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Abstract

The use of Mathematica in deriving mean likelihood estimators is discussed. Comparisons between

the maximum likelihood estimator, the mean likelihood estimator and the Bayes estimate based on a

Je�rey's noninformative prior using the criteria mean-square error and Pitman measure of closeness.

Based on these criteria we �nd that for the �rst-order moving-average time series model, the mean

likelihood estimator outperforms the maximum likelihood estimator and the Bayes estimator with

a Je�rey's noninformative prior.

Mathematica was used for symbolic and numeric computations as well as for the graphical

display of results. A Mathematica notebook is available which provides supplementary derivations

and code from http://www.stats.uwo.ca/mcleod/epubs/mele. The interested reader can easily

reproduce or extend any of the results in this paper using this supplement.
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1 Introduction

The maximum likelihood estimator (MLE) is perhaps the most common and widely accepted esti-

mator of a parameter in a statistical model denoted by (S;
; f), where S;
; f denote respectively

the sample space, the parameter space and the probability density function (pdf). We will take

S = Rn
; X = (X1;X2; : : : ;Xn) 2 S, and f(x; �). In the standard case of independent and identi-

cally distributed observations, f(x; �) = �n
i=1f1(xi), where f1(x) is the pdf of X1. Given data X,

the likelihood function is L( _�) = f(X; _�); _
� 2 
 and the MLE of the parameter � is de�ned as

that value _
� which globally maximizes L( _�). Mathematica (Wolfram, 1996) has been widely used

in the study of fundamental and general aspects of maximum likelihood estimation | see Andrews

and Sta�ord (1993); Sta�ord and Andrews (1993); Sta�ord, Andrews and Wang (1994). As well

Mathematica has been used for obtaining symbolically exact maximum likelihood estimators in sit-

uations where the use of numerical techniques are less convenient such as with grouped or censored

data or logistic regression | see Cabrera (1989); Currie (1995).

For simplicity we will deal with the case where 
 is one-dimensional. The multidimensional

case may in general be reduced to the one-dimensional case by using marginal, conditional or con-

centrated likelihoods or by integrating over the nuisance parameters whichever is more suitable in a

particular situation. Under the usual regularity conditions, the MLE, �̂, is approximately normally

distributed with mean � and covariance matrix I�1
�

, where I� denotes the Fisher information ma-

trix. It is also true that the mean likelihood estimator (MELE) is equally eÆcient in large samples.

In general the MELE, �� is de�ned by

�
� =

R


_
�L( _�)d _�R


 L(
_
�)d _�

;

where L( _�) is the likelihood function. It should be noted that although the MELE is identical to

the Bayes estimator with a uniform prior, it is not often considered in frequentist settings even

though Pitman (1938) showed that when the problem is location invariant, the MELE is the best

invariant estimator. Barnard, Jenkins and Winsten (1962) recommended the MELE for time series

problems and suggested that it will often have lower MSE than the MLE. In changepoint analysis,

where the usual regularity conditions for the MLE do not hold and the MLE is ineÆcient but the

MELE works well (Ritov, 1990; Rubin and Song, 1995).

Unlike the MLE the MELE is not invariant under reparameterization. Although the MELE has

a Bayesian interpretation, it is not the Bayesian estimator that is usually recommended. In order
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that the estimator share MLE property of being invariant under parameter transformation, the

Je�rey's noninformative prior is recommended when there is no prior information available (Box

and Tiao, 1973, x1.3). The Je�rey's prior is given by p(�) /
p
I�.

There are situations, such as in the �rst-order moving-average model (MA(1)) where the MLE

in �nite samples has non-zero probability of lying on the boundary of the parameter region but

this phenomenon does not happen with the MELE or Bayesian estimator as can be seen from the

following result.

Theorem 1: Let 
 = [a; b] then Pr
�
�
� 2 (a; b)

	
= 1.

