

Topics Covered

- Future Values and Present Values
- Looking for Shortcuts-Perpetuities and Annuities
- More Shortcuts-Growing Perpetuities and Annuities
- How Interest Is Paid and Quoted

Present Value and Future Value

Present Value
Value today of a
future cash flow.

Future Value
Amount to which
an investment will
grow after earning
interest

Future Values

Future Value of $\$ 100=F V$
$\mathrm{FV}=\$ 100 \times(1+r)^{t}$

Future Values

$$
\mathrm{FV}=\$ 100 \times(1+r)^{t}
$$

Example - FV

What is the future value of $\$ 100$ if interest is compounded annually at a rate of 7% for two years?

$$
\begin{aligned}
& F V=\$ 100 \times(1.07) \times(1.07)=114.49 \\
& F V=\$ 100 \times(1+.07)^{2}=\$ 114.49
\end{aligned}
$$

Future Values with Compounding

Present Value

Discount factor = DF = PV of \$1

$$
\mathrm{DF}=\frac{1}{(1+r)^{t}}
$$

Discount factors can be used to compute the present value of any cash flow

Present Value

- The PV formula has many applications. Given any variables in the equation, you can solve for the remaining variable. Also, you can reverse the prior example.

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{DF}_{2} \times C_{2} \\
& \mathrm{PV}=\frac{1}{(1+.07)^{2}} \times 114.49=100
\end{aligned}
$$

Present Values with Compounding

Valuing an Office Building

Step 1: Forecast cash flows

Cost of building $=C_{0}=700,000$
Sale price in Year $1=C_{1}=800,000$

Step 2: Estimate opportunity cost of capital If equally risky investments in the capital market offer a return of 7%, then
Cost of capital =r=7\%

Valuing an Office Building

Step 3: Discount future cash flows

$$
\mathrm{PV}=\frac{C_{1}}{(1+r)}=\frac{800,000}{(1+.07)}=747,664
$$

Step 4: Go ahead if PV of payoff exceeds investment

$$
\begin{aligned}
\mathrm{NPV} & =747,664-700,000 \\
& =47,664
\end{aligned}
$$

Net Present Value

$\mathrm{NPV}=\mathrm{PV}$ - required investment

$$
\mathrm{NPV}=C_{0}+\frac{C_{1}}{1+r}
$$

Risk and Present Value

- Higher risk projects require a higher rate of return
- Higher required rates of return cause lower PVs

$$
\begin{aligned}
& \text { PV of } C_{1}=\$ 800,000 \text { at } 7 \% \\
& \text { PV }=\frac{800,000}{1+.07}=747,664
\end{aligned}
$$

Risk and Present Value

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{PV} \text { of } C_{1}=\$ 800,000 \text { at } 12 \% \\
\mathrm{PV}=\frac{800,000}{1+.12}=714,286
\end{array} \\
& \mathrm{PV} \text { of } C_{1}=\$ 800,000 \text { at } 7 \% \\
& \mathrm{PV}=\frac{800,000}{1+.07}=747,664
\end{aligned}
$$

Risk and Net Present Value

$$
\begin{aligned}
& \mathrm{NPV}
\end{aligned}=\mathrm{PV}-\text { required investment } \quad \begin{aligned}
\mathrm{NPV} & =714,286-700,000 \\
& =\$ 14,286
\end{aligned}
$$

Net Present Value Rule

- Accept investments that have positive net present value

Example

Use the original example. Should we accept the project given a 10% expected return?

$$
\frac{800,000}{1.10}=\$ 27,273
$$

Rate of Return Rule

- Accept investments that offer rates of return in excess of their opportunity cost of capital

Example

In the project listed below, the foregone investment opportunity is 12%. Should we do the project?
Return $=\frac{\text { profit }}{\text { investment }}=\frac{800,000-700,000}{700,000}=.143$ or 14.3%

Multiple Cash Flows

For multiple periods we have the discounted cash flow (DCF) formula

$$
\mathrm{PV}_{0}=\frac{C_{1}}{(1+r)^{1}}+\frac{C_{2}}{(1+r)^{2}}+\ldots+\frac{C_{t}}{(1+r)^{t}}
$$

$$
\mathrm{NPV}_{0}=C_{0}+\sum_{t=1}^{T} \frac{C_{t}}{(1+r)^{t}}
$$

Shortcuts

- Sometimes there are shortcuts that make it very easy to calculate the present value of an asset that pays off in different periods. These tools allow us to cut through the calculations quickly.

Shortcuts

Perpetuity - Financial concept in which a cash flow is theoretically received forever.

$$
\begin{aligned}
\text { Return } & =\frac{\text { cash flow }}{\text { present value }} \\
r & =\frac{C}{\mathrm{PV}}
\end{aligned}
$$

Shortcuts

Perpetuity - Financial concept in which a cash flow is theoretically received forever.

$$
\begin{aligned}
\mathrm{PV} \text { of cash flow } & =\frac{\text { cash flow }}{\text { discount rate }} \\
\mathrm{PV}_{0} & =\frac{C_{1}}{r}
\end{aligned}
$$

Present Values

Example

What is the present value of $\$ 1$ billion every year, for all eternity, if you estimate the perpetual discount rate to be 10% ?

$$
\mathrm{PV}=\frac{\$ 1 \mathrm{bil}}{0.10}=\$ 10 \text { billion }
$$

Present Values

2-25

Example - continued

What if the investment does not start making money for 3 years?

$$
\mathrm{PV}=\frac{\$ 1 \text { bil }}{0.10} \times\left(\frac{1}{1.10^{3}}\right)=\$ 7.51 \text { billion }
$$

How to Value Annuities

Annuity - An asset that pays a fixed sum each year for a specified number of years

$$
\text { PV of annuity }=C \times\left[\frac{1}{r}-\frac{1}{r(1+r)^{t}}\right]
$$

Perpetuities \& Annuities

PV Annuity Factor (PVAF) - The present value

 of $\$ 1$ a year for each of t years$$
\text { PVAF }=\left\lfloor\frac{1}{r}-\frac{1}{r(1+r)^{2}}\right\rfloor
$$

Short Cuts

Annuity - An asset that pays a fixed sum each year for a specified number of years.

