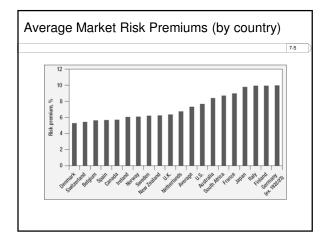
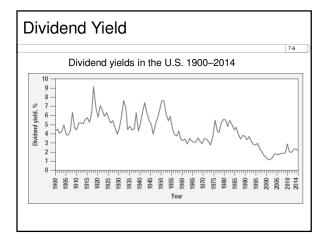
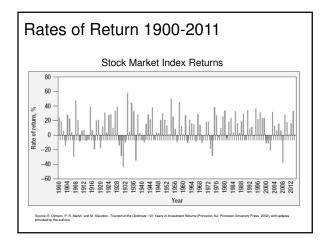
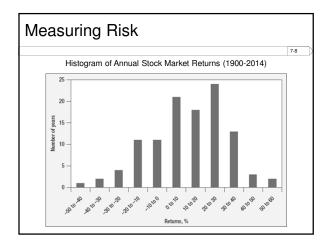

Topics Covered

7-2


- Over a Century of Capital Market History in One Easy Lesson
- Measuring Portfolio Risk
- Calculating Portfolio Risk
- How Individual Securities Affect Portfolio Risk
- Diversification & Value Additivity





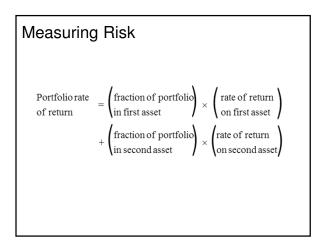


Measuring Risk

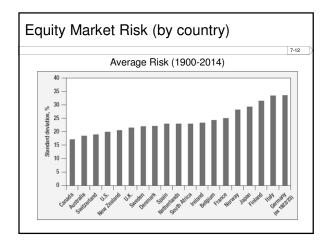
Variance

- Average value of squared deviations from mean

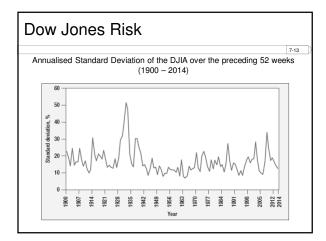
7-9

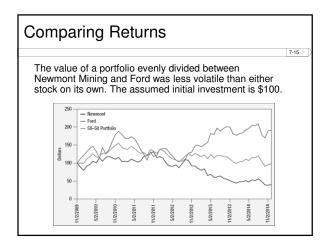

- A measure of volatility

Standard Deviation

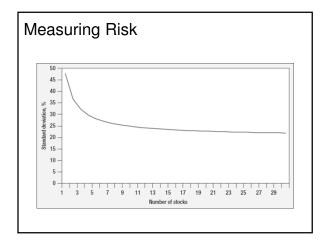

- Average value of squared deviations from mean
- A measure of volatility

Measur	ing Risk			7-10
	oss Game-cal d deviation	culating v	ariance ar	
(1) Percent Rate of Return (r̃)	(2) Deviation from Expected Return ($\tilde{r} - r$)	(3) Squared Deviation $(\tilde{r} - r)^2$	(4) Probability	(5) Probability × Squared Deviation
+40	+30	900	0.25	225
+10	0	0	0.5	0
-20	-30	900	0.25	225
		Va	riance = expected va	lue of $(\tilde{r} - r)^2 = 450$
		Standa	and deviation = \sqrt{var}	iance = $\sqrt{450} = 21$

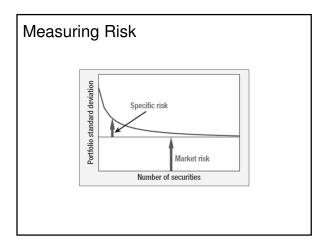


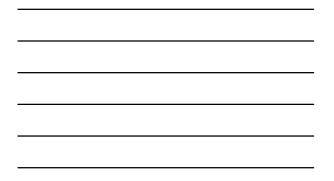


Measuring Risk <u>Diversification</u> - Strategy designed to reduce risk by spreading the portfolio across many investments.


