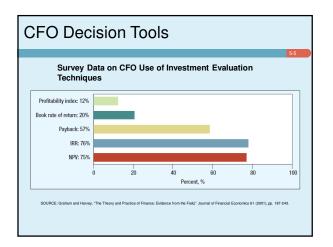
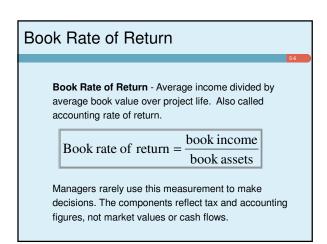


NET PRESENT VALUE AND OTHER INVESTMENT CRITERIA

Topics Covered

- A Review of The Basics
- Payback
- Internal (or Discounted-Cash-Flow) Rate of Return
- Choosing Capital Investments When Resources Are Limited





Three Points to Remember about N

- 1. A dollar today is worth more than a dollar tomorrow
- 2. Net present value depends solely on the *forecasted cash flows* from the project and the *opportunity cost of capital*
- 3. Since present values are all measured in today's dollars, you can add them up

NPV(A + B) = NPV(A) + NPV(B)

Payback

- The payback period of a project is the number of years it takes before the cumulative forecasted cash flow equals the initial outlay.
- The payback rule says only accept projects that "payback" in the desired time frame.
- This method is flawed, primarily because it ignores later year cash flows and the present value of future cash flows.

Payback <u>Example</u> Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of 2 years or less. Payback NPV@ 10% Project C_0 C_1 C_2 C_3 Period - 2000 500 500 5000 А В -2000 500 1800 0 С -2000 1800 500 0

Раубаск	

.

Example

.

Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of 2 years or less.

Project	C_{0}	C_1	C_2	C_3	Payback Period	NPV@ 10%
Α	- 2000	500	500	5000	3	+ 2,624
В	- 2000	500	1800	0	2	- 58
С	- 2000	1800	500	0	2	+50

Internal Rate of Return

Internal Rate of Return (IRR) - Discount rate at which NPV = 0

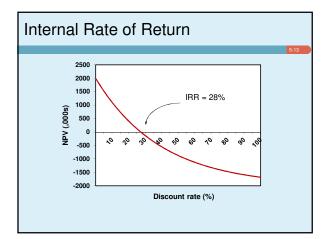
Internal Rate of Return Rule - Invest in any project offering a rate of return that is higher than the opportunity cost of capital

Rate of return = $\frac{\text{payoff}}{\text{investment}} - 1$

Internal Rate of Return

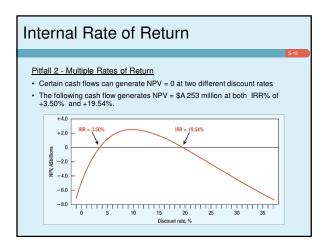
Example

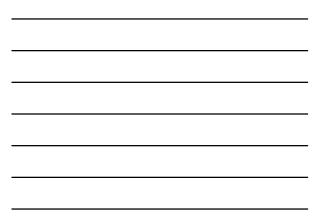
You can purchase a turbo powered machine tool gadget for \$4,000. The investment will generate \$2,000 and \$4,000 in cash flows for two years, respectively. What is the IRR on this investment?

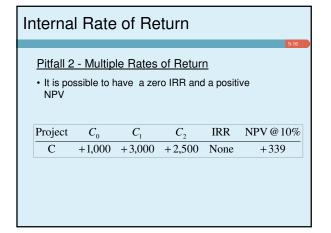

Internal Rate of Return

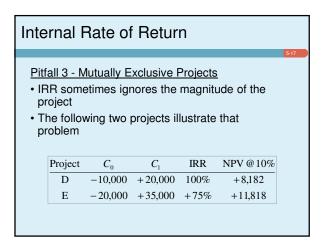
Example

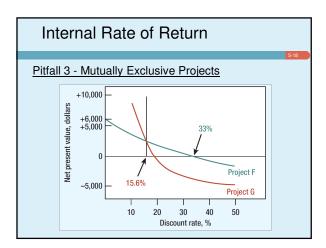
You can purchase a turbo powered machine tool gadget for \$4,000. The investment will generate \$2,000 and \$4,000 in cash flows for two years, respectively. What is the IRR on this investment?


NPV =
$$-4,000 + \frac{2,000}{(1 + IRR)^1} + \frac{4,000}{(1 + IRR)^2} = 0$$


IRR = 28.08%




Inte	rnal F	Rate c	of Ret	urn		
• Wi pro • Th	ith some bject incr	reases as trary to th	vs (as not the disco	ted below ount rate	v), the NPV of increases ship between	
	Project	C_0	C_1	IRR	NPV @10%	
	A	-1,000	+1,500	+50%	+364	
	В	+1.000	-1.500	+50%	-364	



Internal Rate of Return

<u>Pitfall 4 – What Happens When There Is More</u> <u>than One Opportunity Cost of Capital</u>

Term structure assumption

- We assume that discount rates are stable during the term of the project
- This assumption implies that all funds are reinvested at the $\ensuremath{\mathsf{IRR}}$
- · This is a false assumption

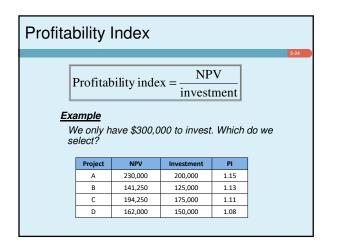
Capital Rationing

<u>Capital Rationing</u> - Limit set on the amount of funds available for investment

<u>Soft Rationing</u> - Limits on available funds imposed by management

<u>Hard Rationing</u> - Limits on available funds imposed by the unavailability of funds in the capital market

Profitability Index


- When resources are limited, the profitability index (PI) provides a tool for selecting amongst various project combinations and alternatives
- A set of limited resources and projects can yield various combinations
- The highest weighted average PI can indicate which projects to select

Profitability Index								
						5-22		
	C	Cash Flo	ows (\$ m	nillions)				
	Project	C_0	C_1	<i>C</i> ₂	NPV@10%			
	A	-10	+30	+5	21			
	В	-5	+5	+20	16			
	C	-5	+5	+15	12			
	D	0	-40	+60	13			

Profitability Index								
Cash Flows (\$ millions)								
	Project	Investment (\$)	NPV (\$)	Profitability Index				
	A	10	21	2.1				
	В	5 16 3.2						
	C	5 12 2.4						
	D	0	13	0.4				
$Profitability index = \frac{NPV}{investment}$								

ability	/ Index ^{inued}			5-25
Project	NPV	Investment	PI	
А	230,000	200,000	1.15	
В	141,250	125,000	1.13	
С	194,250	175,000	1.11	
D	162,000	150,000	1.08	
 WAPI(BD)		st weighted $+ 1.08 \times \left(\frac{150}{300}\right)$		

Profit	abilit	y Index						
						5-26		
<u>Exam</u>	ole - con	tinued						
	Project	NPV	Investment	PI				
	A	230,000	200,000	1.15				
	В	141,250	125,000	1.13				
	С	194,250	175,000	1.11				
	D	162,000	150,000	1.08				
WAF WAF	D162,000150,0001.08Select projects with highest weighted average PIWAPI (BD) = 1.01WAPI (A) = 0.77WAPI (BC) = 1.12							