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Chapter 11 : Sampling Distributions

We only discuss part of Chapter 11, namely the sampling distributions, the Law of

Large Numbers, the (sampling) distribution of X̄ and the Central Limit Theorem.

Parameter and Statistic

A parameter is a number that describes the population. Typically that is a number

that is of interest but in a statistical problem it is unknown.

A statistic is a number that can be calculated from a given data set.

Example 1 : We are interested in the population of all grades on the first term test.

Some parameters of interest are the population mean and the population standard devia-

tion. A random sample of size n (for example n = 20) of grades is given. We can calculate

the sample mean, but typically this is not the population mean. In fact the sample mean

is a random variable which has its own distribution. This is because if we were to re-

peat the experiment of taking another random sample of size n we would typically get a

different value.

Example 2 : We are interested in the annual growth rate in manufacturing production.

A parameter in this example is the true but unknown value of the manufacturing growth

rate. Statistics Canada publishes an estimate of this based on a sample of manufacturing

companies. This estimate is calculated from the random sample and is a statistic.

Example 3 : At a given time the population of Canadian voters has a population

proportion that supports a given political party. This is a parameter. An opinion poll

takes a random sample of voters and calculates the observed proportion of voters who

support the given political party. This sample proportion is a statistic since it is calculated

from the sample and not the whole population.

Statistical Estimation and the Law of Large Numbers

The idea of the Law of Large Numbers was illustrated in Chapter 10. Recall the sample

proportion of “1” in a game of rolling a single die. There we saw that the running average
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or proportion of outcomes eventually settled down to a value of 1
6
. That graph is given

here again in Figure 1. This gave us one way of thinking about the idea of probability.

Law of Large Numbers Draw a random sample of size n from a population with

mean µ. As the number of observations n becomes large (tends to infinity), the sample

mean x̄ of the observed data values gets closer to µ (x̄ converges to µ).

This is what we see in the graph for the die rolling game above. Thus the idea of long

run proportion as probability is the same idea as the Law of Large Numbers.
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Figure 1: Running Means for 6000 Fair Rolls of a Die
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Sampling Distributions

Suppose we the population of grades for the first term test. As a student you do not

know the grades, but I can give you a random sample of n grades. For example n = 10.

The Law of Large Numbers says that as n becomes large the value of x̄ tends to µ, the

true but unknown (to you) value.

x̄ is a random variable with its own distribution. What does this distribution look

like? In fact we can use a computer simulation game to see what it is.

1. Take a random sample of size n = 10.

2. Calculate x̄ for the sample

3. Repeat 1 and 2 a large number of times; say M = 500 times.

4. For the M values of x̄ make a relative frequency histogram

This relative frequency histogram is a simulation approximation to the probability

distribution of x̄.

Aside : We could get a better simulation approximation by taking M larger, for

example M = 1000 or M = 10, 000. In some uses of this idea, for example in Finance,

one might even take M = 50, 000 or M = 100, 100. In some models in Health Sciences

one might take M = 500, and in geography M = 100 or M = 1000.

This histogram tells us something about the shape of the distribution, whether outliers

tend to happen, if the shape is symmetric or skewed, or is bell shaped like a normal

distribution. One can even use simulation to see what happens to the shape as the

sample size n changes.

Example : Grades on Test 1

Figure 2 gives the relative frequency histogram for the grades on Test 1. We can see

this distribution is not symmetric and is slightly skewed towards the lower tail, that is
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Grades and Normal(mean = 23.6, sd = 4.04)
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Figure 2: Test 1 Histogram with Normal Approximation
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skewed to the left. Overlaid on this histogram is a normal approximation. This normal

approximation is not very good, since it greatly overestimates the proportion of data that

would be greater than 30, which is the maximum score possible on the test. Specifically

if have X a normal random variable with mean 23.6 and standard deviation 4.04 then

P (X > 30) = P
(

X − 30

4.04
>

30− 23.6

4.04

)

= P (Z > 1.58) = 0.058

Thus the normal approximation says that about 6% of the data should be greater than

30, which is not possible.

Suppose we did not have such a histogram or even some information about the pop-

ulation, other than the fact that a mean value is a useful way of describing the centre of

the data. How could we learn what is the population mean? From our statistical ideas

so far we could take a random sample of the data from the population. From this sample

we could then calculate x̄ the sample mean.

Some natural question arise that will help our understanding of properties of the

sample mean

• How is this sample mean related to the population mean?

• Is x̄ a random variable?

• The answer to question above is yes (why?) and so we can ask something about the

distribution of x̄. What is the mean of the distribution of x̄, the so called sampling

distribution of x̄. What is its variance? How is the variance and more generally the

sampling distribution of x̄ related to the sample size n?

