FM 2555A

Solutions to Assignment No. 2 (Only for questions not assigned for submission)

Problem [1/125]

a. What is the payback period on each of the following projects?

	Cash Flows (\$)							
Project	C_{0}	C_1	<i>C</i> ₂	C ₃	<i>C</i> ₄			
Α	-5,000	+1,000	+1,000	+3,000	0			
B	-1,000	0	+1,000	+2,000	+3,000			
С	-5,000	+1,000	+1,000	+3,000	+5,000			

b. Given that you wish to use the payback rule with a cutoff period of two years, which projects would you accept?

- c. If you use a cutoff period of three years, which projects would you accept?
- d. If the opportunity cost of capital is 10%, which projects have positive NPVs?
- e. "If a firm uses a single cutoff period for all projects, it is likely to accept too many short-lived projects." True or false?
- f. If the firm uses the discounted-payback rule, will it accept any negative-NPV projects? Explain.

SOLUTION:

- a. A = 3 years; B = 2 years; C = 3 years
- b. B
- c. A, B, and C
- d. B and C (At 10%, NPV_A = -\$1,011; NPV_B = \$3,378; NPV_C = \$2,405)
- e. True. The payback rule ignores all cash flows after the cutoff date, meaning that future years' cash inflows are not considered. Thus, payback is biased towards short-term projects.
- f. It will accept no negative-NPV projects, but will turn down some with positive NPVs. A project can have a positive NPV if all future cash flows are considered but still not meet the stated cutoff period.

Problem [2/125]

Write down the equation defining a project's internal rate of return (IRR). In practice how is IRR calculated?

SOLUTION:

Given the cash flows C_0, C_1, \ldots, C_T , IRR is involved in

NPV = $C_0 + C_1 / (1 + IRR) + C_2 / (1 + IRR)^2 + ... + C_T / (1 + IRR)^T = 0$

IRR is calculated by a numerical method, trial and error and spreadsheet programs (financial calculator).

Problem [3/125]

a. Calculate the net present value of the following project for discount rates of 0, 50, and 100%?

Cash Flows (\$)					
C_{θ}	C_1	<i>C</i> ₂			
-6,750	+4,500	+18,000			

b. What is the IRR of the project?

SOLUTION:

- **a**. NPV = $-\$6,750 + \$4,500 / (1 + 0) + \$18,000 / (1 + 0)^2 = \$15,750$ NPV = $-\$6,750 + \$4,500 / (1 + .50) + \$18,000 / (1 + .50)^2 = \$4,250$ NPV = $-\$6,750 + \$4,500 / (1 + 1) + \$18,000 / (1 + 1)^2 = \0
- **b**. 100%; NPV = 0 when the discount rate is 100 percent.

Problem [4/125]

You have the chance to participate in a project that produces the following cash flows.

Cash Flows (\$)					
C_{o}	<i>C</i> ₁	<i>C</i> ₂			
+5,000	+4,000	-11,000			

The IRR is 13%. If the opportunity cost of capital is 10%, would you accept the offer? **SOLUTION:**

No; you would not accept this offer as you are effectively "borrowing" at a rate of interest higher than the opportunity cost of capital. You can verify this decision by proving that the NPV is negative as follows:

NPV = \$5,000 + \$4,000 / (1 + .10) + (-\$11,000) / (1 + .10)² NPV = -\$454.55

Problem [5/126]

Consider a project with the following cash flows:

Cash Flows (\$)					
C_0 C_1 C_2					
-100	+200	-75			

- a. How many IRRs does this project have?
- b. Which of the following numbers is the project IRR: (i) -50% (ii) -12% (iii) +12% (iv) +50%?

c. The opportunity cost of capital is 20%. Is this an attractive project? Briefly explain. **SOLUTION:**

- **a**. Two; because the cash flows change direction twice. Alternatively, you can evaluate the discrimant of the associated quadratic equation.
- **b**. –50% and +50%. The NPV for the project using both of these IRRs is 0.
- c. Yes, the NPV is positive at 20 percent

NPV = $-\$100 + \$200 / (1 + .20) + (-\$75) / (1 + .20)^2$ NPV = \$14.58

Also, we see in class that NPV is positive to the left of the higher IRR (when there are 2 IRRs).

