VALUING BONDS

Topics Covered

- Using The Present Value Formula to Value Bonds
- How Bond Prices Vary With Interest Rates
- The Term Structure of Interest Rates
- Explaining the Term Structure
- Real and Nominal Rates of Interest
- The Risk of Default

Bonds

Terminology

- <u>Bond</u> Security that obligates the issuer to make specified payments to the bondholder.
- <u>Face value</u> (par value or principal value) -Payment at the maturity of the bond.
- <u>Coupon</u> The interest payments made to the bondholder.
- <u>Coupon rate</u> Annual interest payment, as a percentage of face value.

Bonds

WARNING

The <u>coupon rate</u> IS NOT the <u>discount rate</u> used in the present value calculations.

- $\circ \mbox{The coupon rate merely tells us what cash flow the bond will produce$
- Since the coupon rate is listed as a %, this misconception is quite common

Valuing a Bond

In October 2014 you purchase 100 euros of bonds in France which pay a 4.25% coupon every year. If the bond matures in 2018 and the YTM is 0.15%, what is the value of the bond?

$$PV = \frac{4.25}{1.0015} + \frac{4.25}{(1.0015)^2} + \frac{4.25}{(1.0015)^3} + \frac{104.25}{(1.0015)^4}$$

=116.34 euros

Valuing a Bond

Example (continued)

What is the price of a 7.25 % annual coupon bond, with a \$1,000 face value, which matures in 3 years? Assume a required return of 0.35%.

Bond prices are quoted as a percentage of par.

Par value × price % = \$ price \$1,000 × price % = \$1,205.56 price % = 120.56 %

١	Valuing a Bond
	3-12
	Example - USA
	In November 2014 you purchase a 3 year US Government bond. The bond has an annual coupon rate of 4.25%, paid semi-annually. If investors demand a 0.965% semiannual return, what is the price of the bond?
	$PV = \frac{21.25}{1.004825} + \frac{21.25}{(1.004825)^2} + \frac{21.25}{(1.004825)^3} + \frac{21.25}{(1.004825)^4} + \frac{21.25}{(1.004825)^5} + \frac{1021.25}{(1.004825)^6}$
	= \$1,096.90

Duration Calculation								
								3-17
				Year (t)			
Payment PV(C ₁) at 4% Fraction of total value IPV(C ₁)/PVI	\$90 \$86.54 0.0666	\$90 \$83.21 0.0640	\$90 \$80.01 0.0615	\$90 \$76.93 0.0592	\$90 \$73.97 0.0569	\$90 \$71.13 0.0547	\$ 1,090 \$ 828.31 0.6371	PV = \$1,300.10
Year \times fraction of total value [$t \times PV(C_t)/PV$]	0.0666	0.1280	0.1846	0.2367	0.2845	0.3283	4.4598	Total = duration = 5.69
	all an All stables an						II Ferretar	

Duration Calculation									
Yea	r C _i	PV(<i>C</i> ₁) at 5.0%	Proportion of Total Value [PV(C ₁)/V]	Proportion of Total Value Time					
1	100	95.24	0.084	0.084					
2	100	90.7	0.08	0.16					
3	1100	950.22	0.836	2.509					
		V = 1136.16	1	Duration= 2.753 years					

Duration									
<u>Ex</u> Ca	Example Calculate the duration of our 6 ⁷ / ₈ % bond @ 4.9% YTM								
Yea	r CF	PV@YTM	% of Total P	V % × Year					
1	68.75	65.54	.060	0.060					
2	68.75	62.48	.058	0.115					
3	68.75	59.56	.055	0.165					
4	68.75	56.78	.052	0.209					
5	1068.75	841.39	.775	3.875					
		1085.74	1.00 I	Duration 4.424					

Law of One Price

- All interest bearing instruments are priced to fit the term structure
- This is accomplished by modifying the asset price
- The modified price creates a <u>new yield</u>, which fits the term structure
- The new yield is called the yield to maturity (YTM)

Explaining the Term Structure

Expectations Theory

- \circ Term structure and capital budgeting
 - ✓CF should be discounted using term structure info
 - ✓ When rate incorporates all forward rates, use spot rate that equals project term
 - ✓ Take advantage of arbitrage

Interest Rates & Inflation

• In the presence of inflation, an investor's **real** interest rate is always less than the **nominal** interest rate

 $1 + \text{real rate} = \frac{1 + \text{nominal rate}}{1 + \text{inflation rate}}$

Interest Rates & Inflation

Example

If you invest in a security that pays 10% interest annually and inflation is 6%, what is your real interest rate?

 $1 + \text{real rate} = \frac{1.10}{1.06}$

Real interest rate = .03774 or 3.774%

Interest Rates & Inflation								
Treasury Inflation Protected Securities (TIPS)								
<i>Example</i> If you invest in 5% coupon, 3 year TIPS and inflation is 3% each year, what are your real annual cash flows?								
Year Beal seab flows	Year 1 2 3							
usai rasii iinaz 220 220 210								

Default Risk

- Default or Credit Risk The risk that a bond issuer may default on its bonds
- Default premium The additional yield on a bond that investors require for bearing credit risk
- Investment grade Bonds rated Baa or above by Moody's or BBB or above by Standard & Poor's
- Junk bonds Bond with a rating below Baa or BBB

Default Risk							
				3-37			
	<u>Moody' s</u>	Standard <u>& Poor's</u>	Safety]			
	Aaa	AAA	The strongest rating; ability to repay interest and principal is very strong.				
	Aa	AA	Very strong likelihood that interest and principal will be repaid				
	A	А	Strong ability to repay, but some vulnerability to changes in circumstances				
	Baa	BBB	Adequate capacity to repay; more vulnerability to changes in economic circumstances				
	Ва	BB	Considerable uncertainty about ability to repay.				
	В	в	Likelihood of interest and principal payments over sustained periods is questionable.				
	Caa	CCC	Bonds in the Caa/CCC and Ca/CC classes may already be				
	Ca	CC	in default or in danger of imminent default				
	С	С	C-rated bonds offer little prospect for interest or principal on the debt ever to be repaid.				

Prices and Yields of Corporate Bonds								
					3-38			
Issuer Name	Coupon (%)	Maturity	S&P Rating	Price (%)	Yield (%)			
Johnson & Johnson	3.55	2021	AAA	108.35	2.16			
Walmart	4.25	2021	AA	110.44	2.48			
Alabama Power	3.95	2021	A	105.84	2.97			
Dow Chemical	8.85	2021	BBB	132.39	3.49			
Rosetta Restaurants	5.625	2021	BB	97.00	6.20			
Elizabeth Arden	7.375	2021	В	96.25	8.14			
Alpha Natural Resources	6.25	2021	CCC	50.20	20.37			

Sovereign Bonds and Default Risk

- Sovereign Bonds and Default Risk
 - Foreign currency debt
 - ✓ Default occurs when foreign government borrows dollars
 - ✓If crisis occurs, governments may run out of taxing capacity and default
 - ✓Affects bond prices, yield to maturity

Sovereign Bonds and Default Risk

- Sovereign Bonds and Default Risk
 - oOwn currency debt
 - ✓Less risky than foreign currency debt
 - ✓Governments can print money to repay bonds

Sovereign Bonds and Default Risk

Sovereign Bonds and Default Risk

Eurozone debt

- ✓ Can't print money to service domestic debts
- ✓Money supply controlled by European Central Bank