

Topics Covered

- How Common Stocks Are Traded
- How Common Stocks Are Valued
- Estimating The Cost Of Equity Capital
- The Link Between Stock Price and Earnings per Share
- Valuing a Business by Discounted Cash Flow

How Common Stocks Are Traded

Primary Market - Market for the sale of new securities by corporations

Secondary Market - Market in which previously issued securities are traded among investors

Common Stock - Ownership shares in a publicly held corporation

Wall Street

How Common Stocks Are Traded

Electronic Communication Networks (ECNs) - A number of computer networks that connect traders with each other

Exchange-Traded Funds (ETFs) - Portfolios of stocks that can be bought or sold in a single trade

SPDRs (Standard \& Poor's Depository Receipts or "spiders") - ETFs, which are portfolios tracking several Standard \& Poor's stock market indexes

How Common Stocks Are Valued

Book Value - Net worth of the firm according to the balance sheet
Dividend - Periodic cash distribution from the firm to the shareholders
P/E Ratio - Price per share divided by earnings per share
Market Value Balance Sheet - Financial statement that uses market value of assets and liabilities

Previous close	24.59	Day's range	$24.40-25.18$
Open	24.54	52 wk range	$23.69-28.09$
1y target est.	29.17	Volume	$48,387,978$
Beta	1.19	Avg volume (3m)	$33,138,700$
Next earnings date	23-Jan-15	Market cap	245.93 B
		P/E (ttm)	18.71
		EPS (ttm)	1.31
		Div \& yield	$0.88(3.50 \%)$

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How Common Stocks Are Valued

The value of any stock is the present value of its future cash flows. This reflects the DCF formula. Dividends represent the future cash flows of the firm.
$\mathrm{PV}($ stock $)=\mathrm{PV}($ expected future dividends $)$

How Common Stocks Are Valued

Expected Return - The percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes called the \qquad market capitalisation rate.

$$
\text { Expectedreturn }=r=\frac{\operatorname{Div}_{1}+P_{1}-P_{0}}{P_{0}}
$$

If Fledgling Electronics is selling for $\$ 100$ per share today and is expected to sell for $\$ 110$ one year from now, what is the expected return if the dividend one year from now is forecasted to be $\$ 5.00$?

$$
\text { Expectedreturn }=\frac{5+110-100}{100}=.15
$$

\qquad
\qquad
\qquad

How Common Stocks Are Valued

The price of any share of stock can be thought of as the present value of the futures cash flows. For a stock the future cash flows are dividends and the ultimate sales price of the stock.

$$
\text { Price }=P_{0}=\frac{\operatorname{Div}_{1}+P_{1}}{1+r}
$$

Example - continued

Fledgling Electronics price can be thought of as follows.

$$
\text { Price }=P_{0}=\frac{5+110}{1.15}=100
$$

\qquad
\qquad
\qquad

How Common Stocks Are Valued

Market capitalisation rate can be estimated
\qquad
\qquad using the perpetuity formula, given minor algebraic manipulation. It is also called the cost \qquad of equity capital.

$$
\begin{array}{r}
\text { Price }=P_{0}=\frac{\operatorname{Div}_{1}}{r-g} \\
\text { Capitalisation rate }=r=\frac{\operatorname{Div}_{1}}{P_{0}}+g
\end{array}
$$

How Common Stocks Are Valued

Dividend Discount Model - Computation of today's stock price which states that share value equals the present value of all expected future dividends

$$
P_{0}=\frac{\operatorname{Div}_{1}}{(1+r)^{1}}+\frac{\operatorname{Div}_{2}}{(1+r)^{2}}+\ldots+\frac{\operatorname{Div}_{H}+P_{H}}{(1+r)^{H}}
$$

\qquad
\qquad

H-Time horizon for your investment. \qquad
\qquad

How Common Stocks Are Valued

Modified formula

$$
\begin{gathered}
P_{0}=\frac{\operatorname{Div}_{1}}{(1+r)^{1}}+\frac{\operatorname{Div}_{2}}{(1+r)^{2}}+\ldots+\frac{\operatorname{Div}_{H}+P_{H}}{(1+r)^{H}} \\
P_{0}=\sum_{t=1}^{H} \frac{\operatorname{Div}_{t}}{(1+r)^{2}}+\frac{P_{H}}{(1+r)^{H}}
\end{gathered}
$$