Problem [7/126]

Suppose you have the following investment opportunities, but only \$90,000 available for investment. Which projects should you take?

Project	NPV	Investment
1	5,000	10,000
2	5,000	5,000
3	10,000	90,000
4	15,000	60,000
5	15,000	75,000
6	3,000	15,000

SOLUTION:

1, 2, 4, and 6. The profitability index for each project is shown below:

Project	NPV	Investment	Profitability Index (NPV/Investment)
1	5,000	10,000	5,000 / 10,000 = .5
2	5,000	5,000	5,000 / 5,000 = 1
3	10,000	90,000	10,000 / 90,000 = .11
4	15,000	60,000	15,000 / 60,000 = .25
5	15,000	75,000	15,000 / 75,000 = .2
6	3,000	15,000	3,000 / 15,000 = .2

Start with the project with the highest profitability index and go from there. Project 2 has the highest profitability index and has an initial investment of \$5,000. The next highest profitability index is for Project 1, which has an initial investment of \$10,000. The next highest is Project 4, which will cost \$60,000 up front. So far we have spent \$75,000. Projects 5 and 6 both have profitability indexes of

.2, but we only have \$15,000 left to spend, so we will add Project 6 to our list. This gives us Projects 1, 2, 4, and 6.

Problem [10/127]

Calculate the IRR(s) for the following project:

C_{θ}	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃
-3,000	+3,500	+4,000	-4,000

For what range of discount rates does the project have positive NPV? **SOLUTION:**

	r =	-17.44%	0.00%	10.00%	15.00%	20.00%	25.00%	45.27%
Year 0	-3,000.00	-3,000.00	-3,000.00	-3,000.00	-3,000.00	-3,000.00	-3,000.00	-3,000.00
Year 1	3,500.00	4,239.34	3,500.00	3,181.82	3,043.48	2,916.67	2,800.00	2,409.31
Year 2	4,000.00	5,868.41	4,000.00	3,305.79	3,024.57	2,777.78	2,560.00	1,895.43
Year 3	-4,000.00	-7,108.06	-4,000.00	-3,005.26	-2,630.06	-2,314.81	-2,048.00	-1,304.76
	PV =	31	500.00	482.35	437.99	379.64	312.00	02

The two IRRs for this project are (approximately): -17.44% and 45.27%. (Alternatively, you can plot the graph of the associated polynomial describing the NPV.) Between these two discount rates, the NPV is positive.

Problem [2/152]

Mr Art Deco will be paid \$100,000 one year hence. This is a nominal flow, which he discounts at an 8% nominal discount rate:

PV = 100,000/1.08 = \$92, 593.

The inflation rate is 4%. Calculate the PV of Mr Deco's payment using the equivalent *real* cash flow and *real* discount rate. (You should get exactly the same answer as he did.) **SOLUTION:**

Real cash flow = \$100,000 / (1 + .04) = \$96,154

r = (1 + .08) / (1 + .04) - 1 = .03846, or 3.846%

PV = \$96,154 / (1 + .03846) = \$92,593

Problem [7/153]

Air conditioning for a college dormitory will cost \$1.5 million to install and \$200,000 per year to operate. The system should last 25 years. The real cost of capital is 5%, and the college pays no taxes. What is the equivalent annual cost?

SOLUTION:

PV of costs = $1,500,000 + 200,000 \times ((1 / .05) - (1 / [.05 \times (1 + .05)^{25}]))$ PV of costs = 4,318,788.91 EAC = $4,318,788.91 / ((1 / .05) - \{1 / [.05 \times (1 + .05)^{25}]\})$ EAC = 306,428.69

Problem [8/153]

Machines A and B are mutually exclusive and are expected to produce the following real cash flows:

Cash Flows (\$ thousands)								
Machine C_0 C_1 C_2 C_3								
Α	-100	+110	+121					
B	-120	+110	+121	+133				

The real opportunity cost of capital is 10%.

