

Topics Covered

- Using The Present Value Formula to Value Bonds
- How Bond Prices Vary With Interest Rates
- The Term Structure of Interest Rates
- Explaining the Term Structure
- Real and Nominal Rates of Interest
- The Risk of Default
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bonds

Terminology

- Bond - Security that obligates the issuer to make specified payments to the bondholder.
\qquad
\qquad
\qquad
- Face value (par value or principal value) Payment at the maturity of the bond. \qquad
- Coupon - The interest payments made to the bondholder.
- Coupon rate - Annual interest payment, as a percentage of face value.

Bonds

WARNING

The coupon rate IS NOT the discount rate used in the present value calculations.
-The coupon rate merely tells us what cash flow the bond will produce
oSince the coupon rate is listed as a \%, this misconception is quite common

Valuing a Bond

The price of a bond is the present value of all cash flows generated by the bond (i.e. coupons and face value) discounted at the required rate of return

$$
\mathrm{PV}=\frac{\mathrm{cpn}}{(1+r)^{1}}+\frac{\mathrm{cpn}}{(1+r)^{2}}+\ldots .+\frac{(\mathrm{cpn}+\mathrm{par})}{(1+r)^{t}}
$$

Note: "cpn" is commonly used as an abbreviation for "coupon"

Valuing a Bond

Example - France

In October 2014 you purchase 100 euros of bonds in France which pay a 4.25% coupon every year. If the bond matures in 2018 and the YTM is 0.15%, what is the value of the bond?

$$
\begin{aligned}
P V & =\frac{4.25}{1.0015}+\frac{4.25}{(1.0015)^{2}}+\frac{4.25}{(1.0015)^{3}}+\frac{104.25}{(1.0015)^{4}} \\
& =116.34 \text { euros }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Valuing a Bond as an Annuity

$P V($ bond $)=P V($ annuity of coupons $)+P V($ principal $)$

PV $($ bond $)=(\mathrm{cpn} \times \mathrm{PVAF})+($ final payment \times discount factor $)$

$$
=4.25 \times\left[\frac{1}{.0015}-\frac{1}{.0015(1+.0015)^{4}}\right]+\frac{100}{(1+.0015)^{4}}
$$

$$
=116.34
$$

Valuing a Bond

Example

If today is October 1, 2015, what is the value of the following bond? An IBM Bond pays $\$ 115$ every September 30 for 5 years. In September 2020 it pays an additional \$1000 and retires the bond. The bond is rated AAA (WSJ AAA YTM is 7.5\%)
$\mathrm{PV}=\frac{115}{1.075}+\frac{115}{(1.075)^{2}}+\frac{115}{(1.075)^{3}}+\frac{115}{(1.075)^{4}}+\frac{1,115}{(1.075)^{5}}$

$$
=\$ 1,161.84
$$

Valuing a Bond

Example

What is the price of a 7.25 \% annual coupon bond, with a $\$ 1,000$ face value, which matures in 3 years?
Assume a required return of 0.35%.
$\mathrm{PV}=\frac{72.50}{(1.0035)^{1}}+\frac{72.50}{(1.0035)^{2}}+\frac{1,072.50}{(1.0035)^{3}}$
$\mathrm{PV}=\$ 1,205.56$
\qquad

Valuing a Bond

Example (continued)

What is the price of a 7.25% annual coupon bond, with a $\$ 1,000$ face value, which matures in 3 years? Assume a required return of 0.35%.

Bond prices are quoted as a percentage of par.

Par value \times price $\%=\$$ price
$\$ 1,000 \times$ price $\%=\$ 1,205.56$ price $\%=120.56 \%$

Valuing a Bond

Q: How did the calculation change, given semi-annual coupons versus annual coupon payments?

Twice as many payments, cut in half, over the same time period.

Valuing a Bond

Example - USA
In November 2014 you purchase a 3 year US Government bond. The bond has an annual coupon rate of 4.25%, paid semi-annually. If investors demand a 0.965% semiannual return, what is the price of the bond?
$\mathrm{PV}=\frac{21.25}{1.004825}+\frac{21.25}{(1.004825)^{2}}+\frac{21.25}{(1.004825)^{3}}+\frac{21.25}{(1.004825)^{4}}+\frac{21.25}{(1.004825)^{5}}+\frac{1021.25}{(1.004825)^{6}}$
= $\$ 1,096.90$

\qquad

Treasury Yields

The interest rate on 10-year U.S. Treasury bonds 1900-2012

Bond Rates of Return

Rate of Return - Total income per period per dollar invested

Rate of return $=\frac{\text { total income }}{\text { investment }}$

Rate of return $=\frac{\text { coupon income }+ \text { price change }}{\text { investment }}$

Bond Rates of Return

Example

A bond increases in price from $\$ 963.80$ to $\$ 1,380.50$ and pays a coupon of $\$ 21.875$ during the same period. What is the rate of return?

