. Thus:

> L <- with(K, sqrt(./pi))

computes the estimates of L(r) =
√

K(r) by all the available edge correction methods. In
this case, the result L is an "fv" object. You can also get a single numeric result, for example

> with(Kest(redwood), max(abs(iso - theo)))

[1] 0.04945199

To plot a transformed function, you can also use the plot method. Its second argument is
a formula in the R language. The left side of the formula represents what curve or curves will
be plotted on the y axis, and the right side determines the x variable for the plot. Thus:

> plot(K, sqrt(./pi) ~ r)

plots the estimates of L(r) =
√

K(r), by all the available edge correction methods, against
r. The symbol . again signifies “all recommended estimates of the function”. The left hand side
of the formula may use the command cbind to indicate that several different curves should be
plotted. For example, to plot only two curves, giving the isotropic correction estimate and the
theoretical value of K(r):

> plot(K, cbind(iso, theo) ~ r)

The right-hand side can be any expression that evaluates to a numeric vector, and the left
hand side is any expression that evaluates to a vector or matrix, of compatible dimensions.

To manipulate or combine one or more "fv" objects, use eval.fv. Its argument is an
expression containing the names of "fv" objects. For example

> K <- Kest(redwood)

> L <- eval.fv(sqrt(K/pi))

This can be used to perform computations involving several "fv" objects provided they are
compatible (they must have the same vector of r values).

> K1 <- Kest(redwood)

> K2 <- Kest(runifpoint(redwood$n, redwood$window))

> DK <- eval.fv(K1 - K2)

If these facilities are not sufficient, then direct access to the function values is also possible.
A single column of the data frame can be extracted using the $ operator in the usual way. The
object can also be converted to a data frame using as.data.frame and the entries extracted in
any desired fashion.

Copyright c©CSIRO 2008

16.7 Caveats 117

16.7 Caveats

The use of summary functions for analysing point patterns has become established across wide
areas of applied science, following Ripley’s influential paper [40] and many subsequent textbooks
[19, 21, 23, 47, 42, 43, 46] until quite recently.

There is a tendency to apply them uncritically and exclusively. It’s important to remember
that

1. the functions F , G and K are defined and estimated under the assumption that the point
process is stationary (homogeneous).

2. these summary functions do not completely characterise the process.

3. if the process is not stationary, deviations between the empirical and theoretical functions
(e.g. K̂ and Kpois) are not necessarily evidence of interpoint interaction, since they may
also be attributable to variations in intensity.

For an example of caveat 2, here is a point process constructed by Baddeley and Silverman
[10] which has the same K function as the homogeneous Poisson process:

> par(mfrow = c(1, 2))

> X <- rcell(nx = 15)

> plot(X)

> plot(Kest(X))

X

0.
00

0.
05

0.
10

0.
15

0.
20

Kest(X)

For an example of caveat 3, we generate an inhomogeneous Poisson pattern and apply the
ordinary K function estimator. The result appears to show clustering, but this is an artefact of
the spatial inhomogeneity.

> par(mfrow = c(1, 2))

> X <- rpoispp(function(x, y) {

+ 300 * exp(-3 * x)

+ })

> plot(X)

> plot(Kest(X))

Copyright c©CSIRO 2008

118 Methods 5: Distance methods for point patterns

X

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Kest(X)

Copyright c©CSIRO 2008

119

17 Methods 6: simulation envelopes and goodness-of-fit tests

Although summary statistics such as the K-function are intended primarily for exploratory
purposes, it is also possible to use them as a basis for statistical inference.

17.1 Envelopes and Monte Carlo tests

17.1.1 Motivation

In Section 16 we examined plots of the K-function to judge whether a point pattern dataset is
completely random. The K-function estimated from the point pattern data, K̂(r), was compared
graphically with the theoretical K-function for a completely random pattern, Kpois(r) = πr2. In

the toy examples, large discrepancies between K̂ and Kpois were observed, indicating that the
toy examples were not completely random patterns.

However, because of random variability, we will never obtain perfect agreement between K̂
and Kpois, even with a completely random pattern. Try typing plot(Kest(rpoispp(50))) a
few times to get an idea of the inherent variability.

The following plot shows the K-function estimated from the cells dataset (thick line), and
also the K-functions of 20 simulated realisations of CSR with the same intensity (thin lines).

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

r

K
(r

)

The next plot shows the upper and lower envelopes of the simulated K-functions, that is, the
maximum and minimum values of K̂(r) for each value of r. The region between the envelopes
is shaded.

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

r

K
(r

)

Copyright c©CSIRO 2008

120 Methods 6: simulation envelopes and goodness-of-fit tests

Clearly, the K-function estimated from the cells data lies outside the typical range of values
of the K-function for a completely random pattern.

To conclude formally that there is a ‘significant’ difference between K̂ and Kpois, we use
the language of hypothesis testing. Our null hypothesis is that the data point pattern is a
realisation of complete spatial randomness. The alternative hypothesis is that the data pattern
is a realisation of another, unspecified point process.

17.1.2 Monte Carlo tests

A Monte Carlo test is a test based on simulations from the null hypothesis. The principle was
originated independently by Barnard [12] and Dwass [27]. It was applied in spatial statistics
by Ripley [40, 42] and Besag [15, 16]. See also [28]. Monte Carlo tests are a special case of
randomisation tests which are commonly used in nonparametric statistics.

Suppose the reference curve is the theoretical K function for CSR. Generate M independent
simulations of CSR inside the study region W . Compute the estimated K functions for each of
these realisations, say K̂(j)(r) for j = 1, . . . ,M . Obtain the pointwise upper and lower envelopes
of these simulated curves,

L(r) = min
j

K̂(j)(r)

U(r) = max
j

K̂(j)(r).

For any fixed value of r, consider the probability that K̂(r) lies outside the envelope [L(r), U(r)]
for the simulated curves. If the data came from a uniform Poisson process, then K̂(r) and
K̂(1)(r), . . . , K̂(M)(r) are statistically equivalent and independent, so this probability is equal
to 2/(M + 1) by symmetry. That is, the test which rejects the null hypothesis of a uniform
Poisson process when K̂(r) lies outside [L(r), U(r)], has exact significance level α = 2/(M + 1).
Instead of the pointwise maximum and minimum, one could use the pointwise order statistics
(the pointwise kth largest and k smallest values) giving a test of exact size α = 2k/(M + 1).

17.1.3 Envelopes in spatstat

In spatstat the function envelope computes the pointwise envelopes.

> data(cells)

> E <- envelope(cells, Kest, nsim = 39, rank = 1)

> E

Pointwise critical envelopes for K(r)

Obtained from 39 simulations of simulations of CSR

Significance level of pointwise Monte Carlo test: 2/40 = 0.05

Data: cells

Function value object (class ’fv’)

for the function r -> K(r)

Entries:

id label description

-- ----- -----------

r r distance argument r

obs obs(r) function value for data pattern

Copyright c©CSIRO 2008

17.1 Envelopes and Monte Carlo tests 121

theo theo(r) theoretical value for CSR

lo lo(r) lower pointwise envelope of simulations

hi hi(r) upper pointwise envelope of simulations

Default plot formula:

. ~ r

Recommended range of argument r: [0, 0.25]

> plot(E, main = "pointwise envelopes")

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

pointwise envelopes

r

K
(r

)

For example if r had been fixed at r = 0.10 we would have rejected the null hypothesis of
CSR at the 5% level. The value M = 39 is the smallest to yield a two-sided test with significance
level 5%.

Tip: A common and dangerous mistake is to misinterpret the simulation envelopes
as “confidence intervals” around K̂. They cannot be interpreted as a measure of
accuracy of the estimated K function! They are the critical values for a test of the
hypothesis that K(r) = πr2.

The value returned by envelope is an object of class "fv" that can be manipulated in
the usual way: you can plot it, transform it, extract columns, and so on (see Section 16.6 on
page 115).

17.1.4 Simultaneous Monte Carlo test

Note that the theory of the Monte Carlo test, as presented above, requires that r be fixed in
advance. If we plot the envelope and check whether the empirical K function ever wanders

Copyright c©CSIRO 2008

122 Methods 6: simulation envelopes and goodness-of-fit tests

outside the envelope, this is equivalent to choosing the value of r in a data-dependent way, and
the true significance level is higher (less ‘significant’).

To avoid this problem we can construct simultaneous critical bands which have the property
that, under H0, the probability that K̂ ever wanders outside the critical bands is exactly 5%.

One simple way to achieve this is to compute, for each estimate K̂(r), its maximum deviation
from the Poisson K function, D = maxr |K̂(r) − Kpois(r)|. This is computed for each of the M
simulated datasets, and the maximum value Dmax obtained. Then the upper and lower limits
are

L(r) = πr2 − Dmax

U(r) = πr2 + Dmax.

The estimated K function for the data transgresses these limits if and only if the D-value for
the data exceeds Dmax. Under H0 this occurs with probability 1/(M + 1). Thus, a test of size
5% is obtained by taking M = 19.

> E <- envelope(cells, Kest, nsim = 19, rank = 1, global = TRUE)

> plot(E, main = "global envelopes")

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

global envelopes

r

K
(r

)

A more powerful test is obtained if we (approximately) stabilise the variance, by using the
L function in place of K.

> E <- envelope(cells, Lest, nsim = 19, rank = 1, global = TRUE)

> plot(E, main = "global envelopes of L(r)")

Copyright c©CSIRO 2008

17.1 Envelopes and Monte Carlo tests 123

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30

global envelopes of L(r)

r

L(
r)

17.1.5 Envelopes for any fitted model

In the explanation above, we assumed that the null hypothesis was CSR (complete spatial
randomness, a uniform Poisson process). In fact the Monte Carlo testing rationale can be
applied to any point process model serving as a null hypothesis. We simply have to generate
simulated realisations from the null hypothesis, and compute the summary function for each
simulated realisation.

To simulate from a fitted point process model (object of class "ppm"), call the envelope

function, giving the fitted model as the first argument of envelope. Then the simulated patterns
will be generated according to this fitted model. The original data point pattern, to which the
model was fitted, is stored in the fitted model object; the original data are extracted and the
summary function for the data is also computed.

The following code fits an inhomogeneous Poisson process to the Beilschmiedia pattern, then
generates simulation envelopes of the L function by simulating from the fitted inhomogeneous
Poisson model.

> data(bei)

> fit <- ppm(bei, ~elev + grad, covariates = bei.extra)

> E <- envelope(fit, Lest, nsim = 19, global = TRUE, correction = "border")

> plot(E, main = "envelope for inhomogeneous Poisson")

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

envelope for inhomogeneous Poisson

r (metres)

L(
r)

Copyright c©CSIRO 2008

124 Methods 6: simulation envelopes and goodness-of-fit tests

17.1.6 Envelopes based on any simulation procedure

Envelopes can also be computed using any user-specified procedure to generate the simulated
realisations. This allows us to perform randomisation tests, for example.

The simulation procedure should be encoded as an R expression, which will be evaluated
each time a simulation is required. For example if we type

> sim <- expression(rpoispp(100))

then each time the expression sim is evaluated, it will yield a different random outcome of the
Poisson process with intensity 100 in the unit square.

This expression should be passed to the envelope function as the argument simulate.

The following code generates simulation envelopes for the L function based on simulations
of CSR which have the same number of points as the data pattern.

> data(cells)

> e <- expression(runifpoint(cells$n, cells$window))

> E <- envelope(cells, Lest, nsim = 19, global = TRUE, simulate = e)

> plot(E, main = "envelope with fixed n")

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30

envelope with fixed n

r

L(
r)

17.1.7 Envelopes based on a set of point patterns

Envelopes can also be computed from a user-supplied list of point patterns, instead of the
simulated point patterns generated by a chosen simulation procedure.

This improves efficiency and consistency if, for example, we are going to calculate the en-
velopes of several different summary statistics.

> data(cells)

> SimPatList <- list()

> for (i in 1:1000) SimPatList[[i]] <- runifpoint(cells$n)

> EK <- envelope(cells, Kest, simulate = SimPatList, nsim = 1000)

> Ep <- envelope(cells, pcf, simulate = SimPatList, nsim = 1000)

Copyright c©CSIRO 2008

125

18 Methods 7: model-fitting using summary statistics

Summary statistics can also be used to fit models to data.

In the ‘method of moments’ we estimate a parameter θ by solving

Eθ[S(X)] = S(x)

where S(x) is the observed value of a statistic S for our data x, and the left side is the theoretical
mean of S for the model governed by parameter θ.

The analogue for point process models is to fit the model by matching a summary statistic
such as the K function to its theoretical value under the model.

18.0.8 Cluster processes

In a precious few cases, the K function of a point process is known exactly, as an analytic
expression in terms of the model parameters. These happy cases include many Neyman-Scott
cluster processes. For example, the K-function of the Thomas process with parameters θ =
(κ, µ, σ) is

Kθ(r) = πr2 +
1

κ
(1 − exp(− r2

4σ2
)). (26)

We can use this to fit a Thomas model to data. We determine the values of the parameters
θ = (κ, µ, σ) to achieve the best match between Kθ(r) and the estimated K-function of the data,
K̂(r). The best match is determined by minimising the discrepancy between the two functions
over some range [a, b]:

D(θ) =

∫ b

a

∣∣∣K̂(r)q − Kθ(r)
q
∣∣∣
p

dr (27)

where 0 ≤ a < b, and where p, q > 0 are indices. This method was originally advocated by Peter
Diggle and collaborators, and is now known as the method of minimum contrast . See [23].

The command kppm fits cluster point process models by the method of minimum contrast.
To fit the Thomas model to the redwood data:

> data(redwood)

> fit <- kppm(redwood, ~1, "Thomas")

The first argument to kppm is a point pattern dataset. The second argument is a formula
(with no left hand side) describing the log intensity of the model; the formula ~1 indicates a
stationary process (see section 19.3 for nonstationary models). The third argument is the name
of the cluster mechanism; currently the only options are "Thomas" and "MatClust".

The fitted model, fit, is an object of class kppm. There are methods for printing and plotting
objects of this class.

> fit

Stationary cluster point process model

Fitted to point pattern dataset ’redwood’

Cluster model: Thomas process

Fitted parameters:

kappa sigma mu

23.55389789 0.04704965 2.63226071

Copyright c©CSIRO 2008

126 Methods 7: model-fitting using summary statistics

> plot(fit)

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

fit
K−function

r

K
(r

)

The plot shows the theoretical K function of the fitted Thomas process (fit), three non-
parametric estimates of the K function (iso, trans, border) and the Poisson K function
(theo).

At present, the only cluster process models that can be fitted using kppm are the Thomas
process and the Matérn cluster process. To fit the Matérn cluster process to the redwood data,

> fitM <- kppm(redwood, ~1, "MatClust")

A fitted model returned by kppm can be simulated immediately:

> plot(simulate(fit, nsim = 4))

The command simulate is generic; here we have used the method simulate.kppm.

18.1 Other models with known K function

Apart from cluster processes, there are certain other point process models for which the K-
function is known as a function of the model parameters. Minimum contrast methods are also
available for these models.