- a. Calculate the NPV of each machine.
- b. Calculate the equivalent annual cash flow from each machine.
- c. Which machine should you buy?

SOLUTION:

a. NPV_A = - $100,000 + 110,000 / (1 + .10) + 121,000 / (1 + .10)^2$ NPV_A = 100,000

$$\begin{split} \mathsf{NPV}_\mathsf{B} &= -\$120,000 + \$110,000 \ / \ (1 + .10) + \$121,000 \ / \ (1 + .10)^2 + \$133,000 \ / \ (1 + .10)^3 \\ \mathsf{NPV}_\mathsf{B} &= \$179,925 \end{split}$$

b. EACF_A = 100,000 / ((1 / .10) - (1 / [.10(1 + .10)²]))EACF_A = 57,619

EACF_B = 179,925 / ((1 / .10) - (1 / [.10(1 + .10)³]))EACF_B = 72,350

c. Select Machine B because it has the higher equivalent annual cash flow.

Problem [9/153]

Machine C was purchased five years ago for \$200,000 and produces an annual real cash flow of \$80,000. It has no salvage value but is expected to last another five years. The company can replace machine C with machine B (see Problem 8/153) *either* now *or* at the end of five years. What should it do?

SOLUTION:

$$\begin{split} NPV_{B} &= -\$120,000 + \$110,000 \ / \ (1 + .10) + \$121,000 \ / \ (1 + .10)^{2} + \$133,000 \ / \ (1 + .10)^{3} \\ NPV_{B} &= \$179,925 \end{split}$$

$$\begin{split} \mathsf{EACF}_{\mathsf{B}} &= \$179,925 \ / \ ((1 \ / \ .10) - \{1 \ / \ [.10(1 \ + \ .10)^3]\}) \\ \mathsf{EACF}_{\mathsf{B}} &= \$72,350 \end{split}$$

In this problem, we must ignore the sunk costs and past real cash flows and focus on future cash flows.

Machine C is expected to last another five years and produces a real annual cash flow of \$80,000.

Since Machine C's real annual cash flow exceeds Machine B's equivalent annual cash flow, the company should wait and replace Machine C at the end of five years.

Problem [11/153]

CSC is evaluating a new project to produce encapsulators. The initial investment in plant and equipment is \$500,000. Sales of encapsulators in year 1 are forecasted at \$200,000 and costs at \$100,000. Both are expected to increase by 10% a year in line with inflation. Profits are taxed at 35%. Working capital in each year consists of inventories of raw materials and is forecasted at 20% of sales in the following year.

The project will last five years and the equipment can be depreciated straight-line over these five years. If the nominal discount rate is 15%, show that the net present value of the project is the same whether calculated using real cash flows or nominal cash flows.

SOLUTION:

Nominal rate = 15% Inflation rate = 10%

> $R_{\text{real}} = [(1 + .15) / (1 + .10)] - 1$ $R_{\text{real}} = .045455$, or 4.5455%

(figures in \$)						
Year:	0	1	2	3	4	5
Revenues		200,000	220,000	242,000	266,200	292,820
Costs		100,000	110,000	121,000	133,100	146,410
Depreciation		100,000	100,000	100,000	100,000	100,000
Pretax profit		0	10,000	21,000	33,100	46,410
Taxes at 35%		0	<u>3,500</u>	<u>7,350</u>	<u>11,585</u>	<u>16,244</u>
Aftertax profit		0	<u>6,500</u>	<u>13,650</u>	<u>21,515</u>	<u>30,167</u>
Working capital	<u>40,000</u>	<u>44,000</u>	<u>48,400</u>	<u>53,240</u>	<u>58,564</u>	0
Operating cash flow		100,000	106,500	113,650	121,515	130,167
Change in working capital	-40,000	-4,000	-4,400	-4,840	-5,324	58,564

Capital investment	-500,000	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Net cash flows (nominal)	<u>540,000</u>	<u>96,000</u>	<u>102,100</u>	<u>108,810</u>	<u>116,191</u>	<u>188,731</u>
NPV (nominal) at 15%	<u>–147,510</u>					
Net cash flows (real) (10% inflation)*	_ 540,000	87,273	84,380	81,751	79,360	117,187
NPV (real) at 4.5455%	<u>–147,510</u>					