Proof: The likelihood function, L( _�), de�ned below, is easily seen to be continuous and dif-

ferentiable in the interval [a; b] and non-negative. It then follows from the generalized mean-value

theorem (Borowski and Borwein, 1991, p.371) that �� 2 (a; b): 2

In many cases the MLE is easy to compute using pen and paper. However with Mathematica

we can now easily obtain the MELE by numerical integration and sometimes symbolically. In fact,

for problems where the likelihood function is complicated or diÆcult to evaluate the MELE may

be computationally easier to compute than the traditional MLE. As shown in Theorem 2, both the

MLE and MELE are �rst order eÆcient.

Theorem 2: Under the usual regularity conditions for maximum likelihood estimators, �� =

�̂ +Op(1=n).

Proof: The likelihood function, L( _�), is to Op(1=n) equal to the normal probability density

function with mean � and variance I�1
�

(Tanner, 1993, p.16). The result then follows directly from

this approximation. 2

Now consider an estimator �̂1 of �. The mean-square error (MSE) of an estimator �̂1 is de-

�ned as �2(�̂1j�) = E

n
(�̂1 � �)2

o
. The relative eÆciency of �̂1 vs �̂ is de�ned as R(�̂1; �̂j�) =

�
2(�̂j�)=�2(�̂1j�). Clearly, from Theorem 2, as n ! 1; R(��; �̂j�) = 1. Barnard, Jenkins and

Winsten (1962) suggested that in many small sample situations the MELE is preferred by the

mean-square error criterion and hence at least for some values of �, R(��; �̂j�) > 1, where �̂ and �
�

denote the MLE and MELE respectively.

Pitman (1937) formulated a useful alternative to the MSE in the situation where no explicit

loss function is known. Consider two estimators, �̂1 and �̂2, and assume that with probability one,

�̂1 6= �̂2 then the Pitman measure of closeness for comparing �̂1 vs �̂2 is de�ned as

PMC
h
�̂1; �̂2j�

i
= Pr

n
j�̂1 � �j < j�̂2 � �j

o
: (1.1)
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When PMC
h
�̂1; �̂2j�

i
> 1=2, �̂1 is preferred to �̂2. The monograph of Keating, Mason and Sen

(1993) provides an extensive survey of recent work and applications of the PMC. Additionally,

volume 20 (11) of Communications in Statistics: Theory and Methods contains an entire issue on

the PMC.

Unlike the MSE and relative eÆciency, the PMC depends on the bivariate distribution of the

two estimators. The PMC is more appropriate in many scienti�c and industrial applications in

which the estimator which is closer to the truth is required. Sometimes it is felt that the MSE

and other risk criteria give too much weight to large deviations which may seldom occur. Rao and

other researchers (Keating, Mason and Sen, 1993, x3.3) have found that risk functions such as MSE

and mean-absolute-error can often be shrunk but that this shrinkage occurs at the expense of the

PMC. The MSE or some other risk function is more appropriate than PMC in the decision theory

framework when there is some economic or other loss associated with the estimation error. In

practice it is often useful to consider both the PMC and MSE and in many situations there appears

to be a high level of concordance between these estimators (Keating, Mason and Sen, 1993, x2.5).
As originally pointed by Pitman (1937) the PMC criterion is intransitive but it is arguable

whether this is a practical limitation. This point as well as other limitations and extensions of the

PMC are discussed by Keating, Mason and Sen (1993, Ch.3)

Theorem 3: �� and �̂ are not necessarily asymptotically equivalent under the PMC.

Proof: See eqn. ??. 2

The next theorem shows that the MELE minimizes the mean likelihood of the squared error.

Theorem 4: Choosing _
� = �

� minimizes Æ( _�), where

Æ( _�) =

Z



�
_
� � �

�2
L

�
_
�

�
d
_
�:

Proof: Using calculus, the result follows directly. 2

Theorem 5: �� is a function of the suÆcient statistic for �; S, if there is one.

In general, the MELE is a biased estimator.