One special case is the log-Gaussian Cox processes described in detail in [37]. To fit a
log-Gaussian Cox process with exponential covariance function to the redwood data:

> fit <- lgcp.estK(redwood, c(sigma2 = 0.1, alpha = 1))

> fit

Minimum contrast fit (object of class "minconfit")

Model: log-Gaussian Cox process

Fitted by matching theoretical K function to Kest(K)

Parameters fitted by minimum contrast ($par):

sigma2 alpha

1.0485493 0.0997963

Copyright c©CSIRO 2008

18.2 Generic algorithm for minimum contrast 127

Derived parameters of log-Gaussian Cox process ($modelpar):

sigma2 alpha mu

1.0485493 0.0997963 3.6028597

Converged successfully after 145 iterations.

Domain of integration: [0 , 0.25]

Exponents: p= 2, q= 0.25

The second argument to lgcp.estK gives initial values for the model parameters σ2 and α.
The result of lgcp.estK is an object of class minconfit (representing a ‘minimum contrast

fit’). There are methods for printing and plotting the fit. Simulation of these models has not
yet been implemented in spatstat.

18.2 Generic algorithm for minimum contrast

The command mincontrast is a generic fitting algorithm for the method of minimum contrast.
It can be used in any context where the theoretical function can be computed exactly from the
model parameters. A basic call to mincontrast is:

> mincontrast(observed, theoretical, starpar)

where observed is an object of class "fv" containing the summary function calculated from
the data; theoretical is a function which returns the theoretical value of the summary function
for a given parameter value; and startpar is a vector of initial values of the model parameters.
For details, see the help file for mincontrast.

18.2.1 Monte Carlo

For the vast majority of point process models, the true K function Kθ(r) is not known analyti-
cally in terms of the parameter θ. In principle we could use Monte Carlo simulation to determine
an approximation to Kθ(r), for any given θ, by generating a large number of simulated realisa-
tions of the process with parameter θ, computing the estimated K-function for each realisation,
and taking the pointwise sample average. It’s possible to do this in spatstat using the generic
algorithm mincontrast. Details are not given here as it is rather fiddly at present, and will
change soon.

Copyright c©CSIRO 2008

128 Methods 8: adjusting for inhomogeneity

19 Methods 8: adjusting for inhomogeneity

If a point pattern is known or suspected to be spatially inhomogeneous, then our statistical
analysis of the pattern should take account of this inhomogeneity.

19.1 Inhomogeneous K function

There is a modification of the K function that applies to inhomogeneous processes [2]. If λ(u)
is the true intensity function of the point process X, then the idea is that each point xi will be
weighted by wi = 1/λ(xi).

The inhomogeneous K-function is defined as

Kinhom(r) = E


 1

λ(u)

∑

xj∈X

1

λ(xj)
1 {0 < ||u − xj|| ≤ r}

∣∣∣∣∣ u ∈ X


 (28)

assuming that this does not depend on location u. Thus, λ(u)K(r) is the expected total ‘weight’
of all random points within a distance r of the point u, where the ‘weight’ of a point xi is 1/λ(xi).

If the process is actually homogeneous, then λ(u) is constant and Kinhom(r) reduces to the
usual K function (21).

It turns out that, for an inhomogeneous Poisson process with intensity function λ(u), the
inhomogeneous K function is

Kinhom, pois(r) = πr2 (29)

exactly as for the homogeneous case.

The standard estimators of K can be extended to the inhomogeneous K function:

K̂inhom(r) =
1

area(W)

∑

i

∑

j 6=i

1 {||xi − xj || ≤ r}
λ̂(xi)λ̂(xj)

e(xi, xj ; r) (30)

where e(u, v, r) is an edge correction weight as before, and λ̂(u) is an estimate of the intensity
function λ(u).

There remains the question of how to estimate the intensity function λ(u). It is usually
advisable to obtain the intensity estimate λ̂(u) by fitting a parametric model, to avoid overfitting.
Here is an example for the tropical rainforest data, using the covariate data to suggest a model
for the intensity.

> data(bei)

> fit <- ppm(bei, ~elev + grad, covariates = bei.extra)

> lam <- predict(fit, locations = bei)

> Ki <- Kinhom(bei, lam)

> plot(Ki, main = "Inhomogeneous K function")

Copyright c©CSIRO 2008

19.1 Inhomogeneous K function 129

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Inhomogeneous K function

The plot suggests that, even after accounting for dependence on altitude and slope, the trees
still appear to be clustered.

The intensity function λ(u) could also be estimated by kernel smoothing the point pattern
data. However, notice that the estimator (30) of the inhomogeneous K function depends on
the estimated intensity values at the data points, λ̂(xi). These are positively biased estimates
of the true values λ(xi). In order to avoid bias, the value λ̂(xi) should be estimated by kernel
smoothing of the point pattern with the point xi deleted . This “leave-one-out” estimator is
implemented in Kinhom and is invoked when the argument lambda is not given:

> Ki2 <- Kinhom(bei)

> plot(Ki2, main = "Kinhom using leave-one-out")

lty col

bord.modif 1 1

border 2 2

theo 3 3

(the smoothing parameter σ can also be controlled.)

The inhomogeneous analogue of the L-function is defined by

L̂inhom(r) =

√
K̂inhom(r)

2πr
.

This can be computed using Linhom. For an inhomogeneous Poisson process, Linhom(r) ≡ r.

The inhomogeneous analogue of the pair correlation function can be defined, similarly to the
homogeneous case, as

ginhom(r) =
K ′

inhom(r)

2πr
.

It has the same interpretation, namely, that ginhom(r) is the probability of observing a pair of
points at certain locations separated by a distance r, divided by the corresponding probability
for a Poisson process of the same (inhomogeneous) intensity.

The inhomogeneous pair correlation function is currently computed by calling Kinhom fol-
lowed by pcf.fv (which does numerical differentiation):

> g <- pcf(Kinhom(bei))

Copyright c©CSIRO 2008

130 Methods 8: adjusting for inhomogeneity

19.2 Inhomogeneous cluster models

The inhomogeneous Poisson process was described in Section 13.1. We can also introduce spatial
inhomogeneity into any of the non-Poisson models described in Section 15.

In the case of Poisson cluster processes (Section 15.1) we can introduce inhomogeneity in
either the parent process or the offspring processes.

To make the parents inhomogeneous, we simply generate the parent points from an inhomo-
geneous Poisson process with some intensity function κ(u).

To make the clusters inhomogeneous, we use a clever construction by Waagepetersen [49].
For a parent point at location (x0, y0), the offspring are generated from a Poisson process with
intensity β(x, y) = µ(x, y)f(x − x0, y − y0), where f(u, v) is either the Gaussian probability
density (for the Thomas process) or the uniform probability density in a disc (for the Matérn
cluster process), and µ(x, y) is the reference or modulating intensity. The number of offspring
from a given parent (x0, y0) is a Poisson random variable with mean

B(x0, y0) =

∫
β(x, y) dxdy =

∫
f(x − x0, y − y0)µ(x, y) dxdy.

The simulation algorithms rMatClust and rThomas allow these options. If the parent in-
tensity parameter kappa is given as a function(x,y) or a pixel image, then the parents are
Poisson with inhomogeneous intensity kappa. If the offspring mean parameter mu is given as a
function(x,y) or a pixel image, then this determines an inhomogeneous reference density for
the clusters.

> Z <- as.im(function(x, y) {

+ 6 * exp(2 * x - 1)

+ }, owin())

> plot(rMatClust(10, 0.05, Z))

rMatClust(10, 0.05, Z)

19.3 Fitting inhomogeneous models by minimum contrast

Minimum contrast methods can be applied to inhomogeneous point process models.

In principle we could fit any model (homogeneous or inhomogeneous) by the method of
minimum contrast using any summary statistic. However, the method works best when we
have an exact formula for the true value of the summary function for the model, expressed as a
function of the parameters of the model.

Copyright c©CSIRO 2008

19.3 Fitting inhomogeneous models by minimum contrast 131

Waagepetersen [49] pointed out that, if we take a Thomas process or Matérn cluster process
(or in general a Neyman-Scott process) with homogeneous parent intensity κ and inhomoge-
neous cluster reference density µ(u), then the overall intensity of the process is

λ(u) = κµ(u)

and the inhomogeneous K-function is the same as it would be if µ were constant.
Thus, we can fit a Thomas process or Matérn cluster process with inhomogeneous clusters

as follows:

1. estimate the inhomogeneous intensity λ(u) of the process.

2. derive an estimate of the inhomogeneous K-function.

3. use the method of minimum contrast to estimate the parent intensity κ and the cluster
scale parameter (Gaussian standard deviation or disc radius), exactly as we would in the
homogeneous case.

The command kppm performs this algorithm using a parametric model for the trend:

> data(bei)

> fit <- kppm(bei, ~elev + grad, "Thomas", covariates = bei.extra)

> fit

Inhomogeneous cluster point process model

Fitted to point pattern dataset ’bei’

Trend formula:~elev + grad

Fitted coefficients for trend formula:

(Intercept) elev grad

-8.55862210 0.02140987 5.84104065

Cluster model: Thomas process

Fitted parameters:

kappa sigma

0.0004290453 5.4110425537

In this example, kppm first estimates the intensity by fitting the model ppm(bei, ~elev+grad, covariates=bei.ext

Then predict.ppm is used to compute the predicted intensity at the data points, and this is
passed to Kinhom to calculate the inhomogeneous K function. The parameters of the Thomas
process are estimated from the inhomogeneous K function by minimum contrast.

The result of kppm can be printed, plotted and simulated as before.

Copyright c©CSIRO 2008

132 Gibbs models

20 Gibbs models

One way to construct a statistical model (in any field of statistics) is to write down its probability
density. Advantages of doing this are:

• the functional form of the density reflects its probabilistic properties.

• terms or factors in the density often have an interpretation as ‘components’ of the model.

• it is easy to introduce terms that represent the dependence of the model on covariates, etc.

This approach is useful provided the density can be written down, and provided the density
is tractable.

Spatial point process models that are constructed by writing down their probability densities
are called ‘Gibbs processes’. Good references on Gibbs point processes are [47, 20].

20.1 Probability densities

It is possible to define probability densities for spatial point processes that live inside a bounded
window W .

The probability density will be a function f(x) defined for each finite configuration x =
{x1, . . . , xn} of points xi ∈ W for any n ≥ 0. Notice that the number of points n is not fixed,
and may be zero. Apart from this peculiarity, probability densities for point processes behave
much like probability densities in more familiar contexts.

That’s all you need to know for applications. If you’re interested in the mathematical
technicalities, read on; otherwise, skip to section 20.2.

A point process X inside W is defined to have probability density f if and only if, for any
nonnegative integrable function h,

E[h(X)] = e−|W |h(∅)f(∅) + e−|W |
∞∑

n=1

1

n!

∫

W
· · ·
∫

W
h({x1, . . . , xn})f({x1, . . . , xn}) dx1 · · · dxn

(31)
where |W | denotes the area of W .

In particular, the probability that X contains exactly n points is

pn = P{n(X) = n} =
e−|W |

n!

∫

W
· · ·
∫

W
f({x1, . . . , xn}) dx1 · · · dxn

for n ≥ 1 and p0 = P{n(X) = 0} = e−|W |f(∅). Given that there are exactly n points, the
conditional joint density of the locations x1, . . . , xn is f({x1, . . . , xn})/pn.

20.2 Poisson processes

The uniform Poisson process with intensity 1 has probability density f(x) ≡ 1.

The uniform Poisson process in W with intensity λ has probability density

f(x) = α λn(x) (32)

where n(x) is the number of points in the configuration x, and the constant α is

α = e(1−λ)|W |.

Copyright c©CSIRO 2008

20.3 Pairwise interaction models 133

The inhomogeneous Poisson process in W with intensity function λ(u) has probability density

f(x) = α

n∏

i=1

λ(xi). (33)

where the constant α is

α = exp

[∫

W
(1 − λ(u)) du

]
.

The densities (32) and (33) are products of terms associated with individual points xi. This
reflects the conditional independence property (PP4) of the Poisson process.

20.3 Pairwise interaction models

In order to construct spatial point processes which exhibit interpoint interaction (stochastic
dependence between points), we need to introduce terms in the density that depend on more
than one point. The simplest are pairwise interaction models, which have probability densities
of the form

f(x) = α




n(x)∏

i=1

b(xi)





∏

i<j

c(xi, xj)


 (34)

where α is a normalising constant, b(u), u ∈ W is the ‘first order’ term, and c(u, v), u, v ∈ W
is the ‘second order’ or ‘pairwise interaction’ term. The pairwise interaction term introduces
dependence between points. The interaction function must be symmetric, c(u, v) = c(v, u). In
principle we are free to choose any functions b and c, provided the resulting density is integrable
(the right side of (31) should be finite when h ≡ 1).

20.3.1 Hard core process

If we take b(u) ≡ β and

c(u, v) =

{
1 if ||u − v|| > r
0 if ||u − v|| ≤ r

(35)

where ||u − v|| denotes the distance between u and v, and r > 0 is a fixed distance, then the
density becomes

f(x) =

{
αβn(x) if ||xi − xj|| > r for all i 6= j
0 otherwise

This is the density of the Poisson process of intensity β in W conditioned on the event that no
two points of the pattern lie closer than r units apart. It is known as the (classical) hard core
process.

Copyright c©CSIRO 2008

134 Gibbs models

Hard core process

20.3.2 Strauss process

Generalising the hard core process, suppose we take b(u) ≡ β and

c(u, v) =

{
1 if ||u − v|| > r
γ if ||u − v|| ≤ r

(36)

where γ is a parameter. Then the density becomes

f(x) = αβn(x)γs(x) (37)

where s(x) is the number of pairs of distinct points in x that lie closer than r units apart.

The parameter γ controls the ‘strength’ of interaction between points. If γ = 1 the model
reduces to a Poisson process with intensity β. If γ = 0 the model is a hard core process. For
values 0 < γ < 1, the process exhibits inhibition (negative association) between points.

Strauss(γ = 0.2) Strauss(γ = 0.7)

For γ > 1, the density (37) is not integrable. Hence the Strauss process is defined only for
0 ≤ γ ≤ 1 and is a model for inhibition between points. This is typical of most Gibbs models.

Copyright c©CSIRO 2008

20.4 Higher-order interactions 135

20.3.3 Other pairwise interaction models

Other pairwise interactions that are considered in spatstat include the Strauss-hard core inter-
action (with hard core distance h > 0 and interaction distance r > h)

c(u, v) =





0 if ||u − v|| ≤ h
γ if h < ||u − v|| ≤ r
1 if ||u − v|| > r

,

the soft-core interaction (with scale σ > 0 and index 0 < κ < 1)

c(u, v) =

(
σ

||u − v||

)2/κ

,

the Diggle-Gates-Stibbard interaction (with interaction range ρ)

c(u, v) =

{
sin
(

π||u−v||
2ρ

)2
if ||u − v|| ≤ ρ

1 if ||u − v|| > ρ
,

the Diggle-Gratton interaction (with hard core distance δ, interaction distance ρ and index κ)

c(u, v) =





0 if ||u − v|| ≤ δ(
||u−v||−δ

ρ−δ

)κ
if δ < ||u − v|| ≤ ρ

1 if ||u − v|| > ρ

,

and the general piecewise constant interaction in which c(||u− v||) is a step function of ||u− v||.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Piecewise constant interaction

20.4 Higher-order interactions

There are some useful Gibbs point process models which exhibit interactions of higher order,
that is, in which the probability density has contributions from m-tuples of points, where m > 2.

