DOES DEBT POLICY MATTER?	- - - -	
Topics Covered	_	
The Effect of Financial Leverage in a Competitive Tax-Free Environment	_	
Financial Risk and Expected Returns The Wainland Average Control	_	
The Weighted Average Cost of CapitalA Final Word on After Tax WACC	_	
	_	

M&M (Debt Policy Doesn't Matter)

17-

- Modigliani & Miller
 - oWhen there are no taxes and capital markets function well, it makes no difference whether the firm borrows or individual shareholders borrow. Therefore, the market value of a company does not depend on its capital structure.

M&M (Debt Policy Doesn't Matter)

17-4

Assumptions

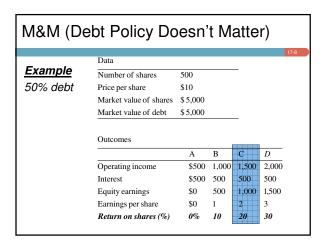
- By issuing 1 security rather than 2, company diminishes investor choice. This does not reduce value if:
 - o Investors do not need choice, OR
 - o There are sufficient alternative securities
- · Capital structure does not affect cash flows, e.g...
 - o No taxes
 - o No bankruptcy costs
 - $_{\odot}\,\text{No}$ effect on management incentives

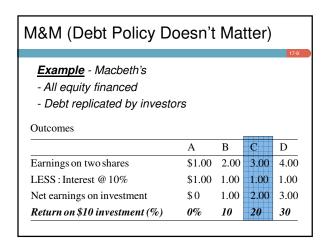
M&M (Debt Policy Doesn't Matter)

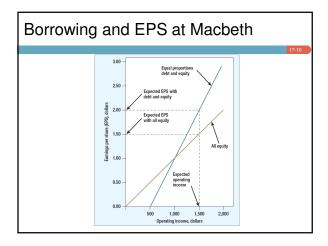
17-5

Dollar Investment	Dollar Return
$.01V_{_U}$.01×profits

	Dollar Investment	Dollar Return
Debt	$.01D_{L}$.01×interest
Equity	$.01E_{L}$	$.01 \times (profits - interest)$
Total	$.01(D_L + E_L)$.01×profits
	$=.01V_{L}$	


D-11- - D-11- - D-4----


M&M (Debt Policy Doesn't Matter)


 $\frac{\text{Dollar Investment}}{.01E_L} \frac{\text{Dollar Return}}{.01 \times (\text{profits - interest})}$ $= .01(V_L - D_L)$

	Dollar Investment	Dollar Return
Borrowing	$01D_{L}$	01×interest
Equity	$.01V_{\scriptscriptstyle U}$.01×profits
Total	$.01(V_U + D_L)$.01×(profits - interest)

M&M (Debt Policy Doesn't Matter) **Example** - Macbeth Spot Removers - All Equity Financed Number of shares 1,000 Price per share \$10 Market value of shares \$10,000 Outcomes В С D Operating income \$500 1,000 1,500 2,000 Expected outcome 1.50 Earnings per share \$.50 1.00 2.00 5% 15 Return on shares (%) 10 20

MM's Proposition I If capital markets are doing their job, firms cannot increase value by tinkering with capital structure. V is independent of the debt ratio. An Everyday Analogy It should cost no more to assemble a chicken than to buy one whole

Proposition I and Macbeth Example - Macbeth continued Current Structure: Proposed Structure: All Equity Equal Debt and Equity Expected earnings per share (\$) 1.50 2.00 Price per share (\$) 10 10 Expected return per share (%) 15 20

Leverage and Returns

17-13

Expected return on assets = $r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$

$$r_A = \left(\frac{D}{D+E} \times r_D\right) + \left(\frac{E}{D+E} \times r_E\right)$$

M&M Proposition II

17-14

Example - Macbeth continued

$$r_E = r_A + (r_A - r_D) \frac{D}{E}$$

$$r_E = r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$$
$$= \frac{1500}{10,000} = .15$$

M&M Proposition II

17-15

Example - Macbeth continued

 $r_E = r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$

$$=\frac{1500}{10,000}=.15$$

$$r_E = r_A + (r_A - r_D) \frac{D}{E}$$

$$r_E = .15 + (.15 - .10) \frac{5000}{5000}$$

= .20 or 20%

Leverage and Risk

Example - Macbeth continued

Leverage increases the risk of Macbeth shares

		Operating	Income	Change
		\$1,500 to	\$500	Change
All equity	Earnings per share (\$)	1.50	0.50	-\$1.00
	Return on shares	15%	5%	-10%
50 % debt :	Earnings per share (\$)	2	0	-\$2.00
	Return on shares	20%	0	- 20%