Fledgling Electronics is forecasted to pay a $\$ 5.00$ dividend at the end of year one and a $\$ 5.50$ dividend at the end of year two. At the end of the second year the stock will be sold for $\$ 121$. If the discount rate is 15%, what is the price of the stock?

$$
\begin{aligned}
& \mathrm{PV}=\frac{5.00}{(1+.15)^{1}}+\frac{5.50+121}{(1+.15)^{2}} \\
& \mathrm{PV}=\$ 100.00
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How Common Stocks Are Valued

Another Example

Current forecasts are for XYZ Company to pay dividends of $\$ 3, \$ 3.24$, and $\$ 3.50$ over the next three years, respectively. At the end of three years you anticipate selling your stock at a market price of \$94.48. What is the price of the stock given a 12% expected return?

How Common Stocks Are Valued

Another Example

Current forecasts are for XYZ Company to pay dividends of \$3, \$3.24, and \$3.50 over the next three years, respectively. At the end of three years you \qquad anticipate selling your stock at a market price of $\$ 94.48$. What is the price of the stock given a 12% expected return?
$\mathrm{PV}=\frac{3.00}{(1+.12)^{1}}+\frac{3.24}{(1+.12)^{2}}+\frac{3.50+94.48}{(1+.12)^{3}}$
$\mathrm{PV}=\$ 75.00$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimating the Cost of Equity Capital

Expected Return - The expected return on a stock investment plus the expected growth in the dividends. Similar to the capitalisation rate.

$$
\begin{aligned}
& \text { Price }=P_{0}=\frac{\text { Div }_{1}}{r-g} \\
& \text { Expecetd return }=r=\frac{\text { Div }_{1}}{P_{0}}+g
\end{aligned}
$$

Estimating the Cost of Equity Capital

Example

Northwest Natural Gas stock was selling for $\$ 49.43$ per share at the start of 2015. Dividend payments for the next year were expected to be $\$ 2.00$ a share. What is the dividend yield, assuming no growth?

Dividend yield $=r$

$$
\begin{aligned}
r & =\frac{2.00}{49.43} \\
r & =.041
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimating the Cost of Equity Capital

Example - continued

Northwest Natural Gas stock was selling for $\$ 49.43$ per share at the start of 2015. Dividend payments for the next year were expected to be $\$ 2.00$ a share. What is the dividend yield, assuming a growth rate of 7.7% ?

$$
\begin{aligned}
\text { Expected return } & =r \\
r & =\frac{2.00}{49.43}+.077 \\
r & =.118
\end{aligned}
$$

Estimating the Cost of Equity Capital

Dividend Growth Rate can also be derived from applying the return on equity to the percentage of earnings plowed back into operations.

$$
g=\text { return on equity } \times \text { plowback ratio }
$$

Estimating the Cost of Equity Capital

- Valuing Non-Constant Growth

$$
\mathrm{PV}=\frac{\operatorname{Div}_{1}}{(1+r)^{1}}+\frac{\mathrm{Div}_{2}}{(1+r)^{2}}+\ldots+\frac{\operatorname{Div}_{H}}{(1+r)^{H}}+\frac{P_{H}}{(1+r)^{H}}
$$

\qquad
\qquad

$$
P_{H}=\frac{\operatorname{Div}_{H+1}}{r-g}
$$

Estimating the Cost of Equity Capital

Example

Phoenix produces dividends in three consecutive years of $0, .31$, and .65 , respectively. The dividend in year four is estimated to be .67 and should grow in perpetuity at 4%. Given a discount rate of 10%, what is the price of the stock?
$\mathrm{PV}=\frac{0}{(1+.1)^{1}}+\frac{.31}{(1+.1)^{2}}+\frac{.65}{(1+.1)^{3}}+\left[\frac{1}{(1+.1)^{3}} \times \frac{.67}{(.10-.04)}\right]$ $=9.13$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stock Price and Earnings Per Share

- If a firm elects to pay a lower dividend, and reinvest the funds, the stock price may increase because future dividends may be higher

Payout Ratio - Fraction of earnings paid out as dividends
Plowback Ratio - Fraction of earnings retained by the firm
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stock Price and Earnings Per Share

Example

Our company forecasts to pay a $\$ 8.33$ dividend next year, which represents 100% of its earnings. This will provide investors with a 15\% expected return. Instead, we decide to plowback 40% of the earnings at the firm's current return on equity of 25%. What is the value of the stock before and after the plowback decision?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stock Price and Earnings Per Share

