MAKING INVESTMENT DECISIONS
WITH THE NET PRESENT VALUE RULE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Topics Covered

\qquad

- Applying the Net Present Value Rule
\qquad
- Example - IM\&C Fertilizer Project
- Using the NPV Rule to Choose among Projects - The Investment Timing Problem
- The Choice between Long- and Short-Lived Equipment
- When to Replace an Old Machine

Applying NPV Rule

Rule 1: Only Cash Flow Is Relevant

- Capital Expenses
- Record capital expenditures when they occur - To determine cash flow from income, add back depreciation and subtract capital expenditure
- Working Capital
- Difference between company's short-term assets and liabilities
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What To Discount

Points to Watch Out For

Rule 2: Estimate Cash Flows on an Incremental Basis
© Remember to include taxes
D Do not confuse average with incremental payoffs

- Include all incidental effects
- Forecast sales today and recognise after-sales cash flows to come later
- Include opportunity costs
- Forget sunk costs
- Beware of allocated overhead costs
- Remember salvage value

Inflation

Rule 3 - Treat Inflation Consistently

- Be consistent in how you handle inflation!!
- Use nominal interest rates to discount nominal cash flows
- Use real interest rates to discount real cash flows
- You will get the same results, whether you use
\qquad
\qquad
\qquad
\qquad nominal or real figures

```
Inflation
```


Example

```
You invest in a project that will produce real cash flows of -\$100 in year zero and then \$35, \(\$ 50\), and \(\$ 30\) in the three respective years. If the nominal discount rate is \(15 \%\) and the inflation rate is \(10 \%\), what is the NPV of the project?
Real discount rate \(=\underline{1+\text { nominal discount rate }}-1\)
\(1+\) inflation rate
```

\qquad
\qquad
\qquad
\qquad
\qquad

Inflation

Example - Nominal figures

Year		Cash Flow
0	-100	$\frac{\text { PV @ 15\% }}{-100}$
1	$35 \times 1.10=38.5$	$\frac{38.5}{\frac{3.15}{1.15}}=33.48$
2	$50 \times 1.10^{2}=60.5$	$\frac{60.5}{1.15^{2}}=45.75$
3	$30 \times 1.10^{3}=39.9$	$\frac{39.9}{\frac{1.15^{3}}{}=26.23}$
		$\frac{\$ 5.5}{}$

Inflation

Example - continued

You invest in a project that will produce real cash flows of -\$100 in year zero and then \$35, \$50, and \$30 in the three respective years. If the nominal discount rate is 15% and the inflation rate is 10%, what is the NPV of the project?

Real discount rate $=\frac{1+\text { nominal discount rate }}{1+1}$

$$
1+\text { inflation rate }
$$

$$
=\frac{1.15}{1.10}-1=.045
$$

Rule 4: Separate Investment and Financing Decision

Question: How should you treat the proceeds from the debt issue and the interest and principal payments on the debt?

Answer: You should neither subtract the debt proceeds from the required investment nor recognise the interest and principal payments on the debt as cash outflows.

IM\&C's Guano Project

Revised projections (\$1000s) reflecting inflation
\qquad
\qquad
\qquad
Capital investment
Accurnulated deppeciatio
Yearend book value
Working capital
Total book value $(3+4)$
Cast t foods sole

Cost t f goods s 8 a
Other costs
Depreciation

Depreciation
Pretax roffitit $(6-7-8-9$

 Pretax proffit
 Profitatefer tax (\(10-11\))
 | | |
| :--- | :--- |
| | |
| | |
| | |
| | |
| | |

Period							
0	1	2	3	4	5	6	7
10,000							-1,949
	1,583	3.16	4,750	6,333	7,917	0,500	0
10,000	8,417	6,83	5,250	3,667	2,083	500	0
	550	1,289	3,261	4,990	3,583	2,002	0
	8,967	${ }_{8,122}$	8,511	8,557	5,666	2,502	0
	523	12.887	32,610	48,901	35,834	19,717	
	837	7,729	19,552	29,345	21,492	11,330	
4,000	2,200	1,210	1,331	1,464	1,611	1,772	
	1,583	1.583	1,583	1,583	1,583	1,563	0
-4,000	-4,097	2,365	10,144	16,509	11,148	4,532	$1449{ }^{\text {d }}$
-1,400	-1,434	828	3,550	5,778	3,902	1,566	507
-2600	-2,663	1.537	6,593	10,731	7,246	2,946	942

\qquad
\qquad
\qquad
\qquad
IM\&C's Guano Project
• NPV using nominal cash flows
NPV $=-12,000-\frac{1,630}{1.20}+\frac{2,381}{(1.20)^{2}}+\frac{6,205}{(1.20)^{3}}+\frac{10,685}{(1.20)^{4}}+\frac{10,136}{(1.20)^{5}}$

$+\frac{6,110}{(1.20)^{6}}+\frac{3,444}{(1.20)^{7}}=3,520$ or $\$ 3,520,000$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

IM\&C's Guano Project

Cash flow analysis (\$1000s)

	Period								
		0	1	2	3	4	5	6	7
	Capital investment and disposal	-10,000	0	0	0	0	0	0	1,442
2	Change in working captal		-550	-739	-1,972	-1,629	1,307	1,581	2,002
3	Sales	0	523	12,887	32,610	48,901	35,834	19,717	0
4	Cost of goods sold	0	837	7729	19,552	29,345	21,492	11,880	0
5	Other costs	4,000	2,200	1.210	1,331	1.464	1,611	1,772	0
6	Tax on income	-1,400	-1,434	828	3,550	5.778	3,902	1,586	
7	Operating cash flow (3-4-5-6)	-2,600	-1,080	3.120	8.17	12,314	8,829	4.529	
8	Netcash flow ($1+2+7$)	-12,600	-1,630	2,381	6,205	10,685	10,136	6,110	3,444
9	Present value at 20%	$-12,600$	-1,358	1,654	3,591	5,153	4,074	2,046	961
10	Net present value $=$	+3,520	(sum of						