One example is the area-interaction or Widom-Rowlinson process [11] with probability den-
sity

f(x) = αβn(x)γ−A(x) (38)

where α is the normalising constant, β > 0 is an intensity parameter, and γ > 0 is an interaction
parameter. Here A(x) denotes the area of the region obtained by drawing a disc of radius r
centred at each point xi, and taking the union of these discs. The value γ = 1 again corresponds
to a Poisson process, while γ < 1 produces a regular process and γ > 1 a clustered process.
This process has interactions of all orders. It can be used as a model for moderate regularity or
clustering.

Copyright c©CSIRO 2008

136 Gibbs models

20.5 Conditional intensity

The main tool for analysing a Gibbs point process is its conditional intensity λ(u,X). Intuitively
this determines the conditional probability of finding a point of the process at the location u given
complete information about the rest of the process. For formal definitions see [20]. Informally,
the conditional probability of finding a point of the process inside an infinitesimal neighbourhood
of the location u, given the complete point pattern at all other locations, is λ(u,X) du.

u

For point processes in a bounded window, the conditional intensity at a location u given the
configuration x is related to the probability density f by

λ(u,x) =
f(x ∪ {u})

f(x)
(39)

(for u 6∈ x), the ratio of the probability densities for the configuration x with and without the
point u added.

The homogeneous Poisson process with intensity λ has conditional intensity

λ(u,x) = λ

while the inhomogeneous Poisson process with intensity function λ(u) has conditional intensity

λ(u,x) = λ(u)

. The conditional intensity for a Poisson process does not depend on the configuration x, because
the points of a Poisson process are independent.

For the general pairwise interaction process (34) the conditional intensity is

λ(u,x) = b(u)

n(x)∏

i=1

c(u, xi). (40)

For the hard core process,

λ(u,x) =

{
β if ||u − xi|| > r for all i
0 otherwise

(41)

which has the nice interpretation that a point u is either ‘permitted’ or ‘not permitted’ depending
on whether it satisfies the hard core requirement.

For the Strauss process

λ(u,x) = βγt(u,x) (42)

where t(u,x) = s(x∪{u})− s(x) is the number of points of x that lie within a distance r of the
location u. For γ < 1, this has the interpretation that a random point is less likely to occur at
the location u if there are many points in the neighbourhood.

Copyright c©CSIRO 2008

20.6 Simulating Gibbs models 137

Strauss

+

area−interaction

+

For the area-interaction process,

λ(u,x) = βγ−B(u,x) (43)

where B(u,x) = A(x ∪ {u}) − A(x) is the area of that part of the disc of radius r centred on u
that is not covered by discs of radius r centred at the other points xi ∈ x. If the points represent
trees or plants, we may imagine that each tree takes nutrients and water from the soil inside a
circle of radius r. Then we may interpret B(u,x) as the area of the ‘unclaimed zone’ where a
new plant at location u would be able to draw nutrients and water without competition from
other plants. For γ < 1 we can interpret (43) as saying that a random point is less likely to
occur when the unclaimed area is small.

The conditional intensity of a point process determines the probability density, through (39).
Hence we can use the conditional intensity to define a point process. The conditional intensity
is the preferred modelling tool for Gibbs processes: it has a direct interpretation, and it is easier
to handle than the probability density.

20.6 Simulating Gibbs models

Gibbs models can be simulated by Markov chain Monte Carlo algorithms. Indeed, MCMC
algorithms were invented to simulate Gibbs processes [36, 41].

In brief, these algorithms simulate a Markov chain whose states are point patterns. The chain
is designed so that its equilibrium distribution is the distribution of the point process we want
to simulate. If the chain were run for an infinite time, the state would converge in distribution
to the desired point process. In practice the chain is run for a long finite time. Further details
are beyond the scope of this workshop; consult [37, 38] for more information.

Currently spatstat offers the function rmh which simulates Gibbs processes using the
Metropolis-Hastings algorithm.

> rmh(model, start, control)

• model determines the point process model to be simulated (see help(rmhmodel)).

• start determines the initial state of the Markov chain (see help(rmhstart)).

• control specifies control parameters for running the Markov chain, such as the number
of iteration steps (see help(rmhcontrol)).

Copyright c©CSIRO 2008

138 Gibbs models

In the simplest uses of rmh, the three arguments are lists of parameter values. To generate a
simulated realisation of the Strauss process with parameters β = 2, γ = 0.7, r = 0.7 in a square
of side 10,

> mo <- list(cif = "strauss", par = c(beta = 2, gamma = 0.2, r = 0.7),

+ w = square(10))

> X <- rmh(model = mo, start = list(n.start = 42), control = list(nrep = 1e+06))

The other arguments specify a random initial state of 42 points, and that the algorithm shall
be run for a million iterations.

Copyright c©CSIRO 2008

139

21 Methods 9: fitting Gibbs models

21.1 Maximum pseudolikelihood

Maximum likelihood estimation is intractable for most point process models. At the very least
it requires Monte Carlo simulation to evaluate the likelihood (or the score and the Fisher infor-
mation).

A workable alternative, at least for investigative purposes, is to maximise the log pseudolike-
lihood

log PL (θ;x) =
∑

i

log λ(xi;x) −
∫

W
λ(u,x) du. (44)

You may recognise this as being very similar to the likelihood (4) of the Poisson process. In
general it is not a likelihood, but the analogue of the score equation

∂

∂θ
log PL (θ) = 0

is an unbiased estimating equation. Thus the maximum pseudolikelihood estimator is asymp-
totically unbiased, consistent and asymptotically normal under appropriate conditions.

The main advantage of maximum pseudolikelihood is that, at least for popular Gibbs models,
the conditional intensity λ(u,x) is easily computable, so that the pseudolikelihood is easy to
compute and to maximise. The main disadvantage is the bias and inefficiency of maximum
pseudolikelihood in small samples.

More computationally-intensive estimation procedures typically use the maximum pseudo-
likelihood estimate as their initial guess. We are implementing such procedures in spatstat as
well.

21.2 Fitting Gibbs models in spatstat

We have already met the function ppm for fitting Poisson point process models. In fact this
function will fit a wide class of Gibbs models.

ppm contains an implementation of the algorithm of Baddeley and Turner [3] for maximum
pseudolikelihood (which extends the Berman-Turner device for Poisson processes to a general
Gibbs process). The conditional intensity of the model, λθ(u,x), must be loglinear in the
parameters θ:

log λθ(u,x) = θ · S(u,x), (45)

generalising (5), where S(u,x) is a real-valued or vector-valued function of location u and config-
uration x. Parameters θ appearing in the loglinear form (45) are called ‘regular’ parameters, and
all other parameters are ‘irregular’ parameters. For example, the Strauss process conditional
intensity (42) can be recast as

log λ(u,x) = log β + (log γ)t(u,x)

so that θ = (log β, log γ) are regular parameters, but the interaction distance r is an irregular
parameter (technically called a ‘bloody nuisance parameter’).

In spatstat we split the conditional intensity into first-order and higher-order terms:

log λθ(u,x) = η · S(u) + ϕ · V (u,x). (46)

The ‘first order term’ S(u) describes spatial inhomogeneity and/or covariate effects. The ‘higher
order term’ V (u,x) describes interpoint interaction.

The model with conditional intensity (46) is fitted by calling ppm in the form

Copyright c©CSIRO 2008

140 Methods 9: fitting Gibbs models

ppm(X, ~ terms, V)

The first argument X is the point pattern dataset. The second argument ~terms is a model
formula, specifying the first order term S(u) in (46), in the manner described in Section 13.
Thus the first order term S(u) in (46) may take very general forms.

The third argument V is an object of the special class "interact" which describes the
interpoint interaction term V (u,x) in (46). It may be compared to the ‘family’ argument
which determines the distribution of the responses in a linear model or generalised linear model.
Only a limited number of canned interactions are available in spatstat, because they must be
constructed carefully to ensure that the point process exists.

To fit the Strauss process to the cells data using ppm,

> data(cells)

> ppm(cells, ~1, Strauss(r = 0.1))

Stationary Strauss process

First order term:

beta

762.6005

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.008

Relevant coefficients:

Interaction

-4.825006

Here Strauss is a special function that creates an ‘interaction’ object (class "interact")
describing the interaction structure of the Strauss process. Notice that we had to specify the
value of the irregular parameter r (more about that later).

To fit the inhomogeneous Strauss process with conditional intensity

λ(u,x) = b(u)γt(u,x)

where, say, b(u) is loglinear in the Cartesian coordinates,

log b((x, y)) = β0 + β1x + β2y

we simply type

> ppm(cells, ~x + y, Strauss(r = 0.1))

Nonstationary Strauss process

Trend formula: ~x + y

Fitted coefficients for trend formula:

(Intercept) x y

6.2922384 0.5269869 0.1576416

Copyright c©CSIRO 2008

21.3 Interpoint interactions 141

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.0082

Relevant coefficients:

Interaction

-4.805565

To fit an inhomogeneous Strauss process with log-quadratic first order term,

> ppm(cells, ~polynom(x, y, 2), Strauss(r = 0.1))

Nonstationary Strauss process

Trend formula: ~polynom(x, y, 2)

Fitted coefficients for trend formula:

(Intercept) polynom(x, y, 2)[x] polynom(x, y, 2)[y]

5.9747220 -0.9375707 3.4732733

polynom(x, y, 2)[x^2] polynom(x, y, 2)[x.y] polynom(x, y, 2)[y^2]

1.4970947 -0.1838987 -3.3696109

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.0081

Relevant coefficients:

Interaction

-4.812711

21.3 Interpoint interactions

Instead of Strauss we may use any of the following functions to create an interaction:
Poisson() the Poisson point process (the default)
Strauss() the Strauss process
StraussHard() the Strauss/hard core point process
Softcore() pairwise interaction, soft core potential
PairPiece() pairwise interaction, piecewise constant
DiggleGratton() Diggle-Gratton potential
LennardJones() Lennard-Jones potential
AreaInter() area-interaction process
Geyer() Geyer’s saturation process
BadGey() hybrid Geyer saturation process
SatPiece() multiscale saturation process
OrdThresh() Ord process, threshold potential
Pairwise() pairwise interaction, user-supplied potential
Saturated() general saturated model, user-supplied potential
Ord() Ord model, user-supplied potential

(There are two additional ones for multitype point processes, described in section 27.3.2.)

Copyright c©CSIRO 2008

142 Methods 9: fitting Gibbs models

The area-interaction model and the Geyer saturation model are quite handy, as they can be
used to model both clustering and regularity.

> data(redwood)

> ppm(redwood, ~1, Geyer(r = 0.07, sat = 2))

Stationary Geyer saturation process

First order term:

beta

12.39488

Interaction: Geyer saturation process

interaction distance: 0.07

saturation parameter: 2

Fitted interaction parameter gamma: 2.9004

Relevant coefficients:

Interaction

1.064845

> ppm(redwood, ~1, AreaInter(r = 0.03))

Stationary Area-interaction process

First order term:

beta

36.6887

Interaction: Area-interaction process

disc radius: 0.03

Fitted interaction parameter eta: 15.6968

Relevant coefficients:

Interaction

2.753459

The printout for the area-interaction model uses the “scale-free” parameter eta defined by

η = γπr2

where γ and r are the parameters appearing in the definition (43). Values of η greater than 1
suggest clustering.

For more detailed explanation of modelling, see [5].

21.4 Fitted point process models

The result of the ppm call is an object of class "ppm" (‘point process model’). This is very closely
analogous to a fitted linear model (lm) or fitted generalised linear model (glm).

Standard R operations that are defined for fitted point process models (i.e. that have methods
for the class "ppm") include:

Copyright c©CSIRO 2008

21.4 Fitted point process models 143

print print basic information
summary print detailed summary information
plot plot the fitted (conditional) intensity
predict fitted (conditional) intensity
fitted fitted (conditional) intensity at data points
update re-fit the model

coef extract the fitted coefficient vector θ̂

vcov variance-covariance matrix of θ̂
anova analysis of deviance
logLik evaluate log-pseudolikelihood
model.matrix extract design matrix
formula extract trend formula of model
terms extract terms in model formula

(the methods for anova and vcov are only available for Poisson models). The following
functions are also available:

step stepwise model selection
drop1 one step backward in model selection
model.images compute images of canonical covariates in model
effectfun fitted intensity as function of one covariate

Plotting a fitted model generates a series of image and contour plots of

• the fitted first order term exp(η̂ · S(u))

• the fitted conditional intensity λθ̂(u,x) evaluated for the data pattern x

For Poisson models, the two plots are equivalent, and give the fitted intensity function.

> fit <- ppm(cells, ~polynom(x, y, 2), Strauss(r = 0.1))

> par(mfrow = c(1, 2))

> plot(fit, how = "image", ngrid = 256)

Fitted trend

40
0

60
0

80
0

10
00

14
00

Fitted cif

0
50

0
10

00

For non-Poisson models, it is also possible to extract and plot the interpoint interaction
function, using fitin.

> model <- ppm(X, ~1, PairPiece(seq(10, 100, by = 10)))

> f <- fitin(model)

> plot(f)

Copyright c©CSIRO 2008

144 Methods 9: fitting Gibbs models

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

P
ai

rw
is

e
in

te
ra

ct
io

n

21.5 Simulation from fitted models

A fitted Gibbs model can also be simulated automatically using rmh.

> fit <- ppm(swedishpines, ~1, Strauss(r = 7))

> Xsim <- rmh(fit)

> plot(Xsim, main = "Simulation from fitted Strauss model")

Simulation from fitted Strauss model

The envelope command will also generate simulation envelopes for a fitted model.

> plot(envelope(fit, nsim = 39))

Copyright c©CSIRO 2008

21.6 Dealing with nuisance parameters 145

0 5 10 15 20

0
50

0
10

00
15

00

envelope(fit, nsim = 39)

r (one unit = 0.1 metres)

K
(r

)

21.6 Dealing with nuisance parameters

Irregular parameters, such as the interaction radius r in the Strauss process, cannot be estimated
directly using ppm. Indeed the statistical theory for estimating such parameters is unclear.

For some special cases, a maximum likelihood estimator of the nuisance parameter is avail-
able. For example, for the ‘hard core process’ (Strauss process with interaction parameter γ = 0)
with interaction radius r, the maximum likelihood estimator is the minimum nearest-neighbour
distance. Thus the following is a reasonable approach to the cells dataset:

> rhat <- min(nndist(cells))

> rhat <- rhat * 0.99999

> ppm(cells, ~1, Strauss(r = rhat))

Stationary Strauss process

First order term:

beta

301.0949

Interaction: Strauss process

interaction distance: 0.0836293018068393

Fitted interaction parameter gamma: 0

Relevant coefficients:

Interaction

-20.77031

The analogue of profile likelihood, profile pseudolikelihood , provides a general solution which
may or may not perform well. If θ = (φ, η) where φ denotes the nuisance parameters and η the
regular parameters, define the profile log pseudolikelihood by

PLP(φ,x) = max
η

log PL ((φ, η);x) .