* Real cash flow_t = Nominal cash flow_t / $(1 + inflation rate)^{t}$

Problem [14/154]

Ms T Potts, the treasurer of Ideal China, has a problem. The company has just ordered a new kiln for \$400,000. Of this sum, \$50,000 is described by the supplier as an installation cost. Ms Potts does not know whether the Internal Revenue Service (IRS) will permit the company to treat this cost as a tax-deductible current expense or as a capital investment. In the latter case, the company could depreciate the \$50,000 using the five-year MACRS tax depreciation schedule. How will the IRS's decision affect the after-tax cost of the kiln? The tax rate is 35% and the opportunity cost of capital is 5%.

SOLUTION:

If the \$50,000 installation cost is expensed at the end of year 1, the value of the tax shield is

PV = (\$50,000 × .35) / (1 + .05)

PV = \$16,667

If the \$50,000 cost is capitalised and then depreciated using a five-year MACRS depreciation schedule, the value of the tax shield is

 $PV = (.35 \times \$50,000) \times (.20 / (1 + .05) + .32 / (1 + .05)^{2} + .192 / (1 + .05)^{3} + .1152 / (1 + .05)^{4} + .1152 / (1 + .05)^{5} + .0576 / (1 + .05)^{6})$ PV = \$15,306

If the installation cost can be expensed, then the tax shield is larger, which means the after-tax cost is smaller.

Problem [16/154]

A project requires an initial investment of \$100,000 and is expected to produce a cash inflow before tax of \$26,000 per year for five years. Company A has substantial accumulated tax losses and is unlikely to pay taxes in the foreseeable future. Company B pays corporate taxes at a rate of 35% and can depreciate the investment for tax purposes using the five-year MACRS tax depreciation schedule. Suppose the opportunity cost of capital is 8%. Ignore inflation.

- a. Calculate the project NPV for each company.
- b. What is the IRR of the after-tax cash flows for each company? What does comparison of the comparison of the IRRs suggest is the effective corporate tax rate?

SOLUTION:

a. NPV_A =
$$-\$100,000 + \$26,000 \times ((1 / .08) - \{1 / [.08(1 + .08)^5]\})$$

NPV_A = $\$3,810$

 $NPV_{B} = -investment + PV(after-tax cash flow) + PV(depreciation tax shield)$ $NPV_{B} = -\$100,000 + [\$26,000 \times (1 - .35)] \times ((1 / .08) - \{1 / [.08 \times (1 + .08)^{5}]\})$

+ $(.35 \times \$100,000) \times [.20 / (1 + .08) + .32 / (1 + .08)^{2} + .192 / (1 + .08)^{3}$

 $NPV_{B} = -$4,127$

b. To calculate the effective tax rate, first compute the project cash flows for each year. For years 1 and after, you can use this formula:

After-tax cash flow_t= (pretax cash flow_t × (1 - tax rate) + (initial investment × depreciation rate_t × tax rate)

After-tax cash flows:

Year:	0	1	2	3	4	5	6
Company A	-100,000	26,000	26,000	26,000	26,000	26,000	0
Company B	-100,000	23,900	28,100	23,620	20,932	20,932	2,016

 $IRR_{A} = 9.43\%$ $IRR_{B} = 6.39\%$

Effective tax rate = 1 - (.0639 / .0943) = .323, or 32.3%

Problem [1/186]

A game of chance offers the following odds and payoffs. Each play of the game costs \$100, so the net profit per play is the payoff less \$100.

Probability	Payoff	Net Profit
0.10	\$500	\$400
0.50	100	0
0.40	0	-100

What are the expected cash payoff and expected rate of return? Calculate the variance and standard deviation of this rate of return

SOLUTION:

Expected payoff = $(.10 \times \$500) + (.50 \times \$100) + (.40 \times \$0)$ = \$100

Rates of return: (\$500 - 100) / \$100 = 400% (\$100 - 100) / \$100 = 0% (\$0 - 100) / \$100 = -100%

Expected rate of return = $(.10 \times 400\%) + (.50 \times 0\%) + (.40 \times -100\%)$ Expected rate of return = 0%

Variance = $.10(400\% - 0)^2 + .50(0\% - 0)^2 + .40(-100\% - 0)^2$ Variance = 20,000

Standard deviation = $20,000^{-5}$ Standard deviation = 141.42%

Problem [2/186]

The following table shows the nominal returns on the US stocks and the rate of inflation.

