

Measuring Risk

Variance

- Average value of squared deviations from mean
- A measure of volatility

Standard Deviation

- Average value of squared deviations from mean
- A measure of volatility

Measur	ing Risk			
				7-10
Coin To	oss Game-cal	culating v	ariance ar	nd
Stanual	u uevialion			
(1) Percent Rate of Return (<i>r̃</i>)	(2) Deviation from Expected Return ($\tilde{r} - r$)	(3) Squared Deviation $(\tilde{r} - r)^2$	(4) Probability	(5) Probability × Squared Deviation
		000	0.05	005
+40	+30	900	0.25	225
+40 +10	+30 0	900 0	0.25 0.5	225 0
+40 +10 -20	+30 0 -30	900 0 900	0.25 0.5 0.25	225 0 225
+40 +10 -20	+30 0 -30	900 0 900 Vai	0.25 0.5 0.25 riance = expected va	225 0 225 Ilue of $(\tilde{r} - r)^2 = 450$

L

Measuring Risk -40 -Standard deviation, % 30 52 53 15 30 -25 -20 -0 -Number of stocks

Portfolio Risk					
The var these fo	iance of a two stock por our boxes	tfolio is the sum of	7-18		
	Stock 2				
Stock 1	$\mathbf{x}_{1}^{2}\mathbf{\sigma}_{1}^{2}$				
Stock 2	$\begin{array}{c} \mathbf{x}_{1}\mathbf{x}_{2}\boldsymbol{\sigma}_{12} = \\ \mathbf{x}_{1}\mathbf{x}_{2}\boldsymbol{\rho}_{12}\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{2} \end{array}$	$x_{2}^{2}\sigma_{2}^{2}$			

Portfolio Risk Example Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The expected return on your portfolio is: Expected return on your portfolio is: Expected return = (.60×8.0) + (.40×18.8) = 12.3%

Portfolio Risk						
		7-20				
<u>Example</u>						
Suppose y Ford. The o on Ford is annualised Assume a portfolio va	Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The standard deviation of their annualised daily returns are 13.2% and 31.0%, respectively. Assume a correlation coefficient of 1.0 and calculate the portfolio variance.					
	JNJ	Ford				
JNJ	$\frac{1000}{\text{JNJ}} x_1^2 \sigma_1^2 = (.60)^2 \times (13.2)^2 \begin{array}{c} x_1 x_2 \rho_{12} \sigma_1 \sigma_2 = .40 \times .60 \\ \times 1 \times 13.2 \times 31.0 \end{array}$					
Ford	$ \begin{array}{c} x_1 x_2 \rho_{12} \sigma_1 \sigma_2 = .40 \times .60 \\ \times 1 \times 13.2 \times 31.0 \end{array} $	$x_2^2 \sigma_2^2 = (.40)^2 \times (31.0)^2$				

7-21

Portfolio Risk

<u>Example</u>

Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The standard deviation of their annualized daily returns are 13.2% and 31.0%, respectively. Assume a correlation coefficient of 1.0 and calculate the portfolio variance.

Portfolio variance = $[(.60)^2 \times (13.2)^2]$ + $[(.40)^2 \times (31.0)^2]$ + $2(.40 \times .60 \times 1 \times 13.2 \times 31.0) = 412.90$

Standard deviation = $\sqrt{412.90} = 20.3 \%$

Portfolio Risk Another Example Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The standard deviation of their annualized daily returns are 13.2% and 31.0%, respectively. Assume a correlation coefficient of -1.00 and calculate the portfolio variance. Portfolio variance = $[(.60)^2 \times (13.2)^2]$ $+ [(.40)^2 \times (31.0)^2]$ $+ 2(.40 \times .60 \times (-1.00) \times 13.2 \times 31.0) = 20.1$ Standard deviation = $\sqrt{20.10} = 4.50\%$