The right hand side can be computed, for each fixed value of φ, by the algorithm ppm. Then we
just have to maximise PLP(φ) over φ. This is done by the command profilepl:

Copyright c©CSIRO 2008

146 Methods 9: fitting Gibbs models

> data(simdat)

> df <- data.frame(r = seq(0.05, 2, by = 0.025))

> pfit <- profilepl(df, Strauss, simdat, ~1)

> pfit

Profile log pseudolikelihood values

for model: ppm(simdat, ~1, interaction = Strauss)

fitted with rbord= 2

Interaction: Strauss

with irregular parameter ’r’ in [0.05, 2]

Optimum value of irregular parameter: r = 0.275

The result is an object of class profilepl containing the profile log pseudolikelihood function,
the optimised value of the irregular parameter r, and the final fitted model. To plot the profile
log pseudolikelihood,

> plot(pfit)

0.0 0.5 1.0 1.5 2.0

−
17

.5
−

16
.5

−
15

.5
−

14
.5

ppm(simdat, ~1, interaction = Strauss)

r

lo
g

P
L

To extract the final fitted model,

> pfit$fit

Stationary Strauss process

First order term:

beta

2.583110

Interaction: Strauss process

interaction distance: 0.275

Fitted interaction parameter gamma: 0.5631

Relevant coefficients:

Interaction

-0.5743608

There is a summary method for these objects as well.

Copyright c©CSIRO 2008

21.7 Improvements over maximum pseudolikelihood 147

21.7 Improvements over maximum pseudolikelihood

Maximum pseudolikelihood is quick and dirty. There are statistically more efficient alternatives,
but they are computationally intensive.

Currently we have implemented the easiest of these alternatives, the Huang-Ogata [30] one-
step approximation to maximum likelihood. Starting from the maximum pseudolikelihood esti-
mate θ̂PL, we simulate M independent realisations of the model with parameters θ̂PL, evaluate
the canonical sufficient statistics, and use them to form estimates of the score and Fisher in-
formation at θ = θ̂PL. Then we take one Newton-Raphson step, updating the value of θ. The
rationale is that the log-likelihood is approximately quadratic in a neighbourhood of the maxi-
mum pseudolikelihood estimator, so that one Newton-Raphson step is almost enough.

To use the Huang-Ogata method instead of maximum pseudolikelihood, add the argument
method="ho".

> fit <- ppm(simdat, ~1, Strauss(r = 0.275), method = "ho")

> fit

Stationary Strauss process

First order term:

beta

2.515173

Interaction: Strauss process

interaction distance: 0.275

Fitted interaction parameter gamma: 0.676

Relevant coefficients:

Interaction

-0.3916353

> vcov(fit)

[,1] [,2]

[1,] 0.01058897 -0.01236823

[2,] -0.01236823 0.03235970

For models fitted by Huang-Ogata, the variance-covariance matrix returned by vcov is com-
puted from the simulations.

Copyright c©CSIRO 2008

148 Methods 10: validation of fitted Gibbs models

22 Methods 10: validation of fitted Gibbs models

Goodness-of-fit testing and model validation for Poisson models were described in Section 14.
Checking a fitted Gibbs point process model is more difficult. There is little theory available to
support goodness-of-fit tests and the like.

As an example, consider the following data:

> data(residualspaper)

> X <- residualspaper$Fig4b

> plot(X)

X

We fit a Strauss process model with a log-quadratic intensity term:

> fit <- ppm(X, ~polynom(x, y, 2), Strauss(0.05), correction = "isotropic")

The question is how to confirm or validate this model.

22.1 Goodness-of-fit testing for Gibbs processes

For a fitted Gibbs process, no theory is available to support the χ2 goodness-of-fit test or the
Kolmogorov-Smirnov test. The predicted mean number of points in a given region is not known
in closed form for a Gibbs process. Thus, the appropriate test statistic for a χ2 test is not even
available in closed form, let alone the null distribution of this statistic.

Instead, goodness-of-fit for fitted Gibbs models often relies on the summary functions K and
G. The command envelope will accept as its first argument a fitted Gibbs model, and will
simulate from this model to determine the critical envelope.

> plot(envelope(fit, Lest, nsim = 19, global = TRUE))

Copyright c©CSIRO 2008

22.1 Goodness-of-fit testing for Gibbs processes 149

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

envelope(fit, Lest, nsim=19, global=TRUE)

r

L(
r)

Let’s subtract the theoretical Poisson value L(r) = r to get a more readable plot:

> plot(envelope(fit, Lest, nsim = 19, global = TRUE), . - r ~ r)

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

envelope(fit, Lest, nsim=19, global=TRUE)

r

cb
in

d(
ob

s,
 m

m
ea

n,
 h

i,
lo

)
−

 r

This is fairly consistent with a Strauss process.

Copyright c©CSIRO 2008

150 Methods 10: validation of fitted Gibbs models

22.2 Residuals for Gibbs processes

22.2.1 Definition

Residuals for a general Gibbs model were defined only recently [6, 1]. The total residual in a
region B ⊂ R

2 is defined as

R(B) = n(x ∩ B) −
∫

B
λ̂(u,x) du (47)

where again n(x ∩ B) is the observed number of points in the region B, and λ̂(u,x) is the
conditional intensity of the fitted model, evaluated for the data point pattern x. If the fitted
model is correct, the residuals have mean zero.

This definition is similar to the definition of residuals for Poisson processes (Section 14.2)
except that the intensity λ̂(u) of the fitted Poisson process has been replaced by the conditional
intensity λ̂(u,x) of the fitted Gibbs process evaluated for the data point pattern x.

22.2.2 Residual plots

Residuals for Gibbs processes can be plotted using the same techniques as in Section 14.2. Here
is the four-panel plot:

> diagnose.ppm(fit, type = "Pearson")

Copyright c©CSIRO 2008

22.2 Residuals for Gibbs processes 151

 −5

 −5

 −4

 −4
 −4

 −3

 −3

 −2

 −2

 −2

 −1

 −1

 −
1

 0

 0

 0

 1

 1

 2

 2

 3

 3

 4

 4

 5

 5

 6

 7

0 0.2 0.4 0.6 0.8 1

x coordinate

−
2

−
1.

5
−

1
−

0.
5

0
0.

5

cu
m

ul
at

iv
e

su
m

 o
f P

ea
rs

on
 r

es
id

ua
ls

0
0.

2
0.

4
0.

6
0.

8
1

y
co

or
di

na
te

0.5 0 −0.5 −1 −1.5

cumulative sum of Pearson residuals

At the time of writing, spatstat does not yet display 2σ significance bands for the lurking
variable plots when the fitted model is not Poisson. The interpretation of the lurking variable
plots is a little more difficult without the significance bands. One tends to place a little more
emphasis on the smoothed residual field. The Pearson residuals should be approximately stan-
dardised, so that values which are much greater than 2 (in absolute value) suggest a lack of
fit.

The four-panel plot above suggests that the model is a reasonable fit.

22.2.3 Q–Q plots

As we noted in Section 14.2.6, the four-panel residual plot and the lurking variable plot are
useful for detecting misspecification of the trend in a fitted model. They are not very useful for
checking misspecification of the interaction in a fitted model.

An extreme example is provided by the cells dataset. The residual plots for a uniform
Poisson process fitted to the cells data suggest that this is a good model:

> data(cells)

> fitPois <- ppm(cells, ~1)

> diagnose.ppm(fitPois)

Copyright c©CSIRO 2008

152 Methods 10: validation of fitted Gibbs models

 −20

 −15

 −10

 −
10

 −10

 −
10

 −5

 −
5

 −5

 0

 0

 0

 5

 5

 10

 10

0 0.2 0.4 0.6 0.8 1

x coordinate

−
8

−
4

0
2

4
6

8

cu
m

ul
at

iv
e

su
m

 o
f r

aw
 r

es
id

ua
ls

0
0.

2
0.

4
0.

6
0.

8
1

y
co

or
di

na
te

8 6 4 2 0 −4 −8

cumulative sum of raw residuals

However, the K-function shows that the cells dataset is clearly not a Poisson pattern, but
has strong inhibition:

> par(mfrow = c(1, 2))

> plot(cells)

> plot(Kest(cells))

> par(mfrow = c(1, 1))

Copyright c©CSIRO 2008

22.2 Residuals for Gibbs processes 153

cells

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

Kest(cells)

r
K

(r
)

Interaction between points in a point process corresponds roughly to the distribution of the
responses in loglinear regression. To validate the interaction terms in a point process model, we
should plot the distribution of the residuals. The appropriate tool is a Q–Q plot.

> qqplot.ppm(fitPois, nsim = 39)

−20 0 20 40

−
30

−
20

−
10

0
10

20
30

40

Mean quantile of simulations

da
ta

 q
ua

nt
ile

Residuals: raw

Copyright c©CSIRO 2008

154 Methods 10: validation of fitted Gibbs models

This shows a Q–Q plot of the smoothed residuals for a uniform Poisson model fitted to the
cells data, with pointwise 5% critical envelopes from simulations of the fitted model. This
indicates that the uniform Poisson model is grossly inappropriate for the cells data.

Returning to the model we fitted at the start of this chapter:

> qqplot.ppm(fit, nsim = 39)

−100 −50 0 50 100 150

−
10

0
−

50
0

50
10

0

qqplot.ppm(fit, nsim=39)

Mean quantile of simulations

da
ta

 q
ua

nt
ile

Residuals: raw

This shows a Q–Q plot of the smoothed residuals, with pointwise 5% critical envelopes from
simulations of the fitted model. This suggests that the Strauss model is reasonable.

These validation techniques generalise and unify many existing exploratory methods. For
particular models of interpoint interaction, the Q–Q plot is closely related to the summary
functions F , G and K. See [6].

Copyright c©CSIRO 2008

22.2 Residuals for Gibbs processes 155

PART V. MARKED POINT PATTERNS

Part V of the workshop deals with marked point patterns.

Copyright c©CSIRO 2008

156 Marked point patterns

23 Marked point patterns

23.1 Marked point patterns

Each point in a spatial point pattern may carry additional information called a ‘mark’. For
example, points which are classified into two or more different types (on/off, case/control, species,
colour, etc) may be regarded as marked points, with a mark which identifies which type they
are. Data recording the locations and heights of trees in a forest can be regarded as a marked
point pattern where the mark attached to a tree’s location is the tree height.

In our current implementation, the mark attached to each point must be a single value (which
may be numeric, character, complex, logical, or factor). Many of the functions in spatstat

handle marked point patterns in which the mark attached to each point is either

• a continuous variate or “real number”. An example is the Longleaf Pines dataset
(longleaf) in which each tree is marked with its diameter at breast height. The marks

component must be a numeric vector such that marks[i] is the mark value associated
with the ith point. We say the point pattern has continuous marks.

• a categorical variate. An example is the Amacrine Cells dataset (amacrine) in which
each cell is identified as either “on” or “off”. Such point patterns may be regarded as
consisting of points of different “types”. The marks component must be a factor such
that marks[i] is the label or type of the ith point. We call this a multitype point pattern
and the levels of the factor are the possible types.

longleaf

amacrine

Note that, in some other packages, a point pattern dataset consisting of points of two different
types (A and B say) is represented by two datasets, one representing the points of type A and
another containing the points of type B. In spatstat we take a different approach, in which
all the points are collected together in one point pattern, and the points are then labelled by
the type to which they belong. An advantage of this approach is that it is easy to deal with
multitype point patterns with more than 2 types. For example the classic Lansing Woods dataset
represents the positions of trees of 6 different species. This is available in spatstat as a single
dataset, a marked point pattern, with the marks having 6 levels.

23.2 Formulation

A mark variable may be interpreted as an additional coordinate for the point: for example
a point process of earthquake epicentre locations (longitude, latitude), with marks giving the

Copyright c©CSIRO 2008

23.3 Methodological issues 157

occurrence time of each earthquake, can alternatively be viewed as a point process in space-time
with coordinates (longitude, latitude, time).

A marked point process of points in space S with marks belonging to a set M is mathemati-
cally defined as a point process in the cartesian product S ×M . The space M of possible marks
may be ‘anything’. In current applications, typically the mark is either a categorical variable
(so that the points are grouped into ‘types’) or a real number. Multivariate marks consisting of
several such variables are also common.

A marked point pattern is an unordered set

y = {(x1,m1), . . . , (xn,mn)}, xi ∈ W, mi ∈ M

where xi are the locations and mi are the corresponding marks.

23.3 Methodological issues

23.3.1 Should the data be treated as a marked point process?

In a marked point process the points are random. Treating the data as a point process is
inappropriate if the locations are fixed, or if the locations are not part of the ‘response’.

Example 16 Today’s maximum temperatures at 25 Australian cities are displayed on a map.

This is not a point process in any useful sense. The cities are fixed locations. The temper-
atures are observations of a spatial variable at a fixed set of locations. See the R packages sp,
spdep, spgwr for suitable methods.

Example 17 A mineral exploration dataset records the map coordinates where 15 core samples
were drilled, and for each core sample, the assayed concentration of iron in the sample.

This should not be treated as a point process. The core sample locations were chosen by a
geologist, and are part of the experimental design. The main interest is in the iron concentration
at these locations. This should probably be analysed as a geostatistical dataset. See the R

packages geoR, geoRglm for suitable methods.

23.3.2 Joint vs. conditional analysis

There are more choices for analysis (and more traps) when marks are present. Schematically, if
we write X for the points and M for the marks, then a statistical model for the marked point
pattern could be formulated in several ways:

• [X] [M |X] — ‘conditional on locations’ — points X are first generated according to a
spatial point process, then marks M are ‘assigned’ to the points by a random mechanism
[M |X];

• [M] [X|M] — ‘conditional on marks’ or ‘split by marks’ — marks M are first generated
according to some random mechanism [M], then they are placed at certain locations X by
point process(es) [X|M];

• [X,M] — ‘joint’ — marked points are generated according to a marked point process.

These approaches typically lead to different stochastic models and have different inferential
interpretations. Correspondingly, there are different null hypotheses that can be tested:

Copyright c©CSIRO 2008

158 Marked point patterns

• random labelling: given the locations X, the marks are conditionally independent and
identically distributed;

• independence of components: the sub-processes Xm of points of each mark m, are inde-
pendent point processes;

• complete spatial randomness and independence (CSRI): the locations X are a uniform
Poisson point process, and the marks are independent and identically distributed. (This
implies both random labelling and independence of components).

These null hypotheses are not equivalent.

The properties of random labelling and independence of components are not equivalent. For
example, take a point process X where nearest neighbour distances are always larger than a
threshold r, and attach random marks to the points. The resulting marked point process cannot
be generated using the independence construction, because if points with different marks are
independent, they can come arbitrarily close to one another.

Example 18 (Ant nests data) Two species of ants build nests in a desert. We want to inves-
tigate ecological interaction between the species, and between different nests of the same species.
The locations of all nests are mapped, and marked by the species.

These data can be analysed as a marked point process consisting of two different types of
points. The ‘mark’ attached to each point is its species (a categorical variable). The most
natural kind of modelling and analysis is either joint [X,M] or split by species [M] [X|M]. We
could also treat one of the species as a covariate and analyse the other species conditional on it.

Example 19 Trees in an orchard are examined and their disease status (infected/not infected)
is recorded. We are interested in the spatial characteristics of the disease, such as contagion
between neighbouring trees.

These data probably should not be treated as a point process. The response is ‘disease
status’. We can think of disease status as a label applied to the trees after their locations have
been determined. Since we are interested in the spatial correlation of disease status, the tree
locations are effectively fixed covariate values. It would probably be best to treat these data
as a discrete random field (of disease status values) observed at a finite known set of sites (the
trees).

23.3.3 Grey areas

There are some ‘grey areas’ which permit several alternative choices of analysis. It could be
appropriate either to analyse the locations and marks jointly (denoted [X,M]), or to analyse
the marks conditional on the locations ([M |X]) or to analyse the locations given the marks
([X|M]).