- a. What was the standard deviation of the nominal returns?
- b. Calculate the arithmetic average real return.

Year	Nominal	Inflation
	Return (%)	(%)
2010	17.2	1.5
2011	1.0	3.0
2012	16.1	1.7
2013	33.1	1.5
2014	12.7	0.8

SOLUTION:

a. Average nominal return = (.172 + .010 + .161 + .331 + .127) / 5 Average nominal return = .1602, or 16.02%

Variance = $[(.172 - .1602)^2 + (.010 - .1602)^2 + (.161 - .1602)^2 + (.331 - .1602)^2 + (.127 - .1602)^2] / 5$

Variance = .010595

Standard deviation = $.010595^{.5}$ Standard deviation = .1029, or 10.29%

b. Average real return = {[(1.172 / 1.015) - 1] + [(1.010 / 1.030) - 1] + [(1.161 / 1.017) - 1] + [(1.331 / 1.015) - 1] + [(1.127 / 1.008) - 1]} / 5 Average real return = .1412, or 14.12%

Problem [3/187]

During the boom years of 2010-2014, ace mutual fund manager Diana Sauros produced the following percentage rates of return. Rates of return on the market are given for comparison.

	C_{o}	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄
Ms Sauros	+24.9	-0.9	+18.6	+42.1	+15.2
S&P 500	+17.2	+1.0	+16.1	+33.1	+12.7

Calculate the average return and standard deviation of Ms Sauro's mutual fund. Did she do better or worse than the market by these measures?

SOLUTION:

Ms. Sauros: Average return = [.249 + (-.009) + .186 + .421 + .152] / 5 Average return = .1998, or 19.98%

Variance = $[(.249 - .1998)^2 + (-.009 - .1998)^2 + (.186 - .1998)^2 + (.421 - .1998)^2 + (.152 - .1998)^2] / 5$

Variance = .019485

Standard deviation = .0194 Standard deviation = .1396, or 13.96%

S&P 500: Average return = (.172 + .010 + .161 + .331 +.127) / 5 Average return = .1602, or 16.02%

Variance = $[(.172 - .1602)^2 + (.010 - .1602)^2 + (.161 - .1602)^2 + (.331 - .1602)^2 + (.127 - .1602)^2$

Variance = .010595

Standard deviation = .010595^{.5} Standard deviation = .1029, or 10.29%

Problem [6/187]

To calculate the variance of a three-stock portfolio, you need to add nine boxes:

Use the same symbols that we used in the class; for example, $x_1 =$ proportion invested in stock 1 and $\sigma_{12} =$ covariance between stocks 1 and 2. Now complete the nine boxes. **SOLUTION:**

$x_1^2 \sigma_1^2$	$x_1 x_2 \sigma_{12}$	$x_{1}x_{3}\sigma_{13}$
$x_1 x_2 \sigma_{12}$	$x_2^2 \sigma_2^2$	$x_{2}x_{3}\sigma_{23}$
$x_1 x_3 \sigma_{13}$	$x_2 x_3 \sigma_{23}$	$x_{3}^{2}\sigma_{3}^{2}$

Problem [8/188]

A portfolio contains equal investments in 10 stocks. Five have a beta of 1.2; the remainder have a beta of 1.4. What is the portfolio beta?

a. 1.3

- b. Greater than 1.3 because the portfolio is not completely diversified.
- c. Less than 1.3 because diversification reduces beta.

SOLUTION:

 $\beta_p = \left\{ (5 \times 1.2) + [(10-5) \times 1.4)] \right\} / 10 \\ \beta_p = 1.3$

Beta measures systematic risk which cannot be eliminated by diversification.