Theorem 6: If 
 has compact support and 0 < Var(��) <1 then E

�
�
�

	 6= �.

Theorems 5 and 6 are derived in Quenneville (1993). The MELE is formally equivalent to the

Bayes estimator under a locally uniform prior with the squared error risk function and many of the

above theorems have their well-known Bayesian analogues.

We are now going to make comparisons between these three estimators for three statistical

models: Bernouilli trials, exponential lifetimes and the �rst-order moving average process. The
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symbolic, numeric and graphical computations will all be done using Mathematica. The inter-

ested reader can reproduce or extend our computations using the Mathematica notebooks we have

provided (McLeod and Quenneville, 1999). Frequentist analysis of Bayesian estimators is not of-

ten done but Dempster (1998) and Quenneville and Singh (1999) have argued that frequentist

considerations are obviously informative even in the Bayesian setting.

2 Bernoulli Trials

We will now examine the performance of these three estimators in the estimation of the parameter

p in a sequence of n Bernoulli trials where X is the observed number of successes and p is the

probability of success. The probability function is

fx(n; p) =

0
B@ n

x

1
CA p

x(1� p)n�x:

So if X successes are observed in n trials, the likelihood function may be written L(p) = p
X(1 �

p)(n�X) and the MLE may be derived by calculus, p̂ = X=n. Using Mathematica it is easily shown

that the MELE of p is �p = (X + 1)=(n+ 2) and that R(�p; p̂jp) > 1 provided

p 2
 
2n�

p
2n2 + 3n+ 1 + 1

2(2n+ 1)
;

2n+
p
2n2 + 3n+ 1 + 1

2(2n+ 1)

!
:

As shown in Figure ??, the MELE is always more eÆcient over most of the range and the relative

eÆciency tends to 1 as n!1.

It is interesting to compare the MELE with Bayes estimate under a Je�rey's prior. The Je�rey's

prior for p is (Box and Tiao, p.35), �(p) = 1=
p
p(1� p). Combining with the likelihood we can use

Mathematica to show that the resulting Bayes estimator is ~p = (1+4X)=(2+4n). From Figure ??,

we see that the Bayes estimator with Je�rey's prior tends have smaller mean-square error over an

even slightly larger range of p than the MELEbut the gain in eÆciency with the mele can be greater.

As with the MELE, the relative eÆciency tends to 1 as n ! 1. Once again, using Mathematica

we can show that R(~p; p̂jp) > 1 provided

p 2
 
1 + 5n�

p
1 + 9n+ 20n2

2 (1 + 5n)
;

1 + 5n+
p
1 + 9n+ 20n2

2 (1 + 5n)

!
:

The PMC criterion given in eqn. ?? is not applicable in the case of the binomial since due to

the discreteness there can be ties in the values of the estimators. Keating, Mason and Sen (1993,
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x3.4.1) and one of the referees have suggested the following modi�ed version of Pitman's measure

of closeness,

PMC
h
�
�; �̂j�

i
= Pr

n
j�� � �j < j�̂ � �j

o
+
1

2
Pr
n
j�� � �j = j�̂ � �j

o
:

With this modi�cation, PMC is transitive and reexive.

Figure ?? suggests the following asymptotic result,

lim
n!1

PMC(�p; p̂jp) =

8>>>><
>>>>:

1 p = 0:5

1
2

p 6= 0:5; 0; 1

0 p = 0; 1

(2.2)

This result may be established using the Geary-Rao Theorem (Keating, Mason and Sen, p.103).

Figure ?? also suggests that in terms of the PMC the advantage over the MLE of the MELE or

of the Bayes estimate with a Je�rey's prior disappears when there is no prior information about p.

3 Exponential Lifetimes

Consider a sample of size n denoted by X1; : : : ;Xn from an exponential distribution with mean �

and let T =
P

n

i=1Xi. The likelihood function for � can be written L(�) = �
�n
e
�T=�, the MLE of

� is given by �̂ = T=n and the MELE of � is �� = T=(n� 2). The Je�rey's prior for � can be taken

as ��1 which produces a Bayesian estimate, ~� = T=(n� 1).