<u>Unique Risk</u> - Risk factors affecting only that firm. Also called "diversifiable risk."


<u>Market Risk</u> - Economy-wide sources of risk that affect the overall stock market. Also called "systematic risk."


7-14



Portfolio	Risk	
	iance of a two stock por our boxes	tfolio is the sum of
	Stock 1	Stock 2
Stock 1	$x_{1}^{2}\sigma_{1}^{2}$	$x_{1}x_{2}\sigma_{12} =$
		$x_1 x_2 \rho_{12} \sigma_1 \sigma_2$
Stock 2	$\begin{array}{rcl} x_1 x_2 \sigma_{12} &= \\ & x_1 x_2 \rho_{12} \sigma_1 \sigma_2 \end{array}$	$x_2^2 \sigma_2^2$
	$x_{1}x_{2}\rho_{12}\sigma_{1}\sigma_{2}$	2 2

Portfolio Risk

Example

Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The expected return on your portfolio is:

7-19

Expected return = $(.60 \times 8.0) + (.40 \times 18.8) = 12.3\%$

Portfolio Risk

Example

Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The standard deviation of their annualised daily returns are 13.2% and 31.0%, respectively. Assume a correlation coefficient of 1.0 and calculate the portfolio variance.

	JNJ	Ford
INI	$x_1^2\sigma_1^2 = (.60)^2 \times (13.2)^2$	$x_1 x_2 \rho_{12} \sigma_1 \sigma_2 = .40 \times .60$
		×1×13.2×31.0
Ford	$\begin{array}{l} x_1 x_2 \rho_{12} \sigma_1 \sigma_2 = .40 \times .60 \\ \times 1 \times 13.2 \times 31.0 \end{array}$	$x_2^2 \sigma_2^2 = (.40)^2 \times (31.0)^2$
1010	×1×13.2×31.0	$\left \begin{array}{c} x_2 v_2 = (.40) \times (01.0) \end{array} \right $

Portfolio Risk

<u>Example</u>

Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The standard deviation of their annualized daily returns are 13.2% and 31.0%, respectively. Assume a correlation coefficient of 1.0 and calculate the portfolio variance.

Portfolio variance= $[(.60)^2 \times (13.2)^2]$ + $[(.40)^2 \times (31.0)^2]$ + $2(.40 \times .60x1 \times 13.2 \times 31.0) = 412.90$

Standard deviation = $\sqrt{412.90} = 20.3\%$

Portfolio Risk

Example

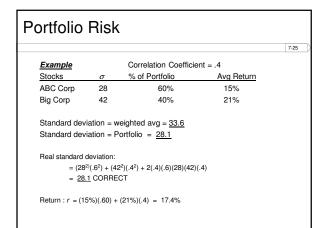
Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The standard deviation of their annualized daily returns are 13.2% and 31.0%, respectively. Assume a correlation coefficient of .019 and calculate the portfolio variance.

Portfolio variance = $[(.60)^2 \times (13.2)^2]$ + $[(.40)^2 \times (31.0)^2]$ + $2(.40 \times .60 \times 0.19 \times 13.2 \times 31.0) = 253.80$

Standard deviation = $\sqrt{253.80}$ = 15.90 %

Portfolio Risk

Another Example

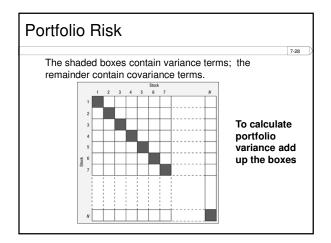

Suppose you invest 60% of your portfolio in JNJ and 40% in Ford. The expected dollar return on your JNJ is 8.0% and on Ford is 18.8%. The standard deviation of their annualized daily returns are 13.2% and 31.0%, respectively. Assume a correlation coefficient of -1.00 and calculate the portfolio variance.

