
$\qquad$
$\qquad$

## Topics Covered

- A Review of The Basics
- Payback
- Internal (or Discounted-Cash-Flow) Rate of Return
- Choosing Capital Investments When Resources Are Limited

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Three Points to Remember about $N$

1. A dollar today is worth more than a dollar tomorrow
2. Net present value depends solely on the forecasted cash flows from the project and the opportunity cost of capital
3. Since present values are all measured in today's dollars, you can add them up

$$
N P V(A+B)=N P V(A)+N P V(B)
$$

## CFO Decision Tools

Survey Data on CFO Use of Investment Evaluation Techniques


SOURCE: Graham and Harver, "The Theory and Pracicie of Finance: Evidence trom the Fied" Jourral of Financial Economics 61 (20001), PQ. 187-243.

## Book Rate of Return

Book Rate of Return - Average income divided by average book value over project life. Also called accounting rate of return.

Book rate of return $=\frac{\text { book income }}{\text { book assets }}$

Managers rarely use this measurement to make decisions. The components reflect tax and accounting figures, not market values or cash flows.

## Payback

- The payback period of a project is the number of years it takes before the cumulative forecasted cash flow equals the initial outlay.
- The payback rule says only accept projects that "payback" in the desired time frame.
- This method is flawed, primarily because it ignores later year cash flows and the present value of future cash flows


## Payback

## Example

Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of 2 years or less.

| Project | $C_{0}$ | $C_{1}$ | $C_{2}$ | $C_{3}$ | Payback <br> Period | NPV@ 10\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | -2000 | 500 | 500 | 5000 |  |  |
| B | -2000 | 500 | 1800 | 0 |  |  |
| C | -2000 | 1800 | 500 | 0 |  |  |

## Payback

## Example

Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of 2 years or less.

| Project | $C_{0}$ | $C_{1}$ | $C_{2}$ | $C_{3}$ | Payback <br> Period | NPV@ 10\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | -2000 | 500 | 500 | 5000 | 3 | $+2,624$ |
| B | -2000 | 500 | 1800 | 0 | 2 | -58 |
| C | -2000 | 1800 | 500 | 0 | 2 | +50 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Internal Rate of Return

Internal Rate of Return (IRR) - Discount rate at which NPV = 0

Internal Rate of Return Rule - Invest in any project offering a rate of return that is higher than the opportunity cost of capital

$$
\text { Rate of return }=\frac{\text { payoff }}{\text { investment }}-1
$$

## Internal Rate of Return

## Example

You can purchase a turbo powered machine tool gadget for $\$ 4,000$. The investment will generate $\$ 2,000$ and $\$ 4,000$ in cash flows for two years, respectively. What is the IRR on this investment?

## Internal Rate of Return

## Example

You can purchase a turbo powered machine tool gadget for $\$ 4,000$. The investment will generate $\$ 2,000$ and \$4,000 in cash flows for two years, respectively. What is the IRR on this investment?
$\mathrm{NPV}=-4,000+\frac{2,000}{(1+\mathrm{IRR})^{1}}+\frac{4,000}{(1+\mathrm{IRR})^{2}}=0$
$\operatorname{IRR}=28.08 \%$
$\qquad$


## Internal Rate of Return

Pitfall 1 - Lending or Borrowing?

- With some cash flows (as noted below), the NPV of the project increases as the discount rate increases
- This is contrary to the normal relationship between NPV and discount rates

| Project | $C_{0}$ | $C_{1}$ | IRR | NPV @ 10\% |
| :---: | :---: | :---: | :---: | :---: |
| A | $-1,000$ | $+1,500$ | $+50 \%$ | +364 |
| B | $+1,000$ | $-1,500$ | $+50 \%$ | -364 |

## Internal Rate of Return

## Internal Rate of Return

Pitfall 2 - Multiple Rates of Return

- It is possible to have a zero IRR and a positive NPV

| Project | $C_{0}$ | $C_{1}$ | $C_{2}$ | IRR | NPV @ 10\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C | $+1,000$ | $+3,000$ | $+2,500$ | None | +339 |

## Internal Rate of Return

Pitfall 3 - Mutually Exclusive Projects

- IRR sometimes ignores the magnitude of the project
- The following two projects illustrate that problem

| Project | $C_{0}$ | $C_{1}$ | IRR | NPV @ $10 \%$ |
| :---: | :---: | :---: | :---: | :---: |
| D | $-10,000$ | $+20,000$ | $100 \%$ | $+8,182$ |
| E | $-20,000$ | $+35,000$ | $+75 \%$ | $+11,818$ |

## Internal Rate of Return

Pitfall 3 - Mutually Exclusive Projects


## Internal Rate of Return

Pitfall 4 - What Happens When There Is More than One Opportunity Cost of Capital

- Term structure assumption
- We assume that discount rates are stable during the term of the project
- This assumption implies that all funds are reinvested at the IRR
- This is a false assumption


## Capital Rationing

Capital Rationing - Limit set on the amount of funds available for investment

Soft Rationing - Limits on available funds imposed by management

Hard Rationing - Limits on available funds imposed by the unavailability of funds in the capital market

## Profitability Index

- When resources are limited, the profitability index ( Pl ) provides a tool for selecting amongst various project combinations and alternatives
- A set of limited resources and projects can yield various combinations
- The highest weighted average Pl can indicate which projects to select
$\qquad$
Profitability Index
Cash Flows (\$ millions)

| Project | $C_{0}$ | $C_{1}$ | $C_{2}$ | NPV@ $10 \%$ |
| :---: | :---: | :---: | :---: | :---: |
| A | -10 | +30 | +5 | 21 |
| B | -5 | +5 | +20 | 16 |
| C | -5 | +5 | +15 | 12 |
| D | 0 | -40 | +60 | 13 |

## Profitability Index

| Project | Investment(\$) | NPV (\$) | Profitability Index |
| :---: | :---: | :---: | :---: |
| A | 10 | 21 | 2.1 |
| B | 5 | 16 | 3.2 |
| C | 5 | 12 | 2.4 |
| D | 0 | 13 | 0.4 |

Profitabilty index $=\frac{\text { NPV }}{\text { investment }}$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Profitability Index |  |  |  |
| :---: | :---: | :---: | :---: |
| Example - continued |  |  |  |
| Project | Npv | Investment | p1 |
| A | 230,000 | 20,000 | 1.15 |
| в | 141,250 | 125000 | 1.13 |
| c | 199,250 | 175,000 | 1.11 |
| - | 162,000 | 150,00 | 1.08 |

Select projects with highest weighted average PI

```
WAPI (BD) = 1.01
WAPI (A) =0.77
WAPI (BC)=1.12
```