A simple computation with Mathematica gives the relative eÆciency,

R(��; �̂) =
1

n

+
�5 + n

4 + n

= 1� 8

n

+
36

n
2
� 144

n
3
+
576

n
4
� 2304

n
5

+O( 1
n

)
6

:

Similarly, R(~�; �̂) = 1+1=n+4=(n+1). Figure ?? shows that the MELE can be much less eÆcient.

Since T has a standard gamma distribution with shape parameter n and scale parameter �, the

PMC is easily evaluated using the Geary-Rao Theorem (Keating, Mason and Sen, 1993, p.103).

Letting a = �� or a = ~�, we can write

PMC(a; �̂j�) =
Z
b�

0

e
�x=�

x
n�1

�
�n

�(n)
dx

where b = n(n � 2)=(n � 1) or b = 2n(n � 1)=(2n � 1) according as a = �� or a = ~�. Notice that

without loss of generality we may take � = 1 since PMC(��; �̂j�) = PMC(��; �̂j1). From Figure ??,

PMC(a; �̂j�) < 0:5 for both a = �� or a = ~�.
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It is sometimes mistakenly thought that Theorem 4 or its Bayesian analogue guarantees that

at least over some region of the parameter space, the MELE and the Bayes estimator will have

outperform the MLE but this need not be the case.

4 MA(1) Process

4.1 Introduction

The MA(1) time series with mean � may be written Zt = � + At + �At�1, where Zt denotes the

observation at time t = 1; 2; : : : and At, the innovation at time t, is assumed to be a sequence of

independent normal random variables with mean zero and variance �2
A
. The parameter � determines

the autocorrelation structure of the series and for identi�ability we will assume that j�j � 1. When

j�j < 1, the model is invertible (Brockwell and Davis, 1991, x3.1). For simplicity we will examine

the case where � = 0. Such MA(1) models often arise in practical applications as the model for

a di�erenced nonstationary time series. The non-invertible case � = 1 occurs when a series is

over-di�erenced.

In large-samples, standard asymptotic theory suggests that the maximum likelihood estimate

for �, denoted by �̂, is approximately normal with mean � and variance (1 � �
2)=n where n is the

length of the observed time series. Cryer and Ledolter (1981) established the somewhat surprising

result that Prf�̂ = �1g > 0. This result holds for all �nite n and for all values of �. For example

when n = 50; Prf�̂ = 1j� = 0g = 0:002 and Prf�̂ = 1j� = 0:8g = 0:13 (Cryer and Ledolter, 1981,

Table 2). Let �� denote the mean likelihood estimate of �. In view of Theorem 1, this problem does

not occur with �
�.

Now we will show that the MELE dominates the MLE both for the MSE and PMC criteria

when n = 2. When n = 50, the MELE is better than the MLE unless the parameter � is very close

to �1. Since even the useless estimator obtained by ignoring the data and setting the estimate to

1 does better when � = 1, we can conclude that MELE is generally a better estimator. Further

mean-square error computations which support this conclusion for other values of n are given by

Quenneville (1993) and can be veri�ed by the reader using the electronic supplement.
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4.2 Exact Results for n = 2

Given a Gaussian time series of length 2; Z1; Z2, generated from the �rst-order moving average

equation Zt = At � �At�1, where At are independent normal random variables with mean zero

and variance �2
A
. Let W = �Z1Z2=(Z

2
1 + Z

2
2 ). Then given data, Z1; Z2, the exact concentrated

likelihood function for � is (Cryer and Ledolter, 1981; Quenneville, 1993),

L(�jW ) =

p
1 + �

2 + �
4

1 + �
2 � 2�W

and

�̂ =

8>>>>>>><
>>>>>>>:

�1 W 2 [�0:5;�0:25]
1�
p
1�16W 2

4W
W 2 (�0:25; 0:25);W 6= 0

0 W = 0

1 W 2 [0:25; 0:5].

Unfortunately �
�, cannot be evaluated symbolically. However usingNIntegrate we can obtain it

numerically. Numerical evaluation suggests that �� is either a linear or close to a linear function ofW .