Rate of return $=\frac{21.875+(1380.50-963.80)}{963.80}=.455$ $\mathrm{ROR}=45.5 \%$
Bond Rates of Return
Bond Rates of Return

$\frac{\text { Example }}{\text { A bond increases in price from } \$ 963.80 \text { to } \$ 1,380.50}$| and pays a coupon of $\$ 21.875$ during the same period. |
| :--- |
| What is the rate of return? |

Rate of return $=\frac{21.875+(1380.50-963.80)}{963.80}=.455$
$\operatorname{ROR}=45.5 \%$
\qquad

Duration				
Example				
Calculate the duration of our $67 / 8 \%$ bond @ 4.9\% YTM				
Year	CF	PV@YTM	\% of Total PV	$\% \times$ Year
1	68.75	65.54	. 060	0.060
2	68.75	62.48	. 058	0.115
3	68.75	59.56	. 055	0.165
4	68.75	56.78	. 052	0.209
5	1068.75	841.39	. 775	3.875
		1085.74	1.00 Dur	4.424

Yield Curve

U.S. Treasury Strip Spot Rates as of November 2014

Law of One Price

- All interest bearing instruments are priced to fit the term structure
- This is accomplished by modifying the asset price
- The modified price creates a new yield, which fits the term structure
- The new yield is called the yield to maturity (YTM)

Example

\$1,000 Treasury bond expires in 5 years. Pays coupon
rate of 10.5%. What is YTM if market price is 107.88 ?

\boldsymbol{C}_{0}	\boldsymbol{C}_{1}	$\boldsymbol{C}_{\mathbf{2}}$	$\boldsymbol{C}_{\mathbf{3}}$	$\boldsymbol{C}_{\mathbf{4}}$	\boldsymbol{C}_{5}
-1078.80	105	105	105	105	1105
Calculate IRR $=\mathbf{8 . 5 \%}$					

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Explaining the Term Structure

Expectations Theory

- Term structure and capital budgeting \checkmark CF should be discounted using term structure info
\checkmark When rate incorporates all forward rates, use spot rate that equals project term \checkmark Take advantage of arbitrage

Debt \& Interest Rates

- Classical Theory of Interest Rates (Economics) - Developed by Irving Fisher
- Nominal Interest Rate = The rate you actually pay when you borrow money \qquad
- Real Interest Rate = The theoretical rate you pay when you borrow money, as determined by supply and demand

Annual U.S. Inflation Rates, 1900-2014

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Global Inflation Rates, 1900-2014

Interest Rates \& Inflation

- In the presence of inflation, an investor's real interest rate is always less than the nominal interest rate

$$
1+\text { real rate }=\frac{1+\text { nominal rate }}{1+\text { inflation rate }}
$$

Interest Rates \& Inflation

Example

If you invest in a security that pays 10\% interest annually and inflation is 6\%, what is your real interest rate?

$$
1+\text { real rate }=\frac{1.10}{1.06}
$$

Real interest rate $=.03774$ or 3.774%
\qquad

Interest Rates \& Inflation

Treasury Inflation Protected Securities (TIPS)

Example
If you invest in 5\% coupon, 3 year TIPS and inflation is 3% each year, what are your real annual cash flows?

Year	1	2	3
Real cash flows	$\$ 50$	$\$ 50$	$\$ 1,050$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

U.S. TIPS Bond Yields

Govt. Bills vs. Inflation, 1953-2014

Govt. Bills vs. Inflation, 1953-2014

Default Risk

- Default or Credit Risk - The risk that a bond issuer may default on its bonds
- Default premium - The additional yield on a bond that investors require for bearing credit risk
- Investment grade - Bonds rated Baa or above by Moody's or BBB or above by Standard \& Poor's
- Junk bonds - Bond with a rating below Baa or BBB
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10.10
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Default Risk
- Default or Credit Risk - The risk that a bond issuer
may default on its bonds
- Default premium - The additional yield on a bond
that investors require for bearing credit risk
- Investment grade - Bonds rated Baa or above by
Moody's or BBB or above by Standard \& Poor's
- Junk bonds - Bond with a rating below Baa or BBB
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sovereign Bonds and Default Risk

- Sovereign Bonds and Default Risk
-Foreign currency debt
\qquad
\checkmark Default occurs when foreign government borrows dollars
\checkmark If crisis occurs, governments may run out of taxing capacity and default
\checkmark Affects bond prices, yield to maturity

Sovereign Bonds and Default Risk

- Sovereign Bonds and Default Risk
-Own currency debt
\checkmark Less risky than foreign currency debt
\checkmark Governments can print money to repay bonds
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sovereign Bonds and Default Risk

- Sovereign Bonds and Default Risk -Eurozone debt
\checkmark Can't print money to service domestic debts
\checkmark Money supply controlled by European Central Bank
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