Leverage and Returns

Example - Market Value Balance Sheet

Asset value	100	100 Debt (D)	
		Equity (E)	70
Asset value	100	Firm value (V)	100

$$r_{d} = 7.5\%$$

$$r_{A} = \left(r_{D} \times \frac{D}{D+E}\right) + \left(r_{E} \times \frac{E}{D+E}\right)$$

$$r_{B} = 15\%$$

$$r_{A} = \left(.075 \times \frac{30}{100}\right) + \left(.15 \times \frac{70}{100}\right) = 12.75\%$$

Leverage and Returns

Example - Market Value Balance Sheet

What happens to $R_{\rm e}$ when debt costs rise?

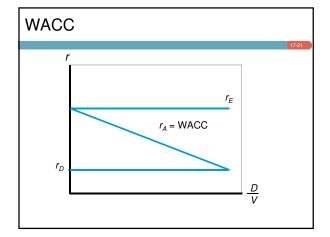
Asset value	100	Debt (D)	40
		Equity (E)	60
Asset value	100	Firm value (V)	100

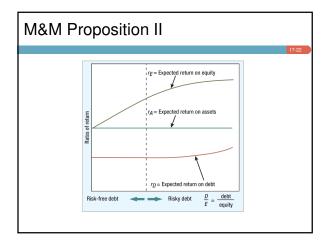
$$\begin{array}{ll} r_d = 7.5\% & \text{changes to } 7.875\% \\ r_e = ?? & \\ \end{array} .1275 = \left(.07875 \times \frac{40}{100}\right) + \left(r_e \times \frac{60}{100}\right) + \left(r_e \times \frac{60}{100}\right)$$

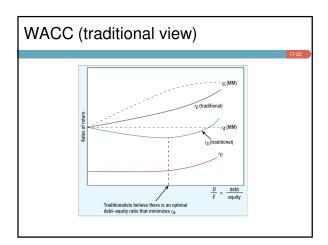
Leverage and Returns

17-19

$$B_{A} = \left(B_{D} \times \frac{D}{V}\right) + \left(B_{E} \times \frac{E}{V}\right)$$


$$B_E = B_A + \frac{D}{V} (B_A - B_D)$$


WACC


17-20

WACC is the traditional view of capital structure, risk and return.

$$WACC = r_A = \left(r_D \times \frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

17-24

- The tax benefit from interest expense deductibility must be included in the cost of funds
- This tax benefit reduces the effective cost of debt by a factor of the marginal tax rate

$$WACC = \left(r_D \times \frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

Old Formula

17-25

Tax-Adjusted Formula

WACC =
$$r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

After-Tax WACC

17-26

Example - Union Pacific

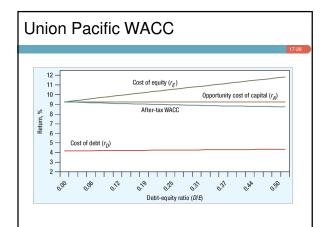
The firm has a marginal tax rate of 35%. The cost of equity is 9.8% and the pretax cost of debt is 4.2%. Given the book and market value balance sheets, what is the tax-adjusted WACC?

After-Tax WACC

17-27

Example - Union Pacific

Debt ratio = (D/V) = 9.4%


Equity ratio = (E/V) = 90.6%

WACC =
$$r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

17-28

Example - Union Pacific

WACC =
$$4.2 \times (1 - .35) \times .094 \times 9.8 + .906$$

= 9.1%

After-Tax WACC

17-3

Example - Kate's Cafe

Kate's Café has a marginal tax rate of 35%. The cost of equity is 10.0% and the pretax cost of debt is 5.5%. Given the book and market value balance sheets, what is the tax adjusted WACC?

Example - Kate's Cafe

Balance Sheet	(Market Valu	e, billions)
Assets	22.6	7.6

Debt Equity
Total liabilities 15 22.6 22.6 Total assets

MARKET VALUES

After-Tax WACC

Example - Kate's Cafe

Debt ratio = (D/V) = 7.6/22.6= .34 or 34%

Equity ratio = (E/V) = 15/22.6 = .66 or 66%

$$WACC = r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

After-Tax WACC

Example - Kate's Cafe

$$WACC = r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

WACC =
$$.055 \times (1 - .35)(.34) + .10(.66)$$

$$=.078$$