One grey area occurs when the locations are random, but may be ancillary for the parameters
of interest.

Example 20 Case-control study of cancer [22, 26]. The domicile locations of all new cases
of a rare cancer are mapped. To allow for spatial variation in the density of the susceptible
population, domicile locations are recorded for a random sample of (matched) controls.

Copyright c©CSIRO 2008

23.3 Methodological issues 159

This can be analysed either as a marked point pattern (where the mark is the case/control
label) or, by conditioning on locations, as a random field of case/control values attached to the
known domicile locations.

Chorley−Ribble Data

Copyright c©CSIRO 2008

160 Handling marked point pattern data

24 Handling marked point pattern data

This section explains how to create a marked point pattern dataset in spatstat, and how to
manipulate it.

24.1 Creating datasets

In spatstat version 1, each point in a point pattern can be marked with a single value (i.e.
one mark value per point). The marks are stored in a vector, of the same length as the number
of points. The marks can be of any atomic type: numeric, integer, character, factor, logical or
complex.

A marked point pattern dataset can be created using any of the following tools:
ppp create point pattern dataset
as.ppp convert other data to point pattern
superimpose combine several point patterns into a marked point pattern
marks extract marks from a point pattern
marks<- attach marks to a point pattern
%mark% attach marks to a point pattern
unmark delete marks from a point pattern
scanpp read point pattern data from text file
clickppp create a pattern using point-and-click on the screen

The command ppp can be used to create a marked point pattern dataset from raw data. The
syntax is

> ppp(x, y, ..., marks = m)

where x, y and m are vectors of equal length containing the (x, y) coordinates and the corre-
sponding mark values, and ... are arguments that determine the window for the point pattern.

Tip: If the marks are intended to be a categorical variable (representing the types
in a multitype point pattern),

• ensure that m is stored as a factor in R.

• when the point pattern X has been created, check that it is multitype using
is.multitype(X).

• check that the factor levels are as you intended, using levels(m) or levels(marks(X))
where X is the marked point pattern. If the factor levels are character strings,
they will be sorted into alphabetical order by default.

• be careful when performing equality/inequality comparisons involving a fac-
tor. Particular danger occurs when the factor levels are strings that represent
integers.

The command as.ppp will convert data in another format (for example, a 2-column or 3-
column matrix or data frame) to a point pattern object of class "ppp". The third column of a
matrix or data frame will be interpreted as containing the marks.

> mydata <- data.frame(x = runif(10), y = runif(10), m = sample(letters[1:3],

+ 10, replace = TRUE))

> as.ppp(mydata, square(1))

Copyright c©CSIRO 2008

24.2 Inspecting a marked point pattern 161

marked planar point pattern: 10 points

multitype, with levels = a b c

window: rectangle = [0, 1] x [0, 1] units

If point pattern data are stored in a text file, the command scanpp will read the data and
create a point pattern object of class "ppp". The argument multitype=TRUE will ensure that
the mark values are interpreted as a factor.

> X <- scanpp("myfile.txt", window = square(1), multitype = TRUE)

The command superimpose combines several point patterns within the same window. It
can be used to create a multitype point pattern, if you have already created separate point
patterns containing the points of each type. Suppose X1 and X2 are unmarked point patterns
Then superimpose(A=X1, B=X2) will create a multitype point pattern by attaching the mark
A to each point of X1, attaching the mark B to each point of X2, and combining the points.

X1 X2 superimpose(A = X1, B = X2)

Marks can be attached to an existing point pattern X using the function marks<- as in

> marks(X) <- m

or using the binary operator %mark%,

> Y <- X %mark% m

These are convenient when you want to assign new marks to a dataset that are computed
using another variable, or perhaps to randomise the marks in a dataset.

A multitype point pattern can also be created interactively using clickppp, using the argu-
ment types to specify the possible types.

24.2 Inspecting a marked point pattern

Basic tools for inspecting a marked point pattern include the print, plot and summary methods.

> data(amacrine)

> amacrine

marked planar point pattern: 294 points

multitype, with levels = off on

window: rectangle = [0, 1.6012] x [0, 1] units (one unit = 662 microns)

> summary(amacrine)

Copyright c©CSIRO 2008

162 Handling marked point pattern data

Marked planar point pattern: 294 points

Average intensity 184 points per square unit (one unit = 662 microns)

Multitype:

frequency proportion intensity

off 142 0.483 88.7

on 152 0.517 94.9

Window: rectangle = [0, 1.6012] x [0, 1] units

Window area = 1.60121 square units

Unit of length: 662 microns

> plot(amacrine)

off on

1 2

amacrine

You can also convert a marked point pattern into a data frame for closer inspection of the
coordinates and mark values:

> as.data.frame(amacrine)

x y marks

1 0.0224 0.0243 on

2 0.0243 0.1028 on

3 0.1626 0.1477 on

........

The marks can be extracted using the function marks:

> data(longleaf)

> m <- marks(longleaf)

Beware the possibility that two points with different marks may occupy the same spatial
location. This is not currently detected by ppp since, for a marked point pattern, the function
duplicated.ppp regards two points as identical only when their coordinates and mark values
are identical. To detect duplication of the spatial locations, use duplicated(unmark(X)).

Further tools are presented in the next section.

Copyright c©CSIRO 2008

24.3 Manipulating data 163

24.3 Manipulating data

24.3.1 Manipulating marks

The following tools can manipulate the marks in a point pattern:
marks extract marks
marks<- attach marks to a point pattern
%mark% attach marks to a point pattern
unmark remove marks from point pattern

For example, the Lansing Woods data are tree locations marked by diameter at breast height
(dbh) in centimetres. To convert the marks from diameters to circular areas,

> data(lansing)

> d <- marks(lansing)

> a <- (pi/4) * d^2

> marks(lansing) <- a

24.3.2 Separating points of different types

A multitype point pattern can be separated into the sub-patterns of points of each type, using
the split command.

> data(amacrine)

> Y <- split(amacrine)

In fact split is a generic function and the commands above invoke the split method for
the class of point patterns, split.ppp. The result Y is a list of point patterns, with names
that correspond to the type labels. This list also belongs to the class "splitppp" which can be
plotted automatically:

> plot(split(amacrine))

split(amacrine)

off on

24.3.3 Cutting the numerical scale into bands

For a point pattern with numeric marks, the marks can be converted to a factor, using a method
for the generic function cut. The user specifies a series of cut-points on the numerical scale; all
mark values between two cut-points are given the same label.

Copyright c©CSIRO 2008

164 Handling marked point pattern data

For example, the Longleaf Pines data are the locations of trees marked with their diameter
at breast height, dbh, in centimetres. By convention we define “adult” trees to be those with
dbh greater than 30 centimetres. To obtain the bivariate point pattern of adult and juvenile
trees,

> data(longleaf)

> longleaf

marked planar point pattern: 584 points

marks are numeric, of type ’double’

window: rectangle = [0, 200] x [0, 200] metres

> X <- cut(longleaf, breaks = c(0, 30, 80), labels = c("juvenile",

+ "adult"))

> X

marked planar point pattern: 584 points

multitype, with levels = juvenile adult

window: rectangle = [0, 200] x [0, 200] metres

> par(mfrow = c(1, 2))

> plot(longleaf)

0 20 40 60 80

0.000000 1.722522 3.445045 5.167567 6.890090

> plot(X, main = "cut(longleaf)")

juvenile adult

1 2

> par(mfrow = c(1, 1))

longleaf cut(longleaf)

Copyright c©CSIRO 2008

165

25 Methods 11: exploratory tools for marked point patterns

This section covers some tools for exploratory data analysis of marked point patterns. Most of
the tools have been developed for the special case of multitype point patterns (i.e. where the
marks are categorical).

25.1 Intensity

The Lansing Woods data give the locations of 6 species of trees in a forest in Michigan. Ele-
mentary estimates of the frequency distribution of species, and the intensity of each species, are
available from summary.ppp.

> data(lansing)

> summary(lansing)

Marked planar point pattern: 2251 points

Average intensity 2250 points per square unit (one unit = 924 feet)

Pattern contains duplicated points

Multitype:

frequency proportion intensity

blackoak 135 0.0600 135

hickory 703 0.3120 703

maple 514 0.2280 514

misc 105 0.0466 105

redoak 346 0.1540 346

whiteoak 448 0.1990 448

Window: rectangle = [0, 1] x [0, 1] units

Window area = 1 square unit

Unit of length: 924 feet

It’s sensible to examine the sub-patterns of different types separately, using split.ppp.

> plot(split(lansing))

Copyright c©CSIRO 2008

166 Methods 11: exploratory tools for marked point patterns

split(lansing)

blackoak hickory maple

misc redoak whiteoak

It would be useful to compute and plot a separate estimate of intensity for each type of tree.
This is possible using the functions density.splitppp and plot.listof. They are invoked
simply by typing

> plot(density(split(lansing)), ribbon = FALSE)

density(split(lansing))
blackoak hickory maple

misc redoak whiteoak

The relative proportions of intensity can then be computed using eval.im:

> Y <- density(split(lansing))

> attach(Y)

Copyright c©CSIRO 2008

25.2 Numeric marks: distribution and trend 167

> pBlackoak <- eval.im(blackoak/(blackoak + hickory + maple + misc +

+ redoak + whiteoak))

> plot(pBlackoak)

> detach(Y)

pBlackoak

0.
05

0.
1

0.
15

Parametric estimates of intensity can be obtained using ppm, fitting a Poisson model with
an intensity function that may depend on location and/or on the marks. See below.

25.2 Numeric marks: distribution and trend

For a point pattern with marks that are numeric (real numbers or integers) or logical values,
the mark values can be extracted using the marks function and inspected using the histogram
or kernel density estimate:

> data(longleaf)

> hist(marks(longleaf))

Histogram of marks(longleaf)

0
20

40
60

80

Copyright c©CSIRO 2008

168 Methods 11: exploratory tools for marked point patterns

To assess spatial trend in the marks, one way is to form a kernel regression smoother. The
smoothed mark value at location u ∈ R

2 is

m̂(u) =

∑
i miκ(u − xi)∑

i κ(u − xi)

where k is the smoothing kernel, and mi is the mark value at data point xi. This is computed
by smooth.ppp:

> plot(smooth.ppp(longleaf))

smooth.ppp(longleaf)

15
20

25
30

35
40

You can also use cut.ppp followed by split.ppp to look for spatial inhomogeneity of the
marks:

> data(spruces)

> plot(split(cut(spruces, breaks = 3)))

split(cut(spruces, breaks = 3))

(0.16,0.23] (0.23,0.3] (0.3,0.37]

25.3 Simple summaries of neighbouring marks

We are often interested in the marks that are attached to the close neighbours of a typical point.
For a multitype point pattern, the function marktable compiles a contingency table of the

marks of all points within a given radius of each data point:

Copyright c©CSIRO 2008

25.4 Summary functions 169

> data(amacrine)

> M <- marktable(amacrine, R = 0.1)

> M[1:10,]

mark

point off on

1 1 1

2 2 2

3 4 3

4 3 1

5 4 1

6 2 3

7 3 2

8 1 1

9 3 1

10 3 2

More general summaries of the marks of neighbours can be obtained using the function
markstat. For example, to compute the average diameter of the 5 closest neighbours of each
tree in the Longleaf Pines dataset,

> md <- markstat(longleaf, mean, N = 5)

> md[1:10]

[1] 43.40 43.40 48.58 21.70 48.38 53.32 40.28 29.82 24.92 21.70

25.4 Summary functions

The summary functions F , G, J and K (and other functions derived from K, such as L and the
pair correlation function) have been extended to multitype point patterns.

25.4.1 A pair of types

Assume the multitype point process X is stationary. Let Xj denote the sub-pattern of points of
type j, with intensity λj . Then for any pair of types i and j,

• Fj(r) is the empty space function for Xj .

• Gij(r) is the distribution function of the distance from a point of type i to the nearest
point of type j

• Kij(r) is 1/λj times the expected number of points of type j within a distance r of a
typical point of type i.

• Lij(r) is the corresponding L-function

Lij(r) =

√
Kij(r)

π
.

• gij(r) is the corresponding analogue of the pair correlation function

gij(r) =
K ′

ij(r)

2πr

where K ′
ij(r) is the derivative of Kij .

Copyright c©CSIRO 2008

170 Methods 11: exploratory tools for marked point patterns

• Jij is defined as

Jij(r) =
1 − Gij(r)

1 − Fj(r)
.

The functions Gij ,Kij , Lij , gij , Jij are called “cross-type” or “i-to-j” summary functions. They
are computed in spatstat by Gcross, Kcross, Lcross, pcfcross and Jcross respectively.

> data(amacrine)

> amacrine

> plot(Gcross(amacrine, "on", "off"))

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

Gcross(amacrine, "on", "off")

r (one unit = 662 microns)

G
cr

os
s[

"o
n"

, "
of

f"
](

r)

The interpretation of the cross-type summary functions is similar, but not identical, to that
of the original functions F , G, K etc:

• if Xj is a uniform Poisson process (CSR), then Fj(r) = 1 − exp(−λjπr2).

• if Xj is a uniform Poisson process (CSR) and is independent of Xi, then Gij(r) = 1 −
exp(−λjπr2).

• if Xi and Xj are independent, then Kij(r) = πr2 and so Lij(r) = r and gij(r) = 1.

• if Xi and Xj are independent, then Jij(r) = 1.

Here ‘independent’ means that the two point processes are probabilistically independent.

25.4.2 All pairs of types

The command alltypes enables the user to compute the cross-type summary functions between
all pairs of types simultaneously. For example, to compute Gij(r) for all i and j in the amacrine
cells data, we would use alltypes(amacrine, "G"). The result is automatically displayed as
an array of plot panels.

> plot(alltypes(amacrine, "G"))

Copyright c©CSIRO 2008

25.4 Summary functions 171

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

r (one unit = 662 microns)

km
 ,

rs
 ,

th
eo

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 662 microns)

km
 ,

rs
 ,

th
eo

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 662 microns)

km
 ,

rs
 ,

th
eo

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

r (one unit = 662 microns)

km
 ,

rs
 ,

th
eo

off on

of
f

on

array of G functions for amacrine.

The result of alltypes is a ‘function array’ (object of class "fasp") which can be indexed
by row and column subscripts. If the point pattern has a large number of possible types, you
can compute the array of all possible pairwise G functions, then use the subscript operator to
inspect a subset of the array.

> data(lansing)

> a <- alltypes(lansing, "G")

> plot(a[2:3, 2:3])

Copyright c©CSIRO 2008

172 Methods 11: exploratory tools for marked point patterns

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 924 feet)

km
 ,

rs
 ,

th
eo

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 924 feet)

km
 ,

rs
 ,

th
eo

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 924 feet)

km
 ,

rs
 ,

th
eo

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 924 feet)

km
 ,

rs
 ,

th
eo

hickory maple

hi
ck

or
y

m
ap

le

array of G functions for lansing.

25.4.3 One type to any type

Also defined are the “i-to-any” summaries

• Gi•(r), the distribution function of the distance from a point of type i to the nearest other
point of any type;

• Ki•(r) is 1/λ times the expected number of points of any type within a distance r of a
typical point of type i. Here λ =

∑
j λj is the intensity of the entire process X.

• Li•(r) is the corresponding L-function

Li•(r) =

√
Ki•(r)

π
.