To speed up our computations for the mean-square error of ��, we use the FunctionInterpolation

in Mathematica to construct �
� = �

�(W ). The MSE and PMC for �
� and �̂ are easily evaluated

numerically using the pdf of W; fW (x), derived by Quenneville (1993),

fW (x) =
2
p
1 + �

2 + �
4

�

p
1� 4x2(1 + �

2 � 2�x)
; jxj � 1=2:

From Figures ?? and ??, it is seen that both the MELE and Bayesian estimator dominate the

MLE both for the MSE and PMC criteria. The MELE is slightly better according to the MSE but

according to the PMC the Bayes estimator is slightly better than the MELE.

4.3 Exact Symbolic Likelihood

Consider the MA(1) process de�ned by Zt = At � �At�1, where At is assumed to be normal and

independently distributed with mean zero and variance �2
A
. Given n observations Z 0 = (Z1; : : : ; Zn)

the exact log likelihood function of an ARMA process can be written (Newbold, 1974),

logL(�; �2A) = �n
2
log(�2A)�

1

2
log(D)� 1

2�2
A

S(�);

where h0 = (1; �; �2; : : : ; �n); D = h
0
h and

S(�) = (Lz � hh
0
Lz=D)0(Lz � hh

0
Lz=D);
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where L is the (n+ 1) by n matrix,

L =

0
BBBBBBBBBBBBBBBBBB@

0 0 0 : : : 0 0

1 0 0 : : : 0 0

� 1 0 : : : 0 0

�
2

� 1 : : : 0 0

...
...

... : : :

...
...

�
n�2

�
n�3

�
n�4

: : : 1 0

�
n�1

�
n�2

�
n�3

: : : � 1

1
CCCCCCCCCCCCCCCCCCA

:

Maximizing over �2
A
the concentrated log likelihood is given by

logLM (�) = �n
2
log [S(�)=n]� 1

2
log(D):

This expression for the concentrated loglikelihood is just as easy to write inMathematica notation as

it is in ordinary mathematical notation. Moreover, it can be evaluated symbolically or numerically.

LogLikelihoodMA1[t_, z_] :=

Module[{n = Length[z], Lz, h, detma1, v, Sumsq},

Lz = Join[{0},

Table[Sum[z[[i]]] t^(j-i), {i, 1, j}], {j, 1, n}]];

h = Table[t^j, {j, 0, Length[z]}];

detma1 = h . h;

v = -h . Lz/detma1;

Sumsq = (Lz + h v). (Lz + h v);

-n/2 Log[Sumsq/n /. t -> t] -

1/2 Log[detma1 /. t -> t]

];

4.4 EÆcient Numeric Likelihood Computations

Newbold's algorithm can be made much more eÆcient when only numerical values of the log

likelihood are needed by using theMathematica Compiler and by re-writing the calculations involved

to make more use of eÆcient Mathematica functions such as NestList, FoldList and Apply. First

consider the computation of the vector Lz which is of length n + 1. After some simpli�cations,
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we see that Lz = (�j)
0, where �0 = 0 is the �rst element and the remaining elements are de�ned

recursively by �j = ��j�1 + Zj ; j = 1; 2; : : : ; n, where Z0 = 0. This computation is eÆciently

performed by Mathematica's FoldList. When we are just interested in numerical evaluation we

use the compile function to generate native code which runs much faster.

GetLz=Compile[{{t,_Real},{z, _Real, 1}},

FoldList[(#1 t + #2)&,0,z]];

The determinant, D = 1+�
2+�

4+ : : :+�
2n, is eÆciently computed usingNestList to generate

the individual terms and then summing.