Portfolio variance = $[(.60)^2 \times (13.2)^2]$ + $[(.40)^2 \times (31.0)^2]$

 $+2(.40 \times .60 \times (-1.00) \times 13.2 \times 31.0) = 20.1$

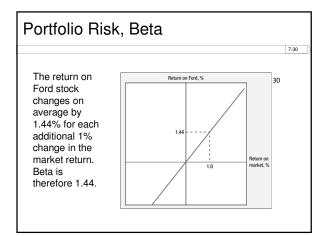
Standard deviation = $\sqrt{20.10} = 4.50\%$

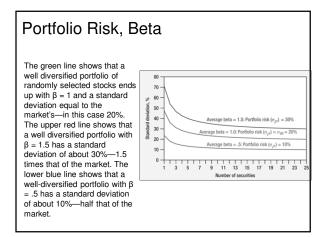

Portfolio Risk Expected portfolio return = $(x_1r_1) + (x_2r_2)$ Portfolio variance = $x_1^2\sigma_1^2 + x_2^2\sigma_2^2 + 2(x_1x_2\rho_{12}\sigma_1\sigma_2)$



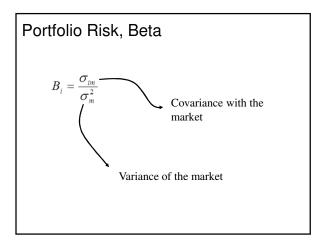
Portfolio Risk						
				7-26		
Example		Correlation Coeffic	ient = .4			
Stocks	σ	% of Portfolio	Avg Return			
ABC Corp	28	60%	15%			
Big Corp	42	40%	21%			
Standard dev Return = weig	viation = ghted av	weighted avg = <u>33.6</u> portfolio = <u>28.1</u> g = portfolio = <u>17.4%</u> <u>Corp. stock to th</u>	ne portfolio			

				7-2
Example	c	orrelation Coefficient	t = .3	
Stocks	σ	% of Portfolio	Avg Return	
Portfolio	28.1	50%	17.4%	
New Corp	30	50%	19%	
NEW standar	d deviation =	weighted avg = 31.8 portfolio = 23.43 g = portfolio = 18.20		
NOTE: Hi	aher retur	n & Lower risk		




Portfolio Risk, Beta

<u>Market Portfolio</u> - Portfolio of all assets in the economy. In practice a broad stock market index, such as the S&P Composite, is used to represent the market.


<u>Beta</u> - Sensitivity of a stock's return to the return on the market portfolio.

Portfo	lic	א מ	isk	, Be	eta				
									7-33
betwee	n th	ie retu	irns or	the ma	arket and	d those o	f Anchov	ovarianc y Queen $\beta = \sigma_{im} / \sigma$	
							10		
	1	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	2							Product of	
	3				Deviation	Deviation	Squared	deviations	
	4				from	from average	deviation	from average	
	5		Market	Anchovy Q	average	Anchovy Q	from average	returns	
			return	return	market return	return	market return	(cols 4×5)	
	6	Month							
	6 7	1	- 8%	- 11%	- 10	- 13	100	130	
	6 7 8	1 2	4	8	- 10 2	- 13	4	130	
	6 7 8 9	1			- 10	- 13		130	
	6 7 8 9 10	1 2	4	8	- 10 2	- 13	4	130	
	6 7 8 9 10 11	1 2 3	4	8	- 10 2 10	- 13 6 17	4	130 12 170	
	6 7 9 10 11 12	1 2 3 4	4 12 - 6	8 19 - 13	- 10 2 10 - 8	- 13 6 17 - 15	4 100 64	130 12 170 120	
	11	1 2 3 4 5	4 12 - 6 2	8 19 - 13 3	- 10 2 10 - 8 0 6	- 13 6 17 - 15 1 4 Total	4 100 64 0 36 304	130 12 170 120 0	
	11 12	1 2 3 4 5 6	4 12 -6 2 8	8 19 -13 3 6	- 10 2 10 - 8 0 6	- 13 6 17 - 15 1 4	4 100 64 0 36 304	130 12 170 120 0 24	
	11 12 13	1 2 3 4 5 6	4 12 -6 2 8	8 19 -13 3 6	- 10 2 10 - 8 0 6 Varian	- 13 6 17 - 15 1 4 Total	4 100 64 0 36 304 = 50.67	130 12 170 120 0 24	