• Ji• defined by

Ji•(r) =
1 − Gi•

1 − F (r)

These are computing by Gdot, Kdot, Ldot and Jdot respectively, or using alltypes.

> plot(Gdot(amacrine, "on"))

Copyright c©CSIRO 2008

25.4 Summary functions 173

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

Gdot(amacrine, "on")

r (one unit = 662 microns)

G
do

t["
on

"]
(r

)

> plot(alltypes(amacrine, "Gdot"))

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 662 microns)

km
 ,

rs
 ,

th
eo

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

r (one unit = 662 microns)

km
 ,

rs
 ,

th
eo

of
f

on

array of Gdot functions for amacrine.

25.4.4 Plotting and manipulating function arrays

A function array (object of class "fasp") can be printed and plotted using methods for this
class. It can also be manipulated in various ways.

The plot method is similar to plot.fv and allows the function values to be transformed:

> aG <- alltypes(amacrine, "G")

> fisher <- function(x) asin(sqrt(x))

> plot(aG, fisher(.) ~ fisher(theo))

Copyright c©CSIRO 2008

174 Methods 11: exploratory tools for marked point patterns

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

fisher(theo)

fis
he

r(
cb

in
d(

km
, r

s,
 th

eo
))

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

fisher(theo)

fis
he

r(
cb

in
d(

km
, r

s,
 th

eo
))

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

fisher(theo)

fis
he

r(
cb

in
d(

km
, r

s,
 th

eo
))

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

fisher(theo)

fis
he

r(
cb

in
d(

km
, r

s,
 th

eo
))

off on

of
f

on

array of G functions for amacrine.

As mentioned above, the function array can be indexed by array subscripts.

> data(lansing)

> a <- alltypes(lansing, "G")

> b <- a[2:3, 2:3]

Calculations can be performed on all the functions in the array using eval.fasp.

> aGfish <- eval.fasp(asin(sqrt(aG)))

25.5 Mark correlation function

The “mark correlation function” ρf (r) of a stationary marked point process Y is a measure of
the dependence between the marks of two points of the process a distance r apart [46]. It is
informally defined as

ρf (r) =
E[f(M1,M2)]

E[f(M,M ′)]

where M1,M2 are the marks attached to two points of the process separated by a distance r,
while M,M ′ are independent realisations of the marginal distribution of marks.

Here f is any function f(m1,m2) with two arguments which are possible marks of the pattern,
and which returns a nonnegative real value. Common choices of f are:

• for continuous real-valued marks, f(m1,m2) = m1m2;

• for categorical marks (multitype point patterns), f(m1,m2) = 1 {m1 = m2};

• for marks taking values in [0, 2π], f(m1,m2) = sin(m1 − m2).

Note that ρf (r) is not a “correlation” in the usual statistical sense. It can take any nonneg-
ative real value. The value 1 suggests “lack of correlation”: under random labelling, ρf (r) ≡ 1.
The interpretation of values larger or smaller than 1 depends on the choice of function f .

The mark correlation function is computed in spatstat by markcorr. It has the syntax

Copyright c©CSIRO 2008

25.6 Randomisation tests 175

> markcorr(X, f)

where X is a point pattern and f is an R language function. For example, for the amacrine

data, the natural function f is f(m1,m2) = 1 {m1 = m2} which we encode as

> eqfun <- function(m1, m2) {

+ m1 == m2

+ }

Then simply

> M <- markcorr(amacrine, eqfun, correction = "translate", method = "density",

+ kernel = "epanechnikov")

> plot(M)

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

r (one unit = 662 microns)

m
(r

)

25.6 Randomisation tests

Simulation envelopes of summary functions can be used to test various null hypotheses for
marked point patterns.

25.6.1 Poisson null

The null hypothesis of a homogeneous Poisson marked point process can be tested by direct
simulation, using envelope as before. For example, using the cross-type K function as the test
statistic,

> data(amacrine)

> E <- envelope(amacrine, Kcross, nsim = 39, i = "on", j = "off")

> plot(E, main = "test of marked Poisson model")

Copyright c©CSIRO 2008

176 Methods 11: exploratory tools for marked point patterns

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

test of marked Poisson model

r (one unit = 662 microns)

K
cr

os
s[

"o
n"

, "
of

f"
](

r)

Notice that the arguments i and j here do not match any of the formal arguments of
envelope, so they are passed to Kcross. This has the effect of calling Kcross(X, i="on", j="off")

for each of the simulated point patterns X. Each simulated pattern is generated by the homoge-
neous Poisson point process with intensities estimated from the dataset amacrine.

25.6.2 Independence of components

It’s also possible to test other null hypotheses by a randomisation test. We discussed two popular
null hypotheses:

• random labelling: given the locations X, the marks are conditionally independent and
identically distributed;

• independence of components: the sub-processes Xm of points of each mark m, are inde-
pendent point processes.

In a randomisation test of the independence-of-components hypothesis, the simulated pat-
terns X are generated from the dataset by splitting the data into sub-patterns of points of one
type, and randomly shifting these sub-patterns, independently of each other. The shifting is
performed by rshift:

> E <- envelope(amacrine, Kcross, nsim = 39, i = "on", j = "off",

+ simulate = expression(rshift(amacrine, radius = 0.25)))

> plot(E, main = "test of independent components")

Copyright c©CSIRO 2008

25.6 Randomisation tests 177

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

test of independent components

r (one unit = 662 microns)

K
cr

os
s[

"o
n"

, "
of

f"
](

r)

The independence-of-components hypothesis seems to be accepted in this example.
Under the independence hypothesis,

Kij(r) = πr2

Gij(r) = Fj(r)

Jij(r) ≡ 1.

while the “i-to-any” functions have complicated values. Thus, we would normally use Kij or Jij

to construct a test statistic for independence of components.

25.6.3 Random labelling

In a randomisation test of the random labelling null hypothesis, the simulated patterns X are
generated from the dataset by holding the point locations fixed, and randomly resampling the
marks, either with replacement (independent random sampling) or without replacement (ran-
domly permuting the marks). The resampling operation is performed by rlabel.

Under random labelling,

Ji•(r) = J(r)

Ki•(r) = K(r)

Gi•(r) = G(r)

(where G,K, J are the summary functions for the point process without marks) while the other,
cross-type functions have complicated values. Thus, we would normally use something like
Ki•(r) − K(r) to construct a test statistic for random labelling.

To do this, cook up a little function to evaluate Ji•(r) − J(r):

> Jdif <- function(X, ..., i) {

+ Jidot <- Jdot(X, ..., i = i)

+ J <- Jest(X, ...)

+ dif <- eval.fv(Jidot - J)

+ return(dif)

+ }

> E <- envelope(amacrine, Jdif, nsim = 39, i = "on", simulate = expression(rlabel(amacrine))

> plot(E, main = "test of random labelling")

Copyright c©CSIRO 2008

178 Methods 11: exploratory tools for marked point patterns

0.00 0.01 0.02 0.03 0.04 0.05

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

test of random labelling

r (one unit = 662 microns)

Jd
ot

["
on

"]
(r

)
−

 J
(r

)

The random labelling hypothesis also seems to be accepted.

25.6.4 Arrays of envelopes

To compute a simulation envelope for the function Kij for each pair of types i and j, use
alltypes with the argument envelope=TRUE.

> aE <- alltypes(amacrine, Kcross, nsim = 39, envelope = TRUE)

> plot(aE, sqrt(./pi) - r ~ r, ylab = "L(r)-r")

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01

r (one unit = 662 microns)

L(
r)

−
r

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

r (one unit = 662 microns)

L(
r)

−
r

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

r (one unit = 662 microns)

L(
r)

−
r

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01

r (one unit = 662 microns)

L(
r)

−
r

off on

of
f

on

array of envelopes of Kcross functions for amacrine.

Copyright c©CSIRO 2008

179

26 Methods 12: multitype Poisson models

This section covers multitype Poisson process models: basic properties, simulation, and fitting
models to data.

26.1 Theory

26.1.1 Complete spatial randomness and independence

A uniform Poisson marked point process in R
2 with marks in M can be defined in the following

equivalent ways.

• randomly marked Poisson process (Poisson [X], iid [M |X]): a Poisson point process of
locations X with intensity β is first generated. Then each point xi is labelled with a
random mark mi, independently of other points, with distribution P {Mi = m} = pm for
m ∈ M.

• superposition of independent Poisson processes (iid [M], Poisson [X|M]): for each possible
mark m ∈ M, a Poisson process Xm is generated, with intensity βm. The points of Xm

are tagged with the mark m. Then the processes Xm with different marks m ∈ M are
superimposed, to yield a marked point process.

• Poisson marked point process (jointly Poisson [X,M]): a Poisson process on R
2 × M is

generated, with intensity function λ(u,m) = βm at location u and mark m.

These constructions are equivalent when βm = pmβ. See the lovely book by Kingman [32].

Since the established term CSR (‘complete spatial randomness’) is used to refer to the uniform
Poisson point process, I propose that the uniform marked Poisson point process should be called
‘complete spatial randomness and independence’ (CSRI).

26.1.2 Inhomogeneous Poisson marked point processes

A inhomogeneous Poisson marked point process Y with ‘joint’ intensity λ(u,m) for locations u
and mark values m is simply defined as an inhomogeneous Poisson point process on R

2 × M
with intensity function λ(u,m).

Let’s restrict attention to the case of categorical marks, where M is finite. Then the process
Y has the following properties:

• The locations X, obtained by removing the marks, constitute an inhomogeneous Poisson
process in R

2 with intensity function

β(u) =
∑

m

λ(u,m).

• Conditional on the locations X, the marks attached to the points are independent. For a
point xi the conditional distribution of the mark mi is P{Mi = m} = λ(xi,m)/β(xi).

• The sub-process Xm of points with mark m, is an inhomogeneous Poisson point process
with intensity βm(u) = λ(u,m).

• The sub-processes Xm of points with different marks m are independent processes.

Copyright c©CSIRO 2008

180 Methods 12: multitype Poisson models

26.2 Simulation

Realisations of Poisson marked point processes can be generated using rmpoispp. The first
argument of this command specifies the intensity or intensity function λ(u,m). It can be a
constant, a vector of constants, or an R function.

> par(mfrow = c(1, 2))

> Xunif <- rmpoispp(100, types = c("A", "B"), win = square(1))

> plot(Xunif, main = "CSRI, intensity A=100, B=100")

> Xunif <- rmpoispp(c(100, 20), types = c("A", "B"), win = square(1))

> plot(Xunif, main = "CSRI, intensity A=100, B=20")

> par(mfrow = c(1, 1))

CSRI, intensity A=100, B=100 CSRI, intensity A=100, B=20

> X1 <- rmpoispp(function(x, y, m) {

+ 300 * exp(-3 * x)

+ }, types = c("A", "B"))

> lamb <- function(x, y, m) {

+ ifelse(m == "A", 300 * exp(-4 * x), 300 * exp(-4 * (1 - x)))

+ }

> X2 <- rmpoispp(lamb, types = c("A", "B"))

> par(mfrow = c(1, 2))

> plot(X1, main = "")

> plot(X2, main = "")

> par(mfrow = c(1, 1))

Copyright c©CSIRO 2008

26.3 Fitting Poisson models 181

26.3 Fitting Poisson models

Poisson marked point process models may be fitted to point pattern data using ppm. Currently
the methods are only available for multitype point processes (categorical marks).

26.3.1 Probability densities

Let W ⊂ R
2 be the study region, and M the (finite) set of possible marks. Then a marked point

pattern is a set

y = {(x1,m1), . . . , (xn,mn)}, xi ∈ W, mi ∈ M, n ≥ 0

of pairs (xi,mi) of locations xi with marks mi. It can be viewed as a point pattern in the
Cartesian product W ×M.

The probability density of a marked point process is a function f(y) defined for all marked
point patterns y including the empty pattern ∅.

The process with probability density f(y) ≡ 1 is the uniform Poisson marked point process
with intensity 1 for each mark. That is, for this model, the sub-process of points with mark
mi = m is a uniform Poisson process with intensity 1. If the marks are removed, we obtain a
Poisson point process with intensity equal to |M|, the number of possible types.

The uniform Poisson marked point process with intensity λ(u,m) = βm has probability
density

f(y) = exp

(
∑

m∈M

(1 − βm)|W |
)

n(y)∏

i=1

βmi

= exp

(
∑

m∈M

(1 − βm)|W |
)
∏

m∈M

βnm(y)
m

where nm(y) is the number of points in y having mark value m.

The inhomogeneous Poisson marked point process with intensity function λ(u,m), at location
u ∈ W and mark m ∈ M, has probability density

Copyright c©CSIRO 2008

182 Methods 12: multitype Poisson models

f(y) = exp

(
∑

m∈M

∫

W
(1 − λ(u,m) du

)
n(y)∏

i=1

λ(xi,mi). (48)

26.3.2 Maximum likelihood

For the multitype Poisson process with intensity function λ(u,m) at location u ∈ W and mark
m ∈ M, the loglikelihood is, up to a constant,

log L =

n∑

i=1

log λ(xi,mi) −
∑

m∈M

∫

W
λ(u,m) du. (49)

where mi is the mark attached to data point xi. This is formally equivalent to the loglikelihood
of a Poisson loglinear regression, so the Berman-Turner algorithm can again be used to maximise
the loglikelihood.

26.3.3 Model-fitting in spatstat

Poisson marked point process models are fitted to data using ppm.
The trend formula in the call to ppm may involve the reserved name marks as a variable.

This refers to the marks of the points. Since the marks are categorical, marks is treated as a
factor variable for modelling purposes.

To fit the homogeneous multitype Poisson process (CSRI), equation (50), we call

> ppm(X, ~marks)

The formula ~marks indicates that the trend depends only on the marks, and not on spatial
location; since marks is a factor, the trend has a separate constant value for each level of marks.
This is the model (50).

Note that if we had typed

> ppm(X, ~1)

this would have fitted the special case of CSRI where the intensities βm are equal, βm ≡ α say,
for all possible marks. That model is only appropriate if we believe that all mark values are
equally likely.

For the Lansing Woods data, the minimal model that makes sense is (50), so we call

> ppm(lansing, ~marks)

Stationary multitype Poisson process

Possible marks:

blackoak hickory maple misc redoak whiteoak

Trend formula: ~marks

Intensities:

beta_blackoak beta_hickory beta_maple beta_misc beta_redoak

135 703 514 105 346

beta_whiteoak

448

Copyright c©CSIRO 2008

26.3 Fitting Poisson models 183

Since lansing is a multitype point pattern (its marks are categorical), the variable marks in
the formula is a factor. The model has one parameter/coefficient for each level of the factor, i.e.
one coefficient for each type of point. In other words, this is the homogeneous Poisson marked
point process with intensity βm for points of mark m.

You’ll notice that the parameter estimates β̂m coincide with those obtained from summary.ppp

above. That is a consequence of the fact that the maximum likelihood estimates (obtained by
ppm) are also the method-of-moments estimates (obtained by summary.ppp).