DetMA =Compile[{{t,_Real},{n, _Integer}},

Apply[Plus,NestList[#1 t &,1,n]^2]];

Next, we evaluate the term hLz=D. Since hLz = ��1 + �
2
�2 + : : :+ �

n
�n we can use Horner's

Rule to eÆciently compute this sum. Horner's Rule is implemented in Mathematica using the

function Fold.

Getu0 =Compile[{{t,_Real},{Lz, _Real, 1},{detma, _Real}},

-Fold[#1 t + #2&,0,Reverse[Lz]]/detma];

The computation of the sum of squares function S(�) = (Lz � hh
0
Lz=D)0(Lz � hh

0
Lz=D) is

straightforward. The Mathematica compiler can be used to optimize the vector computations.

GetSumSq =

Compile[{{t,_Real},{Lz, _Real, 1},{u, _Real},{n, _Integer}},

Apply[Plus,(Lz+NestList[#1 t &,1,n] u)^2]];

Finally, the concentrated loglikelihood function is de�ned. The computation speed is increased

by about a factor of 50 times when n = 50 and is even larger for larger n.

logLMA1F[t_, z_] :=

Module[{n=Length[z]},

Lz=GetLz[t,z];

detma=DetMA[t,n];

u=Getu0[t,Lz,detma];

S=GetSumSq[t,Lz,u,n];

-(1/2) Log[detma]- (n/2)Log[S/n]];
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This function can be maximized using Mathematica's nonlinear optimization function Find-

Minimum.

The mean likelihood estimate �
� can be evaluated using NIntegrate.

Meanle[z_]:=

NIntegrate[t E^logLMA1F[t, z],{t,-1,1}]/

NIntegrate[E^logLMA1F[t, z],{t,-1,1}]

Notice that in the above expression the loglikelihood function is evaluated separately in both the

numerator and denominator. Hence, we can save function evaluations by using our own numerical

quadrature routine.

SimpsonQuadratureWeights[k_,a_, b_]:=

With[{h=(2 k)/3},

{a+(b-a)Range[0,2 k]/(2k),

Prepend[Append[Drop[Flatten[Table[{4,2},{k}]],{-1}],1],1]}]

{X,W}=SimpsonQuadratureWeights[100,-1,1];

GETMEANLEF=

Compile[{{z, _Real, 1},

{W, _Real, 1},{X, _Real, 1},{f, _Real, 1}},

Plus@@(X f)/Plus@@f];

MEANLEF[z_]:=

With[{f=Plus@@W E^(logLMA1F[#1,z]&/@X)},

GETMEANLEF[z,W,X,f]];

Our tests indicate acceptable accuracy and about a 70% improvement in speed as compared

with Mathematica's more sophisticated NIntegrate function.

4.5 Simulation Results for n = 50

Using the Mathematica algorithms for the MLE and MELE derived above, we determined 99:9%

con�dence intervals for R(��; �̂) and PMC(��; �̂) based on 104 simulations for each of the 41 parameter

values � = �1;�0:95;�0:90; : : : ; 0:95; 1. Figures ?? and ?? show that the MELE dominates except
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for the cases � = �1;�0:95. We can safely conclude that the MELE is a better overall estimator

than the MLE. Of course, as already pointed out another cogent reason for preferring the MELE

to the MLE is that it does not produce noninvertible models.

If prior information is available then even better results can be obtained. Marriott and Newbold

(1998) have developed an ingenious approach to the unit root problem in time series by noting this

fact.

The simulations were repeated with the mean � estimated by the sample average and there was

no major change is results. The reader may like compare the estimators for other values of n using

the Mathematica functions available in the electronic supplement.