Problem [10/188]

Here are the inflation rates and US stock market and Treasury bill returns between 1929 and 1933:

Year	Inflation	Stock Market Return	T-Bill Return
1929	-0.2	-14.5	4.8
1930	-6.0	-28.3	2.4
1931	-9.5	-43.9	1.1
1932	-10.3	-9.9	1.0
1933	0.5	57.3	0.3

a. What was the real return on the stock market in each year?

- b. What was the arithmetic average real return?
- c. What was the risk premium in each year?
- d. What was the average risk premium?
- e. What was the standard deviation of the risk premium?

SOLUTION:

a. r = [(1 + R) / (1 + i)] - 1

 $\begin{aligned} r_{1929} &= \{ [1 + (-.145)] / (1 + .002) \} - 1 = -.1467, \text{ or } -14.67\% \\ r_{1930} &= \{ [1 + (-.283)] / [1 + (-.060)] \} - 1 = -.2372, \text{ or } -23.72\% \\ r_{1931} &= \{ [1 + (-.439)] / [1 + (-.095)] \} - 1 = -.3801, \text{ or } -38.01\% \\ r_{1932} &= \{ [1 + (-.099)] / [1 + (-.103)] \} - 1 = .0045 \text{ or } .45\% \end{aligned}$

 $r_{1933} = [(1 + .573) / (1 + .005)] - 1 = .5652$, or 56.52%

- b. Average real return = [-.1467 + (-.2372) + (-.3801) + .0045 + .5652] / 5Average real return = -.0382, or -3.82%
- c. Risk premium₁₉₂₉ = -.145 .048 = -.1930, or -19.30%Risk premium₁₉₃₀ = -.283 - .024 = -.3070, or -30.70%Risk premium₁₉₃₁ = -.439 - .011 = -.4500, or -45.00%Risk premium₁₉₃₂ = -.099 - .010 = -.1090, or -10.90%Risk premium₁₉₃₃ = .573 - .003 = .5700, or 57.00%
- d. Average risk premium = [-.1930 + (-.3070) + (-.4500) + (-.1090) + .5700] / 5Average risk premium = -0978, or -9.78%
- e. $\sigma_{\text{Risk premium}} = \{[-.1930 (-.0978)]^2 + [-.3070 (-.0978)]^2 + [-.4500 (-.0978)]^2$

+ [-.1090 - (-.0978)]² + [.5700 - (-.0978)]²]} / 5
$$\sigma_{\text{Risk premium}}$$
 = .1246, or 12.46%

Problem [13/188]

Lonesome Gulch Mines has a standard deviation of 42% per year and a beta of +0.10. Amalgamated Cooper has a standard deviation of 31% a year and a beta of +0.66. Explain why Lonesome Gulch is the safer investment for a diversified investor.

SOLUTION:

In the context of a well-diversified portfolio, the only risk characteristic of a single security that matters is the security's contribution to the overall portfolio risk. This contribution is measured by beta. Lonesome Gulch is the safer investment for a diversified investor because its beta of .10 is lower than the beta of Amalgamated Copper of .66. For a diversified investor, the standard deviations are irrelevant.

Problem [19/189]

There are few, if any, real companies with negative betas. But suppose you found one with beta = -0.25.

- a. How would you expect this stock's rate of return to change if the overall market rose by an extra 5%? What if the market fell by an extra 5%?
- b. You have \$1 million in a well-diversified portfolio of stocks. Now you receive an additional \$20,000 bequest. Which of the following actions will yield the safest overall portfolio return?
 - i. Invest 20,000 in Treasury bills (which have beta = 0).
 - ii. Invest 20,000 in stocks with beta = 1.
 - iii. Invest 20,000 in the stocks with beta = -0.25.

SOLUTION:

a-1. Change in stock's rate of return = $.05 \times -.25 = -.0125$, or -1.25%

a-2. Change in stock's rate of return = $-.05 \times -.25 = .0125$, or 1.25%

b. "Safest" implies lowest risk. Assuming the well-diversified portfolio is invested in typical securities, the portfolio beta is approximately one. The largest reduction in beta is achieved by investing the \$20,000 in a stock with the negative beta.