A more complicated example is

> ppm(lansing, ~marks + x)

Nonstationary multitype Poisson process

Possible marks:

blackoak hickory maple misc redoak whiteoak

Trend formula: ~marks + x

Fitted coefficients for trend formula:

(Intercept) markshickory marksmaple marksmisc marksredoak

4.94294727 1.65008211 1.33694849 -0.25131442 0.94116400

markswhiteoak x

1.19951845 -0.07581624

This is the marked Poisson process whose intensity function λ((x, y,m)) at location (x, y)
and mark m satisfies

log λ((x, y,m)) = αm + βx

where α1, . . . , α6 and β are parameters. The intensity is loglinear in x, with a different intercept
for each mark, but the same slope (“parallel loglinear regression”). In the printout above, the
fitted slope parameter β is β̂ =-0.07581624. As discussed in Section 13.3 on page 82, the fitted
coefficients αm for the categorical mark are interpreted in the light of the ‘contrasts’ in force.
The default is the treatment contrasts, and the first level of the mark is blackoak, so in this
case the fitted coefficient for m=blackoak is 4.942947, while the fitted coefficient for m=hickory
is 4.942947 + 1.650082 = 6.593029 and so on.

> ppm(lansing, ~marks * x)

Nonstationary multitype Poisson process

Possible marks:

blackoak hickory maple misc redoak whiteoak

Trend formula: ~marks * x

Fitted coefficients for trend formula:

(Intercept) markshickory marksmaple marksmisc marksredoak

5.2378062 1.4424915 0.6795604 -0.8482907 0.6916392

markswhiteoak x markshickory:x marksmaple:x marksmisc:x

1.0901772 -0.7063987 0.4511157 1.3243326 1.2138278

marksredoak:x markswhiteoak:x

0.5380413 0.2421379

Copyright c©CSIRO 2008

184 Methods 12: multitype Poisson models

The symbol * here is an ‘interaction’ in the usual sense for linear models. The fitted model
is the marked Poisson process with

log λ((x, y,m)) = αm + βmx

where α1, . . . , α6 and β1, . . . , β6 are parameters. The intensity is loglinear in x with a different
slope and intercept for each mark.

The result of ppm is again an object of class "ppm" representing a fitted point process model.
To plot the fitted intensity and conditional intensity of the fitted model, use plot.ppm. For a
multitype point process you will get a separate plot for each possible mark value.

More complicated examples are:

> ppm(lansing, ~marks * polynom(x, y, 2))

> ppm(lansing, ~marks * harmonic(x, y, 2))

Copyright c©CSIRO 2008

185

27 Methods 13: Gibbs models for multitype point patterns

Gibbs point process models (section 20) are also available for marked point processes, and can
be fitted to data using ppm. Currently the methods are only implemented for multitype point
processes (categorical marks), so we restrict attention to this case.

27.1 Gibbs models

Much of the theory of Gibbs models described in Section 20 carries over immediately to multitype
point processes.

27.1.1 Conditional intensity

The conditional intensity λ(u,X) of an (unmarked) point process X at a location u was defined
in section 20.5. Roughly speaking λ(u,x) du is the conditional probability of finding a point
near u, given that the rest of the point process X coincides with x.

For a marked point process Y the conditional intensity is a function λ((u,m),Y) giving a
value at a location u for each possible mark m. For a finite set of marks M , we can interpret
λ((u,m),y) du as the conditional probability finding a point with mark m near u, given the rest
of the marked point process.

The conditional intensity is related to the probability density f(y) by

λ((u,m),y) =
f(y ∪ {u})

f(y)

for (u,m) 6∈ y.
For Poisson processes, the conditional intensity λ((u,m),y) coincides with the intensity

function λ(u,m) and does not depend on the configuration y. For example, the homogeneous
Poisson multitype point process or “CSRI” (Section 26.1.1) has conditional intensity

λ((u,m),y) = βm (50)

where βm ≥ 0 are constants which can be interpreted in several equivalent ways (section 20.5).
The sub-process consisting of points of type m only is Poisson with intensity βm. The process
obtained by ignoring the types, and combining all the points, is Poisson with intensity β =∑

m βm. The marks attached to the points are i.i.d. with distribution pm = βm/β.

27.1.2 Pairwise interactions

A multitype pairwise interaction process is a Gibbs process with probability density of the form

f(y) = α




n(y)∏

i=1

bmi
(xi)





∏

i<j

cmi,mj
(xi, xj)


 (51)

where bm(u),m ∈ M are functions determining the ‘first order trend’ for points of each type,
and cm,m′(u, v),m,m′ ∈ M are functions determining the interaction between a pair of points of
given types m and m′. The interaction functions must be symmetric, cm,m′(u, v) = cm,m′(v, u)
and cm,m′ ≡ cm′,m. The conditional intensity is

λ((u,m);y) = bm(u)

n(y)∏

i=1

cm,mi
(u, xi). (52)

Copyright c©CSIRO 2008

186 Methods 13: Gibbs models for multitype point patterns

27.1.3 Pairwise interactions not depending on marks

The simplest examples of multitype pairwise interaction processes are those in which the inter-
action term cm,m′(u, v) does not depend on the marks m,m′. For example, we can take any of
the interaction functions c(u, v) described in section 20.3 and use it to construct a marked point
process.

Such processes can be constructed equivalently as follows [8]:

• an unmarked Gibbs process is generated with first order term b(u) =
∑

m∈M bm(u) and
pairwise interaction c(u, v).

• each point xi of this unmarked process is labelled with a mark mi with probability distri-
bution P{mi = m} = bi(xi)/b(xi) independent of other points.

If additionally the intensity functions are constant, bm(u) ≡ βm, then such a point process
has the random labelling property.

27.1.4 Mark-dependent pairwise interactions

Various complex kinds of behaviour can be created by postulating a pairwise interaction that
does depend on the marks.

A simple example is the multitype hard core process in which βm(u) ≡ β and

cm,m′(u, v) =

{
1 if ||u − v|| > rm,m′

0 if ||u − v|| ≤ rm,m′

(53)

where rm,m′ = rm′,m > 0 is the hard core distance for type m with type m′. In this process, two
points of type m and m′ respectively can never come closer than the distance rm,m′ .

By setting rm,m′ = 0 for a particular pair of marks m,m′ we effectively remove the in-
teraction term between points of these types. If there are only two types, say M = {1, 2},
then setting r1,2 = 0 implies that the sub-processes X1 and X2, consisting of points of types
1 and 2 respectively, are independent point processes. In other words the process satisfies the
independence-of-components property.

The multitype Strauss process has pairwise interaction term

cm,m′(u, v) =

{
1 if ||u − v|| > rm,m′

γm,m′ if ||u − v|| ≤ rm,m′

(54)

where rm,m′ > 0 are interaction radii as above, and γm,m′ ≥ 0 are interaction parameters.
In contrast to the unmarked Strauss process, which is well-defined only when its interaction

parameter γ is between 0 and 1, the multitype Strauss process allows some of the interaction
parameters γm,m′ to exceed 1 for m 6= m′, provided one of the relevant types has a hard core
(γm,m = 0 or γm′,m′ = 0).

If there are only two types, say M = {1, 2}, then setting γ1,2 = 1 implies that the sub-
processes X1 and X2, consisting of points of types 1 and 2 respectively, are independent Strauss
processes.

The multitype Strauss-hard core process has pairwise interaction term

cm,m′(u, v) =





0 if ||u − v|| < hm,m′

γm,m′ if hm,m′ ≤ ||u − v|| ≤ rm,m′

1 if ||u − v|| > rm,m′

(55)

where rm,m′ > 0 are interaction distances and γm,m′ ≥ 0 are interaction parameters as above,
and hm,m′ are hard core distances satisfying hm,m′ = hm′,m and 0 < hm,m′ < rm,m′ .

Copyright c©CSIRO 2008

27.2 Pseudolikelihood for multitype Gibbs processes 187

27.2 Pseudolikelihood for multitype Gibbs processes

Models can be fitted by maximum pseudolikelihood. For a multitype Gibbs point process with
conditional intensity λ((u,m);y), the log pseudolikelihood is

log PL =

n(y)∑

i=1

log λ((xi,mi);y) −
∑

m∈M

∫

W
λ((u,m);y) du. (56)

The pseudolikelihood can be maximised using an extension of the Berman-Turner device [3].

27.3 Fitting Gibbs models to multitype data

Marked point process models may be fitted to point pattern data using ppm. Currently the
methods are only available for multitype point processes (categorical marks).

27.3.1 Interactions not depending on marks

The model-fitting function ppm expects an argument interaction that specifies the interpoint
interaction structure of the point process. The default is ‘no interaction’, corresponding to a
Poisson process.

On page 141 there is a list of interpoint interactions for modelling unmarked point patterns.
These interactions can also be used, without modification, to fit models to multitype point
patterns.

For example

> ppm(lansing, ~marks, Strauss(0.07))

fits a multitype version of the Strauss process (section 20.3.2) in which the conditional intensity
is

λ((u,m),y) = βmγt(u,y). (57)

Here βm are constants which account for the unequal abundance of the different species of tree.
The other quantities are the same as in (42). The interaction between two trees is assumed to be
the same for all species, and is controlled by the interaction parameter γ and interaction radius
r = 0.07. For example, this includes the case γ = 0 where no two trees (whatever species they
belong to) come closer than 0.07 units apart, a ‘multitype hard core process’.

27.3.2 Interactions depending on marks

There are two additional interpoint interactions defined in spatstat for multitype point pat-
terns:

MultiStrauss the multitype Strauss process
MultiStraussHard multitype hybrid hard core / Strauss process

In these models, the interaction between two points depends on the types of the points as
well as their separation.

In the multitype Strauss process (54), for each pair of types i and j there is an interaction
radius rij and interaction parameter γij. In simple terms, each pair of points, with marks i and j
say, contributes an interaction term γi,j if the distance between them is less than the interaction
distance ri,j. These parameters must satisfy rij = rji and γij = γji. The conditional intensity is

λ((u, i),y) = βi

∏

j

γ
ti,j (u,y)
i,j (58)

Copyright c©CSIRO 2008

188 Methods 13: Gibbs models for multitype point patterns

where ti,j(u,y) is the number of points in y, with mark equal to j, lying within a distance ri,j

of the location u.
To fit the stationary multitype Strauss process to the dataset betacells, we must specify

the matrix of interaction radii rij:

> data(betacells)

> r <- 30 * matrix(c(1, 2, 2, 1), nrow = 2, ncol = 2)

> ppm(betacells, ~1, MultiStrauss(c("off", "on"), r), rbord = 60)

Stationary Multitype Strauss process

Possible marks:

off on

First order terms:

beta_off beta_on

0.0001373652 0.0001373652

Interaction: Pairwise interaction family

Interaction: Multitype Strauss process

2 types of points

Possible types:

[1] "off" "on"

Interaction radii:

off on

off 30 60

on 60 30

Fitted interaction parameters gamma_ij:

off on

off 0.0000 0.8303

on 0.8303 0.0000

Relevant coefficients:

markoffxoff markoffxon markonxon

-17.2378706 -0.1860184 -17.2138383

To fit a nonstationary multitype Strauss process with log-cubic polynomial trend:

> ppm(betacells, ~polynom(x, y, 3), MultiStrauss(c("off", "on"),

+ r), rbord = 60)

For more detailed explanation and examples of modelling and the interpretation of model
formulae for point processes, see [5].

Copyright c©CSIRO 2008

27.3 Fitting Gibbs models to multitype data 189

27.3.3 Plotting the fitted interaction

The fitted pairwise interaction in a point process model can be plotted using fitin. The value
returned by fitin is a function array (class "fasp").

> model <- ppm(betacells, ~polynom(x, y, 3), MultiStrauss(c("off",

+ "on"), r), rbord = 60)

> plot(fitin(model))

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

P
ai

rw
is

e
in

te
ra

ct
io

n

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

P
ai

rw
is

e
in

te
ra

ct
io

n

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

P
ai

rw
is

e
in

te
ra

ct
io

n

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

P
ai

rw
is

e
in

te
ra

ct
io

n
off on

of
f

on

Fitted pairwise interactions

Copyright c©CSIRO 2008

190 Line segment data

28 Line segment data

spatstat also has some facilities for handling spatial patterns of line segments.

For example, the copper dataset in spatstat contains a dataset copper$Lines that records
the locations of geological faults in a survey region.

> data(copper)

> L <- copper$Lines

> L <- rotate(L, pi/2)

> plot(L)

L

A spatial pattern of line segments is represented by an object of class "psp". It consists of
a list of line segments (given by the coordinates of their two endpoints), and a window in which
the line segments were observed. The line segments may also carry marks.

Objects of class "psp" can be created by the function psp or obtained by converting other
data using the function as.psp.

Capabilities available for this class include:

[.psp subset operator (also performs clipping)
marks.psp extract marks
endpoints.psp extract midpoints of line segments
midpoints.psp compute midpoints of line segments
lengths.psp compute lengths of line segments
angles.psp compute angles of orientation for line segments
rotate.psp rotate a line segment pattern
shift.psp shift a line segment pattern
affine.psp apply affine transformation
pairdist.psp distances between line segments
crossdist.psp distances between line segments
nndist.psp closest distances between line segments
density.psp kernel-smoothed intensity image
crossing.psp find intersection points between line segments
selfcrossing.psp find intersection points between line segments
unitname.psp determine units of length
rescale.psp change units of length
rshift.psp apply random shift to each line segment

Copyright c©CSIRO 2008

191

There are also the usual methods

plot.psp plot a line segment pattern
print.psp print information on a line segment pattern
summary.psp compute summary of a line segment pattern

> summary(L)

146 line segments

Lengths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.09242 6.61400 12.18000 15.02000 19.95000 65.48000

Total length: 2192.57251480451 km

Length per unit area: 0.196937548404655

Angles (radians):

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.008107 0.549500 1.747000 1.378000 2.113000 2.912000

Window: polygonal boundary

single connected closed polygon with 4 vertices

enclosing rectangle: [-158.23, -0.19] x [-0.335, 70.11] km

Window area = 11133.3 square km

Unit of length: 1 km

> plot(distmap(L))

> plot(L, add = TRUE)

distmap(L)

−150 −100 −50 0

0
20

40
60

0
2

4
6

8
10

12
14

Copyright c©CSIRO 2008

192 Further information on spatstat

29 Further information on spatstat

Help files

For information on a particular command in spatstat, consult the online help file by typing
help(command). The help files are detailed and extensive. The complete manual is over 500
pages.

For examples of the use of a particular command, read the examples section in the help file,
or type example(command) to see the examples executed.

Quick reference

Type help(spatstat) for a quick-reference overview of all the functions available in the package.
For a demonstration of many of the capabilities of spatstat, type demo(spatstat).
For a visual display of all the datasets supplied in spatstat, type demo(data).

Website

The website www.spatstat.org contains information on recent updates to the package, frequently-
asked questions, bug fixes, literature and other developments.

Modelling

For examples on fitting point process models, see [5].

Citation

If you use spatstat in a research publication, it would be much appreciated if you could cite
the paper [4], or mention spatstat in the acknowledgements.

In doing so, you will help us to justify the expenditure of time and effort on maintaining and
developing the package.

Citation details are also available in the package by typing citation(package="spatstat").

Queries and requests

If you have difficulty in getting the package to do what you want, or if you have a suggestion for
additional features that could be added, please contact the package authors, adrian@maths.uwa.edu.au
and r.turner@auckland.ac.nz, or email the R special interest group in spatial and geographical
statistics, r-sig-geo@stat.math.ethz.ch.

Copyright c©CSIRO 2008

REFERENCES 193

References

[1] A. Baddeley, J. Møller, and A.G. Pakes. Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics, 60:627–649, 2008.