In the standard Bayesian analysis of the MA(1) model the prior is given by (Box and Jenkins,

1976, p. 250{258)

�(�) = 1=
p
1� �

2
:

The computations were repeated using this prior and as shown in Figures ?? and ?? the Bayes

estimate with a Je�rey's prior performs about the same as the MELE.

5 Concluding Remarks

Previously Copas (1966) found that for AR(1) models, the MELE had lower MSE over much of the

parameter region. Our results show that for the MA(1) the improvement is even somewhat better.

The MSE is lower over a broader range and the piling-up e�ect on the MLE is avoided. Quenneville

(1993) investigated the small sample properties of the MELE for many other time series models

and gave a general algorithm for the MELE in ARMA models and found that in many cases the

MELE produced estimates with smaller MSE over most of the parameter region. This work is

further extended to state space prediction in Quenneville and Singh (1999).

We would also like to mention that in our opinionMathematica provides an excellent and indeed

unparalleled environment for many types of fundamental mathematical statistical research. In

comparison, no other computing environment provides such high quality capabilities simultaneously

in: symbolics, numerics, graphics, typesetting and programming. The importance of a powerful

user-oriented programming language for researchers is sometimes lacking in other environments.

Stephan Wolfram once said that in his opinion the APL computing language had many good ideas

in this direction and that Mathematica has incorporated all these capabilities and much more. A
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partial check on this is given in McLeod (1999) where it was found that most APL idioms could

be more clearly expressed in Mathematica.

However, for applied statistics and data analysis, Splus may still be advantageous due to the

wide usage by researchers and the high quality functions for advanced statistical methods that are

available with Splus and in the associated infrastructure. From the educational viewpoint though

this advantage may not be so important since many students and researchers like to understand

the principles involved and with Mathematica it is as easy to write out the necessary functions

in Mathematica notation as it would be to explain the procedures in a traditional mathematical

notation.
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Figure 1: Relative eÆciency of alternative binomial estimators. Top panel: MELE, relative ef-

�ciency, R(�p; p̂jp) for n = 10; 30. Bottom panel: Bayes estimator with Je�rey's prior, relative

eÆciency, R(~p; p̂jp) for n = 10; 30.
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Figure 2: Pitman measure of closeness for alternative binomial estimators. Top panel: MELE,

PMC(�p; p̂jp) for n = 10; 30. Bottom panel: Bayes estimator with Je�rey's prior PMC(~p; p̂jp) for
n = 10; 30.
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Figure 3: Relative eÆciency R of the MELE and Bayes estimator vs the MLE of the mean � in a

random sample of size n from an exponential distribution.
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Figure 4: Pitman Measure of Closeness, PMC, of the MELE and Bayes estimator vs the MLE of

the mean � in a random sample of size n from an exponential distribution.
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Figure 5: Relative eÆciency, R, of MELE and Bayes estimator with Je�rey's noninformative prior

in the MA(1) model with n = 2.
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Figure 6: Pitman measure of closeness, PMC, of MELE and Bayes estimator with Je�rey's nonin-

formative prior in the MA(1) model with n = 2.
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Figure 7: Empirical relative eÆciency based on 104 simulations of the MA(1) with � = 0 and

n = 50. The length of the thick vertical lines indicate a 99:9% con�dence interval for R(��; �̂)

-1 -0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

Figure 8: Empirical Pitman measure of closeness based on 104 simulations of the MA(1) with � = 0

and n = 50. The length of the thick vertical lines indicate a 99:9% con�dence interval for PMC(��; �̂)
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Figure 9: Empirical relative eÆciency of Bayes estimate using a Je�rey's prior. Based on 104

simulations of the MA(1) with � = 0 and n = 50. The length of the thick vertical lines indicate a

99:9% con�dence interval for R(~�; �̂)
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Figure 10: Empirical Pitman measure of closeness of Bayes estimate using a Je�rey's prior. Based

on 104 simulations of the MA(1) with � = 0 and n = 50. The length of the thick vertical lines

indicate a 99:9% con�dence interval for PMC(~�; �̂)