Example

Our company forecasts to pay a $\$ 8.33$ dividend next year, which represents 100% of its earnings. This will provide investors with a 15\% expected return. Instead, we decide to plowback 40\% of the earnings at the firm's current return on equity of 25%. What is the value of the stock before and after the plowback decision?

$$
\begin{array}{cl}
\frac{\text { No Growth }}{8.33} & \underline{\text { With Growth }} \\
P_{0}=\frac{8.33}{.15}=\$ 55.56 & g=.25 \times .40=.10 \\
& P_{0}=\frac{5.00}{.15-.10}=\$ 100.00
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stock Price and Earnings Per Share

Example - continued

If the company did not plowback some earnings, the stock price would remain at $\$ 55.56$. With the plowback, the price rose to $\$ 100.00$.

The difference between these two numbers is called the present value of growth opportunities (PVGO).

$$
\text { PVGO }=100.00-55.56=\$ 44.44
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Valuing a Business

Valuing a Business or Project

The value of a business or project is usually computed as the discounted value of FCF out to a valuation horizon (H).
The valuation horizon is sometimes called the terminal value and is calculated like PVGO.

$$
\mathrm{PV}=\frac{\mathrm{FCF}_{1}}{(1+r)^{1}}+\frac{\mathrm{FCF}_{2}}{(1+r)^{2}}+\ldots+\frac{\mathrm{FCF}_{H}}{(1+r)^{H}}+\frac{\mathrm{PV}_{H}}{(1+r)^{H}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Valuing a Business

Valuing a Business or Project

$$
\mathrm{PV}=\frac{\mathrm{FCF}_{1}}{(1+r)^{1}}+\frac{\mathrm{FCF}_{2}}{(1+r)^{2}}+\ldots+\frac{\mathrm{FCF}_{H}}{(1+r)^{H}}+\frac{\mathrm{PV}_{H}}{(1+r)^{H}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Valuing a Business

Example

Given the cash flows for Concatenator Manufacturing Division, calculate the PV of near term cash flows, PV (horizon value), and the total value of the firm when $r=$ 10% and $g=6 \%$.

	1	2	3	4	5	6	7	8	9	10
Asset value, start of year	10.00	11.20	12.54	14.05	15.31	16.69	18.19	19.29	20.44	21.67
Earnings	1.20	1.34	1.51	1.69	1.84	2.00	2.18	2.31	2.45	2.60
Investment	1.20	1.34	1.51	1.26	1.38	1.50	1.09	1.16	1.23	1.30
Free cash flow (FCF)	0.00	0.00	0.00	0.42	0.46	0.50	1.09	1.16	1.23	1.30
Asset value, end of year	11.20	12.54	14.05	15.31	16.69	18.19	19.29	20.44	21.67	22.97
Return on assets (R0A)	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Asset growh rate	0.12	0.12	0.12	0.09	0.09	0.09	0.06	0.06	0.06	0.06
Earnings growth rate, from previous year		0.12	0.12	0.12	0.09	0.09	0.09	0.06	0.06	0.06

Valuing a Business

Example - continued

Given the cash flows for Concatenator Manufacturing Division, calculate the PV of near term cash flows, PV (horizon value), and the total value of the firm when $r=10 \%$ and $g=6 \%$.

Horizon value $=\left(\frac{1.09}{.10-.06}\right)=27.3$
$\mathrm{PV}($ horizon value $)=\frac{27.30}{(1.10)^{6}}=15.4$
$\operatorname{PV}(\mathrm{FCF})=\frac{0}{1.1}+\frac{0}{(1.1)^{2}}+\frac{0}{(1.1)^{3}}+\frac{0.42}{(1.1)^{4}}+\frac{0.46}{(1.1)^{5}}+\frac{.50}{(1.1)^{6}}$ $=0.90$

Valuing a Business
Example - continued
$\begin{aligned} & \text { Given the cash flows for Concatenator Manufacturing Division, } \\ & \text { calculate the PV of near term cash flows, PV (horizon value), and } \\ & \text { the total value of the firm when } r=10 \% \text { and } g=6 \% .\end{aligned}$
$\begin{aligned} \mathrm{PV}(\text { business }) & =\mathrm{PV}(\mathrm{FCF})+\mathrm{PV} \text { (horizon value) } \\ & =0.90+15.40 \\ & =\$ 16.3 \text { million }\end{aligned}$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Source: finance.yahoo.com