Portfolio Risk						
			7-25			
	Correlation Coefficie	ent = .4				
σ	% of Portfolio	Avg Return				
28	60%	15%				
42	40%	21%				
Big Corp 42 40% 21% Standard deviation = weighted avg = <u>33.6</u> 33.6 33.6 Standard deviation = Portfolio = <u>28.1</u> 8 Real standard deviation: = (28 ²)(.6 ²) + (42 ²)(.4 ²) + 2(.4)(.6)(28)(42)(.4) = <u>28.1</u> CORRECT Return : $r = (15\%)(.60) + (21\%)(.4) = 17.4\%$						
	$\frac{\sigma}{28}$ $\frac{28}{42}$ $\frac{1}{2}$ $\frac{\sigma}{1} \text{ CORRE}$ $\frac{\sigma}{1} \text{ CORRE}$	Risk Correlation Coefficients σ % of Portfolio 28 60% 42 40% Hation = weighted avg = <u>33.6</u> Hation = Portfolio = <u>28.1</u> deviation: ${}^{2}(.6^{2}) + (42^{2})(.4^{2}) + 2(.4)(.6)(28)(42)(42)(42)(42)(42)(42)(42)(42)(42)(42$	Risk $\begin{array}{l} \text{Correlation Coefficient = .4} \\ \underline{\sigma \% \text{ of Portfolio} Avg \text{ Return}} \\ \underline{28 60\% 15\%} \\ \underline{42 40\% 21\%} \\ \text{Addition = weighted avg = 33.6} \\ \text{Addition = Portfolio = 28.1} \\ \text{Addition = Portfolio = 28.1} \\ \text{Addition = Portfolio = 28.1} \\ \text{Addition = Portfolio = 17.4\%} \\ Additio$			

Portfolio	Risk						
				7-26			
<u>Example</u>		Correlation Coeffic	eient = .4				
<u>Stocks</u>	σ	% of Portfolio	Avg Return				
ABC Corp	28	60%	15%				
Big Corp	42	40%	21%				
Standard dev	viation = v	weighted $avg = 33.6$					
Standard dev	viation = I	portfolio = 28.1					
Beturn – weighted avg – portfolio – 17.4%							
Lat'a add	Latio add Naw Carra ata ak ta tha nartfalia						
Let's add	Let s add New Corp. stock to the portfollo						

Portfolio Risk						
				7-27		
Example	Cc	prrelation Coefficien	t = .3			
Stocks	σ	% of Portfolio	Avg Return			
Portfolio	28.1	50%	17.4%			
New Corp	30	50%	19%			
NEW standar NEW standar NEW return =	d deviation = v d deviation = p weighted avg	weighted avg = 31.8 portfolio = 23.43 = portfolio = 18.20	80 <u>%</u>			
NOTE: Hi	gher return	& Lower risk				
How did w	ve do that?	DIVER	SIFICATION			

7-29

Portfolio Risk, Beta

Market Portfolio - Portfolio of all assets in the economy. In practice a broad stock market index, such as the S&P Composite, is used to represent the market.

Beta - Sensitivity of a stock's return to the return on the market portfolio.

Portfolio Risk, Beta

The return on Ford stock changes on average by 1.44% for each additional 1% change in the market return. Beta is therefore 1.44.

Portfolio Risk, Beta

The green line shows that a well diversified portfolio of randomly selected stocks ends up with $\beta = 1$ and a standard deviation equal to the market's-in this case 20%. The upper red line shows that a well diversified portfolio with $\beta = 1.5$ has a standard deviation of about 30%—1.5 times that of the market. The lower blue line shows that a well-diversified portfolio with β = .5 has a standard deviation of about 10%-half that of the market.

Portfolio Risk, Beta

7-33

Calculating the variance of the market returns and the covariance between the returns on the market and those of Anchovy Queen. Beta is the ratio of the variance to the covariance (i.e., $\beta = \sigma_{im} / \sigma_m^2$)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
2	(1)	(=)	(0)	(-7)	(0)	(0)	Product of
				Deviation	Deviation	Squared	deviations
				from	from average	deviation	from average
		Market	Anchovy Q	average	Anchovy Q	from average	returns
	Month	return	return	market return	return	market return	(cols 4 $ imes$ 5)
	1	- 8%	- 11%	- 10	- 13	100	130
	2	4	8	2	6	4	12
	3	12	19	10	17	100	170
10	4	- 6	- 13	- 8	– 15	64	120
11	5	2	3	0	1	0	0
12	6	8	6	6	4	36	24
13	Average	2	2		Total	304	456
14				Varian			
15				Covari			
16				Beta (β)			