[2] A. Baddeley, J. Møller, and R. Waagepetersen. Non- and semiparametric estimation of inter-
action in inhomogeneous point patterns. Statistica Neerlandica, 54(3):329–350, November
2000.

[3] A. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial point patterns
(with discussion). Australian and New Zealand Journal of Statistics, 42(3):283–322, 2000.

[4] A. Baddeley and R. Turner. Spatstat: an R package for analyzing spatial point patterns.
Journal of Statistical Software, 12(6):1–42, 2005. URL: www.jstatsoft.org, ISSN: 1548-
7660.

[5] A. Baddeley and R. Turner. Modelling spatial point patterns in R. In A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern
Modelling, number 185 in Lecture Notes in Statistics, pages 23–74. Springer-Verlag, New
York, 2006. ISBN: 0-387-28311-0.

[6] A. Baddeley, R. Turner, J. Møller, and M. Hazelton. Residual analysis for spatial point
processes (with discussion). Journal of the Royal Statistical Society, series B, 67(5):617–666,
2005.

[7] A.J. Baddeley. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall,
and M.N.M. van Lieshout, editors, Stochastic Geometry: Likelihood and Computation, chap-
ter 2, pages 37–78. Chapman and Hall, London, 1998.

[8] A.J. Baddeley and J. Møller. Nearest-neighbour Markov point processes and random sets.
International Statistical Review, 57:89–121, 1989.

[9] A.J. Baddeley, R.A. Moyeed, C.V. Howard, and A. Boyde. Analysis of a three-dimensional
point pattern with replication. Applied Statistics, 42(4):641–668, 1993.

[10] A.J. Baddeley and B.W. Silverman. A cautionary example on the use of second-order
methods for analyzing point patterns. Biometrics, 40:1089–1094, 1984.

[11] A.J. Baddeley and M.N.M. van Lieshout. Area-interaction point processes. Annals of the
Institute of Statistical Mathematics, 47:601–619, 1995.

[12] G. Barnard. Contribution to discussion of “The spectral analysis of point processes” by
M.S. Bartlett. Journal of the Royal Statistical Society, series B, 25:294, 1963.

[13] M. Bell and G. Grunwald. Mixed models for the analysis of replicated spatial point patterns.
Biostatistics, 5:633–648, 2004.

[14] M. Berman and T.R. Turner. Approximating point process likelihoods with GLIM. Applied
Statistics, 41:31–38, 1992.

[15] J. Besag and P.J. Diggle. Simple Monte Carlo tests for spatial pattern. Applied Statistics,
26:327–333, 1977.

[16] J.E. Besag and P. Clifford. Generalized Monte Carlo significance tests. Biometrika, 76:633–
642, 1989.

Copyright c©CSIRO 2008

194 REFERENCES

[17] R. Bivand, E.J. Pebesma, and V. Gómez-Rubio. Applied spatial data analysis with R.
Springer, 2008.

[18] D.R. Brillinger. Comparative aspects of the study of ordinary time series and of point
processes. In P.R. Krishnaiah, editor, Developments in Statistics, pages 33–133. Academic
Press, 1978.

[19] N.A.C. Cressie. Statistics for Spatial Data. John Wiley and Sons, New York, 1991.

[20] D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer
Verlag, New York, 1988.

[21] P.J. Diggle. Statistical analysis of spatial point patterns. Academic Press, London, 1983.

[22] P.J. Diggle. A point process modelling approach to raised incidence of a rare phenomenon
in the vicinity of a prespecified point. Journal of the Royal Statistical Society, series A,
153:349–362, 1990.

[23] P.J. Diggle. Statistical Analysis of Spatial Point Patterns. Arnold, second edition, 2003.

[24] P.J. Diggle, N. Lange, and F. M. Benes. Analysis of variance for replicated spatial point
patterns in clinical neuroanatomy. Journal of the American Statistical Association, 86:618–
625, 1991.

[25] P.J. Diggle, J. Mateu, and H.E. Clough. A comparison between parametric and non-
parametric approaches to the analysis of replicated spatial point patterns. Advances in
Applied Probability (SGSA), 32:331–343, 2000.

[26] P.J. Diggle and B. Rowlingson. A conditional approach to point process modelling of
elevated risk. Journal of the Royal Statistical Society, series A (Statistics in Society),
157(3):433–440, 1994.

[27] M. Dwass. Modified randomization tests for nonparametric hypotheses. Annals of Mathe-
matical Statistics, 28:181–187, 1957.

[28] A.C.A. Hope. A simplified Monte Carlo significance test procedure. Journal of the Royal
Statistical Society, series B, 30:582–598, 1968.

[29] C.V. Howard, S. Reid, A.J. Baddeley, and A. Boyde. Unbiased estimation of particle density
in the tandem-scanning reflected light microscope. Journal of Microscopy, 138:203–212,
1985.

[30] F. Huang and Y. Ogata. Improvements of the maximum pseudo-likelihood estimators
in various spatial statistical models. Journal of Computational and Graphical Statistics,
8(3):510–530, 1999.

[31] J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan. Statistical analysis and modelling of
spatial point patterns. Wiley, 2008.

[32] J.F.C. Kingman. Poisson Processes. Oxford University Press, 1993.

[33] G.M. Laslett. Censoring and edge effects in areal and line transect sampling of rock joint
traces. Mathematical Geology, 14:125–140, 1982.

Copyright c©CSIRO 2008

REFERENCES 195

[34] P.A.W. Lewis. Recent results in the statistical analysis of univariate point processes. In
P.A.W. Lewis, editor, Stochastic point processes, pages 1–54. Wiley, New York, 1972.

[35] J.K. Lindsey. The analysis of stochastic processes using GLIM. Springer, Berlin, 1992.

[36] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092,
1953.

[37] J. Møller and R.P. Waagepetersen. Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton, 2003.

[38] J. Møller and R.P. Waagepetersen. Modern statistics for spatial point processes. Research
Report R-2006-12, Department of Mathematical Sciences, Aalborg University, April 2006.
Submitted for publication.

[39] Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point
processes. Journal of the American Statistical Association, 83:9–27, 1988.

[40] B.D. Ripley. Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, series B, 39:172–212, 1977.

[41] B.D. Ripley. Simulating spatial patterns: dependent samples from a multivariate density.
Applied Statistics, 28:109–112, 1979.

[42] B.D. Ripley. Spatial Statistics. John Wiley and Sons, New York, 1981.

[43] B.D. Ripley. Statistical Inference for Spatial Processes. Cambridge University Press, 1988.

[44] A. Särkkä. Pseudo-likelihood approach for pair potential estimation of Gibbs processes.
Number 22 in Jyväskylä Studies in Computer Science, Economics and Statistics. University
of Jyväskylä, 1993.

[45] D. Stoyan and P. Grabarnik. Second-order characteristics for stochastic structures con-
nected with Gibbs point processes. Mathematische Nachrichten, 151:95–100, 1991.

[46] D. Stoyan and H. Stoyan. Fractals, Random Shapes and Point Fields. John Wiley and
Sons, Chichester, 1995.

[47] M.N.M. van Lieshout. Markov Point Processes and their Applications. Imperial College
Press, 2000.

[48] M.N.M. van Lieshout and A.J. Baddeley. A nonparametric measure of spatial interaction
in point patterns. Statistica Neerlandica, 50:344–361, 1996.

[49] R. Waagepetersen. An estimating function approach to inference for inhomogeneous
Neyman-Scott processes. Submitted for publication, 2006.

Copyright c©CSIRO 2008

Index

analysis of deviance, 88
area-interaction process, 135

binary mask, 28, 41

circular windows, 39
classes, 27

in R, 27
in spatstat, 27

clickppp, 25
cluster models

fitting, 125, 130
inhomogeneous, 130

fitting, 130
complete spatial randomness, 72

and independence, 157, 179
definition, 72
Kolmogorov-Smirnov test, 75
quadrat counting test, 74

conditional intensity, 136
for marked point processes, 185

contrasts, 82, 183
covariate effects, 9
covariates, 7, 16, 82

in ppm, 82
Cox process, 99
CSRI, 157, 179

conditional intensity, 185
fitting to data, 182
simulating, 180

data entry, 33
at the terminal, 34
basic, 33, 34
checking, 36
from file, 34
GIS formats, 42
marked point patterns, 160
marks, 35
point-and-click, 25

datasets
inspecting, 20
provided in spatstat, 25

dispatching, 27
distance methods, 102

distances
empty space, 102, 103

nearest neighbour, 102, 109
pairwise, 102, 111

distmap, 102

edge effects, 104
empty space distances, 102, 103
empty space function, 104
envelopes, 119

and Monte Carlo tests, 119
for any fitted model, 123
for any simulation procedure, 124
in spatstat, 120
of summary functions, 119

exploratory data analysis, 21
for marked point patterns, 165

fitted model, 142
goodness-of-fit, 90, 148
interpretation of coefficients, 82
methods for, 84
residuals, 91, 150
simulation of, 89

fitting models
by Huang-Ogata method, 147
kppm, 125, 130
maximum pseudolikelihood, 139
to marked point patterns, 182, 187
via summary statistics, 125

fv, 32

geometrical transformations, 50
Gibbs models, 132

area-interaction, 135
Diggle-Gates-Stibbard, 135
Diggle-Gratton, 135
fitting, 139

by Huang-Ogata method, 147
maximum pseudolikelihood, 139
ppm, 139

fitting to marked point patterns, 187
goodness-of-fit, 148
hard core process, 133
in spatstat, 141
infinite order interaction, 135
multitype, 185

maximum pseudolikelihood, 187
multitype pairwise interaction, 185

196

INDEX 197

pairwise interaction, 135
residuals, 150
simulation, 137
simulation of fitted model, 144
soft core, 135
Strauss process, 134
Strauss-hard core, 135

GIS formats, 42
goodness-of-fit, 90

for fitted Gibbs model, 148
for Poisson models, 90

hard core process, 133
multitype, 186

Huang-Ogata method, 147

im, 27, 54
images, 54

computing with, 59
creating, 54

from raw data, 54
exploratory inspection of, 58
extracting subset, 58
plotting, 56
returned by a function, 55

independence of components, 157, 176
intensity

function, 67
kernel estimator, 67

homogeneous, 66
inhomogeneous, 67
investigation of, 66
measure, 67
of marked point process, 165

interaction, 8, 11
distance methods, 102
in spatstat, 141
multitype, 185, 187

in spatstat, 187
plotting a fitted interaction, 189
Q–Q plot, 153
simple models, 98
summary functions, 102

K function, 22, 111
for multitype point pattern, 169
inhomogeneous, 128

kernel estimator of intensity, 67, 68
kernel smoothing of marks, 167
Kolmogorov-Smirnov test

of CSR, 75

of inhomogeneous Poisson, 91

kppm, 125, 130

line segments, 190
lurking variable plot, 93

maptools package, 42

mark correlation function, 174

marked point patterns

cutting marks into bands, 163
data entry, 160

exploratory data analysis, 165

exploring marks, 167
inspecting, 161

joint and conditional analysis, 157

manipulating, 163

methodological issues, 157
model-fitting, 182, 187

probabilistic formulation, 156

randomisation tests, 157
separating into types, 163

summary functions, 169

marked point process

intensity, 165
marks, 6, 15, 156

categorical, 35

data entry, 33, 35
exploratory data analysis, 167

manipulating, 163

operations on, 49
smoothing, 167

spatial trend in, 167

versus covariates, 15

markstat, 169
marktable, 168

Matern cluster process, 98

maximum likelihood, 79
maximum pseudolikelihood, 139, 187

for multitype Gibbs models, 187

improvements over, 147

methods, 27
default method, 29

dispatch, 27

minimum contrast, 125
model validation, 90, 148

Monte Carlo test, 119

pointwise, 120

simultaneous, 121

Copyright c©CSIRO 2008

198 INDEX

multitype hard core process, 186
multitype point pattern, 10, 11, 22, 35
multitype point patterns

separating into types, 163
summary functions, 169

multitype Strauss process, 186

nearest neighbour distances, 102, 109
nndist, 102
nuisance parameters, 145

owin, 27, 39

pairdist, 102
pairwise distances, 102, 111
pairwise interaction process, 133
point pattern, 6

marked, 156
marks, 6, 15
multitype, 10, 11
needs window, 47
point process model for, 13
standard model, 14

point process, 13
point process models

area-interaction, 135
Diggle-Gates-Stibbard, 135
Diggle-Gratton, 135
Gibbs, 132
hard core, 133
infinite order interaction, 135
pairwise interaction, 133, 135
soft core, 135
Strauss, 134
Strauss-hard core, 135

Poisson cluster processes, 98
Poisson models

fitting, 80
goodness-of-fit, 90
homogeneous, 72
inhomogeneous, 79
log-likelihood, 80
marked, 179
maximum likelihood, 79
residuals, 91

Poisson point process
homogeneous

definition, 72
simulation, 72

inhomogeneous

definition, 79

fitting, 80

likelihood, 80
motivation, 79

simulation, 79

Poisson-derived models, 98

polygonal windows, 28, 40
ppm, 84, 142

marked Gibbs point process models, 187

marked Poisson point process models,
182

methods for, 84

ppp, 27

combining several, 53
extracting subset, 48

format, 46

geometrical transformations, 50

in arbitrary window, 44
manipulating, 46

needs window, 47

operations on, 47

random perturbations, 50
ways to make, 37

probability density, 132

profile pseudolikelihood, 145
pseudolikelihood, 139

profile pseudolikelihood, 145

quadrat counting, 21, 67

quadrat counting test

of CSR, 74

quadrat test
of inhomogeneous Poisson, 90

R, 17

contributed packages, 18

for spatial data formats, 42

for spatial statistics, 18
where to get, 17

random labelling, 157, 177

random perturbations, 50
random thinning, 79

randomisation tests, 157, 175

for marked point patterns, 175

rectangular windows, 28, 39
residuals, 91, 150

for fitted Gibbs model, 150

for Poisson models, 91

lurking variable plot, 93

Copyright c©CSIRO 2008

INDEX 199

Q–Q plot, 151
smoothed residual field, 93

return value, 30
rpoispp, 72, 79
runifpoint, 73

sequential models, 100
shapefiles, 42
shapefiles package, 42
simulation

of fitted Gibbs model, 144
of fitted Poisson model, 89

smoothed residual field, 93
sp package, 42
spatstat, 19, 192

citing, 19
getting started, 19
installing, 19

split, 24
standard model, 14
Strauss process, 134

fitting to data, 140
multitype, 186

summary functions, 102
and Monte Carlo tests, 119
critique, 117
edge effects, 104
envelopes, 119
F , 104
for multitype point patterns, 169
G, 109
inference using, 119
inhomogeneous K, 128
J , 114
K, 111
L, 112
mark correlation, 174
model-fitting with, 125
pair correlation, 112

tests
χ2 quadrat counting, 74
Kolmogorov-Smirnov, 75, 91
Monte Carlo, 119

thinning, 99
Thomas process, 98
tips, 27, 31, 36, 48, 103, 106, 121, 160
treatment contrasts, 82

unitname, 37

units of length, 37

validation, 90, 148

windows, 39
binary mask, 28, 41
circular, 39
GIS formats, 42
needed in any point pattern, 47
operations on, 44
polygonal, 28, 40
rectangular, 28, 39
returned by functions, 43

χ2 quadrat counting test, 74

Copyright c©CSIRO 2008