IM\&C's Guano Project

Details of cash flow forecast in year 3 (\$1000s)

Cash Flows	Data from Forecasted Income Statement		Working-Capital Changes
Cash inflow	Sales		Increase in accounts receivable
\$31,110	32,610	-	1,500
Cash outflow	Cost of goods sold, other costs, and taxes		Increase in inventory net of increase in accounts payable
\$24,905	$(19,552+1,331+3,550)$		(972-500)
$\begin{aligned} \hline \text { Net cash flow } & =\text { cash inflow }- \text { cash outflow } \\ \$ 6,205 & =31,110-24,905 \end{aligned}$			

IM\&C's Guano Project

Tax depreciation	Tax Depreciation Schedules by Recovery-Period Class							
		Year(s)	3 -year	5 -year	7 -year	10-year	15-year	20-year
allowed under	1	1	33.33	20.00	14.29	10.00	5.00	3.75
the modified	2	2	44.45	32.00	24.49	18.00	9.50	7.22
accelerated cost	3	3	14.81	19.20	17.49	14.40	8.55	6.68
	4	4	7.41	11.52	12.49	11.52	7.70	6.18
recovery system	5	5		11.52	8.93	9.22	6.93	5.71
(MACRS)	6	6		5.76	8.92	7.37	6.23	5.28
	7	7			8.93	6.55	5.90	4.89
(Figures in percent of	8	8			4.46	6.55	5.90	4.52
	9	9				6.56	5.91	4.46
	10	10				6.55	5.90	4.46
	11	11				3.28	5.91	4.46
	12	12					5.90	4.46
	13	13					5.91	4.46
	14	14					5.90	4.46
	15	15					5.91	4.46
	16	16					2.95	4.46
	17	17-20						4.46
	18	21						2.23

| | | \mathbf{c} |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Saless | | |

\qquad
\qquad
\qquad

IM\&C's Guano Project

Revised cash flow analysis (\$1000s)

		Period							
		0	1	2	3	4	5	6	7
1	Capital investment and disposal	-10,000	0	0	0	0	0	0	1,949
2	Change in working capital		-550	739	-1,972	-1,629	1,307	1,581	2,002
3	Sales ${ }^{\text {a }}$	0	523	12,887	32,610	48,901	35,834	19,717	0
4	Cost of goods soldn	0	837	7,729	19,552	29,345	21,492	11,330	0
5	Other costs ${ }^{\text {a }}$	4,000	2,200	1,210	1.331	1,464	1,611	1,772	0
6	Tax ${ }^{\text {b }}$	-1,400	-1,580	262	3,432	5,929	4,053	1,939	682
7	Opeating cashtiov (3-4-5-6)	-2,600	-934	3,686	8,295	12,163	8,678	4,176	-682
8	Net cash tlow (1+2+7)	$-12,600$	-1,484	2,947	6,323	10,534	9,985	5,757	3,269
9	Present value at 20%	-12,600	-1,237	2,047	3,659	5,080	4,013	1,928	912
10	Net presersit valus $=$	3,802	(sum of 9)						

\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{|c|}\hline \text { The Investment Timing Decision } \\ \text { - Problem 1: Investment Timing Decision } \\ \text { o Some projects are more valuable if undertaken in } \\ \text { the future } \\ \text { o Examine start dates }(t) \text { for investment and calculate } \\ \text { net future value for each date } \\ \checkmark \text { Discount net values back to present } \\ \text { Net present value of investment if undertaken at date } t \\ \text { net future value at date } t\end{array}(1+r)^{t}\right)$

Using the NPV Rule to Choose among
Projects
Problem 2: The Choice between Long- and
Short-Lived Equipment
Equivalent Annual Cash Flow - The cash flow
per period with the same present value as the
actual cash flow as the project.
Equivalent annual cost (annuity) $=\frac{\text { present value of cash flows }}{\text { annuity factor }}$

Equivalent Annual Cash Flows

Example

Given the following COSTS from operating two machines and a 6\% cost of capital, which machine has the lower equivalent annual cost?

| Year | | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Mach. | 0 1 2 3 PV@6\% E.A.C.
 A 15 5 5 5 28.37
 B 10 6 6 21.00 | 10.61 | | | |

\qquad

Equivalent Annual Annuity

Example (with a twist)							
Select one of the two following projects, based on highest "equivalent annual annuity" ($r=$ 9%).							
Project	C_{0}	C_{1}	C_{2}	C_{3}	C_{4}	NPV	EA
A	-15	4.9	5.2	5.9	6.2	2.82	87
B	-20	8.1	8.7	10.4		2.78	1.10

Using the NPV Rule to Choose among Projects

Problem 3: When to Replace an Old Machine

Example

A machine is expected to produce a net inflow of $\$ 4,000$ this year and $\$ 4,000$ next year before breaking. You can replace it now with a machine that costs $\$ 15,000$ and will produce an inflow of $\$ 8,000$ per year for three years. Should you replace now or wait a year?

\qquad
Using the NPV Rule to Choose among Projects
Problem 4: Cost of Excess Capacity

Example

A computer system costs $\$ 500,000$ to buy and operate at a discount rate of 6% and lasts five years.
\checkmark Equivalent annual cost of $\$ 118,700$
\checkmark Undertaking project in year 4 has a present value of $118,700 /(1.06)^{4}$, or about $\$ 94,000$