Figure 3 shows the sampling distribution of x̄ when n = 10. This plot was produced

using M = 500 simulation replicates or runs of a random sample of size n = 10 to produce

M = 500 simulated values of x̄. There is an extra dashed vertical line in the centre of the

histogram, which indicates the value of the population mean.
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n = 10, Normal(mean = 23.6, sd = 1.31)
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Figure 3: Test 1 Sampling Distribution of x̄ with n = 10 and Normal Approximation
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There are several interesting features about histogram.

• the distribution is centred about the same value as the population mean; 23.6. This

is highlighted by the dashed vertical line in the centre of the histogram. This line

goes through grade = 23.6, the true population mean.

• the spread of the possible values of x̄ is much smaller than the spread of the original

grades population data.

• The shape of the sampling distribution of x̄ is much closer to normal. In fact it

is quite good even though n is only 10. The normal approximation used is one

with mean = average of x̄ and standard deviation = standard deviation of x̄ for the

M = 500 simulations.
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Sampling Distribution of x̄

Mean and Standard Deviation of x̄

Suppose that a simple random sample (SRS) of size n is taken from a large population

with mean µ and standard deviation σ (equivalently variance σ2). The random variable

x̄ has mean µ and standard deviation σ√
n
.

Since x̄ has mean µ, no matter what the real population mean µ might actually be,

and no matter what the sample size n might be, we say that x̄ is an unbiased estimator

of µ.

An unbiased estimator is correct on average. The variance or equivalently the standard

deviation of an unbiased estimator is a measure of how spread out the distribution of the

estimator is about its mean.

x̄ has mean µ no matter what is the value of n. However the standard deviation is
σ√
n
. Thus if n increases the standard deviation of x̄ decreases.
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Central Limit Theorem

Suppose that a simple random sample (SRS) of size n is taken from a large population

with mean µ and standard deviation σ (equivalently variance σ2). Suppose that the

sample size n is also large. The random variable x̄ then has sampling distribution that is

approximately Normal with mean = µ, standard deviation σ√
n
.

Remarks

• The shape of the population distribution is not required to have a normal shape,

nor even be symmetric. For example is could be skewed.

• The size of the sample does not have to be very big before a normal approximation

for the sampling distribution of x̄ is quite reasonable. Typically even for a skewed

distribution this approximation is quite good for n = 30, while for a distribution

that is not too skewed or even symmetric this normal approximation works quite

well for sample sizes of 15 or 20, and often for sample sizes of n = 10.

We have seen this in our Grades example for n = 10. There our population distribution

in Figure 2 is a little skewed, but the sampling distribution of x̄ for n = 10 is well described

by a normal distribution as shown in Figure 3.
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Return to Test 1 grades example.

Figure 4 shows the same idea with several different values of n.

• the distribution is centred about the same value as the population mean; 23.6.

This is highlighted by the dashed vertical line in the centre of the histogram. This

happens for each n.

Recall that this property is generally stated as the estimator (x̄ in this case) is an

unbiased estimator of the parameter µ = population parameter (mean in this case).

• The shape of the sampling distribution of x̄ is much closer to normal. This approx-

imation improves as n gets larger.

The normal approximation used is one with mean = average of x̄ and standard

deviation = standard deviation of x̄ for the M = 500 simulations.

There is also a way of finding a normal approximation that can be used when there

is only 1 sample taken, and not M = 500 simulation replicates.

• the spread of the possible values of x̄ is much smaller than the spread of the original

grades population data, and the spread is less as n increases.

Recall the spread is actually described by the standard deviation σ√
n

where σ is the

population standard deviation.
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n = 5, Normal(mean = 23.8, sd = 1.78)
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n = 20, Normal(mean = 23.6, sd = 0.9)
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Figure 4: Test 1 Sampling Distribution of x̄ with several different n and Normal Approx-

imation
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Remark These properties of the sampling distribution for a given sample size n are

determined by the shape of the population distribution. It does not matter if the pop-

ulation has 150 individuals (as in our case), 15,000 individuals of 15 million individuals.

This sampling method for estimating a population mean from a sample of size n = 30 for

example is especially important when the population size is very large, or possibly not

even known exactly other than it is large.

Remark From our knowledge of distributions, and normal distributions in particular

we can now state various things. For example based the sampling distribution for n = 10

we can say is virtually impossible for the true population mean to be less than 18. Why

can we state this? If the population mean were in fact 18, the sampling distribution of x̄

would have a normal shape and centred at 18. As we can see from Figure 3 this is clearly

not the case. Such an assumption about the population mean µ would be inconsistent

with the types of values of x̄ that we are nearly guaranteed to observe. We cannot so

definitively state that the true population mean is for example 22.5 as this is not very far

from the centre of the sampling distribution.


