

Topics Covered

17-2

- The Effect of Financial Leverage in a Competitive Tax-Free Environment
- Financial Risk and Expected Returns
- The Weighted Average Cost of Capital
- A Final Word on After Tax WACC

17-3

• Modigliani & Miller

•When there are no taxes and capital markets function well, it makes no difference whether the firm borrows or individual shareholders borrow. Therefore, the market value of a company does not depend on its capital structure.

17-4

Assumptions

- By issuing 1 security rather than 2, company diminishes investor choice. This does not reduce value if:
 - o Investors do not need choice, OR
 - o There are sufficient alternative securities
- Capital structure does not affect cash flows, e.g...
 - No taxes
 - No bankruptcy costs
 - o No effect on management incentives

17-5

$$\frac{\text{Dollar Investment}}{.01V_U} \quad \frac{\text{Dollar Return}}{.01 \times \text{profits}}$$

M&M (Debt Policy Doesn't Matter) **Example** - Macbeth Spot Removers - All Equity Financed Data Number of shares 1,000 Price per share \$10 Market value of shares \$10,000 Outcomes \mathbf{C} D A В **Expected** Operating income 1,500 2,000 \$500 1,000 outcome Earnings per share \$.50 1.00 1.50 2.00 Return on shares (%) 5% 10 15 20

M&M (Debt Policy Doesn't Matter) Data **Example** Number of shares 500 50% debt Price per share \$10 Market value of shares \$5,000 Market value of debt \$5,000 Outcomes A В DOperating income 1,500 \$500 1,000 2,000 500 500 Interest \$500 500 Equity earnings \$0 500 1,000 1,500 Earnings per share 2 3 1 \$0 Return on shares (%) 0% *10 20 30*

17-9

Example - Macbeth's

- All equity financed
- Debt replicated by investors

Outcomes

\$0	1.00	2.00	3.00
\$1.00	1.00	1.00	1.00
\$1.00	2.00	3.00	4.00
A	В	С	D
	\$1.00	\$1.00 2.00	\$1.00 2.00 3.00

No Magic in Financial Leverage

17-11

MM's Proposition I

If capital markets are doing their job, firms cannot increase value by tinkering with capital structure.

V is independent of the debt ratio.

An Everyday Analogy

It should cost no more to assemble a chicken than to buy one whole

Proposition I and Macbeth

17-12

Example - Macbeth continued

	Current Structure:	Proposed Structure:
	All Equity	Equal Debt and Equity
Expected earnings per share (\$)	1.50	2.00
Price per share (\$)	10	10
Expected return per share (%)	15	20

17-13

Expected return on assets = $r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$

M&M Proposition II

17-14

Example - Macbeth continued

$$r_E = r_A + (r_A - r_D) \frac{D}{E}$$

$$r_E = r_A = \frac{\text{expected operating income}}{\text{market value of all securities}}$$

$$= \frac{1500}{10,000} = .15$$

M&M Proposition II

17-15

Example - Macbeth continued

$$r_{E} = r_{A} = \frac{\text{expected operating income}}{\text{market value of all securities}}$$

$$= \frac{1500}{10,000} = .15$$

$$r_{E} = r_{A} + (r_{A} - r_{D}) \frac{D}{E}$$

$$r_E = .15 + (.15 - .10) \frac{5000}{5000}$$

$$= .20 \text{ or } 20\%$$

Leverage and Risk

17-16

Example - Macbeth continued

Leverage increases the risk of Macbeth shares

		Operating	Income	Changa	
		\$1,500 to	\$500	Change	
All equity	Earnings per share (\$)	1.50	0.50	-\$1.00	
	Return on shares	15%	5%	-10%	
50 % debt:	Earnings per share (\$)	2	0	-\$2.00	
	Return on shares	20%	0	-20%	

17-17

Example - Market Value Balance Sheet

Asset value 100 Debt (
$$D$$
) 30 Equity (E) 70 Firm value (V) 100

$$r_d = 7.5\%$$

$$r_A = \left(r_D \times \frac{D}{D+E}\right) + \left(r_E \times \frac{E}{D+E}\right)$$
$$r_A = \left(.075 \times \frac{30}{100}\right) + \left(.15 \times \frac{70}{100}\right) = 12.75\%$$

17_18

Example - Market Value Balance Sheet

What happens to R_e when debt costs rise?

Asset value 100 Debt (
$$D$$
) 40
Equity (E) 60
Asset value 100 Firm value (V) 100

$$r_d$$
 = 7.5% changes to 7.875%
$$.1275 = \left(.07875 \times \frac{40}{100}\right) + \left(r_e \times \frac{60}{100}\right)$$
 r_e = 16.0%

17-19

$$B_{A} = \left(B_{D} \times \frac{D}{V}\right) + \left(B_{E} \times \frac{E}{V}\right)$$

$$B_E = B_A + \frac{D}{V} (B_A - B_D)$$

WACC

17-20

WACC is the traditional view of capital structure, risk and return.

$$WACC = r_A = \left(r_D \times \frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

17-24

- The tax benefit from interest expense deductibility must be included in the cost of funds
- This tax benefit reduces the effective cost of debt by a factor of the marginal tax rate

$$WACC = \left(r_D \times \frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

Old Formula

17-25

Tax-Adjusted Formula

$$WACC = r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

17-26

Example - Union Pacific

The firm has a marginal tax rate of 35%. The cost of equity is 9.8% and the pretax cost of debt is 4.2%. Given the book and market value balance sheets, what is the tax-adjusted WACC?

17-27

Example - Union Pacific

Debt ratio =
$$(D/V)$$
 = 9.4%

Equity ratio =
$$(E/V)$$
 = 90.6%

$$WACC = r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

17-28

Example - Union Pacific

WACC =
$$4.2 \times (1 - .35) \times .094 \times 9.8 + .906$$

= 9.1%

17-30

Example - Kate's Cafe

Kate's Café has a marginal tax rate of 35%. The cost of equity is 10.0% and the pretax cost of debt is 5.5%. Given the book and market value balance sheets, what is the tax adjusted WACC?

After-Tax WACC Example - Kate's Cafe Balance Sheet (Market Value, billions) Assets 22.6 7.6 Debt 15 Equity Total assets 22.6 Z2.6 Total liabilities MARKET VALUES

17-32

Example - Kate's Cafe

Debt ratio =
$$(D/V)$$
 = 7.6/22.6= .34 or 34%

Equity ratio =
$$(E/V)$$
 = 15/22.6 = .66 or 66%

$$WACC = r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

7-33

Example - Kate's Cafe

$$WACC = r_D \times (1 - Tc) \times \left(\frac{D}{V}\right) + \left(r_E \times \frac{E}{V}\right)$$

WACC =
$$.055 \times (1 - .35)(.34) + .10(.66)$$

= $.078$
= 7.8%