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Introduction and Exploratory Analysis

A tree scientist measured the speed or velocity with which the maple keys (or samara) fell to the ground
when released by the tree during autumn. As well the aerodynamic properties of the samara were summarized
in the variable loading. Measurements were collected for three different trees in the forest. The tree scientist
would like to summarize this data using regression and find out if the speeds vary between trees after adjusting
for the differing aerodynamic properties of the keys.

An interesting 3D visualization of the samara fruit is available from Wikipedia.

The Maple Dataset may be briefly summarized using R’s str() function.

## 'data.frame': 35 obs. of 3 variables:
## $ tree : Factor w/ 3 levels "Tree 1","Tree 2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ loading : num 0.239 0.208 0.223 0.224 0.246 0.213 0.198 0.219 0.241 0.21 ...
## $ velocity: num 1.34 1.06 1.14 1.13 1.35 1.23 1.23 1.15 1.25 1.24 ...

The notched boxplot shown in Figure 1 indicates that Tree 3 velocity is less than that of Trees 1 and 2 while
Trees 1 and 2 don’t look much difference. Using regression analysis we can investigate whether this holds
true after adjusting for loading. Sometimes this particular application of regression is called *analysis of
covariance*.
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Figure 1: Notched boxplot
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As pointed out by Anscombe it is important visualize the data before fitting it. We look for unusual features
such as systematic nonlinear, changes in variability, discontinuities and major outliers.
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Figure 2: Maple Trees dataset with fitted least squares regression

Simple Linear Regression Model

From the initial plot we see that the slope parameters are certainly non-zero. They appear to be different but
it is not clear whether or not this difference is statistically signficant. It is reasonable to begin by fitting a
simple linear regression assuming the slope and intercept parameter are the same for each tree. The fitted
model is summarized in Table 1.

Table 1: Model Summary

Dependent variable:
velocity

loading 5.820∗∗∗

(0.511)

Constant −0.093
(0.107)

Observations 35
R2 0.797
Adjusted R2 0.791
Residual Std. Error 0.081 (df = 33)
F Statistic 129.631∗∗∗ (df = 1; 33)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We see that R2 = 79.7% so the model accounts for a lot of variation and the overall regression is signficant at
less than 0.1% which is agrees with the visualization in Figure 2.
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Common Intercept Model

Before doing further diagnostic checks, lets see if a slightly more complex model gives a better fit. So next we
consider the model where the intercept term is the same for all trees but the slopes are different. The fitted
model is summarized in Table 2.

Table 2: Model Summary: Different slopes

Dependent variable:
velocity

treeTree 1:loading 5.169∗∗∗

(0.707)

treeTree 2:loading 5.158∗∗∗

(0.732)

treeTree 3:loading 4.873∗∗∗

(0.880)

Constant 0.062
(0.159)

Observations 35
R2 0.808
Adjusted R2 0.790
Residual Std. Error 0.081 (df = 31)
F Statistic 43.531∗∗∗ (df = 3; 31)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Comparing the slope estimates with their standard errors, it would seem that the slopes are not signficantly
different. We can use the extra-sum-of-squares ANOVA test to check this. The P-value for testing the
null hypothesis that the slopes and intercepts are equal (Table 1) against the model with equal slopes and
intercepts not equal (Table 2) is 41.9%. So there is no evidence to support the claim the slopes are different.
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Common Slope Model

So the model allowing different slopes, does not improve the fit of the simple model. Another simple model
would be to allow the intercepts to vary but assume the slopes are the same.

Table 3: Model Summary: Different intercepts

Dependent variable:
velocity

treeTree 2 −0.010
(0.034)

treeTree 3 −0.059
(0.046)

loading 5.123∗∗∗

(0.739)

Constant 0.076
(0.169)

Observations 35
R2 0.808
Adjusted R2 0.789
Residual Std. Error 0.081 (df = 31)
F Statistic 43.426∗∗∗ (df = 3; 31)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The P-value for testing the null hypothesis that the intercepts are equal against the model with intercepts not
equal (but intercepts are assumed equal - see Table 2) is 43.2%. So there is no evidence that the intercepts
are different as we would have expected from Table 3.
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Full Model: Slopes and Intercepts are Different

Finally let’s see if fitting the full model is an improvement over the simple linear regression model in Table 1.

Table 4: Model Summary: Full model, different slopes and intercepts

Dependent variable:
velocity

treeTree 2 −0.841∗∗

(0.336)

treeTree 3 −0.299
(0.445)

loading 3.063∗∗

(1.160)

treeTree 2:loading 3.734∗∗

(1.500)

treeTree 3:loading 0.820
(2.284)

Constant 0.541∗∗

(0.263)

Observations 35
R2 0.844
Adjusted R2 0.817
Residual Std. Error 0.076 (df = 29)
F Statistic 31.294∗∗∗ (df = 5; 29)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The P-value for testing the null hypothesis that the simple model (Table 1) where the slopes and intercepts
are equal against the model with slopes different but intercepts equal (Table 3) is 9.9%. So there is no
evidence to support the claim the slopes are different.
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Diagnostic Checks for the Simple Model

The basic diagnostic checks do not indicate any problem with the Simple Linear Regression Model.
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Figure 3: Basic Diagnostic Checks for Full Model

Since there is only one input in the Simple Model, the residual dependency plot does not add beyond what is
revealed in the Residuals vs Fit Plot.

The p-value for the Jarque-Bera normality test is approximately 68.3% agrees the conclusion from the normal
probablity plot which indicates there is no evidence against the normal distribution assumption.
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Figure 4 shows the residual dependency plot conditional on Tree. Visually this suggests lack-of-fit but our
statistical analysis did not support this.
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Figure 4: Residual dependency plot conditional on Tree
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