DOES DEBT POLICY MATTER?

Topics Covered

17-2

- The Effect of Financial Leverage in a Competitive Tax-Free Environment
- Financial Risk and Expected Returns
- The Weighted Average Cost of Capital
- A Final Word on After Tax WACC

M&M (Debt Policy Doesn't Matter)

17-3

- Modigliani & Miller
 - oWhen there are no taxes and capital markets function well, it makes no difference whether the firm borrows or individual shareholders borrow. Therefore, the market value of a company does not depend on its capital structure.

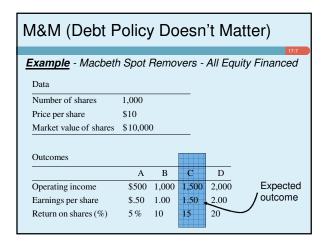
M&M (Debt Policy Doesn't Matter)

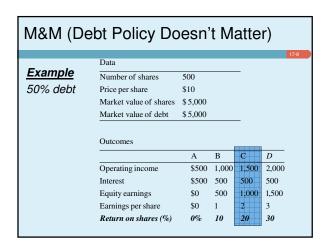
17-4

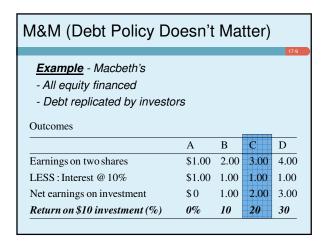
Assumptions

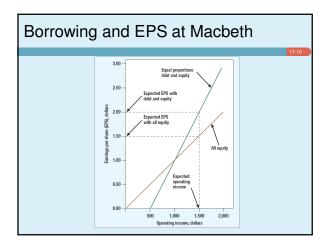
- By issuing 1 security rather than 2, company diminishes investor choice. This does not reduce value if:
 - o Investors do not need choice, OR
 - o There are sufficient alternative securities
- · Capital structure does not affect cash flows, e.g...
 - o No taxes
 - o No bankruptcy costs
 - o No effect on management incentives

M&M (Debt Policy Doesn't Matter)




Dollar Investment	Dollar Return
$.01V_{\scriptscriptstyle U}$.01×profits


	Dollar Investment	Dollar Return
Debt	$.01D_{L}$.01×interest
Equity	$.01E_{L}$	$.01 \times (profits - interest)$
Total	$.01(D_L + E_L)$.01×profits
	$=.01V_{L}$	


M&M (Debt Policy Doesn't Matter)

	Dollar Investment	Dollar Return
Borrowing	$01D_{L}$	01×interest
Equity	$.01V_{U}$.01×profits
Total	$.01(V_U + D_L)$.01×(profits - interest)

MM's Proposition I If capital markets are doing their job, firms cannot increase value by tinkering with capital structure. V is independent of the debt ratio. An Everyday Analogy It should cost no more to assemble a chicken than to buy one whole

Proposition I and Macbeth		
Example - Macbeth continued		
	Current Structure:	Proposed Structure :
	Current Structure:	Proposed Structure: Equal Debt and Equity
Expected earnings per share (\$)		•
	All Equity	Equal Debt and Equity

Leverage and Returns

17-13

Expected return on assets = $r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$

$$r_A = \left(\frac{D}{D+E} \times r_D\right) + \left(\frac{E}{D+E} \times r_E\right)$$

M&M Proposition II

17-14

Example - Macbeth continued

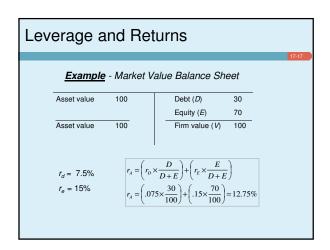
$$r_E = r_A + (r_A - r_D) \frac{D}{E}$$

 $r_E = r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$ = $\frac{1500}{10000} = .15$

M&M Proposition II

17-15


Example - Macbeth continued


 $r_E = r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$

$$=\frac{1500}{10,000}=.15$$

$$r_E = r_A + (r_A - r_D) \frac{D}{E}$$

$$r_E = .15 + (.15 - .10) \frac{5000}{5000}$$
$$= .20 \text{ or } 20\%$$

Leverage and Re	eturns
<u>Example</u> - Mark What happens to <i>R_e</i> when de	et Value Balance Sheet
Asset value 100	Debt (<i>D</i>) 40 Equity (<i>E</i>) 60
Asset value 100	Firm value (V) 100
r_d = 7.5% changes to 7.8. r_e = ??	75% $.1275 = \left(.07875 \times \frac{40}{100}\right) + \left(r_e \times \frac{60}{100}\right)$ $r_e = 16.0\%$

Leverage and Returns

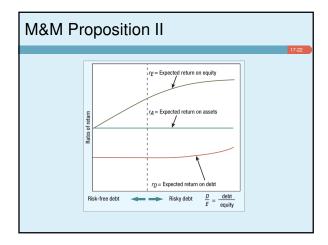
17-19

$$B_{A} = \left(B_{D} \times \frac{D}{V}\right) + \left(B_{E} \times \frac{E}{V}\right)$$

$$B_E = B_A + \frac{D}{V} (B_A - B_D)$$

WACC

WACC


 r_D

17-20

WACC is the traditional view of capital structure, risk and return.

$$WACC = r_A = \left(r_D \times \frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

r r_{E} $r_{A} = WACC$

After-Tax WACC	
	17-24
 The tax benefit from interest expense deductibility must be included in the cost of funds 	
 This tax benefit reduces the effective cost of debt by a factor of the marginal tax rate 	
$WACC = \left(r_D \times \frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$	
Old Formula	

After-Tax WACC

17-25

Tax-Adjusted Formula

WACC =
$$r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

After-Tax WACC

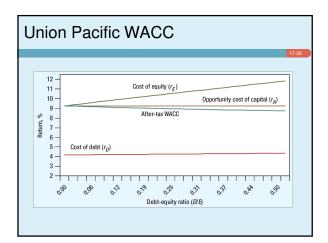
17-26

Example - Union Pacific

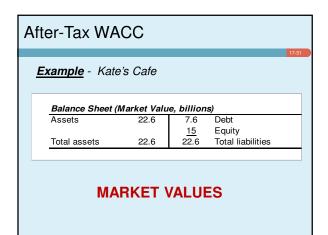
The firm has a marginal tax rate of 35%. The cost of equity is 9.8% and the pretax cost of debt is 4.2%. Given the book and market value balance sheets, what is the tax-adjusted WACC?

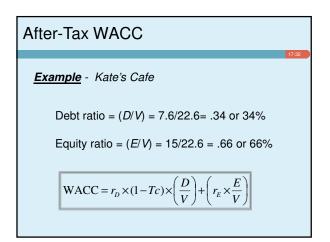
After-Tax WACC

17-27


Example - Union Pacific

Debt ratio = (D/V) = 9.4%


Equity ratio = (E/V) = 90.6%


WACC =
$$r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

After-Tax WACC Example - Union Pacific WACC = $4.2 \times (1 - .35) \times .094 \times 9.8 + .906$ = 9.1%

After-Tax WACC Example - Kate's Cafe Kate's Café has a marginal tax rate of 35%. The cost of equity is 10.0% and the pretax cost of debt is 5.5%. Given the book and market value balance sheets, what is the tax adjusted WACC?

After-Ta	x WACC
Example	- Kate's Cafe
WA	WACC = $r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$ $ACC = .055 \times (135)(.34) + .10(.66)$ $= .078$ $= 7.8\%$