Costing an Installment Plan

Example

Tiburon Autos offers you "easy payments" of \$5,000 per year, at the end of each year for 5 years. If interest rates are 7\%, per year, what is the cost of the car?

	5,000	5,000	5,000	5,000	5,000
Present Value at year 0	1	2	3	4	5
$5,000 / 1.07=4,673$					
$5,000 /(1.07)^{2}=4,367$	--.-				
$5,000 /(1.07)^{3}=4,081$					
$5,000 /(1.07)^{4}=3,814$					
$5,000 /(1.07)^{5}=3,565$					
Total $\mathrm{NPV}=20,501$					

Winning Big at the Lottery

Example

The state lottery advertises a jackpot prize of $\$ 590.5$ million, paid in 30 installments over 30 years of $\$ 19.683$ million per year, at the end of each year. If interest rates are 3.6% what is the true value of the lottery prize?

Lottery value $=19.683 \times\left[\frac{1}{.036}-\frac{1}{.036(1+.036)^{30}}\right]$
Value $=\$ 357.5$ million

Annuity Due

2-31

Annuity due - Level stream of cash flows starting immediately

How does it differ from an ordinary annuity?

$$
\mathrm{PV}_{\text {Annuity due }}=\mathrm{PV}_{\text {Annuity }} \times(1+r)
$$

How does the future value differ from an ordinary annuity?

$$
\mathrm{FV}_{\text {Annuity due }}=\mathrm{FV}_{\text {Annuity }} \times(1+r)
$$

- Annuity Due: Level stream of cash flows starting immediately.

Annuities Due: Example

$$
\mathrm{FV}_{\mathrm{AD}}=\mathrm{FV}_{\text {Annuity }} \times(1+r)
$$

Example: Suppose you invest $\$ 429.59$ annually at the beginning of each year at 10\% interest. After 50 years, how much would your investment be worth?

$$
\begin{aligned}
F V_{A D} & =\$ 429.59 \times\left[\frac{1}{.10}-\frac{1}{.10(1+.10)^{50}}\right] \times 1.10^{50} \times 1.10 \\
& =\$ 550,003.81
\end{aligned}
$$

- Annuity Due: Level stream of cash flows starting immediately.

Paying Off a Bank Loan

Example - Annuity

You are purchasing a TV for \$1,000. You are scheduled to make 4 annual installments. Given a rate of interest of 10%, what is the annual payment?

$$
\begin{aligned}
& \$ 1,000=\mathrm{PMT} \times\left[\frac{1}{.10}-\frac{1}{.10(1+.10)^{4}}\right] \\
& \text { PMT }=\$ 315.47
\end{aligned}
$$

FV Annuity Short Cut

Future Value of an Annuity - The future value of an asset that pays a fixed sum each year for a specified number of years.

$$
\text { FV of annuity }=C \times\left[\frac{(1+r)^{t}-1}{r}\right]
$$

FV Annuity Short Cut

Example

What is the future value of $\$ 20,000$ paid at the end of each of the following 5 years, assuming your investment returns 8% per year?

$$
\begin{aligned}
\mathrm{FV} & =20,000 \times\left[\frac{(1+.08)^{5}-1}{.08}\right] \\
& =\$ 117,332
\end{aligned}
$$

Constant Growth Perpetuity

$$
\mathrm{PV}_{0}=\frac{C_{1}}{r-g}
$$

$g=$ the annual growth rate of the cash flow

Constant Growth Perpetuity

NOTE: This formula can be used to value a perpetuity at any point in time.

$$
\mathrm{PV}_{0}=\frac{C_{1}}{r-g}
$$

Constant Growth Perpetuity

Example

What is the present value of $\$ 1$ billion paid at the end of every year in perpetuity, assuming a rate of return of 10% and a constant growth rate of 4% ?

$$
\begin{aligned}
\mathrm{PV}_{0} & =\frac{1}{.10-.04} \\
& =\$ 16.667 \text { billion }
\end{aligned}
$$

Effective Interest Rates

Effective Annual Interest Rate - Interest rate that is annualized using compound interest

Annual Percentage Rate - Interest rate that is annualized using simple interest

EAR \& APR Calculations

2-40

Annual Percentage Rate (APR):

$$
\mathrm{APR}=\mathrm{MR} \times 12
$$

Effective Annual Interest Rate (EAR):

$$
\mathrm{EAR}=(1+\mathrm{MR})^{12}-1
$$

*where $M R$ = monthly interest rate

- Effective annual interest rate: - Interest rate that is annualized using compound interest.
- Annual percentage rate: Interest rate that is annualized using simple interest.

Effective Interest Rates

Example:
Given a monthly rate of 1%, what is the effective annual rate (EAR)? What is the annual percentage rate (APR)?

Effective Interest Rates

Example:
Given a monthly rate of 1%, what is the effective annual rate (EAR)? What is the annual percentage rate (APR)?

$$
\begin{aligned}
& \mathrm{EAR}=(1+.01)^{12}-1=r \\
& \mathrm{EAR}=(1+.01)^{12}-1=.1268 \text { or } 12.68 \% \\
& \mathrm{APR}=.01 \times 12=.12 \text { or } 12.00 \%
\end{aligned}
$$

